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Abstract. We introduce noncommutative deformations of locally symmetric
Kähler manifolds. A Kähler manifold M is said to be a locally symmetric
Kähler manifold if the covariant derivative of the curvature tensor is vanish-
ing . An algebraic derivation process to construct a locally symmetric Kähler
manifold is given. As examples, star products for noncommutative Riemann
surfaces and noncommutative CPN are constructed.
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1. Review of the Deformation Quantization with Separation of
Variables

In this section, we review the deformation quantization with separation of variables
to construct noncommutative Kähler manifolds.
An N -dimensional Kähler manifold M is described by using a Kähler potential.
Let Φ be a Kähler potential and ω be a Kähler two-form

ω := igkl̄dz
k ∧ dz̄l, gkl̄ :=

∂2Φ

∂zk∂z̄l
(1)

where zi, z̄i (i = 1, 2, . . . , N) are complex local coordinates.
In this article, we use the Einstein summation convention over repeated indices.
The gk̄l is the inverse of the Kähler metric tensor gkl̄. That means gk̄lglm̄ = δk̄m̄.
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In the following, we use

∂k =
∂

∂zk
, ∂k̄ =

∂

∂z̄k
· (2)

Deformation quantization is defined as follows.

Definition 1 (Deformation quantization). Deformation quantization of Poisson
manifolds is defined as follows. F is defined as a set of formal power series:
F :=

{
f
∣∣∣ f =

∑
k fk~k ; fk ∈ C∞ (M)

}
. A star product is defined as

f ∗ g =
∑
k

Ck(f, g)~k (3)

such that the product satisfies the following conditions

1. (F ,+, ∗) is a (noncommutative) algebra.
2. Ck (·, ·) is a bidifferential operator.
3. C0 and C1 are defined as C0(f, g) = fg, C1(f, g) − C1(g, f) ={f, g}

where {f, g} is the Poisson bracket.
4. f ∗ 1 = 1 ∗ f = f .

Karabegov introduced a method to obtain a deformation quantization of a Kähler
manifold in [6]. His deformation quantization is called deformation quantizations
with separation of variables

Definition 2 (A star product with separation of variables). The operation ∗ is called
a star product with separation of variables on a Kähler manifold when a ∗ f = af
for an arbitrary holomorphic function a and f ∗ b = fb for an arbitrary anti-
holomorphic function b.

We use
Dl̄ = g l̄k∂k

and introduce S :=
{
A ; A =

∑
α aαD

α, aα ∈ C∞ (M)
}
, where α is a multi-

index α = (α1, α2, . . . , αn).
In this article, we also use the Einstein summation convention over repeated multi-
indices and aαDα :=

∑
α aαD

α.

There are some useful formulae. Dl̄ satisfies the following equations.

[Dl̄, Dm̄] = 0, [Dl̄, ∂m̄Φ] = δ l̄m̄, for all l,m (4)

where [A, B] = AB − BA . Using them, one can construct a star product as a
differential operator Lf such that f ∗ g = Lfg.
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Theorem 1. [Karabegov [6]]. For an arbitrary Kähler form ω, there exist a star
product with separation of variables ∗ and it is constructed as follows. Let f be an
element of F and An ∈ S be a differential operator whose coefficients depend on
f , i.e.,

An = an,α(f)Dα, Dα =
n∏
i=1

(Dī)αi , (Dī) = gīl∂l (5)

where α is an multi-index α = (α1, α2, . . . , αn). Then

Lf =

∞∑
n=0

~nAn (6)

is uniquely determined such that it satisfies the following conditions.

1. For R∂l̄Φ = ∂l̄Φ + ~∂l̄

[
Lf , R∂l̄Φ

]
= 0 . (7)

2.

Lf1 = f ∗ 1 = f. (8)

Then the star products are given by

Lfg := f ∗ g (9)

and the star products satisfy the associativity

Lh(Lgf) = h ∗ (g ∗ f) = (h ∗ g) ∗ f = LLhgf. (10)

Recall that each two of Dī commute each other, so if a multi index α is fixed then
the An is uniquely determined. The equations (8)-(10) imply that Lfg = f ∗ g
gives deformation quantization.

