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Abstract. The study of systems of differential equations admitting a super­
position function allowing us to write the general solution in terms of a set 
of arbitrary, but independent, particular solutions, and some constants deter­
mining each solution, can be reduced to that of an equation on a Lie group. It 
will be shown that all these systems of differential equations can be seen as 
the systems determining the horizontal curves on an appropriate connection 
and we will show how the theory of reduction can be used to simplify the 
problem of finding the general solution of such Lie systems. The theory will 
be illustrated with several physical applications.

1. Introduction: The Nonlinear Superposition Property

It is well-known that for homogeneous linear differential equation systems of type

Av i n
- £  = Y . A ‘ 3 * ) y ’ i 1 ....... n (1)

J=1

the general solution can be written as a linear combination of n  independent par­
ticular solutions, y ^ y  . . . .  y^ny

y = ®{y( lj- • • • • y(n)‘k 1 . . . . , k n) = k1 y (r) + ••• + kn y(n)

and for each set of initial conditions, the coefficients can be determined. For an 
inhomogeneous linear system,

A y i  n

=  E  Ai j (x ) yJ +  B%(x ) i = l ........n (2)
j = i
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the general solution can be written as an affine function of n  +  1 independent 
particular solutions

y =  - -  -.y(n+i)-.h-. - -  -.kn)

=  V( 1) +  kl(y{2) ~~ V(l j )  +  * * * +  ^ n ( ; V { n + 1) ~~ V( 1 ) ) -

Under a non-linear change of coordinates both systems become non-linear ones. 
However, the fact that the general solution is expressible in terms of a set of par­
ticular solutions is maintained, but the superposition function is no longer linear 
or affine, respectively. For instance, the general solution of the linear equation
y' =  a i(x)y  + ciQ(x) can be written as a linear combination of two solutions y\ and. . .  . 1

2/2, y =  ky i +  (1 — A;)2/2, and it is well-known that the change of variable u =  y 1~n 
transforms the equation into a Bernoulli equation ur =  (x)u  +  ao(x)un. Con­
sequently, the general solution of this last equation can be written as a function of 
two particular solutions as follows

u = [ku \-n +  (1 -  k )u \-n]1f {1- nK

The very existence of such examples of systems of differential equations admitting 
a superposition function suggests the problem of characterizing them. That is, to 
determine what are the systems of differential equations for which a superposition 
function allowing to express the general solution in terms of m  particular solutions 
does exist. The theorem, giving the answer to this question, is due to Lie [201

Theorem 1. Let us consider the system o f first order differential equations

-^ 7  =  X t {y1, . . .  .y n .x ) . i = l . . . . . n .  (3)

Then, there will be a function $  : jDn{m+l) sucfl general solution of
the system can be expressed as

y  =  ® { y ( r ) - - - - - y ( m f h - - - - - k n )

where
{ y ( j); j  =  1..... r n }

is a set o f independent particular solutions and k± ,. . .  ,k n, are n arbitrary con­
stants, if and only if the system can be written in the form

d y%
dir Z ilx )? *  «  +  ••• +  Zr { x ) e \ y )

with Z i , . . . .  Zr, being r functions o f only x, and £m, a  =  1 . . . . .  r, are functions 
of the variables y =  (y1, . . . .  yn), such that the r vector fields in W 1 given by

n
r o) =  y r ( » )

i=1
d_

dyi ‘
a =  l . . . . . r (4)
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close on a finite-dimensional real Lie algebra. Moreover, r satisfies r < mn.

