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Abstract. The idea of wave mechanics leads naturally to assume the well-
known relation E = ~ω in the specific form H = ~W , where H is the
classical Hamiltonian of a particle and W is the dispersion relation of the
sought-for wave equation. We derive the expression of H in a curved space-
time with an electromagnetic field. Then we derive the Dirac equation from
factorizing the polynomial dispersion equation corresponding with H . Con-
versely, summarizing a recent work, we implement the geometrical optics
approximation into the canonical form of the Dirac Lagrangian. The Euler-
Lagrange equations are thus obtained for the amplitude and the phase of the
wave function. From them, one is led to define a four-velocity field which
obeys exactly the classical equation of motion. The complete de Broglie re-
lations are then derived as exact equations.

1. Introduction

1.1. Context of This Work

The long-standing problem of quantum gravity may mean, of course, that we
should try to better understand gravity and the quantum. More specifically, it may
mean that we should try to better understand the transition between the classi-
cal and the quantum, especially in a curved space-time. Quantum effects in the
classical gravitational field are indeed being observed on neutral particles such as
neutrons [11, 15, 19] or atoms [13, 18], with the neutrons being spin 1

2 particles.
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This together motivates investigating the “classical-quantum correspondence”–the
correspondence between a classical Hamiltonian and a quantum wave equation–for
the Dirac equation in a curved space-time.

1.2. Foregoing Results

In previous work [1], the classical-quantum correspondence was analyzed gen-
erally from an exact mathematical correspondence, observed by Whitham [20],
between a linear wave operator and its dispersion polynomial, and from the de
Broglie-Schrödinger idea according to which a classical Hamiltonian describes the
skeleton of a wave pattern. This analysis led later to deriving the Dirac equation
from the classical Hamiltonian of a relativistic test particle in an electromagnetic
field or in a curved spacetime [2, 3]. In the latter case, this derivation led to two
alternative Dirac equations, in which the Dirac wave function is a complex four-
vector, with the set of the components of the Dirac matrices building a (2, 1) tensor
[2, 3]. (This transformation behaviour may be designated by the acronym “TRD”:
tensor representation of the Dirac fields.) In order to see if that makes sense phys-
ically, the quantum mechanics associated with the Dirac equation was then inves-
tigated in detail.
First, it was found [4] that in a Minkowski space-time and Cartesian coordinates,
the quantum mechanics of the original Dirac equation is the same whether, on a
coordinate change, the wave function is transformed as a spinor and the Dirac ma-
trices are left invariant (which, as is well known, is the standard transformation
for this case), or if alternatively the TRD transformation mode is used. More-
over, the way in which this equivalence was obtained [4] makes it obvious that this
equivalence holds also with the third transformation mode which can be consid-
ered for the Dirac equation, for which the wave function is left invariant and the
set of the four Dirac matrices is transformed as a four-vector. (This is the trans-
formation mode for the standard Dirac equation in a gravitational field [9,10,16].)
Then it was found that also in a general space-time, the standard equation and the
two alternative equations based on TRD [3] behave similarly, e.g., the same her-
miticity condition for the Hamiltonian holds for these equations [5], and similar
non-uniqueness problems of the Hamiltonian theory occur [5, 6].

1.3. Outline of This Work

In this paper, we intend to summarize the main part of the recent work [8], and
to present a few additional results. Those belong to Section 2, which extends the
former derivation of the Dirac equation from the classical Hamiltonian of a rel-
ativistic test particle [2, 3] to the situation with an electromagnetic field and in a
curved space-time. Then, summarizing the main results of [8], in Section 3 we
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will go conversely from the Dirac equation to the classical motion through the
geometrical optics approximation.

