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Abstract, The present paper is concerned with the geometric (point) Lie 
symmetry groups of the Willmore equation -  the Euler-Lagrange equation 
associated with the Willmore functional. The ten-parameter group of special 
conformal transformations in three-dimensional Euclidean space, which is 
known to be the symmetry group of the Willmore functional, is recognized 
as the largest group of geometric transformations admitted by the Willmore 
equation in Monge representation. The conserved currents of ten linearly in­
dependent conservation laws, which correspond to the variational symmetries 
of the Willmore equation and hold on its smooth solutions, are derived. All 
types of non-equivalent group-invariant solutions of the Willmore equation 
are identified, an optimal system of one-dimensional subalgebras being given 
together with the invariants of the corresponding one-parameter groups, up 
to one exception. Special attention is paid to the rotationally-invariant (ax- 
ially-symmetrie) solutions.

1. Introduction

The so-called Willmore functional

which assigns to each surface S  its total squared mean curvature H  (here dA  is the 
area element on the surface) has drawn much attention after the appearance of Will- 
more’s paper [18] in 1965. In this work, Willmore proposed to study the surfaces 
providing extremum to the functional (1), which are now referred to as Willmore

( 1 )
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surfaces. These surfaces obey the corresponding Euler-Lagrange equation

which will be further referred to as Willmore equation. Here A is the Laplace- 
Beltrami operator on the surface <S and K  is the Gaussian curvature of <S. Ap­
parently, according to Thomsen [16], Schadow was the first who had derived this 
equation in 1922 as the Euler-Lagrange equation for the variational problem

where l / i? i  and l/i?2 are the two principal curvatures of the surface S.  This 
variational problem is studied in Thomsen’s paper [16] devoted to the conformal 
geometry. There, a reference to the aforementioned (and probably unpublished) 
result by Schadow was given. Actually, the Lagrangian densities of the functionals 
(1) and (3) are proportional up to the divergence term 2K  and that is why they lead 
to the same Euler-Lagrange equation.
The study of the extremals of the functional (1), i.e. the Willmore surfaces, turned 
out to be of great importance not only for differential geometry (in connection 
with the Willmore problem and conformal geometry) but also for the 2D string 
theory and 2D gravity based on the Polyakov integral over surfaces (see [14]). In 
these theories, the functional (1) is known as the Polyakov’s extrinsic action. The 
properties of the Polyakov’s extrinsic action as well as various generalizations, 
such as the Polyakov-Kleinert rigid string action [15], [9]

A  = J ( a H 2 -)- 'yj dA a, 7 — constant (4)

for instance, have been studied in a number of papers (see the review paper [4]). 
The functional (1) has found application in biophysics too. In Helfrich theory [5], 
the bending energy of a homogeneous vesicle membrane is assumed to be given 
by the functional

where k  and k  are real constants representing the bending and Gaussian rigidity of 
the membrane. The equilibrium shape of the vesicle is supposed to be determined 
by the extremals of the Helfrich curvature free energy (shape energy)

where d V  is the volume element, H s, A and Ap are real constants and denote 
the so-called spontaneous curvature, tensile stress and osmotic pressure difference 
between the outer and inner media. The corresponding Euler-Lagrange equation

k A H  +  2k (H  -  H s) (H 2 -  K )  -  2k (H  -  H sf  H  -  2XH +  A p  = 0 (6)

A H  +  2(H 2 -  K ) H  =  0 (2)

(3)

(5)
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(derived in [20], [21]) is referred to as the Helfrich’s membrane shape equation. 
There is a vast amount of papers in which the extremals of functional (5), i.e. the 
solutions of equation (6) are studied (see e.g. [10], [22] and the references therein).

