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Abstract. In this paper we will introduce a newly found knowledge above
the existence and the uniqueness of isoperimetric extremals of rotation on
two-dimensional (pseudo-) Riemannian manifolds and on surfaces on Eu-
clidean space. We will obtain the fundamental equations of rotary diffeomor-
phisms from (pseudo-) Riemannian manifolds for twice-differentiable metric
tensors onto manifolds with affine connections.
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1. Introduction

A special diffeomorphism between (pseudo-) Riemannian manifolds and mani-
folds with affine and projective connections, for which maps any special curve
onto a special curve, were studied in many works. For example geodesic map-
pings, for which any geodesic maps onto geodesic [1,3-5,13-16,18,19,21,22,25].
Analogically holomorphically-projective and F-planar mappings for which any
analytic and F'-planar curve maps onto analytic and F'-planar curve, respectively
[4,13,15,16,18,20,21]. An almost geodesic mapping is defined as, that one for
which geodesic is mapped onto almost geodesic curve [13,15,16,21].

In this sense was introduced the following definition.
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Rotary Diffeomorphism onto Manifolds with Affine Connection 131

Definition 1. A diffeomorphism between two-dimensional (pseudo-) Riemannian
manifolds is called rotary if any geodesic is mapped onto isoperimetric extremal
of rotation.

The above definition was introduced by Leiko [6,7,9-12] for surfaces S5 on Eu-
clidean space and two-dimensional (pseudo-) Riemannian manifold V5.

The isoperimetric extremals of rotation have a physical meaning as can be inter-
preted as trajectories of particles with a spin, see [6, 8]. These results are local and
are based on the known fact that a two-dimensional Riemannian manifold V5 is
implemented locally as a surface S2 on Euclidean space. Therefore, we will deal
more with the study of V5, i.e., the inner geometry of So and assuming that metrics
of these manifolds have a differentiability class C*. Further Mikes, Sochor and
Stepanova [17] improved above results for differentiability classes C3.

In this paper we generalize the above notion of rotary diffeomorphism.

Let V5 = (M, g) be a two-dimensional (pseudo-) Riemannian manifold M with
a metric g and Ay = (M, V) be a two-dimensional manifold M with an affine
connection V.

Definition 2. A diffeomorphism f: Vo — Aj is called rotary if any isoperimetric
extremal of rotation on V5 is mapped onto geodesic from A, .

We founded the fundamental equations for which V5 admit rotary diffeomorphisms
onto As. These results are generalized results obtained in papers [7,17].

2. Isoperimetric Extremals of Rotation

A (pseudo-) Riemannian manifold V2 = (M, g) belongs to the smoothness class C”
if its metric g € C", i.e., its components g;;(x) € C"(U) in some local map (U, z),
U C M. We suppose that the differentiability class r is equal to 0, 1,2, ..., 00, w,
where 0,00 and w denote continuous, infinitely differentiable and real analytic
functions, respectively.

Let : (sg,s1) — M be a parametric curve with the equation x = z(s), A = dz/ds
be a tangent vector and s is the arc length. The following formulas are developed
by analogy with the Frenet formulas for manifold V5 (cf. [2,17])

VsA=k- v and Vs =—ce k- A ey

where k is the Frenet curvature (k is geodesic curvature if { C So C E3), v rep-
resents a unit normal vector field along ¢ orthogonal to the unit tangent vector A,
ie, (\A) =g AN =e = %1 and (v,v) = g;;v'v/ = ¢, = &1, where \" and
v" are components of A and v.
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The operator V, is covariant derivative along ¢ with respect to the Levi-Civita
connection V of metric g

dA" amh B h — " aph 8
E + )\ Faﬁ (.’I}(S)) A and VSV = E + v Faﬁ (.’IJ(S)) )\
where I‘?j are the Christoffel symbols of V5, i.e., components of Levi-Civita con-
nection V.

Recall the scalar product of the vectors A, £ which is defined by (A, &) = gl-infj

and || = \/]gapA*A?] is the length of a vector \.
Hence, we may conclude that formulas (1) hold if tangent vector A and VA are

not isotropic, i.e., |\| # 0 and |V sA| # 0. Further, we present functionals of length
and rotation of the curve £: x = x(t)

s[f] = ttlm dt and 0[() = /t ! k(t) dt.

