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Abstract. The Baily-Borel compactification B/T" of an arithmetic ball quo-
tient admits projective embeddings by I'-modular forms of sufficiently large
weight. We are interested in the target and the rank of the projective map @,
determined by I"-modular forms of weight one. This paper concentrates on
the finite H-Galois quotients B/T'y of a specific B/ F(_Gig), birational to an
abelian surface A_;. Any compactification of B/T" g has non-positive Ko-

daira dimension. The rational maps ® of B/I'f; are studied by means of
the H-invariant abelian functions on A_1.
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1. Introduction

The modular forms of sufficiently large weight are known to provide projective
embeddings of the arithmetic quotients of the two-ball

B = {z = (21,2) € C?; |21|* + |22]* < 1} ~ SU(2,1)/S(Uz x Uy).
The present work studies the projective maps, given by the modular forms of
weight one on certain Baily-Borel compactifications IWF\H of Kodaira dimension
m(m[) < 0. More precisely, we start with a fixed smooth Picard modular
surface A’ | = (IB%/ F@P)l with abelian minimal model A_y = F_1 x E_q,
E_y = C/Z + Zi. Any automorphism group of A’ |, preserving the toroidal com-
pactifying divisor 7" = (IB% / F(f'ig)) /\ (IB% / F(fig)> acts on A_; and lifts to a ball lat-

tice Iy, normalizing T’ (_6i8). The ball quotient compactification A’ ;/H = B/T'y
is birational to A_1/H. We study the I'y-modular forms [['f7, 1] of weight one
by realizing them as H -invariants of [’ (_618) , 1]. That allows to transfer [, 1] to
the H-invariant abelian functions, in order to determine dim¢ [['z7, 1] and the tran-

scendence dimension of the graded C-algebra, generated by [['f7, 1]. The last one
is exactly the rank of the projective map ® : B/T'yy —-> P([I'y, 1]).

2. The Transfer of Modular Forms to Meromorphic Functions is
Inherited by the Finite Galois Quotients

Definition 1. Let I' < SU(2, 1) be a lattice, i.e., a discrete subgroup, whose quo-
tient SU(2,1)/T" has finite invariant measure. A I'-modular form of weight n is a
holomorphic function 6 : B — C with transformation law

7(0)(2) = 6(7(2)) = [det Jac(y)]"d(2), €T, z€B.

Bearing in mind that a biholomorphism v € Aut(B) acts on a differential form
dz1 Adzg of top degree as a multiplication by the Jacobian determinant det Jac(~y),
one constructs the linear isomorphism

Jn : [0,n] — HO(B, (05)°")"

with the I'-invariant holomorphic sections of the canonical bundle QIQB of B. Thus,
the graded C-algebra of the I'-modular forms can be viewed as the tensor algebra
of the I'-invariant volume forms on B. For any 1, d2 € [I', n] the quotient g—; isa
correctly defined holomorphic function on B/I". In such a way, [I', n] and j, [, n]
determine a projective map

O, : B/T — P(T,n]) = P(ju[T, n)).
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The I'-cusps OrB/I" are of complex co-dimension two, so that ®,, extends to the
Baily-Borel compactification

@, : B/T — P([T,n)).

If the lattice I"' < SUy 1 is torsion-free then the toroidal compactification X I =
(B/T")" is a smooth surface. Denote by p : X' = (B/T) — X = B/T" the
contraction of the irreducible components 77 of the toroidal compactifying divisor
T’ to the T'-cusps x; € OrB/I'. The tensor product Q%,(7") of the canonical
bundle Qg(, of X’ with the holomorphic line bundle O(T”), associated with the
toroidal compactifying divisor 7" is the logarithmic canonical bundle of X'. In [2]
Hemperly has observes that

HO(X' Q3%,(T)®") = p*jn[l,n] ~ [[', n].
Let K x- be the canonical divisor of X’
L (TLKX/ + ’I’LT/) = {f S gﬁet(X/); (f) +nKxr + nT’ > 0}

be the linear system of the divisor n(Kxs + T") and s be a global meromorphic
section of %, (T"). Then

s Lyxi(nKxr +nT') — HY(X', Q%/(T)*")

is a C-linear isomorphism. Let £ : X’ — X be the blow-down of the (—1)-
curves on X’ = (B/T")’ to its minimal model X. The Kobayashi hyperbolicity of
B requires X’ to be the blow-up of X at the singular locus 751 of T' = £(T7).
The canonical divisor Kx/ = £*Kx + L is the sum of the pull-back of K x with
the exceptional divisor L of &. The birational map £ induces an isomorphism &* :
Mer(X) — Mer(X') of the meromorphic function fields. In order to translate the
condition *(f) + nKxs +nT" > 0in terms of f € Mer(X), let us recall the
notion of a multiplicity of a divisor D C X atapointp € X. If D = > n;D; is