2. Will more Equation in Monge Representation

Let (x1, x 2, x 3) be a fixed right-handed rectangular Cartesian coordinate system in 
the three-dimensional Euclidean space R3 in which a surface <S is immersed, and 
let this surface be given by the equation

S  : x 3 = w{x1, x 2), {x1, x 2) e  O C R2 (7)

where «• : R2 ' R is a single-valued and smooth function possessing as many 
derivatives as may be required on the domain Q. Let us take x 1 , x 2 to serve as 
Gaussian coordinates on the surface <S. Then, relative to this coordinate system, 
the components of the first fundamental tensor gap, the second fundamental tensor 
bap, and the alternating tensor ea0 of <S are given by the expressions

9a.fi =  Saf) +  wawp, bap =  g~1/2waf3, eaf} =  g~1/2ea0 (8)

where

g =  det (gap) = 1 +  (wi)2 +  (u;2)2 (9)

while Sap will denote the Kronecker delta symbol and ea0 is the surface alternating 
symbol. The contravariant components ga0 of the first fundamental tensor read

gafi =  g- i Sa0 +  e^ e^ WfiWv =  g - 1 |> /3  +  . (10)

Here and in what follows: Greek indices have the range 1,2, and the usual summa­
tion convention over a repeated index is employed, (k = 1,2, . . . )  denote
the k-th order partial derivatives of the function w with respect to the variables x 1 
and x 2, i.e.,

Qkw  ̂  ̂ ^
wa im ...ak = d x C l l ^ dxClk, k = 1 , 2 , . . . .

The mean curvature H  of the surface <S and its Gaussian curvature K  are given as 
follows

H  = \ g apbap, K  = l- e^ e ^ b apb,kV (11)

that is,

H  = ^ 5 _3/2 (Sa<3Wap +  , K  = ^ g~2 iuapwflv. (12)
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In the above Monge representation the Willmore functional (1) reads

W =  H 2g1/2 dx1 d x 2

JJ \9 0/2 +  e ^ u ) a p w yw j}  da:1 da:2

The application of the Euler operator

(13)

E  — —----- Dfi~------h DflD v- —
O W  O VJ„ OVJ,

where

D a =
d ^  + Wad ^  + W^ d w „

fll/

T  in; 0 T  0ow.n, dw„ +
11 L / '-flu L /

denote the total derivative operators, on the Lagrangian density

L = E 2g1!2 =  - g ~ ^ 2 ( s ^ w a0 +  e ^ e ^ w apw(lwv) 2 (14)

of the Willmore functional (13) leads, after taking into account expressions (8-10) 
and (12), to the expression

E(L)  =  A H  + 2(H 2 -  K )H .

Actually, in Monge representation, the Willmore equation E(L)  =  0 is to be re­
garded as a fourth-order partial differential equation in two independent variables 
x 1, x 2 and one dependent variable w -  the displacement field. This equation be­
longs to the class of equations of the form

£ = ^ g ~ 1/2gaPg,lvwal3flv +  $  (xu  x 2, w ,w 1, . . . ,  w222) =  0 (15)

where $  (x±, x 2, w, w±, . . . ,  w222) is a differential function depending on the inde­
pendent and dependent variables and the derivatives of the dependent variable up 
to third order. Indeed, using expressions (8-10), (12) and the well-known formula

A =  o "1/ 2-
dxc

1/2
dx@ = gaP

d2
dxadx@ + g- 1/2 d

dxa
1/2 a/) d

dx@

one can represent the Willmore equation (2) in the form (15).
It should be remarked that there are other equations of form (15) which have at­
tracted much attention in differential geometry, theoretical physics and biology. 
Among them one can find, for instance, the equations for the Willmore surfaces 
in the three-dimensional sphere S 3 and in three dimensional manifolds of constant 
negative curvature (see [8]), the Euler-Lagrange equation for the Polyakov-Kleinert 
rigid string action (4) and the Helfrich’s membrane shape equation (6).
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3. Symmetry Groups

The main objective of the present Section is to establish, following [12], [13] and 
[7], the invariance properties of the Willmore equation (2) relative to local one- 
parameter Lie groups of local point transformations acting on open subsets of the 
three-dimensional Euclidean space R3, with coordinates (a;1, a;2, to), representing 
the involved independent and dependent variables x 1, x 2 and w, respectively. For 
that purpose Lie infinitesimal technique is used and the results obtained are ex­
pressed in terms of the infinitesimal generators (operators) of the respective groups. 
In the present case, the latter are vector fields on R3 of the form

v =  r
a a

dxi1  ̂dvj
(16)

where and q are functions of the variables x 1, x 2 and w. 
The infinitesimal criterion of invariance

prW v  (£) =  o whenever £  =  0 (17)

where prM  v  denotes the n-th prolongation of the vector field v  (see [12]), leads, 
through the standard computational procedure (see, e.g. [13] or [12]), to the fol­
lowing result.