From the geometric viewpoint, the system of first order differential equations (3) 
provides the integral curves of the ^-dependent vector field on an ra-dimensional 
manifold M n 8

X  = y x z(y.x)  —
1=1 *

in the same way as it happens for autonomous systems and true vector fields (see, 
e.g., [7]). The ^-dependent vector fields satisfying the hypothesis of the Theorem 1 
are those which can be written as a ^-dependent linear combination of vector fields,

X ( y . x )  = Y . Z a ( x ) Y ^ \ U) (5)
OL= 1

with vector fields Y^a) closing on a finite-dimensional real Lie algebra. They will 
be called Lie systems and have been the subject of a number of works by Anderson, 
Harnad, Wintemitz and collaborators, which deal with the classification of Lie 
systems and their explicit superposition formulas, as well as with their applications 
in physics and mathematics [1,4-6,17,18,24,25,291.
Both homogeneous and inhomogeneous linear systems (1) and (2) are particular in­
stances of Lie systems. In the first case m  =  n  and the corresponding ^-dependent 
vector field

n n
X (y-x)  =  E  I E  A ’ J w  J (6)

can be written as a linear combination with ^-dependent coefficients A 1 j{x)  of the 
n 2 vector fields

Y ij = yj —
U dyz

which close on the gl(n, X) algebra, because

[Yi j , Y kh , d d
i f ydy% ' d y k.

i.e.
y f Y kl] =  5 ilY ki — 5 k^ Y il

to be compared with the commutation relations of the gl(n,  X) algebra

[E{j, E m] — SjkEn SuEkj  

where Eij  denotes the matrix with elements (Eij)ki =
For inhomogeneous systems, the ^-dependent vector field is

n f n \  o
*  =  E ( E ^ V  +  b ^ ) I ^ (7)
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which is a linear combination with ^-dependent coefficients, A 1 j(x) and B z(x)
n n

A X  >' + T .
i , j = l  i =1

of the n 2 vector fields Y 7] and the n vector fields

Yi dy

Now, these last vector fields commute among themselves

[Yi.Yk] =  0. Vi.fc =  1, . . .  ,ra

and
[Y^.Yu] = - S kjYi, V i , j , k  = l , . . . , n .

Therefore the vector fields { Y ?t. i . j . k  =  1 , . . . ,  n \  generate a Lie algebra 
isomorphic to the (n 2 +  rij-dimensional Lie algebra of the affine group.
Another very interesting example for n  =  1 is the Riccati equation

dy
dx

b2(x)y (x) +  b1{x)y{x)  +  b0(x) ( 8)

for which m  =  3 and there is a superposition function coming from the relation

y -  2/(1) 2/(3) -  2/(1)

or in other words,

y

= k
y -  y(2) 2/(3) -  y(2)

2/(i) (2/(3) ~~ 2/(2)) +  ^2/(2) (2/(i) ~~ 2/(3)) 
(2/(3) -  2/(2)) +  %{1) -  2/(3))

In this case the ^-dependent vector field is Y  =  b^Y^1) +  b{Y 2̂) +  &2^ 3̂  with the 
vector fields Y {1\  Y {2) and Y {3) being given by

Y ' r> = Y .  Y ' 2> = y Y .  Y ':r> = y2Y  (9)
oy ou ou£r £r £r

which close on a three-dimensional real Lie algebra, with defining relations

[ y ^ . y ^ ]  =  y {VK [ y ^ . y ^ ]  =  2 y ^K  [ y ^ . y ^ ]  =  y ^ 3^

i.e. isomorphic to the s((2 , R) algebra.
Note that the third vector field, y^3 ,̂ is not complete on X, but we can consider the 
one-point compactification of X, X =  i U  {oo}, and then y ^  is also complete on 
X and the flows of such vector fields are, respectively,

, y
y y +  e, y - ^ e  y, y ^  :----

1 -  ye
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and therefore they can be considered as the fundamental vector fields correspond­
ing to the action of SL(2, X) on the completed real line 1L, given by

when

<S>{A.y) ay + /3 
yy  + § ‘

$  (A  - 5 / 7 ) =  00,

if y ± - -
1

<h(A 00) =  —
7

e SL(2 ,R).