Vs)\h =

Using these functionals [7] introduce the following

Definition 3. A curve { is called the isoperimetric extremal of rotation if ¢ is ex-
tremal of 0[¢] and s[¢] = const with fixed ends.

It is possible to prove (cf. [7,10])

Theorem 1. A curve ¢ is an isoperimetric extremal of rotation if and only if, its
Frenet curvature k and Gaussian curvature K are proportional

k=c- K

where c is constant.

Mikes, Sochor and Stepanova [17] proved the following

Theorem 2. The equation of isoperimetric extremal of rotation can be written in
the form
VidA=c-K-F\ 2)

where c is constant.

The Theorem 2 follows from assertion, that holds for unit normal v = +F'\, where

structure F’ is tensor G) which satisfies the conditions

F? = —¢-1d, g(X,FX) =0, VF =0.

For Riemannian manifold V5 is e = 41 and F' is a complex structure and for
(pseudo-) Riemannian manifold is e = —1 and F' is a product structure. This ten-
sor F'is uniquely defined (with the respect to the sign) with using skew-symmetric
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and covariantly constant discriminant tensor ;;, which is defined

; 0 1
FI' = g"eyj, eij = \/ 911922 — 935 ] - < 1 0> : (3)

Above Theorem 2 for V5 € C? holds. In this case from equation (2) follows that
in tangent direction )\ at the point x( passes through a isoperimetric extremal of
rotation curve.

On (pseudo-) Riemannian manifold Vo € C? in tangent direction \g at the point
xo passes through just only one isoperimetric extremal of rotation curve [17].
Moreover, with simple analysis of equation (2) we find that sufficient condition
of uniquely isoperimetric extremal of rotation curve is V5 € C? and Gaussian cur-
vature K is differentiable [13, pp. 127—128]. This property proved Leiko [6,7] for
Vs € C 4.

3. Necessary Conditions of Rotary Diffeomorphisms

Let V5 be a two-dimensional (pseudo-) Riemannian manifold with the metric g,
and A5 be a two-dimensional manifold M with affine connection V. On (pseudo-)
Riemannian manifold V5 is V a Levi-Civita connection and F' is above structure,
for which the equation (2) is satisfied.

Assume a rotary diffeomorphism f: Vo — As, i.e., any isoperimetric extremal of
rotation of manifold V5 maps onto a geodesic of A,. Since f is a diffeomorphism,
we can impose local coordinate system on A/ and M, respectively, such that locally
f: Vo — Ay maps points onto points with the same coordinates =, and M = M.
Remark that Va2 € C" if g;j(z) € C", and Ay € C" if f‘g(aﬁ) € C". In next we
consider that K # 0, otherwise the mapping is geodesic.

We obtain

Theorem 3. Let Va admits rotary mapping f onto As. If Vo and Ay in com-
mon coordinate system belong differentiability class C* and C*, respectively, then
Gaussian curvature K on V5 is differentiable.

Proof: Let assumptions of Theorem 3 hold. Let v : x = z(s) be an isoperimetric
extremal of rotation on V5 for which the following equation is valid
d\” h ivj h i
STl (w(5) NN = ¢ K (a(s)) - Fl(a(5)) - @
and ¥ = f(y): z = x(3) be a geodesic on Aj for which the following equation is
valid ‘ ‘
A2zt o dat do?

Th =
ds? +15(@() ds ds 0
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where thj and f‘zhj are components of V and V, parameters s is arc length on
and 3 is canonical parameter of ¥, \* = da"(s)/ds and A = dz"(5)/ds.
Evidently 5 = 5(s) holds. In this case, the equations of geodesic are modify:

AR XN =g(s)- A" 5
qs + T3 (z(s)) = 0(s) - )

where g(s) is a certain function of parameter s.
After subtraction equations (4) and (5) we obtain
P(@)AN = o(s) - A" = ¢ K(a(s)) - F'(w(s)) - V', (©)
where PZ’]‘(;U) =T Z (x) — FZ(I‘) is the deformation tensor of connections V and
V, see [13, pp. 181-183].
Contracting equations (6) with gp; A" we obtain
cK ee = A\ F) PlgA*\
and we can rewrite this equation using (3) in the following form
cK ee = ey, PIaA AN, (7

Through differentiation formulas (7) we make sure that K (x(s)) € C*. And be-
cause these properties apply in any direction, then K is differentiable. |

Hence we may conclude from Theorem 3 following

Theorem 4. If Gaussian curvature K ¢ C, then rotary diffeomorphism Va — As
does not exist.

