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Abstract, We describe a geometrical interpretation of Topological Quantum 
Mechanics (TQM). Basics of die general topological theories are briefly dis­
cussed as well. The appropriate correspondence between objects of TQM 
and tile algebraic topology is pointed out. It is proved that the correlators 
in TQM can be expressed via intersection numbers of some submanifolds 
of tile target space with paths of steepest descent between critical points. 
Another correspondence is only conjectured, namely the correspondence be­
tween correlators and an integral of Massey products on cohomology classes 
of tile target manifold.

In troduction

Topological Quantum Field Theories (TQFT) and Topological Siring Theories 
originating from the works of Willen et al [8-10] may be helpful in searches for the 
truly fundamental physical theory and in the treatment of important mathematical 
problems.
The main feature of topological theories is the independence of the correlation 
functions on metrics and coordinates [1], In Topological Field Theories (TFT) 
there are no propagating (local) degrees of freedom, the vacuum expectation values 
of operators and transition amplitudes (both further referred lo as “correlators”) 
depend only on topology of the target manifold.
In this paper we employ for our purposes a simple example of Topological Field 
Theory -  Topological Quantum Mechanics (TQM) with a BRST-like invariant 
action. Il was already shown [2,4] that in zero-dimensional analog of this theory 
partition function is equal lo the Euler character of the target manifold.
We have two main aims: the first is to make manifest the correspondence between 
TFT and geometry of target manifold, and the second one is to study the corre­
spondence between TFT and a differential graded algebra of cohomology classes
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on target manifold. The first aim is reached by providing a proof at a reasonable 
“physical” level of strictness, whereas the second is only conjectured and studied 
phenomenologically.
First we propose a geometrical interpretation of TQM developed earlier in [5,6], 
We prove that there is a correspondence between a special kind of observables and 
one-codimensional cycles on the target manifold. Moreover, transition amplitudes 
in the theory correspond to intersection indices of paths of steepest descent and 
cycles. This correspondence is proven using path integral representation of cor­
relation function. Establishing a correspondence between TQM and the topology 
of the target manifold we find a geometrical interpretation of all quantities in the 
theory. It is also shown that the correlator can be introduced independently as an 
integral of pull-backs of forms corresponding to observables over the moduli space 
of graph embeddings into the target manifold.
In [6] it was shown that the correlators in TQM satisfy the so-called anticommu­
tativity equation which is a general property of TQM. This allows us to conclude 
that the same equation holds for the intersection numbers. Thus an interesting 
mathematical fact is proven by “physical means.”
Second, a conjecture concerning correlators in TQM and some algebraic operation 
(Massey product) on cohomology classes is formulated. The conjecture, together 
with the previous property of correlators, makes possible to relate the Massey prod­
ucts and the intersection numbers.

1. Topological Quantum Mechanics. An Overview

1.1. The Setup

Quantum Mechanics can be considered as the simplest version of TFT. TQM is 
based on the following set of axioms:

1. The Hamiltonian H  e  Endn(7i) acting on a Hilbert space of states H  =  
Ho ® H i  can be represented as

H  = [Q,G\

where Q ,G  e  Endn(Ti) are odd nilpotent operators 

Q2 = 0, G2 =  0

and the bracket stands for the supercommutator, i.e., for two operators A, 
B  with parities a and b respectively, one has

[A,B] = A B  -  { - l ) abBA.

The Hamiltonian annihilates the vacua space

H H 0 = 0
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which is postulated to be non-empty. H  is positively defined on H i  and 
commutes with the parity operator (—1)F , whereas Q anticommutes

H ( - l f  = ( -1  )FH, Q ( - l f  = - ( - 1  f Q .
Here F  is a fermion number.

2. The observables 0 ,  e  EndmTi in TQM form the algebra

0 ,0 ,  =  C%Ok (1)

where C% are its structure constants.
LJ

Lemma 1.1 ([5]). In the above setup all correlation functions

(O,j ( f i ) .. .Oîm (t m)) ^2)
= t r a c e ( - l )Fe~tlH . _ e(tm-i-tm)H0 ^ etmH

are independent on coordinates if

IQ, Oil = 0 (3)

is valid. The trace is taken over the Hilbert space H.