Proposition 1. The ten-parameter Lie group G s c t  o f special conformal transfor­
mations in R3 (whose basic generators Vj, j  = 1 , . . . ,  10, their characteristics, 
commutators and corresponding finite transformations and invariants are given in 
Table 1, Table 2 and Table 3 listed below) is the largest group of geometric trans­
formations o f the involved independent and dependent variables that a generic 
equation o f form  (15) could admit.

Remark 1. Let us denote by L sc t  the Lie algebra corresponding to the group 
G sc t , i-e- L s c t  «  the ten-dimensional Lie algebra spanned by the vector fields 
Vj, j  =  1 , . . . ,  10. Actually, the group Gs c t  is a representation of the Lie group 
0(4,1)  in the vector space R3, which corresponds to the action o f 0(4,1)  on R3 
determined by the representation L s c t  o f its Lie algebra o(4,1) in R3.

Proposition 2. In Monge representation, the Willmore equation (2) admits all the 
transformations o f the group Gs c t -

It should be noticed that the geometric symmetries of a system of partial differen­
tial equations equivalent to the Helfrich’s membrane shape equation (6), including 
the Willmore equation (2) as a special case, are studied in [11], It seems that the 
symmetry groups obtained in this paper can be interpreted as generalized symme­
tries of the Willmore equation (2) in Monge representation, but this matter remains 
to be clarified.
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Table 1, Generators and characteristics of the group of special confor­
mal transformations in M3. Here and below the following notations are 
used: x 1 =  {x1)2 — (x2)2 — w 2, x 2 =  (x2)2 — (a;1)2 — w 2 and
X3 =  w 2 — (x2)2 — (x1)2.

V6 =  ~w
Dilatation

v 7 = x l  + x2 S ?  + w £ l_____ UJ.
Inversions

X1 £ t + 2x 1x 2£ ^  + 2x 1w £  Q8 = 2x1w
^ 9 = 2x2x ^  + x ^  + 2x2w £ !8x2 Qg = 2x 2W .----- ^

Qio =  x3 — 2x1wwi — 2x 2vjvj2Vio =  2x 1w £ -  +  2x2w ^  +  x 3£dx2 dw
Table 2, Commutator table

Vi v 2 v 3 v 4 V5 V6 V7 Vg vg vio
Vi 0 0 0 v 2 v 3 0 Vl 2v 7 —2v 4 - 2 v 5

v 2 0 0 0 - V i 0 V3 v 2 2v4 2v 7 —2v 6

V3 0 0 0 0 - V l - V 2 V3 2v 5 2v6 2v 7

v 4 - v 2 Vi 0 0 - v 6 V5 0 -V g vg 0

V5 - v 3 0 Vi V6 0 v 4 0 - v i o 0 vg

V6 0 - v 3 v 2 - v 5 v 4 0 0 0 - v i o vg
V7 - V i - v 2 - V 3 0 0 0 0 Vg vg vio

Vg —2v 7 —2v 4 - 2 v 5 vg vio 0 - v g 0 0 0

vg 2v4 —2v 7 - 2  v 6 Vg 0 vio -V g 0 0 0

Vio 2v 5 2 v 6 —2v 7 0 -V g -V g - v i o 0 0 0

Here, the entry in row i and column j  represents the commutator [vj, vy].
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Table 3, Finite transformations and invariants. Here, the entries 
in the “Finite Transformations" column give the transformed points
exp(evJ')(a;1, x2, w) and \  =  (r2 +  w 2).

G(v4) (a:1 cos e — x 2 sin e, x 2 cos e +  x 1 sin e, w) Ji =  w, I 2 = r

G(v5) X 1 COS £

(x2, x 2 cos e — w sin e, w cos e +  x 2 sin e)

h  =  (a:1)2 +  w 2, 

h  = x 2

Ji =  (x2)2 +  w

4. Conservation Laws

A particular interest exists for the variational symmetries of equation (2) -  the 
Lie groups generated by the so-called infinitesimal divergence symmetries (see 
Definition 4.33 in [12]) of any variational functional with (2) as the associated 
Euler-Lagrange equation. Note that if two functionals lead to the same Euler- 
Lagrange equation, then they have the same collection of infinitesimal divergence 
symmetries. This interest is motivated by the fact that, in virtue of Bessel-Hagen’s 
extension of Noether’s theorem, each variational symmetry of a given self-adjoint 
equation corresponds to a conservation law admitted by the smooth solutions of the 
equation. Thus, if a vector field v  of form (16) is found to generate a variational 
symmetry of equation (2), then Bessel-Hagen’s extension of Noether’s theorem 
implies the existence of a conserved current, which, in the present case, is a cou­
ple of differential functions P a (i.e. functions depending on the independent and 
dependent variables and the derivatives of the dependent variable) such that