2. Lie Systems in Lie Groups and its Homogeneous Spaces

We can study the particularly important cases of tight-invariant Lie systems in Lie 
groups and we will show that they play a very relevant role, displaying a kind of 
universal character. Let G be a r-dimensional connected Lie group and e e  G 
its neutral element. A basis of TeG will be denoted {04. . . . .  ar }. The Lie group 
G acts on itself in a transitive and free way both on the left and on the right by 
means of left- and right-translations, L g : G G, and R g : G G, defined, 
respectively, by Lg(gf) =  gg' and R g(gf) =  grg. The diffeomorphisms L g and R g 
allow us to define the left- and right-invariant vector fields determined by its value 
in the neutral element X g =  L g*eX e and =  R g*eX e. We will use the shorter 
notation X ^  = X ^  and X ^  =  X *  , for a  =  1 . . . .  , r ,  i.e., (X%)g = L g*e(aa), 
( X a ) g =  R g*e(aa)- They generate, respectively, two opposite Lie algebras

P 7 -  X ^] = y  oaS 7X f  [ * R- V ?] =  -  £  cas 7X *.
7=1 7=1

Consequently, for every choice of the functions ba {ie), the ^-dependent vector field
r

X ( g .x)  = - y b a ( x ) X « ( g) (10)
OL = 1

defines a Lie system in the Lie group G. Actually, this is the most general form of 
a right-invariant Lie system in the Lie group G. The integral curves g(x) of such 
re-dependent vector field are the solutions of the system

r

a = - £  ba
GL= 1

When applying R g-i (X)*g{x) t0 both sides we obtain equation
r

g(x)g^1(x) = -  ba (x)aa e  TeG. 
a=l

( i i )
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The left hand side is to be understood as R g- 9(x)(a(x ))- When G C GL(n.X) 
it reduces to the given expression.
Note that this equation is right-invariant: if g(x) is the solution such that #(0) =  e, 
then, for each go e  G, g{x) =  g(x)go is the solution such that #(0) =  go and, 
consequently, the curves solution of the system are obtained from just one solution 
by right-translations.
It is also noteworthy that the set Q of the curves 7  : X G, x  h-► g(x),  is a group
with respect to the point-wise composition law

72 * 71 : x  ^  g2{x)gi{x).

Let G x M  —> M  define a left action of the Lie group G on a differentiable 
manifold M.  We will denote: gu := <h5(u) := 3>(g,u); ®u(g) •= $(g,u).  Note 
that the maps are diffeomorphisms and that (<h5)~ 1 =  . Denote by g
the Lie algebra of G, i.e., the set of left-invariant vector fields in G. Remark that 
$u*e '■ 0 — TeG TUM . The map X  : g X(M ) defined by a ^  X a(u) =  
®u*e (—®e) defines a mapping of g into X(M ). We call X a the fundamental vector 
field associated to the element a of g, and is given by

( X J ) ( u ) — /(e x p (—ta)u) 
at. t= 0

/  e  C X {M).

Moreover, the minus sign has been introduced for X  to be a Lie algebra homo­
morphism, i.e. ^ [ a,6] =  [Xa,Xb\.  The flow of the vector field X a e  X( M)  is 
4>(t,u) =  <h(exp(—to), u).
A particularly important case is when we consider a transitive action. Let H  be a 
closed subgroup of G and consider the homogeneous space M  =  G f H , which ad­
mits one differentiable structure for which the canonical projection r  : G G / H  
is a differentiable map and admits local differentiable sections. Then, G acts on 
G / H  by X(g2 , g iH)  =  {g2 9 i ) H  and, moreover, G can be seen as a principal 
bundle over G / H : (G, t , G / H) .  The right-invariant vector fields X // are r -  
projectable [11] and the r-related vector fields in M  are the fundamental vector 
fields — X a =  —X aQ corresponding to the natural left action of G on M

r, gXS(a)  = - X a (gH).