2. From Classical Motion to Dirac Equation

2.1. Dispersion Equation of a Wave Equation

Consider a wave equation which is a linear Partial Differential Equation (PDE)
of the second order

Pψ ≡ a0(X)Ψ + aµ1 (X)∂µΨ+ aµν2 (X)∂µ∂νΨ = 0 (1)

where X is the position in the space-time, or more generally in the extended con-
figuration manifold V of a system of particles (V has dimensionN+1, whereN is
the dimension of the configuration manifold). To be more precise, equation (1) is
the local expression of the intrinsic differential operator P (which acts on smooth
sections ψ of some vector bundle E with base V) in a local chart χ : X 7→ (xµ)
and in a local frame field (ea) on E, with Ψ = (Ψa) the column matrix made with
the components of ψ in the frame field (ea), such that ψ = Ψaea in the domain of
(ea). The time coordinate is t ≡ x0/c.
Let us look for “locally plane-wave” solutions: Ψ(X) = A exp[iθ(X)], with,
at the point X0 ∈ V considered, ∂νKµ(X0) = 0, where Kµ ≡ ∂µθ are the
components of the wave co-vector. Note that K0 = −ω/c, where ω ≡ −∂tθ is
the angular frequency, and that k ∼= (Kj) is the spatial wave co-vector (A Latin
index takes values in the set j = [1, ..., N ], while a Greek one take values in the
set µ = [0, ..., N ].)
This leads [1, 2] to the dispersion equation

ΠX(K) ≡ a0(X) + i aµ1 (X)Kµ + i2aµν2 (X)KµKν = 0. (2)

Substituting Kµ ↪→ ∂µ/i determines the linear operator P uniquely from the func-
tion (X,K) 7→ ΠX(K), which is polynomial in K at fixed X [1, 20]. This is also
true [2,3] in the case when Ψ(X) ∈ Cm with m > 1 in equation (1), in which case
the coefficients common to P and ΠX are m ×m matrices [2], so that ΠX(K) is
then an m×m matrix, too.

2.2. The Classical-Quantum Correspondence

For any fixed X ∈ V, consider the dispersion equation (2) - ΠX(K) = 0, here
assumed to be scalar (m = 1). This is a polynomial equation for ω ≡ −cK0. By
following smoothly as a function of X ∈ V a particular root, supposed to be real,
of this equation, we get a dispersion relation(s): ω = W (K, X). (The existence
of such a real root depending smoothly on X ∈ V is equivalent to the existence of
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a definite wave mode for the PDE (1) [20].) As shown by Whitham [20] (see also
reference [1]), the propagation of k obeys to the Hamiltonian system

dKj

dt
= −∂W

∂xj
,

dxj

dt
=
∂W

∂Kj
, j = 1, ..., N. (3)

On the other hand, according to the wave mechanics inaugurated by de Broglie and
Schrödinger, a classical HamiltonianH(p,x, t) = H(p, X) describes the skeleton
of a wave pattern. Then, the wave equation should give a dispersion W with the
same Hamiltonian trajectories as H . The simplest way to get that is to assume that
H and W are proportional, H = ~W . This leads first to the de Broglie relations
in traditional form: E = ~ω and p = ~k. Then, substitution Kµ ↪→ ∂µ/i, leads
to the correspondence between a classical Hamiltonian and a wave operator. See
references [1, 2] for details. Thus, setting

Pj ≡ pj , j = 1, ..., N and P0 ≡ −H
c

(4)

we get the de Broglie relations in a condensed form

Pµ = ~Kµ, µ = 0, ..., N. (5)

2.3. The Classical-Quantum Correspondence Needs a Connection

The dispersion polynomial ΠX(K) and the condition ∂νKµ(X) = 0 stay invariant
only inside any class of coordinate systems connected by “infinitesimally-linear”
changes [1], i.e., one such that it holds at the considered point X(xµ0 ) = X(x′ρ0 )
considered

∂2x′ρ

∂xµ∂xν
= 0, µ, ν, ρ = 0, ..., N. (6)

One example [1,2] of such a class is constituted by the locally-geodesic coordinate
systems at X for a pseudo-Riemannian metric g on V, i.e.,

gµν,ρ(X) = 0, µ, ν, ρ = 0, ..., N. (7)

Specifying, at each point X ∈ V, a class CX of coordinate systems valid in a
neighborhood of X , any two of which exchange by a transition map satisfying
(6), is exactly equivalent to choosing a torsionless connection D on the tangent
bundle TV [3]. Given any such connection, one substitutes ∂µ ↪→ Dµ into the
wave equation (1), into the local plane-wave condition which rewrites accordingly
DνKµ(X0) = 0, and into the correspondence from the dispersion equation (2) to
the wave equation. This correspondence allows to writes Kµ ↪→ Dµ/i. It applies
also to the case where Ψ(X) ∈ Cm with m > 1, provided that the dispersion
equation (2) and the wave equation which are in fact first-order, i.e., aµν2 = 0 [3].
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2.4. Hamiltonian of a Particle in a Curved Space-time