DaP a = QE(L) (18)
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where Q is the characteristic of the vector field v. By definition

Q = v -  (19)

The total divergence of the conserved current P a vanishes on the smooth solutions 
of equation (2) and so we have the conservation law

D aP a = 0 (20)

where (18) is its expression in characteristic form, and Q -  its characteristic.
To derive the conservation laws of the foregoing type, one can proceed by first 
determining the variational symmetries of the equation considered on the ground 
of the invariance criterion

prW v(L)  + ( D ^ L  = D ^ - 1

where B a are certain differential functions. Then using their characteristics (19) 
we find, from equality (18), explicit expressions for the corresponding conserved 
currents P a.
It is well-known (see [19]), that the Willmore functional (1) is invariant under the 
conformal transformations of a closed surface <S. This follows from the invariance 
of the functional

f  ( i f 2 -  i f )  dA (21)
Js

under the group of conformal transformations (see [17], [3]) and the Gauss-Bonnet 
theorem which states that the area-integral over the Gaussian curvature is a topo­
logical invariant.
All vector fields v j, j  =  1 , . . . ,  10 are variational symmetries of the Willmore 
equation (2) and hence, ten linearly independent conservation laws of the form 
(20)

D aP f  =  o, j  =  l , . . . , 1 0

exist that hold on its smooth solutions. The corresponding conserved currents are

where

N f  =

P j = N ? L , j  = 1 , . . . ,  7 

=  N g L  -  Qal 

P f  =  N g L  -  Qa2

Pio = N ^ L  +

nQjDu dw, ~  \ Q ] Df>Ctfl dwflCt + dw,Ctfl + 2 {D^ ) dwflCt
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are the so-called Noether operators (cf. [7]), corresponding to the vector fields vj  
with characteristics Qj, j  = 1, . . . ,  10, and

QaP =
s/g

Note that in the above notations

H  = Dfl ( ^ = S ^ w f) j  , 4 = D flQa>\

5. Group-invariant Solutions

Once a group G is found to be a symmetry group of a given differential equa­
tion, it is possible to look for the so-called group-invariant (G-invariant) solutions 
of the equation -  the solutions, which are invariant under the transformations of 
the symmetry group G (see [12], [13]). The main advantage that one can gain 
when looking for this kind of particular solutions of the given differential equation 
consists in the fact that each group-invariant solution is determined by a reduced 
equation obtained by a symmetry reduction of the original one and involves less 
independent variables than the latter.
Let G(v) be a one parameter group generated by a vector field v  belonging to 
the Lie algebra L s c t , that is v  is a linear combination of the vector fields Vj,
j  = 1, • • •, 10,

10

v =  Y ,  c3v 3 (22)
3=1

where Cj, j  =  1, . . . ,  10, are real numbers -  the components of the vector field 
v  with respect to the basic vector fields vj .  Then, G(v) is a symmetry group of 
the Willmore equation (2) and so one can look for the G(v)-invariant solutions of 
this equation. For that purpose, first one should find a complete set of functionally 
independent invariants of the group G(v). In the present case this is a set of two 
functionally independent functions I ^ i x 1, x 2, w) such that

v l a =  0

where the vector field v  is regarded as an operator acting on the functions C : R3 —> 
R. Then, if the necessary condition for the existence of group invariant solutions 
is satisfied, that in the present case means

rank = 1 (23)

one can find G(v)-invariant solutions in the form

U = U(s), U = h ,  s = I2 (24)
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and where it is assumed that d l i / d w  /  0.
The complete sets of functionally independent invariants of the one-parameter 
groups G (vj), generated by the basic vector fields vj ,  j  =  1, . . . ,  10, are given 
in Table 3. Evidently, only the invariants of the group G (v3) do not satisfy the 
necessary condition (23) for the existence of group-invariant solutions. The invari­
ants of the rest of the groups G (v j ) can be used to construct the corresponding 
group-invariant solutions of the form (24).
On the other hand, each vector field v  of the form (22), i.e. v  e  L s c t , can 
be mapped by a suitable inner automorphism (adjoint map) of the algebra L s c t  
(whose adjoint representation is given in Table 4) to one of the following repre­
sentatives of conjugacy classes of the one-dimensional subalgebras of the algebra 
L s c t -