The re-dependent vector field in M  projection of (10) will be
r

X ( y , x )  = ba {x)Xa {y) (12)
ot=l

where the vector fields X a close on a Lie algebra isomorphic to g, and its integral 
curves are the solutions of the system of differential equations

r
y = Y  ba{x ) Xa (y).

ot=l
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Therefore, a solution of this last system starting from yo will be

y{x) =  $(g(x),yo)

with g{x) being the solution of (11) starting form e. Note that as the vector fields 
X a close on a Lie algebra isomorphic to g, the systems of differential equations we 
obtain are of the class, characterized by Lie, of systems admitting a superposition 
function for the general solution in terms of a fundamental set of solutions [10-13, 
15,17,18,201

3. Lie Systems as Connections on Bundies

If G is a connected Lie group, then 712 : P  =  G x X X is a trivial principal 
G-bundle over the base X. The right-action of G on P  is given by <£((</, x). g) =  
^gig' -x)  = (f/g-.x).
The remarkable point is that there is a geometric interpretation of Lie systems in 
Lie groups and homogeneous spaces that provides a useful method of reduction. 
We shall see that there exists a one-to-one correspondence between Lie systems on 
Lie groups and connections in the principal bundle tt2 : P  =  G x X X, and sim­
ilarly between Lie systems in homogeneous spaces and connections in associated 
vector bundles.
We first remark that giving a connection in the principal bundle P  is equivalent 
to give a curve in G. For instance, one such that g{0) =  e. This curve pro­
vides us first a section for 7r2, <t {x ) =  (g(x).x),  and then a family of sections 
which are right-translated from such a section: {<xgo(x) = a(x)go: go G G}.  
The tangent vectors to such family of sections span the horizontal spaces in each 
point and the vertical and horizontal spaces in a point of P  are given, respec­
tively, by V P {g0jX) = ({X^(go).O))  and H P {g0jX) = {(Rgo^e(g(x) g~1(x))A)) .  
This choice of horizontal subspaces is right-invariant and, conversely, any principal 
connection in P  will be determined by horizontal spaces H P ^ X̂  =  {(a(x). 1)), 
where, for each t, a(x) G TeG is given a(x) =  — Y7a= 1 ba (x)aa , with ba {x) be­
ing arbitrary functions of t, and then =  ((Rgo*e(a(x)),  1)). Therefore,
we see that there is a one-to-one correspondence between principal connections in 
the principal bundle 7r2 : P = G x i ^ i  and Lie systems in the Lie group 
G: The curve x  h-► g(x) is a solution of the Lie system if and only if the section 
x (g(x).x)  is an integral 1-dimensional surface of the corresponding distribu­
tion in P.
A  (transitive) left-action 'I' : G x M  —> M  defines an associated bundle E  with 
base X and typical fibre M.  The total space of the bundle is the set of orbits of 
the right-action of G on P  x M  given by (u,y)g  =  (<h(u. g), ^ ( g ^ 1, y)), and 
the projection is tte[u. y\ =  xoiu),  where [u.y] denotes the equivalence class of
(u, y) G P  x M.
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A connection in the principal bundle translates into a connection in the associated 
bundle P , and so the horizontal curves will then be [7 (x).y],  where j ( x )  is an 
horizontal curve in P . More explicitly, the horizontal curves in the associated 
bundle are

[{g{x)g0. x ) . y 0} = [$((e, x). g{x)g0). y0] = [(e, x). ^{g{x).  ^{g0. y0))}.

Remark that E  is equivalent to the product E  =  M  x l ,  i.e., [(e, x ) . y\ cotxesponds 
to (y, x ). With this identification, the horizontal curves here considered correspond 
to the integral curves starting from the points 'I' (#0, Vo j of the associated Lie system 
in M  with respect to the action of G on M  given by 'I'.

The simplest case is when M  is a vector space V, and a linear representation of 
G on V  is considered, the associated bundle being then a vector bundle and the 
corresponding Lie system being a linear system. This means that a linear system of 
differential equations can be seen as defining the horizontal curves corresponding 
to a connection in an associated vector bundle as pointed out by [22]. See also [2] 
for the case of Schrodinger equation. Note that different linear representations 
will give rise to different associated vector bundles and correspondingly different 
systems of differential equations.

Actions on more general differentiable manifolds can also be considered. We 
mentioned before the case of the action of SL(2, R) on the compactified real line 
X =  X U {00} giving rise to Riccati equations.