Definition 3. A map from differential operators to formal polynomials is defined
as

σ (A; ξ) :=
∑
α

aαξ
α

where
A =

∑
α

aαD
α.

This map is called “twisted symbol”. It becomes easier to calculate commutators
by using the following theorem.
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Proposition 2 (Karabegov [6]). Let a(ξ) be a twisted symbol of an operator A.
Then the twisted symbol of the operator [A, ∂īΦ] is equal to ∂a/∂ξ ī

σ ([A, ∂īΦ]) =
∂

∂ξ ī
σ (A) .

This proposition follows from (4), i.e.,

σ
(

[Dl̄, ∂īΦ]
)

= δ l̄ī.

2. Deformation Quantization with Separation of Variables for a
Locally Symmetric Kähler Manifold

In this section, explicit formulas to obtain star products on local symmetric Kähler
manifolds are constructed. A method of Karabegov in Section 1 is used for the
constructing.

Operators D ~αn and D ~β∗
n are defined by using Dk = gkm̄∂m̄ and Dj̄ = gj̄l∂l as

D ~αn := Dαn1Dαn2 · · ·DαnN , D
~βn := Dβ1Dβ2 · · ·DβN

where

Dαk :=
(
Dk
)αk

, Dβj :=
(
Dj̄
)βj

and ~αn and ~β∗n are N -dimensional vectors whose summation of their all elements
are set to be n

~αn ∈

{
(γn1 , γ

n
2 , · · · , γnN ) ∈ ZN ;

N∑
k=1

γnk = n

}

~β∗n ∈

{
(γn1 , γ

n
2 , · · · , γnN )∗ ∈ ZN ;

N∑
k=1

γnk = n

}
i.e.,

~αn := (αn1 , α
n
2 , · · · , αnN ) , |~αn| :=

N∑
k=1

αnk = n

~β∗n := (βn1 , β
n
2 , · · · , βnN )∗ , | ~β∗n| :=

N∑
k=1

βnk = n.

For ~αn /∈ ZN≥0 we define D ~αn := 0.

For example, D(1,2,3) =D1
(
D2
)2 (

D3
)3
, D(2,4,0)∗=

(
D1̄
)2(

D2̄
)4

and D(5,−2,3)

= 0 for a three-dimensional manifolds case with n = 6.
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~ei is used as a N -dimensional vector

~ei = (δ1i, δ2i, · · · , δNi). (11)

A Riemannian (Kähler) manifold (M, g) is called a locally symmetric Riemannian
(Kähler) manifold when ∇mRijkl = 0 for all i, j, k, l,m. Only locally symmetric
Kähler manifolds are disscussed.
We assume that a star product with separation of variables for smooth functions f
and g on a locally symmetric Kähler manifold M has a form

Lfg = f ∗ g =
∞∑
n=0

∑
~αn ~β∗

n

Tn
~αn ~β∗

n

(
D ~αnf

)(
D

~β∗
ng
)

(12)

where Tn
~αn ~β∗

n

are covariantly constants. If ~αn /∈ ZN≥0 or ~βn /∈ ZN≥0 then we define

Tn
~αn ~β∗

n

:= 0.
∑
~αn ~β∗

n

is defined by the summation over all ~α∗n and ~β∗n satisfying

∣∣ ~α∗n∣∣ =
∣∣∣ ~β∗n∣∣∣ = n. In brief

n =
∣∣ ~α∗n∣∣ :=

N∑
i=1

αni , n =
∣∣∣ ~β∗n∣∣∣ :=

N∑
i=1

βni ,
∑
~αn ~β∗

n

:=
∑

| ~αn|=| ~β∗
n|=n

.