(v i), (v4), (v4 ±  v 3), (v7), (v7 +  a iv 4), (v7 +  a2v 4 ±  v,).
(v io), (v io  +  a3v 4), (v io  +  a4v 4 ±  v 3) , (v i0 +  a5v 4 +  a6v 3 ±  v 4), 

where a 4, . . . ,  ag are real numbers.
In other words, the vector fields (25) constitute an optimal system of one-dimensio­
nal subalgebras and therefore the essentially different group-invariant solutions 
correspond to the groups are generated by the vector fields (25). The invariants 
of the groups generated by the vector fields v 4, v4, v 7 and vio are given in Ta­
ble 3. In Table 5 below one can find the invariants of the groups generated by the 
rest of the vector fields of the optimal system (25) except for those corresponding 
to the vector fields vio -I- a3v 4 +  aev3 ±  v 4. These remain to be found.

6. Will more Surfaces in Revolution

In this Section we are looking for the rotationally-invariant solutions to the Will- 
more equation (2), i.e. for its solutions of the form

w  =  w  (r ) , r  =  y j (re1)2 +  (a:2)2.

Note that r  and w  are two functionally independent invariants of the operator v 4 
generating the one-parameter group of rotations admitted by the equation consid­
ered. After such a symmetry reduction, the Willmore equation (2) takes the form

TZ =  (2 r3 -)- 4r3w 2, +  2 r3w^,)wrrrr +  (4 r2 +  8r 2w 2 +  4r 2w f  — 20r3wr w rr 

—20r3w 3wrr)w rrr — 5 r2(3wr +  3w3 +  rw rr — 6 rw 2wrr)w 2r (26) 

+ (rw® — 2 r  — 3 rw 2)w rr +  2wr +  7w f +  9w * +  3w 7r +  w9r =  0

where
du; d 2vj d3t« d 4vj

Wr -- — , Wrr --- — 7T, wrrr --- — TT, wrrrr --- — —.
d r  d r* d r 5 d r 4



256 Vassil M. Vassilev and Ivailo M. Mladenov

Table 4, Adjoint representation. Here, the (i, j)-th entry gives the ad­
joint action Ad (exp (e v*)) vy.

A d / Vi v 2

Vi Vi v 2

v 2 Vi v 2

V3 Vi v 2

v 4 v | cos 5  +  v 2 sin  5 v 2 cos 5 v | sm  5
v 5 V I COS £ +  V;; sin  £ v 2

V6 Vi V2 COS £ +  V;; sin  £
v 7 vie v 2e
v g v i  +  2ev7 +  e^vg V2 +  25 V i — 5" V<)
vg V | — 2 5  V i — 5 Vg V2 +  2 5  V 7 +  5  Vg

VlO V | — 25V ;, — 5  Vg V 2 — 25V ,i — 5  Vg

A d / V4 V s

Vi V4 — 5V2 v 5 -  e v 3

v 2 V4 +  5V | V5
V3 V4 V5 +  5V |
V4 v 4 V;, COS 5 +  Vg sin  5
V s V4 COS 5 — Vg sm 5 V s

V6 v 4 cos 5 +  V5 sin  5 V5 cos 5  — v 4 sm  5
v 7 v 4 V 5

Vg V4 — 5V g V 5 -  e v i o

V g v 4 +  5Vg V s

VlO v 4 V5 +  5Vg

A d / V 7 V g VlO

V 10 — 25V ;, ?V l V7 — 5V I Vg +  2 5 V 4 — 5 "  V 2 V;3

Vg — 2 5  V7 +  5 "  V 2 

Vg — 2 5 V ,, — 2 5 2V 2

V 10 +  2 5 V ,, — 5 2V 3V 2 V7 — 5V2

V 3 V7 — 5V;; V 10 —  2 5  V 7 +  5 " V ; ;

V 4 V 7 V g  COS 5  +  V g  s i n  5 V g  COS 5  —  V g  s m  5 VlO

V5 V 7 V g  c o s V g v i o  c o s  e  —  v g  s m  5

v 6 v 7 V g  COS 5  +  V lO  s i n  e v i o  c o s  e  —  v g  s m  5

v 7

vg
v g

v 7

V 7  +  5 V g  

V 7  +  5 V g

v 9 e

v g

v g

v i p e ~

vio
vio
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Table 5, Functionally independent invariants.