It is well-known that there is an action of the group of automorphisms of a principal 
bundle on the sets of its connections. In our case it will be shown that it leads to 
a reduction procedure and a Wei-Norman method for dealing with Lie systems. 
More explicitly, if 'I' : P  — P  is an automorphism of a principal G'-bundle, and 
H  is a right-invariant distribution on P , then we can define a new right-invariant 
distribution on P  by =  T *„ (//„). But T is a fibre-preserving map over the
identity, and then the image under T of vertical vectors are vertical vectors, and, 
therefore, if the horizontal distribution H  defines a connection in P , then the new 
distribution K  will define a new connection on P . In this way we define an action 
of the group of automorphisms of the principal G'-bundle on the set of its principal 
connections.

In the particular case of P  =  G x X considered before, the G-bundle automor­
phisms will be given by the maps ^ ( g . x )  =  (w(g. x).  ;r) where w is such that 
ip(g,x)g'  =  >P(ggf. ;r), from which we obtain that w(go. ;r) =  G(e. x)go. There­
fore, every automorphism T is determined by a curve 7 : P  — G, g(x) =  w(e. x) 
by means of ^(gQ.x)  =  (g(x)go,x).  Conversely, any curve 7  in G given by 
x  h-► g{x) defines an automorphism of the G-bundle P  =  G x X: =
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(g(x)go. x). In this way we can identify the group of automorphisms of the G- 
bundle with the above mentioned group Q of curves in G , and, with this identi­
fication, the action of the automotphism is just left multiplication by g{x) of the 
G-component.
We can make use of this action of the group Q on the set of Lie systems in order to 
relate a given problem with other similar but maybe simpler Lie systems obtained 
by such automorphisms. More specifically, we first remark that given an equation 
on a Lie group like (11), it may happen that the only non-vanishing coefficients 
are those of a subalgebra f) of q and the equation reduces to a simpler one on a 
subgroup, involving less coordinates. Then, starting with an equation like (11) our 
aim is to choose a curve g'(x) defining an automorphism in such a way that the 
new equation,

Rg(x)-1 *g(x) (,9(*̂ )) Rgr ~1(t)*g'(x) (.9 (**0) ^  ] ba (f) Ad. (<7 (x))cia (13)

which is an equation similar to the original one but with a different right hand 
side, be simpler in the preceding sense. The fundamental result, whose proof can 
be found in [1 1 ], is that the knowledge of a particular solution of the associated 
Lie system in the homogeneous space G / H  allows us to reduce the problem to an 
analogous one but in the subgroup H.
If 'I' : G x M  —> M  is a transitive action of G on a homogeneous space M , which 
can be identified with the set G / H  of left-cosets by choosing a point at M , then the 
horizontal curve y{x) starting from the point yo =  ;y(0) and the horizontal curve 
y{x)  starting from <!?(</(0). yo), associated with the connections defined by g{x) 
and g(x) =  g'(x)g(x),  respectively, are related by

y(x) = $(g(x) .  y0) = $(g' (x)g(x).  y0) = ^(g' (x) . y(x) ) .

Therefore, the action of the group of curves in G on the set of connections trans­
lates to the homogeneous space and gives an action on the corresponding set of 
associated Lie systems.
The main result establishing how the reduction can be carried out when a particular 
solution of the corresponding Lie system in a homogeneous space is known is [11]

Theorem 2. Each solution o f (11) on the group G can be written in the form 
g(x)  =  gi(x)h(x),  where gi(x) is a cur\’e on Gprojecting onto a solution g\{x) 
for the left action A on the homogeneous space G / H  and h(x) is a solution o f an 
equation but for the subgroup H, given explicitly by

r

(hh 1 )(x) =  -  Ad (g1 1(x)) ba (x)cia +  (g1g1 1 )(x) e T eff.
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Before ending this section we will mention a method of dealing with equation (11) 
(or the corresponding equation in the subgroup once the reduction procedure has 
been carried out). This method is a generalization of the procedure proposed by 
Wei and Norman [27,281 for finding the time evolution operator for a linear system 
of type dU{x) / Ax  =  H(x)U(x) ,  with C/(0) =  I, see also [ 12], We will only give 
here the recipe of how to proceed; the proof can be found, for instance, in [9,11,151.
The generalization of the Wei-Norman method consists on writing the solution 
g(x) of (1 1 ) in terms of its second kind canonical coordinates w.r.t. a basis of the 
Lie algebra q, { a i , . . . .  ar }, for each value of x, i.e.,