In a curved space-time (V, g) with an electromagnetic field of four-potential Vµ,
the world line of a test particle corresponds with an extremum of the generally-
covariant action integral

S =

∫
−mcds− e

c
Vµdx

µ (8)

where
ds2 = gλρdx

λdxρ. (9)
It follows that the motion derives from the following Lagrangian

L
(
xµ, u′ν

)
= −mc

√
gµνu′µu′ν − (e/c)Vµu

′µ, u′ν ≡ dxν/dξ (10)

with ξ an arbitrary parameter along the world line of the particle. The canonical
momenta derived from this Lagrangian are

Pµ ≡ ∂L/∂u′µ = −mc
u′µ√

gλρu′λu′ρ
− (e/c)Vµ. (11)

The Lagrangian (10) is an extended Lagrangian in the sense of Johns [12]. As
shown by Johns [12] (Section 11.9), we may associate with an extended Lagrangian
like L a “traditional Lagrangian” L, by setting

L(xj ,
dxk

dx0
, x0) ≡ L(xµ, dx

ν

dξ
)
dξ

dx0
· (12)

From the latter, we deduce by Legendre transform a “traditional Hamiltonian”
H ′(pj , x

k, x0). The “traditional momenta” pj coincide with the corresponding ex-
tended momenta Pµ (for µ = 1, ..., N ), the latter ones being canonically derived
from the extended Lagrangian L by equation (11) ([12], equation (11.12)). That is,
we have

pj = Pj , j = 1, ..., N. (13)
The traditional Hamiltonian is simply ([12], equation (11.14))

H ′(pj , x
k, x0) = −P0(x

µ, u′ν). (14)

At this stage, we can specialize the parameter ξ to be the four-length s, equation
(9). In that case, the vector with components u′µ is the four-velocity, u′µ = uµ ≡
dxµ/ds. From (9), it verifies gµνuµuν = 1, as is well known. Hence, with ξ = s
the canonical momenta (11) become

Pµ = −mcuµ − (e/c)Vµ. (15)

Again, because gµνuµuν = 1, the canonical momenta verify the energy equation

gµν
(
Pµ +

e

c
Vµ

)(
Pν +

e

c
Vν

)
−m2c2 = 0. (16)
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In the expression (14) of the traditional Hamiltonian H ′, the time coordinate x0 is
arbitrary. Let us get H ′ as function of the same momenta pj and the same space
coordinates xk, but with the time coordinate t ≡ x0/c. We do that directly in
Hamilton’s equations for H ′. We must set

H(pj , x
k, t) = cH ′(pj , x

k, x0) = −cP0 (x
µ, uν). (17)

Note that equations (13) and (17) are consistent with the definition (4).

2.5. A Variant Derivation of the Dirac Equation

The dispersion equation associated with the energy equation (16) by wave mechan-
ics, i.e., by the de Broglie relations (5), is

gµν
(
~Kµ +

e

c
Vµ

)(
~Kν +

e

c
Vν

)
−m2c2 = 0. (18)

Applying directly the correspondence Kµ ↪→ Dµ/i to the dispersion equation
(18), leads to a specific form of the curved space-time Klein-Gordon equation [3].
Instead, one may try a factorization with matrix coefficient α, β, γµ and ζν

ΠX(K) ≡
[
gµν (Kµ + eVµ) (Kν + eVν)−m2

]
1

=(α+ iγµKµ)(β + iζνKν), ~ = c = 1.
(19)

Identifying the coefficients (with noncommutative algebra), and substitutingKµ ↪→
Dµ/i, leads to the Dirac equation [2, 3]

(iγµ (Dµ + ieVµ)−m)ψ = 0 (20)

with the anticommutation relation, resulting from the identification with equation
(19)

γµγν + γνγµ = 2gµν 1. (21)