Generator Sets of Functionally Independent Invariants { I i ,  I 2}

/ |  »' : aretan

h  =  r
V 4 ±  V ;;

V y  +  f t  | V .)

Ji =  we 1/2

72 =  aretan [ + + ± £ !  )  -  ai h  r

■h = 1 +  0'

a:1 — aya:2 ,
f  . ( a ix 1 + x 2\  t N

2 1 ay aretan [ --------------) — in r
x i  -  a-ix2,

V y  +  O -yV-i ±  V  | —a2 In \J (1 +  a^'jr2 ±  2(a:1 — a2x 2) +  1

J2 =  ------- o I oo aretan
l  +  o | l

a ^ 1 +  x 2 
x 1 — a2x 2 ±  1

+  In \J(l  +  aD r2 ±  2(a:1 — a2x 2) +  1

V10 +  0;3V4
h  = 

h  =

w
r 2 +  w2 03 

r

x"
------ aretan —r

x 1

r 2 +  w2

vio  +  a4v 4 +  v3

1 /  2tw
1 1 -  aretan

r 2 +  w2 — 1
— aretan
04

h  =
2 vj

vio  +  a4v 4 -  v 3 r 2 +  re2 +  1
------ aretan

04
x
X 1

At the same time, expressions (12) for the mean and Gaussian curvatures take the 
form

1 rvjrr +  wf  +  wr 
2r  (1 +  re2)3/ 2

1 wrrwr 
r (1 +  w2)2 ’

(27)
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The reduced Willmore equation (26) is the Euler-Lagrange equation for the func­
tional with Lagrangian density

L n
1 (rw rr + vjf + vjr )2 

4r (1 +  «;2)5/2

Indeed, applying the Euler operator, which in this case reads

E  — —----- D r —----- b DrDr —-------- • • •
OVJ owr owrr

where
^  d d d d d
D r — t:— V wT —--- b wrr t:-------b vjrrr —------b w rrrr —-------- b • • •or Ovj Owr Owrr Owrrr

to the differential function L n  one can easily check that E[Lk ] = 1Z. The above 
Lagrangian L-ji is independent of the variable w and so one can reduce its order 
by one introducing the new dependent variable v =  wr along vr =  dv /dr  and 
therefore

1 (rvr +  u3 +  v)2
^  ( !+ „») ./ »  • (2S)

The Euler-Lagrange equation for the functional with Lagrangian density (28) is
p

E[Ln ] = - ( 1  +  v2)” 7/2 =  0 (29)
r

where

Q =  —2 r 2(v2 +  l)vrr +  5 r2vv2 — 2 r(v2 +  l)v r + v7 + 4v5 +  5u3 +  2v

and vrr =  d2n /d r2. Then, every solution w(r) to the reduced Willmore equation 
(26) corresponds to a solution v(r) of the second-order equation

E[L'r\  =  A, A =  constant (30)

and can be recovered by the quadrature

vj(r) = j  v(r, A) d r +  C, C = constant.

In this sense, the fourth-order equation (26) is relegated to a second-order one.
In the special case A =  0, equation (30) coincides with (29) and may be written in 
the form

Q =  —2r2(v2 +  l )vrr +  5r2vv2 — 2r(v2 +  l )vr +  v7 +  4 r5 +  5 r3 — 2r 0 (31)

since ( l / r ) ( l  +  v2)~7/2 ^  0. Equation (31) is scaling-invariant and hence under 
the change of the variables

i v  d P v = y, p = lnr, Y  = —dy
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transforms into the first order equation

d Y  1 y7 +  4y° +  5 y3 +  2 y 3 
dy 2 y2 +  1

This is a Bernoulli-type equation which can be 
general solution is

5 y
2 y2 +  1

Y  = 0.

integrated by quadratures and its

Y(y)  = ± ------------- , A = constant. (32)
(y2 +  1) \J y2 +  A ^ y 2 +  1

Now, going back to the variables r  and v we can express the general solution of 
the equation E[Lk ] =  0 in terms of the relation

r  =  R  exp | ±  J du

(■v2 +  1 ) \Jv2 + A\Jv2 -FTy
i? =  constant > 0. (33)

In the case A  =  0, we get spheres

v = ± 7 W = ,  m =  +  =  A' =  7 ?

and catenoids

o . o 2
« =  ±  , = ,  w = R l n  (r  ±  V r 2 -  R 2) +  C, H  = 0, J v ---- r .