Definition 1.1. The operators O satisfying equation (3) are referred to as zero- 
observables.

The correlator however may jump after interchanging of some observables, so their 
order should be preserved in such considerations [5],

1.2. Deformation and One-Observables

Let us deform the operator Q as

Q ^ Q  + Y j t AOa = Q + 0

where Ta are parameters (coupling constants) and Oa are the zero-observables. 
Then the Hamiltonian becomes

H  = IQ, G} IQ, G} +  [O, G] = H q + H t . (4)

Considering H\  as an interaction Hamiltonian we can rewrite the evolution opera­
tor and the derivative of one-point correlator ö \  (t) as

h
dTA(Oi(ti)} =  — f  d r  traee(— G]e~THö \

:
= J { 0 ^ { T ) 0 i { d ) ) à T  

o

where Ö^  = — [O^(f), G]df.
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Definition 1.2. The one-form Ö (i)
A on R is referred to as one-observable.

1.3. Generating Function for Correlators

The following property holds for a correlator [6]

deformed =  ®TAi (&)b  deformed =  ( 0 Aie^ C W>G1 dt)B. (6)

Here (..)deformed denotes vacuum expectation value in an interacting (deformed) 
theory, (..) -  the same quantity in a free (non-deformed) theory.
We can expand the exponent in (6) in Taylor series in terms of the parameters TA

T ß ( T )  = ( t ‘ I  Oa 1 e -t [° (t),G] dt J  ̂  

where the coefficients are expressed via

■A

m= 1

T\ T l O Al
' m  «n / [oAt(tt\ G  id**
,=2

B; Ai—Am -

= f d r 1 . . .  dTm~1( ö AlGe~TlHö A2(fl)Ge~T2H . . .  OAm(0)) 
JET-1

rpA  2 Jf Am
(T )

I V
) / „

(8)

^—T2H . o Am ( o ) ) i

Here the parameters TA have the meaning of coupling constants and T{..} stands 
for the chronological ordering. The whole expression (7), if interpreted physically, 
corresponds to the vacuum expectation value of 0 Al in the theory with interaction 
Hi.  If all ö Ai =  Ö are the same, and the operator K  =  / 0+o° Ge~Hr d r  being 
introduced, the above formula can be compactly rewritten as

T {p  A = {O K O . . .  K O ) ß  (9)

where is a short notation for the value determined in (8).

Theorem 1.1 ([6]). Let T  be a matrix defined in (7), then

V T + ^ [ T , T ] = 0  or (V  +  T ) 2 =  0 (10)

where V  =  CABT AT BdTi< is BRST operator (Chevalier differential). The above 
equation is called anticommutativity equation.

Here V 2 = 0 if C ^B is antisymmetric with respect to A  and B
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2. G eom etrical In te rp re ta tio n  of TQ M  

2.1. Path Integral Representation of TQM

In this Section we use a theory which is a particular case of TQM. We are going 
to proceed in a slightly unconventional way, namely, first defining the transition 
amplitudes and afterwards deriving the action functional from them. This will be 
done in order to make the geometrical interpretation of the theory more clear.
Let M  be a smooth closed oriented Riemannian n-manifold, /  a Morse function 
on it, V a gradient vector field constructed by means of this Morse function, and 
CPQM) be the space of its critical points. Let .4, B E CPQVf) be critical points 
with indices p +  1 and p, where p =  0 , 1 , . . . ,  n — 1 respectively, and be a 
gradient curve initialing at .4, terminating al B  and satisfying the following sei of 
ODEs

x i = v i. (11)
Their solutions are integral curves of r, or paths of steepest descent (PSD). The 
worldsheel of the theory is a line K, target space is M  and embeddings x e Map#

Mapjg =  {x(t) E C°°(M1, jV(); x ( —cc) =  .4, x(+cc) =  B}  (12)

satisfies (11). So we embed a line into M  with some fixed images of ±cc and x  
are the local coordinates on the target space, requiring il lo be one of the rigid paths 
of steepest descent between .4 and B  (see Fig. 1).