Theorem 3. When the star product with separation of variables for smooth func-
tions f and g on a local symmetric Kähler manifold is given as

f ∗ g =
∞∑
n=0

∑
~αn ~β∗

n

Tn
~αn ~β∗

n

(
D ~αnf

)(
D

~β∗
ng
)

these smooth functions Tn
~αn ~β∗

n

, which are covariantly constants, are determined by
the following recurrence relations for all i

N∑
d=1

~gīdTn−1

~αn− ~ed ~β∗
n−~ei

= βiT
n
~αn ~β∗

n
+

N∑
k=1

N∑
p=1

~ (βnk − δkp − δik + 1) (βnk − δkp − δik + 2)

2

×Rp̄k̄k̄ ī T
n
~αn ~β∗

n− ~ep+2 ~ek−~ei
+

N−1∑
k=1

N−k∑
l=1

N∑
p=1

~ (βnk − δkp − δik + 1)

×
(
βnk+l − δ(k+l),p − δi,(k+l) + 1

)
Rp̄

k+lk̄
ī T

n
~αn ~β∗

n− ~ep+ ~ek+ ~ek+l−~ei
.
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Outline of Proof. Let f and g be smooth functions on a Kähler manifold Mand
Lf be a left star product by f given as (12). Then

σ ([Lf , ∂īΦ]) =
∂σ (Lf )

∂ξ ī

=
∞∑
n=0

∑
~αn ~β∗

n

βni T
n
~αn ~β∗

n

(
D ~αnf

)(
ξ1̄β

n
1 · · · ξ ī

βni −1
· · · ξN̄

βnN
)

or equivalently,

[Lf , ∂īΦ] g =
∞∑
n=0

∑
~αn ~β∗

n

βni T
n
~αn ~β∗

n

(
D ~αnf

)(
D

~β∗
n−~eig

)
. (13)

The following formulas are given in [10]. For smooth functions f and g on a locally
symmetric Kähler manifold, the following formulas are given.

∇j̄1 · · · ∇j̄nf = gl1j̄1 · · · glnj̄nD
l1 · · ·Dlnf

∇k1 · · · ∇kng = gm̄1k1 · · · gm̄nknDm̄1 · · ·Dm̄ng

Dl1 · · ·Dlnf = gl1j̄1 · · · glnj̄n∇j̄1 · · · ∇j̄nf

Dm̄1 · · ·Dm̄ng = gm̄1k1 · · · gm̄nkn∇k1 · · · ∇kng.

If M is a locally symmetric Kähler manifold, these formulas derive

[Lf , ~∂ī]g

= ~
∞∑
n=0

∑
~αn ~β∗

n

N∑
k=1

∑
~αn ~β∗

n

βnk (βnk − 1)

2
Rρ̄

k̄k̄
ī T

n
~αn ~β∗

n

(
D ~αnf

)(
D

~β∗
n+ ~eρ− ~ekg

)

+ ~
∞∑
n=0

N−1∑
k=1

N−k∑
l=1

∑
~αn ~β∗

n

βnkβ
n
k+lRρ̄

k+lk̄
ī T

n
~αn ~β∗

n

(
D ~αnf

)(
D

~β∗
n+ ~eρ− ~ekg

)

− ~
∞∑
n=1

∑
~αn−1

~β∗
n−1

N∑
d=1

gīdT
n−1

~αn−1
~β∗
n−1

(
D ~αn−1+ ~edf

)(
D

~β∗
n−1g

)
.

�

Details of this proof are given in [5].

3. ∗−Products for Riemann Surfaces

∗−products for Riemann surfaces are studied in this section for arbitrary Riemann
surfaces regarded as locally symmetric Kähler manifold. Applying Theorem 3
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for complex 1 dimensional case, ∗−products for Riemann surfaces are obtained
concretely. A formal discussions are given in [11], and star products are studied in
[9].
The Scalar curvature R is defined as

R = gij̄Rij̄ = Rl̄
j̄ l̄
j̄ .

Theorem 4. Let M be a one-dimensional locally symmetric Kähler manifold
(N = 1) and f and g be smooth functions on M . The star product with separation
of variables for f and g can be described as 1

f∗g =
∞∑
n=0

[(
g11̄
)n{ n∏

k=1

2~
2k + ~k (k − 1)R

}{(
g11̄ ∂

∂z

)n
f

}{(
g11̄ ∂

∂z̄

)n
g

}]
.

Example 1. Let (C, g) be a complex plane as a one-dimensional locally symmetric
Kähler manifold. The star product with separation of variables for f and g can be
described as

f ∗ g =

∞∑
n=0

[
~n

n!