V r 2 ~ R 2 V v ) ’ ’ r 4

The integral in (33) can be written in terms of the Jacobian elliptic functions and 
the elliptic integral of the third kind IJ(</5, n, k) as follows (for more details cf. [6] 
and the Appendix)

du

(■v2 +  1 )\Jv2 +  A \/v 2 -FT

I+(v) if A = + 4/a2 > 0, |n| < 

I - ( v )  if A = —4/a2 < 0, |u| >

\J i + v ^ r i / a 2 

^ 2  +  V ^ T i / a 2
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I I  a m (« + , k)

U v )  =

2(\/4 + a4 -  a2) 
u _ ------, , -------------11

u+ =  cn

_ V a 4 +  4 - a ?  + 2 

, , (V T T Vs - \ ) y / 2

)\J V a4 +~4 +  a2
u_ =  cn - i

V a 4 + 4 -  a2 +  2 

i;^/ V/a^"+ 4 — a2

(V l +  v2 -  l ) \ / 2 ’

and

fc =
l / =

2 +  V a4 +  4 
2 Va4 +  4

Then, relation (33) becomes

( J?exp{±/_|_(ti)} if 21 = + 4 / a 2 > 0, |u| < 2v/2 +  V a2 +  4 /a 2 r(u) = < v,----_
[i?exp{±J_(u)} if  A  = —4/a? > 0, |u| < 2y 2 +  V a2 +  4 /a 2.

(34)
The above results can be formulated in another form. Consider the following nor­
mal system of two ordinary differential equations

diw
d7  = V

—  =  ± —(v2 +  1)\! v2 +  A\J  v2 + T  
d r  r

which is equivalent to the single second-order equation

(35)

d 2w
d r 2

1± -

r
(36)

The substitution (35) into the expression 1Z leads to 7Z =  0 and thus shows that 
each solution of system (35) or equation (36) is a solution of the reduced Will- 
more equation (26). In this way, we have obtained a special class of solutions 
to equation (26), i.e. a special class of Willmore surfaces. Substituting (35) into 
expressions (27) one can see that the mean and Gaussian curvatures of a surface
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belonging to this special class are given as follows

H =
1 v ±  

2r \/i '2 +  1
K  = ± 1 v 

r 2 V2 +  1
(37)

where v is any solution of system (35). These functions are depicted in Fig. 1 
using the explicit expressions (34). Various branches shown there correspond to 
the different choices of the signs of .4 (sub-index) and that ones in (37) (upper- 
index). The above curves are obtained with R  =  a = 1. Integrating (numerically) 
the system (35) one can find the profile curves of the Willmore surfaces shown in 
Fig. 2. Again, various branches correspond to the different choices of the signs of 
A  (sub-index) and the exponent (upper-index) in (33) which are coherent with the 
respective signs in (35) and (37). The concrete curves are obtained with the same 
values of the parameters R  and a chosen to produce Fig. 1.

Figure 1, The mean H  and Gaussian K  curvatures as functions of 
r. Various branches correspond to the different choices of signs of A  
(sub-index) and that ones in (37) (upper-index). The above curves are 
obtained with R = a =  1

Figure 2, Profile curves (on the left) and their slopes (on the right). 
Various branches correspond to the different choices of signs of A  (sub­
index) and the exponent (upper-index) in (33) which are in agreement 
with the signs in (35) and (37). Curves are drawn with R  = a =  1
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7. Concluding Remarks