Figure 1. Worldslieet and target space of die theory

In our further considerations we will imply lhal the above boundary conditions are 
satisfied. The Map# space is infinite-dimensional since parameterized paths are 
considered. For non-parameterized the following statement is valid

Lemma 2.1 ([3]).

dim Mapjgalopar =  ind .4 — ind B — 1. (13)
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To develop a quantum theory means to describe the states and the transition am­
plitudes among them. The transition amplitudes are given by the path integrals 
with appropriate boundary conditions. The key point in understanding the geo­
metrical essence of TQM described below is that the transition amplitudes can be 
constructed from a purely geometric object. Indeed, let us consider the following 
path integral

Definition 2.1. Let V  =  x  — v be a vector field and 5[F] be a delta-functional. 
Then we define the transition amplitude as

ZAB = f  VxS[V] f  dt det(YjV'-J) (14)
J M a p |  " 'R

where V  is the covariant derivative o f the Levi-Civita connection.

In the above setup V  =  0 corresponds to path of steepest descent. The deter­
minant is a finite-dimensional determinant of the matrix f  d tV iV L  Further we 
would not specify the space of functional integration. The same boundary condi­
tions for x(t)  will be imposed. We remind the reader (a mathematician) that in 
quantum field theory the functional integration is still ill defined, but we would not 
discuss such problems here. By construction this integral counts the number of 
PSDs with signs. This technique is an infinite dimensional generalization of the 
Mathai-Quillen method [7],
Below it will be made clear that there is a one-to-one correspondence between 
critical points of the Morse function on the manifold and the vacua in TQM -  a 
path integral over even functional variables V x V p  and odd functional variables 
V é V i r, and the measure 'Dx'D f  being measure with fixed endpoints, while the 
measure VpVir is measure with arbitrary endpoints.

Lemma 2.2. The formula (14) can be rewritten as follows

Z Ab  = J VxVfiVpVTT e-sn thPi fMfMt)}  (15)

where

/
+QO r  . . -,

dt Ipa (x a -  va) -  #  (VjUa(a:)) wa +  aiïcr f c +  epapbr]ah 1

(16)
=  J pa dxa + 7ra dfia - [ Q , G } d t  = J P d Q - H d t

is the action functional, A  is an affine connection constructed by means o f the 
Levi-Civita connection, and the operators

o p
Q = +  P a B ----- H Ftjilïa —  , G = TTaVa +  £7Taphr f bdwa dpb

where F y f =  d iA jf  +  A £ A j l  is the curvature tensor.

(17)
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Accordingly, x(t), p(t), tp(t), ir(t) are identified with the dynamic variables, Z a b  
with the transition amplitude and e plays the role of coupling constant.
Critical points A, B  are identified with the vacua of the theory due to the following 
reason: in Lagrangian formalism V(x)  ~  (V(a:))2 has the meaning of poten­
tial (this relation becomes apparent after Gauss integration by p), due to positive­
definiteness, its zeros are its minima; the zeros of a gradient vector field are critical 
points of the corresponding Morse function.
We provide the following Table of correspondence.

Abstract TQM PI representation of TQM Morse theory

vacua space H q, | A) minima A  of the potential
critical points 
C P ( f , M ) , A

observables Ö 5-functions (one-forms) on cycles cycles C  C A4

amplitude (A\B) amplitude (A\B)
number of PSDs 

from A  to B
operator Q Fiib*«-êk de-Rham differential d

operator G TTaVa +  €TraphJ]ab
vector field 

substitution iv

2.2. Morse Theory, Witten Complex and «.-Matrices

In our theory the space H q of vacua corresponds to the space C P(/, A4) of critical 
points of function f  on A4. So the vacua \A),\B)  correspond to critical points 
A  and B  and the transition between the initial and the final state corresponds to 
motion of the point on the manifold from A  to B  along a rigid path Tß.
Let CP* be the linear space of formal linear combinations of all critical points of 
A4 of index i. The following complex of chains CP*