4. Fundamental Equations of Rotary Diffeomorphisms

As it was mentioned in Introduction, we find fundamental equations of rotary dif-
feomorphism V5 — Aj from Definition 1, where V5 € C? and Ay € C'. More-
over on the basis the Theorem 3, we can assume that necessary Gaussian curvature
K eCL
For rotary diffeomorphism V5 — A, formulas (6) and (7) hold. After subsequent
derivation formula (7) by parameter s we obtain

cKs Nee = ey Pl sAYNONIN + £, PR (2V AN + A“APV,07)

where and K5 = 0K /0x° and “,” denotes the covariant derivative with respect to
Levi-Civita connection. After substituting (2) we get
cKs XNes = ey, Plig sAYN XN + ¢K ey, PR (2FSAAN’ + AN I ).
Using formula (7) we eliminate the constant ¢, and we obtain equation
eanOs(In |K ) PEAYNPXNTNY — e, PRy sACNIXYN = T4 - I (8)
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where

I = ecey, PAN X

Iy = eyn PLg(2FF N XN + FIAXAPN),
Evidently, on the right side of formula (8) is a polynomial of the sixth degree,
respectively A! and A2, but on the left side is a polynomial of the fourth degree.
Further, we study formulas (8) at a point xy and we choose for it such a coordinate

system, that at the point xo metric has form ds? = dz'? + edx22, where e = £1.
At this point g it holds

10 01 01
gij:(Oe)’ 5ij:<—1 0> and Fihz(—eo)'

Because A" is in (pseudo-) Riemannian manifold V5 a unit vector, then at the
point g holds g;; A"\ = MNP p e == +1,1e.,

€))

A= e e
Therefore we have to A! consider as a function of variable A\?> with domain of
definition D = (—1;1) fore = 1 and D = R for e = —1. With simple analysis of
equation (8) we find members which contain maximum degree of A2° and A! - \2°
on the right side of equation
I1=1-1I. (10)
We compute I; and /5 in the special coordinate system at the point zg
no=2.A4).B4...
I = A2 (=3B) + A2l (3ed) + ...
where “ ... ” means other members of polynomials 1, /5 and
A=P} —2P} —ePy, and  B=Pj—2P,—ePy. (1]
Finally, I has the following form
I=1 T, =" 6eAB+ A'\¥" . (B — eA?) + ...

Because \> € D is random, then coefficients by A2% and AL - A2° have to be
vanishing. It implies AB = 0 and B? — eA? = 0. From this follows A = B = 0.
As a consequence of (11) the deformation tensor has the following form

Pjj = 8{; + 03w + 0" gy (12)
where ¢; and " are covector and vector fields.
Equation (6) is necessary and sufficient condition for existence of rotary diffeo-
morphism f : Vo — As. Substitute from (12) into the equation (6). We obtain:

0" = (5 — 2 XN — cK - Fl' )\, (13)
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Contracting (13) with gp, A“ we obtain (p — 200, A*) = 0,A* where 0; = g;o0*.
Therefore formula (13) takes the form

0" = 0 NN — ¢K - Fl' )\, (14)
Differentiating (14) along the curve £ of parameter s, we obtain
e 0N =08 AN N — e FPO,N - (0; — 0;In |[K|) X - FPAP. (15)
After a detailed analysis of degrees of A\ in the equation (15), we get
o) = 0"0; + 0;In|K|) + v} (16)
where v is a function on V5.

Theorem 5. (Pseudo-) Riemannian manifold Vs admits rotary mapping onto As if
and only if equation (16) in Vs holds.

Proof: The statement of Theorem 5 follows from previous analysis of the equa-
tion (6). If in (pseudo-) Riemannian ma_nifold V5 equation (16) holds for any vector
field 6", then the affine connection of A5 is constructed according to (12). [ |

The vector field 0" is a special case of torse-forming field, see [13,18,21,24]. In
general case this field satisfies

0 = vl + 60" a;

where a; is a covector. If a function a; is gradient-like, then a vector field oh
is concircular [13,18,21,23,25]. In our sense, vector field 6" is concircular, if
covector (¢; + 0; In|K|) is gradient-like.
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