3. From Dirac Equation to Classical Motion

3.1. General Dirac Lagrangian in a Curved Space-time

The following Lagrangian (density) [6] generalizes the “Dirac Lagrangian” (see
e.g. [9, 14]) valid for the standard Dirac equation in a curved space-time

l =
√
−g i

2

[
Ψγµ(DµΨ)−

(
DµΨ

)
γµΨ+ 2imΨΨ

]
(22)

where Ψ ≡ Ψ†A is the generalized Dirac adjoint of Ψ ≡ (Ψa). The field X 7→
A(X) designates the hermitizing matrix, such thatA† = A, (Aγµ)† = Aγµ [4,17].
(Here M † ≡ (M∗)T is the hermitian conjugate of a matrix M .) In a curved
space-time, that matrix becomes indeed generally a field [5]. In the usual Dirac
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Lagrangian, the field A is the constant matrix γ♮0, there (γ♮α) is a set of constant
“flat” Dirac matrices, i.e., ones obeying the anticommutation relation (21) with
the Minkowski metric ηαβ - provided the set (γ♮α) is chosen such that γ♮0 is a
hermitizing matrix for that set.
The Euler-Lagrange equation for the Lagrangian (22) is the generalized Dirac
equation [5, 6]

γµDµΨ = −imΨ− 1

2
A−1(Dµ(Aγ

µ))Ψ. (23)

This coincides with the usual form iff Dµ(Aγ
µ) = 0. That is always the case [5]

for the standard Dirac equation in a curved space-time (the Dirac-Fock-Weyl or
DFW equation). In equations (22) and (23), the covariant derivatives Dµ corre-
spond to an arbitrary connection D defined on the complex vector bundle E, in
which the Dirac wave function ψ is living.1 That vector bundle is assigned to be
a “spinor bundle”, i.e., essentially, one for which it exists a global field γ of Dirac
matrices, consistent with the anticommutation relation (21). See reference [7] for
details.

3.2. Local Similarity (or Gauge) Transformations

Admissible coefficient fields (γµ, A) for the general Dirac equation (23) are ones
such that the anticommutation relation (21) is satisfied and that the fieldA is hermi-
tizing. Given any local similarity transformation S : X 7→ S(X) ∈ GL(4,C),
depending smoothly on X ∈ V, other admissible coefficient fields are

γ̃µ = S−1γµS, µ = 0, ..., 3, Ã ≡ S†AS (24)

in the sense that the anticommutation relation (21) remains satisfied (in the same
space-time (V, g)) with the new field of Dirac matrices γ̃µ, and moreover the ma-
trix field Ã is a hermitizing matrix field for γ̃µ [5].
The relevant Hilbert space scalar product is [5]

(Ψ | Φ) ≡
∫

Ψ†Aγ0Φ
√
−g d3x. (25)

It transforms isometrically under the gauge transformation (24), if one transforms
the wave function according to Ψ̃ ≡ S−1Ψ [6].
The Dirac equation (23) is covariant under the similarity (24), if the connection
matrices Γµ, which appear in Dµ = ∂µ + Γµ, change according to [6, 10]

1 The connection D and the covariant derivatives Dµ extend as usual to the dual bundle E◦ of E,
and to tensor products such as E⊗E◦. Moreover, on a tensor product such as TV⊗E⊗E◦ (which
is the relevant bundle for the Dirac matrices [7]), the relevant connection is obtained by considering
the Levi-Civita connection on the component bundle TV [5, 7].
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Γ̃µ = S−1ΓµS + S−1(∂µS). (26)

For the DFW equation, the gauge transformation (24) is restricted to belong to the
spin group: for all X,S(X) ∈ Spin(1, 3). It follows then that the relation (26) is
automatically satisfied [6].

3.3. Reduction of the Dirac Equation to Canonical Form

If Dµ(Aγ
µ) = 0 and the Γµ’s are zero, the Dirac equation (23) reduces to

γµ∂µΨ = −imΨ. (27)

Theorem 1 ([8]). In the neighborhood of any event X , the Dirac equation (23)
can be put into the canonical form (27) by a local similarity transformation.