. . . — ► CPfc_1— ► CPfc— >CPk+1— ► . . .  (18)

is said to be the Witten complex [3,10]. Here n (n2 =  0) is a coboundary operator 
which increases grading in the complex that is given by the explicit formula

n \ B ) = ^ m l i \ A )  (19)
Ti

where |B)  e  CP*, |A) e  CP*+1 and the sign Tß  in the formula (19) means the 
sign for each PSD from A  to B  defined in Witten’s paper [10]. If there are several
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PSDs then their signs are summed up so that we can rewrite the formula in the 
following more convenient matrix notation

n \B ) =  ^ 2 n B\A ) (20)
A

where riß is a matrix element, which is equal to the number of PSDs computed 
with signs, initiating at A  and terminating at B.
Along with riß we can introduce , Cm) -  a number of PSDs from A
to B  intersecting the cycles C \ , . . . ,  Cm C A4. Here a transversal intersection of 
one-dimensional cycles and curve is assumed. Also we consider the case in which 
each cycle intersects the PSD only once.

Definition 2.2. Under the above assumptions,
m

n i ( C 1, . . . , C m) = Y , I [ ' m d ( C u T i )  (21)
r  i I

is said to be higher Morse differential (or n-matrices). Here ind(C*i, Tß) is an 
intersection index o f the objects into parentheses.

Eventually we have a family of operators, represented by the matrices riß, where 
riß(C i , . . . ,  Cm) e  Hom(CP®, CPÎ+1) and as all these objects are nilpotent one 
can consider a complex for each operator riß(Ci , . . . ,  Gm) which is analogous to 
Witten complex for riß.

2.3. Correlator via Intersection Numbers

Here we are going to introduce an explicit formula for the correlator in the Morse 
theory version of TQM. It will be introduced as a definition but in the next subsec­
tion we will show that the given expression really can be expressed via some path 
integral.
First we take an embedding x  e  M apj| for A  and B  as critical points of certain 
Morse function and obtain the images of the points t ±,. . . ,  tm by this map x(ti),  
. . . ,  x( tm). One can treat this situation as the evaluation map

ev : R 1 x Mapj| — >- A4, (t , x ) i— > x(t).

We will employ the pull-back map of differential forms

en* : Q‘ (A4) — > f l ' f R 1 x M apj|). (22)

For some form uj e  0*(A4) this map is the following

ev*uj[(x) àx1 =  Lüj(x(t))(xI (t) dt  +  d p 1)

where the differentials d p 1 belong to Mapj| space.

(23)
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We construct a set of transversal cycles C \ , . . . ,  Cm to the path A B  on A4 so that 
x( t i ) e  Ci, codim Ci =  1. Our next step here is to build closed differential forms 
on A4 which are delta-functions on the cycle.

Definition 2.3. The form u(x) is said to be a delta-form on the cycle C and de­
noted respectively as

u(x)  = Sc
if

I üü A 5n =  / 
Jm  Jc

Definition 2.4. The pull-back o f the delta-form

(24)

Oi = ev* uji

is referred to as an observable in TQM.

Now we will construct axiomatically the correlation functions in TQM.

Definition 2.5. Let SOI =  Map# x R 1. The correlator in TQM is represented as
follows

(On . . .  Oim) := f  ev*5n A • • • A ev*Sim. (25)

Here R.!p-1 is the moduli space the o f embeddings o f the graphs (—oo)—1\—*2— 
• • • —tm—(+oo) into all paths o f steepest descent between A  and B.

The substantial statement is the following

Lemma 2.3.
(Oî l . . . O îm) =  n ^ ( C i . . . C m). (26)

Proof: Obvious by construction.

If there is no an intersection of the cycle with PSD the answer is zero for the whole 
integral above and equals one if each cycle has an intersection with the curve.