In this paper, Lie transformation group methods have been applied to the class 
of nonlinear fourth-order partial differential equations (15). This class of equa­
tions is of interest in differential geometry, mathematical biophysics and string 
theory since it comprises, for instance, the Willmore equation, the Helfrich’s mem­
brane shape equation, the field equations associated with the Polyakov-Kleinert 
rigid string action and their generalizations. The standard computational procedure 
shows that the ten-parameter Lie group G s c t  o f special conformal transformations 
in R3 is the largest group of geometric transformations of the involved independent 
and dependent variables that a generic equation of form (15) could admit. In this 
way, the group G s c t , which is known to be the symmetry group of the Willmore 
functional, is recognized to be the largest group of geometric transformations ad­
mitted by the Willmore equation (2) in Monge representation. These results are 
presented in Section 2. In Section 3, the conserved currents of ten linearly indepen­
dent conservation laws, which correspond (by virtue of Bessel-Hagen’s extension 
of Noether’s theorem) to the symmetries of the Willmore equation, are derived in 
explicite form. In Section 4, a classification of the group-invariant solutions of the 
Willmore equation provided by an optimal system of one-dimension subalgebras 
of the symmetry algebra L s c t  is presented. The invariants of the corresponding 
one-parameter groups are found (up to one exception) and listed so as to be readily 
applicable for constructing the respective group-invariant solutions of the Willmore 
equation.

Appendix A. Elliptic Functions and Integrals

Standard integration techniques allow us to find closed form expressions (in terms 
of trigonometric functions, exponentials and logarithms) for any integral of the 
form

where lZ(z, w) is a rational function and P(z)  is a linear or quadratic polynomial. 
However, if we wish to handle polynomials of higher degree and in particular, 
when P(z)  is cubic or quadratic, then the required functions are called elliptic 
functions. It is easy to prove that every integral of the form (38), where P(z)  is 
a third or a fourth degree polynomial, can be reduced to a linear combination of 
integrals leading to elementary functions and the following three integrals which 
are called respectively elliptic integrals of the first, second, and third kind

w,2 P(z) (38)

/
d z I a/ 1  — k 2z 2 d z

^ { l - z 2) ( l - k 2z 2) \ / l  — z 2
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Here the number k  is called the modulus of these integrals and the number n is 
called the parameter of the integral of the third kind. By means of the substitution 
z  =  sin ip, the above elliptic integrals can be reduced to their normal trigonometric 
form

j a p X 1 k- sin'  p. J \ 1 A:'->sin\:d,, /
dip

(1 — n sin2 ip) \Jl  — k 2 sin2 ip

The corresponding definite elliptic integrals (when the lower limit of integration is 
taken to be zero) are denoted respectively as

sm  ip d z '■? da
o y/(l -  z 2)(l  -  k 2z2) Jo \J\  -  k 2 sin2 a

v

= F (p ,k )  (39)

smv y /1 _  k 2z 2 

\ / l  —  Z 2
dz = y 1 — k 2 sin2 a  d a  =  E(p,  k) (40)

and
sm ip da

0 (1 — n z 2) \J (1 — z 2){ 1 — k 2z 2) Jo (1 — n sin2 a ) \J \  — k 2 sin2
=  H(p, n, k).

a

These integrals are called also incomplete elliptic integrals of the first, second 
and third kind, respectively. When the upper limit of integration ip for the integrals 
in (39) and (40) is chosen to be tt/ 2 they are called complete elliptic integrals of 
the first, second and third kind and are denoted as

K(k)  = F ( tt/ 2, k), E(k)  = E ( tt/ 2, k) and Il(n , k) = Il(7r/2, n, k). (41)

The inverse functions of the elliptic integrals are called elliptic functions. E.g., if

d“  (42)u = F(ip, k) = f 
Jo \J\ — k 2 sin2a

is the incomplete elliptic integral of the first kind, then ip is called the amplitude 
of u and denoted (following Jacobi) as

ip = am(u, k). (43)

The Jacobian elliptic functions are introduced via (43) and the following formulas

sn(u, k ) =  sin ip =  sin am(u, k ) 
cn(«, k ) =  cos ip = cos am(u, k )

dn(«, k) =  \J 1 — k 2 sin2 ip =  \J 1 — k 2sn2{u, k).

(44)
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It should be noted that while am(u, k) is the inverse function of u = F(ip, k), the
inversion of

“ =  F(z,  k) = j a (45)

is furnished by sn(u, k), i.e., one has F(sn(u, k ) , k) =  u.
More details about elliptic integrals and functions can be found in [6] and [2] and
references therein.
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