A straightforward generalization of (13) for a product of l instead of two elements 
is that if g(x) =  gi(x)g2 (x) • • • gi{x) then (see [151 for a proof)

This relation allows us to transform the equation (11) into a system of differential 
equations for the unknown functions va(x), and the curve g(x) we are looking for 
is the one given by the solution of this last system determined by the initial con­
ditions va (0) =  0 for all a  =  1 . . . . .  r. The minus signs in the exponentials have 
been introduced for computational convenience. Now, it can be shown that us­
ing the expression (14) and after some mathematical manipulations, equation (11) 
becomes the fundamental expression of the Wei-Norman method [151

with va (0) =  0, a  =  1, . . .  ,r.  The resulting differential equation system for the 
functions va (x) is integrable by quadratures if the Lie algebra is solvable [27,281, 
and in particular, fornilpotent Lie algebras.
As a simple but illustrative instance one can consider the affine group in one di­
mension, Ai ,  i.e. the set of transformations of the real line y =  a±y +  cto, with 
a,\ 7  ̂ 0 and q-q being real numbers. The corresponding differential equation is the 
inhomogeneous linear first order equation y =  h\ (x)y +  bo, and an appropriate 
use of Wei-Norman method gives rise to the explicit solution which involves two 
quadratures

r
g{x) =  exp(—va (x)aa) =  exp(—i?i(a;)ai) •• • exp(—vr (x)ar). (14)

a = l

y(x ) = ef« dtbllt> V0+ r  dtfto(t) e~f«
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As another academical but more interesting example, from the physical point of 
view, illustrating the possible applications of the theory that has recently been stud­
ied using the theory of Lie systems is the motion of a classical particle under the 
action of a linear potential [151.

4. The General Riccati Equation

Each Riccati equation (8) can be considered as a Lie system in a homogeneous 
space, X, for the Lie group SL(2, R), as stated in Section 1. Once a basis of the 
Lie algebra s((2, X) has been chosen, for instance

M 0 Mi
1
2

1 °o —i y ' m 2
( 0 0
\ - l  0

the equation (8) can be considered as a curve in X3: b(x) =  (b2(x). bi(x). bo(x)). 
It defines a principal connection of the corresponding principal bundle SL(2, X) x 
X and of the associated bundle with fibre X. Any automorphism of the G'-bundle, 
i.e. a curve in SL(2, X) given by

A a(x)  (3(x) 
7 (2:) 6(x) E Map (3tSL(2.]R))

transforms the principal connection into a new one and same for the connection in 
the associated bundle. In this way the automorphism gives rise to a new Riccati 
equation in which the coefficients are related to the original ones as follows [13]

b2 =  52&2 ~~ ^761 +  72&o +7(5 — 57

bi =  — 2(55b2 +  ( a  <5 +  (5j)bi — 2ajbo  +  5a — a5  +  (3j — 7 /j

60 =  (32b2 — afibi +  ck2&o +  af5 — (5a

This defines an affine action of Q on the set of Riccati equations and we can use 
this action either for obtaining solutions of a Riccati equation by transforming the 
original equation in a simpler one in the same orbit, and finding first its solutions, 
or also for establishing some solubility criteria [131.
For instance, if we choose (3 =  7  =  0 and 5 =  ct_1, then we see that bi =  0 if and 
only if b\ =  —2a /a ,  i.e.