2.4. Correlator via Path Integral

Now we will convince the reader that ^  in (8) is equal to n ^ ( C . . .  (7) pro­
m

vided an appropriate correspondence for the abstract operator GO a , is specified in 
the path integral formulation.

(1)Theorem 2.1. Let v be a smooth vector field on A4 and 0 \  _ be one-observable 
in TQM. Let G be a vector field substitution operator G =  iv. Then the following 
equality between correlator and intersection numbers holds

3TB-,A1...Am =  n B(C1) • • • > Gm). (27)
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Proof: One can see that the following correspondence arises from the theorem

GOAi =  5(:rn (0) -  xn(tt))vn(x(U)). (28)

Here local coordinates are chosen in such a way that vector field v on A4 in the 
vicinities of the intersection points with a path of steepest descent has the only one 
nonzero component vn, x n is the n-th component of coordinate x, and x(ti(r))  
are images of the points t ±,. . . ,  tm which depends on r  by embedding x. Here by 
r  we imply T2, . . . ,  rTO. One can see that after applying vector field substitution 
operator iv to one observable the unpleasant differential dip1 vanishes. 
Representation of the correlator (8) via the path integral yields

F (m) = /  m_, d r2 . . .  d rm /  e~s OAl O™  . . .  . (29)

Here n  =  |t* — i =  2 , . . . ,  m, parameterize the moduli space of embeddings 
of R with marked points 11, . . . ,  tm into target manifold A4 (see subsections 2.2 
and 2.3).
Then the correlator expansion coefficient can be expressed via the path integral

j-(m) A _ J   ̂ j  J)xUpDipVir

dt  (pa(va(x) -  x a) +  Tïaé a -  # (V tva)ircx exp (30)

x 5 (^ (0 )  -  x n(t1(T))) JJ 5(^n(0) -  x n(U(T))) vi (xn (ti(T))).
i=2

As the operators contain no dependence on Grassmann fields ip(t), 7r(f), one can 
integrate them out, resulting in det(dTöf — div^) in the numerator. The integral 
over p(t) can also be easily done, simply by the definition of the delta-functional. 
Therefore,

j - (r n )  A _  / ^  . . . ^ Tm  /  J )x  _  QiV3 ) -  Zj(rc)]
J J ^

m

X â(xn(0) -  Xn(ti(T))) n  5(^n(0) -  Xn(MT)) )v^x(MT)) ) .
i=2

One can take the integral over V x  away by virtue of the delta-functional, replacing 
x(t)  with a solution x(f) of the classical Lagrange-Euler equations (11). However, 
special cares should be taken due to the presence of zero modes in these solutions. 
Hence, an integral over the space of collective coordinates A remains after inte­
grating the infinite-dimensional V x  integral [1], Geometrically A corresponds to a 
shift of all points 11, . . . ,  tm along R keeping the distances between them constant
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and parameterizes second multiplier in the definition of SOI (see subsection 2.3). 
Re-expressing the delta-functional

5[il ( O W 0 r ) ]  =  ]T -
-  x(f)]

det(dtS{ -  dkvJ)|

one cancels determinants (as it should be in a supersymmetric theory) up to sign
(—1)“ =  sign(det(ßtö3k — d^vß)  and obtains

T (rn)A = ^ j d T 2 ---dTm j d X  ( - f  S ( 0) -  X ^ t ), A))
(32)

X n 5(x(0) - x ( f î (T),A))^(x(fî (r))).
i=2

Integral over A plays a crucial role here. It allows us to integrate out all the delta- 
functions, so that a regular expression remains. The latter integral possesses struc­
ture absolutely similar to that of the integral (25), which was obtained within a 
purely geometric construction of subsection 2.3. Indeed, sum over T and the in­
tegral over the zero mode A are equivalent to integration over SOI, whereas the 
integrals over n  are taken over the same manifolds R + _1. One can make sure that 
the following integral

j  dn  ( - ) “ un (x (ti(r))) S(x(0) -  x (ti(r)))  =  ind(I\ Ct) (33)

is an intersection index between T and Ci. Therefore, one gets using (33) the 
following expression

m
^ ( r n )  A  =  £  J J  i n d ( r >  a )  =  n A ( C  . . . £ ) . (34)

r  i I

Trivially generalizing this result, we thus have proven that for an arbitrary number
of cycles