{(
∂

∂z

)n
f

}{(
∂

∂z̄

)n
g

}]
.

Example 2. Wellknown flat torus embedding X : S1 × S1 → R4

X (u, v) = (cosu, sinu, cos v, sin v) , u = Re (z) , v = Im (z)

=⇒ R =
−1√
EG

{
∂

∂u

(
1√
E

∂
√
G

∂u

)
+

∂

∂v

(
1√
G

∂
√
E

∂v

)}
= 0

where first fundamental forms are

E =
∂X

∂u
· ∂X
∂u

= 1, F =
∂X

∂u
· ∂X
∂v

= 0, G =
∂X

∂v
· ∂X
∂v

= 1

hence u, v are isothermal coordinates on a torus and the pullback metric is defined
as

g̃11̄ = E = G = 1.

If (M, g) =
(
S1 × S1, g̃

)
then R = R1̄

1̄1̄
1̄ = 0. Hence the star product with

separation of variables for f and g can be described as also

f ∗ g =

∞∑
n=0

[
~n

n!

{(
∂

∂z

)n
f

}{(
∂

∂z̄

)n
g

}]
.

1Here we correct the typos in page 562 in [5].
∏n−1
k=1 in [5] should be

∏n
k=1.
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4. Projective Space Cases

In this section, we calculate star products of CPN . These star products are also
equal to the ones given in [1, 4, 10]. A projective space is a special Grassmann
manifold and a Grassmann manifold is a special flag manifold. Deformation quan-
tization of flag manifolds and Grassmann manifolds were studied in [2, 3, 7, 8].
At first, a function similar to the determinant is defined on the matrix space.

Definition 4 (permanent). Let C = (Ck,l)1≤k≤n,1≤l≤n be a n × n matrix. We
define | · |+ as a C-valued function on M (n, n;C) such that

|C|+ :=
∑
σn∈Sn

n∏
k=1

Ck,σn(k).

This is called “permanent”.

Definition 5. A matrix G ~αn, ~β∗
n is defined by using the Hermitian metrics on M . Its

elements are metrics on M and are located as follows. ~αn and ~βn are elements of
ZN

G ~αn, ~β∗
n =

 G̃11 · · · G̃1n
...

. . .
...

G̃n1 · · · G̃nn


where

G̃pq =: gpq̄

 1 · · · 1
...

. . .
...

1 · · · 1

 ∈M (
αnp , β

n
q ;C

)
.

Theorem 5. Let f and g be smooth functions on a projective space CPN . A star
product with separation of variables on a projective space CPN is given as

f ∗g = f ·g +
∞∑
n=1

∑
~αn ~β∗

n

∣∣∣G ~αn, ~β∗
n

∣∣∣+( N∏
l=1

1

αnl !βnl !

)
n∏
k=1

~
(1 + ~− ~k)

(
D ~αnf

)(
D

~β∗
ng
)
.

(14)

Here, we correct the typos in (5.4) in [5].

Proof. We show that

Tn
~αn ~β∗

n
=
∣∣∣G ~αn, ~β∗

n

∣∣∣+( N∏
l=1

1

αnl !βnl !

)
n∏
k=1

~
(1 + ~− ~k)



130 Kentaro Hara and Akifumi Sako

satisfies (3)
N∑
d=1

~gīd
(1 + ~− ~n)βni

Tn−1

~αn− ~ed ~β∗
n−~ei

=
N∑
d=1

gīdα
n
d

∣∣∣G ~αn− ~ed, ~β∗
n−~ei

∣∣∣+ ~
(1 + ~− ~n)

(
N∏
l=1

1

αnl !βnl !

)
n∏
k=1

~
(1 + ~− ~k)

·

Using cofactor expansion of permanent, the R.H.S. of the above is rewritten as∣∣∣G ~αn, ~β∗
n

∣∣∣+( N∏
l=1

1

αnl !βnl !

)
n∏
k=1

~
(1 + ~− ~k)

·

This shows the given Tn
~αn ~β∗

n

satisfies the recurrence relation (3). �
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