a  =  exp

In other words, the change x' =  e~^x  with =  J0X 61(f) dt, leads to 61 =  0, 62 =  
62 and b0 =  «o eM , which is the property 3-l-3.a.i of the book by Murphy [231. 
In fact, under such a transformation

b2 = a  2b2. 61 — b\ +  2 -
a
a bo — a  6q
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and therefore with the above choice for a  we see that b\ =  0.
If, instead, a  =  <5 =  1 and 7 =  0, the function (3 can be chosen in such a way that 
&i =  0 if and only if {3 =  61/ ( 262), and then

which is the property 3-l-3.a.ii of [231.
Finally, the original equation would be reduced to one with 6q =  0 if and only if 
there exist functions a(x)  and (3{x) such that

This relation was considered by Strelchenya [261, even if written in a slightly mod­
ified way, to be an integrability criterium.
Note that when dividing the preceding expression by a 2 we see that y\ =  —j3/a  is 
a solution of the original Riccati equation, and conversely, if a particular solution 
is known, y\, then the matrix

will transform the equation into a new one with 6q =  0, 62 =  62 and 61 =  
61 +  2;yi62, which can be easily integrated by two quadratures. Consequently, 
the criterium given by Strelchenya is nothing but the well-known fact that once 
a particular solution is known the original Riccati equation can be reduced to a 
Bernoulli one and therefore the general solution can easily be found. However, in 
our opinion the previous theory gives a very appropriate group theoretical explana­
tion of the convenience of the associated change of variables. Note that the inverse 
matrix of A(x)  is playing the role of gi(x)  in Theorem 2, and the isotopy group 
of 0 6 1  is the group generated by M\  and M 2, which is isomorphic to the usual 
affine group in one dimension, generated by M q and M\.  The latter is the isotopy 
group of 00 e  X which is the image of the point 0 G 1  under the transformation 
defined by the matrix M0 +  M2 6 SL(2. X). This is the reason why the intermedi­
ate Bernoulli equation becomes a inhomogeneous linear equation under the change 
of coordinates y 1 fy.
It was also shown in [131 that the knowledge of a second solution allows us to 
reduce the original Riccati equation to a homogeneous linear differential equation 
(i.e. to the subgroup corresponding to the generator M \) and, therefore, to just 
one quadrature. Moreover, if a third solution is known, the general solution can 
be written without any quadrature by means of the above mentioned supeiposition 
rule.

60 =  60 +  {3 62 =  62

/32&2 — aflbi +  ct26o +  a/3 — j3a =  0.
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5. Applications of Lie Systems in Supersymmetric Quantum 
Mechanics

The simplest example and in some sense a prototype of Lie systems is that of 
linear systems, but, as indicated in the preceding section, Riccati equation is also 
an interesting example for n  =  1 [13], Both, non-autonomous linear systems and 
Riccati equation appear very often in Physics. For instance, linear systems appear 
in the time evolution of classical time-dependent harmonic oscillators and related 
problems. But also in Quantum Mechanics one often considers finite-dimensional 
Hilbert spaces, for instance when only the internal degrees of freedom are taken 
into account, and then time-dependent Schrodinger equation reduces to a linear 
system. As an instance, Barata used a particular solution of a complex Riccati 
equation in order to determine the dynamical evolution of a two level system [31, 
i.e. described by a Hamiltonian H  =  ecr3 — Such problem was analyzed
from the perspective of Lie systems in [101, where it was proved that the relevant 
group in both problems is SL(2, X).
The importance of Lie systems in Supersymmetric Quantum mechanics is based 
on the fact that Riccati equation can be considered as a Lie system with group 
SL(2,R). Recall, for instance, that the condition for the determination of the 
super-potential W  in the factorization of a Hamiltonian H  in such a way that

is a Riccati equation. Moreover, a similar equation plays a relevant role in the 
search for shape invariant potentials using the so called Infeld-Hull factorization 
method [191 (see also [141 for a modern approach).
The fact we want now to stress is that Lie reduction theory for dilation symmetry 
of linear second order differential equations produces a Riccati equation. Actually 
dilations are symmetries of such equations,