Outline of the proof: i) By Theorem 3 of reference [5] [Section 3.4, equation (54)],
a similarity T defined by equation (24) [with T instead of S] brings the general
Dirac equation (23) to the “normal” form (Dµ(Aγ

µ) = 0), iff

AγµDµT = −(1/2)[Dµ(Aγ
µ)]T . (28)

ii) By Theorem 2 of reference [7] [Section 6.2, equation (65)], a similarity S de-
fined by equation (24) and such that equation (26) is satisfied, brings a normal
Dirac equation to the canonical form (27), iff

Aγµ∂µS = −AγµΓµS. (29)

iii) Due to the hermitizing character of the matrix A, and due to the fact that,
by construction, the Hermitian matrix Aγ0 which defines the scalar product (25) is
positive definite [5], both (28) and (29) are symmetric hyperbolic systems. �

3.4. Geometrical Optics Approximation of Dirac Lagrangian

The Lagrangian for the Dirac equation in an electromagnetic (e.m.) field is got
by substituting Dµ ↪→ Dµ + ie

~cVµ, where e is the particle’s electric charge. It
follows that, for the canonical Dirac equation (27), the Lagrangian in an e.m. field
is obtained by

l =
√
−g i~c

2

[
Ψ†Aγµ(∂µΨ)− (∂µΨ)†AγµΨ+

2imc

~
Ψ†AΨ

]
−
√
−g (e/c)JµVµ (30)
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with ∇µ(Aγ
µ) = 0, where ∇µ is the covariant derivative obtained on the relevant

tensor product bundle (see Footnote 1) if the connection matrices Γµ of the connec-
tion D are zero when D is acting specifically on the bundle E [8]. To implement
the geometrical optics approximation following Whitham [20], we set first

Ψ = eiθχ (31)

where χ = χ(X) is also a complex wave function with four components, and
θ = θ(X) is a real phase. We assume then that χ is slowly changing compared
to the rapidly changing phase θ. That is, the geometrical optics approximation
consists in assuming that

∂µχ≪ (∂µθ)χ. (32)

Substituting (31) into the Lagrangian (30) with this approximation, yields

l′ = c
√
−g

[(
−~∂µθ −

e

c
Vµ

)
χ†Aγµχ−mcχ†Aχ

]
. (33)

The Euler-Lagrange equations are then [8]

(
−~∂µθ −

e

c
Vµ

)
Aγµχ = mcAχ

(34)
∂µ

(
c
√
−gχ†Aγµχ

)
= 0.

3.5. Classical Trajectories

Theorem 2 ([8]). From Ψ = χeiθ, define a four-vector field uµ and a scalar field
J such that

uµ ≡ − ~
mc

∂µθ −
e

mc2
Vµ, uµ ≡ gµν uν , J ≡ c χ†Aχ. (35)

Then the Euler-Lagrange equations (34) imply

∇µ(Ju
µ) = 0 (36)

gµν uµuν = 1 (37)

∇µuν −∇νuµ = −(e/mc2)Fµν . (38)

The first equation is the conservation of the probability current. The two last equa-
tions imply the classical equation of motion for a test particle in an electromagnetic
field in a curved space-time.
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3.6. De Broglie Relations

The canonical momenta of a classical particle imply the following equations

Pµ = −mcuµ − (e/c)Vµ. (39)

On the other hand, following a Dirac quantum particle in the geometrical approxi-
mation, we were led to define a four-velocity field uµ from the phase θ of the wave
equation (35).
We saw that the field uµ obeys exactly the classical equations of motion, which
are Hamiltonian equations for which the canonical momenta are given by equation
(39). But, remembering the definition Kµ ≡ ∂µθ of the wave co-vector from the
phase θ of the wave function, we rewrite equation (35) as

−mcuµ − (e/c)Vµ ≡ ~Kµ. (40)

That is, we derive exactly the de Broglie relations (5).

4. Conclusion

The Dirac equation in a curved space-time with electromagnetic field may be “de-
rived” from the classical Hamiltonian H of a relativistic test particle. One has
to postulate H = ~W (i.e., E = ~ω), where W is the dispersion relation of the
sought-for wave equation. Then one factorizes the obtained dispersion polynomial.
Conversely, to describe “wave packet” motion, we have implemented the geomet-
rical optics approximation into a canonical form of the Dirac Lagrangian. From
the equations thus obtained for the amplitude and phase of the wave function, one
is led to define a four-velocity field which obeys exactly the classical equation of
motion.
The de Broglie relations Pµ = ~Kµ are then derived exact equations.
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