T,AB; A i ...A „ = n i ( C 1, . . . , C m). (35)

2.5. Generating Function for JV-Matrices

The correspondence described in the previous subsection is very useful and has 
interesting consequences. Indeed as JF(m) =  r iß (C i . . .  Cm) one can rewrite for 
intersection numbers all relations valid for the correlators as well. First we mean 
the anticommutativity equation. As before we construct a generating function,
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namely, the whole matrix of them

N ß (T )  := n i  +  nAB{Cf)T^ +  nA{Cv Ck)T^Tk +  . . .
(36)

+  n i ( C p, C q)Tp .. . ' i q — ■ ■ ■ Y .  n i ( C ^ ) T ^
k

where t  is a parameter. Actually, several nonequivalent cycles are admitted so one 
needs introducing the same number of parameters. The above construction is an 
element of the space Mjyxjv ® R.[T1 . . .  T 1}. Here I is a number of nonequivalent 
cycles on the manifold.
As anticommutativity equation holds for N  (V  is taken from (10))

[V + N , V  + N} = 0 or V N  + ^ [ N , N }  = 0 (37)

we obtain interesting relations for the intersection numbers for any order in T. 
These equations are indeed very interesting relations in the intersection theory.

3. Algebraic Interpretation of TQM

Massey product is defined as described in the following

Definition 3,1, Let a  £ HP(M),  ß  £ H q(M),  7 € H r( M)  and a ß  =  0, 
«07 =  0. Then the Massey product M P(a, <0,7 ) is an element o f the following 
quotient space

H p+q+r- i ( M ) / [ a  -  -  7]- (38)

Let the cocycles a, b, c be representatives o f a, <0, 7 and the cochains u, v are such 
that du = ab and du =  be. Then the cochain —uc +  (—1 )pav is a cocycle and its 
cohomological class represents M P(a, <0,7 ).

Higher Massey products are defined inductively via products of lower order Massey 
products. However, for higher order Massey products to exist it is necessary that 
the lower order Massey products are trivial. Massey product enables us to deter­
mine homotopic class of the manifold up to a torsion group.
One can see that the above construction is not well defined. Nevertheless, this 
problem can be solved introducing the so-called modified Massey product. We 
need aß, ß y  vanished in cohomologies. If they are nonzero the above definition 
fails. So we introduce the following operator

K  =  d-1 o (id —P r # ) (39)

where P rh  is a projection operator on de-Rham cohomology groups. So, for each 
form Lo one has (id —Pr#)iu =  dx being exact, the operator d-1 is well defined 
and K uj = x- But another problem arises here. The form x is not closed anymore.
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3.1. Conjecture

As there is an embedding of the space of critical points of the Morse function 
CP* H*(A4) into de Rham cohomology groups of A4 (as linear spaces) one 
can make the following

Conjecture 3.1. I f  A  G CPp+1 and B  G CPP be critical points o f indices p +  1 
andp respectively and |A) G 77q+1, | B) G T~Lq be the representatives o f the vacua 
space. The conjecture is:
There is a correspondence between observables in TQM and forms in de Rham 
cohomology groups o f A4

where the tilde stands for Poincaré duality.

So, if the conjecture is valid, then we have an equality of three objects of very 
different nature -  correlator in TQM, intersection matrix n ß ( C \ , . . . ,  Cm) and the 
expression in the r.h.s. of the above formula.

4. Conclusion

Here we have presented the geometrical pattern of TQM -  a toy model of TFT. We 
expressed the correlators via the intersection numbers on target manifold and made 
a conjecture that they can be expressed via integral of Massey product. Now the 
main problem is to prove this statement.
Quantum mechanics in the setup described in this paper is a string theory with 
string length equal to zero. Generalization of this theory to topological sigma­
model is a very interesting problem that has to be solved.
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