and we can use the Lie recipe to reduce the problem to a first order differential 
equation which turns out to be a Riccati equation. In fact, the dilation vector field 
is X  =  z d / d z  and Lie prescription amounts to change the variable z to a new 
one u =  if{z) such that X  becomes the translation operator in u, i.e. X  =  djdu.  
The condition X u  =  1 leads to u =  log z, i.e. z =  en, and then, d z /  dx  =  en, 
d z j  dx  =  z du j  dx,  and the differential equation becomes
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where the unknown function u appears only through its derivatives: the order is 
lowered by introducing the change of variable w =  d u /  dx  and we get a Riccati 
equation w'  =  —c(x) — b{x)w — w2. If w satisfies such Riccati equation, then 
z(x)  =  exp ( f x w(()  d() satisfies the given SODE. In the particular case of the 
time independent Schrodinger equation,

“ d^ + ( V ( x ) - E ) i ,  = 0

6 =  0 and the reduction leads to the first order equation for <p =  f

y L  = - 4 ?  + < y - E ) .

This relation of some Riccati equations with stationary Schrodinger equation, just 
those equations (8) for which b2(x) = —1 , b\ (x) = 0 and b0(x) an arbitrary 
function which will correspond to bg(x) = V(x)  — E,  suggests us to make use of 
this affine action of Q on the set of Riccati equations for relating spectral problems 
of two Hamiltonians whose associated Riccati equations are connected by such 
(/-action as it was done in [81.
For instance, if y(x)  is a solution of the equation (8) and we transform it by means 
ofy(x)  =  3?(.A(a:), y(x)),  then y{x) will be a solution of the Riccati equation with 
new coefficient functions &i and b2. By means of this technique it has been 
proved in [81 the following result.

Theorem 3 (Finite difference Backlund algorithm [16,211). Let Wk(x), wi{x) be 
two solutions o f the Riccati equations wf +  w2 =  V(x)  — e& and wf +  w 2 =  
V(x)  — ei, respectively, where ek < e;. Then the function Wki(x) defined by

Wki{x) = ~Wk(x) ------ 7~t— (16)w k(x) -  wfix)

is a solution o f the Riccati equation wf +  w2 =  V(x)  — 2wfk(x) — e;.

The proof consists on transforming the function wfix)  solution of the Riccati equa­
tion w'  +  w2 =  V(x)  — ei by means of the element of Q given by

A (x)
1  /  h(x)  —h2(x)  +  a \

7 ^  V - 1  h(x)  )
(17)

and then we see that if a =  e; — efo and the function h(x)  satisfies the Riccati 
equation w2 +  w'  =  V(x)  — e^, and we rename it as h{x) =  Wf,(x), the new 
coefficients reduce to b2(x) = —1 , bi(x) =  0 and ba(x) =  V(x)  — 2wfk(x) — e;. 
Let us note that in [161 the proof of the Theorem 3 was just sketched. In addition, 
there exists an alternative proof; see, e.g., Mielnik et al [21].
The result of this theorem admits a generalization whose proof is a bit more cum­
bersome and which was also given in [81:
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Theorem 4. Let w(x) be a solution o f the Riccati equation

w +  w2 =  V  (x) — e (18)

for some function V 0 ) and some constant e, and y(x)  a never vanishing differen­
tiable function defined on the domain ofV(x) .  If v{x) is a solution of the Riccati 
equation

v +  v2 = V(x)  +  \  -  e (19)
Y { x )

such that is defined in the same domain as w(x) and w(x) — v(x) does not vanish, 
then the function w (x ) defined by

w(x) = —v(x) —

is a solution o f the Riccati equation

l / 7 20 )  , V O )
w(x) — v(x) 1 7 0 )

~ //
2 ( — v +  t / ) +  ^ -

V 7 ) 7

(20)

(21)

Theorem 4 has a counterpart for linear second-order differential equations of 
Schrodinger type, which are of direct interest in physical applications. Some ap­
plications of these results can be found in [81.
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