7
the decomposition of D into irreducible components then m, (D) = > nym,(D;),
i

where
1 forpe D;
mp(Dz) =
0 forp ¢ D;.
LetL = 3 L(p)for L(p) = ¢ "(p) and f € Mer(X). The condition £*(f) +

pGTSi“g
nL > 0 is equivalent to my,(f) +n > 0 forall p € 7518, Thus, Lx/(nKx:+nT")
turns to be the pull-back of the subspace

Lx(nKx +nT, nTSing)
:{fef)ﬁet(X); (f)+nKx+nT20, mp(f)+n20’ pETsing}
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of the linear system Lx (nKx + nT'). The C-linear isomorphism

Trans, = ()" 's®™j,  [0,n] — Lx(nKx + nT,nT*"8)
introduced by Holzapfel in [3], is called transfer of modular forms.
Bearing in mind Hemperly’s result H9(X’, Q3. (T")®") = p*j1 [, n] for a fixed
point free I', we refer to

o :B/Ty — P([Lp.n]) = P(ju[Ca, )

as the n-th logarithmic-canonical map of IWF\H, regardless of the ramifications of
B— B/Ty.
The next lemma explains the transfer of modular forms on finite Galois quotients
B/I'y of B/T' to meromorphic functions on X/H. In general, the toroidal com-
pactification X/, = (B/I'y)’ is a normal surface. The logarithmic-canonical bun-

dle is not defined on a singular X7;, but there is always a logarithmic-canonical
Weil divisor on X7;.

Lemma 1. Let A’ = (B/T) be a neat toroidal compactification with an abelian
minimal model A and H be a subgroup of G = Aut(A,T) = Aut(A’,T"). Then
i) the transfer Trans,, := (£*)"'s®"j, : [[,n] — La(nT,nT"™2) of
I'-modular forms to abelian functions induces a linear isomorphism

Trans? : [Ty, n] — La(nT, nT5M8)H

of Tgr-modular forms with rational functions on A/ H, called also a transfer

i) the projective maps
o :ﬁ{ ****** >P([Cy,n)), $H:A/H > P(LA(nT, nT"8)H)

coincide on an open Zariski dense subset.

Proof: i) Note that j,[['g,n] = j,[[,n]. The inclusion j,[['g,n] C j,[T,n]
follows fromI' < T'y. IfI'y = U?:ﬂjf is the coset decomposition of I" 7 modulo
I, then H = {h; = yI'; 1 < ¢ < n}. AT'-modular form w € j,[I',n] is I'y-
modular exactly when it is invariant under all ~y;, which amounts to the invariance
under all h;.

One needs a global meromorphic G-invariant section s of Qa‘, (T"), in order to
obtain a linear isomorphism

(5*)713(8(*”) = Trananjgl ]n[FH7n] — jn[I"n]H N LA(TZT, nTSing)H'

The global meromorphic sections of the logarithmic-canonical line bundle Q% (1")
are in a bijective correspondence with the families (fn, Uy )aes of local mero-
morphic defining equations f, : U, — C of the logarithmic-canonical divisor
L + T’. We construct local meromorphic G-invariant equations g, : V, — C of
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T and pull-back to (fo = €*ga,Us = € *(Va))acs. Let Fy : A = C2 — A
be the universal covering map of A. Then for any point p € A choose a lifting
pE Fgl(p) and a sufficiently small neighborhood W of 5 on A, which is con-
tained in the interior of a 7;(A)-fundamental domain on A, centered at p. The
G-invariant open neighborhood W = Nycq gW of p on A intersects FXI(T) in
lines with local equations [;(u,v) = a;j(p)u + b;(p)v + ¢j(p) = 0. The holomor-

phic function g(u,v) = [] [1(/j(u,v)) on W is G-invariant and can be viewed as
geG j
a G-invariant local defining equation of 7' on V' = F4(W). Note that F4 is locally

biholomorphic, so that V' C A is an open subset, after an eventual shrinking of w.
The family (g, V')pea of local G-invariant defining equations of 7" pullbacks to a
family (f = £*g,U = £ 1(V))pea of local G-invariant sections of Q% (7”).

i) Towards the coincidence W[ |i a\7) 1) = @8/ )\ #)» let us fix a basis
{wi; 1 < i < d} of ju[I'g,n] and apply i), in order to conclude that the set
{fi = Trananj,jl(wi); 1 <4 < d} is abasis of L4 (nT, nT"8)", Tensoring by
s®(=") does not alter the ratios £L. The isomorphism & : Mler(A) — Mer(A4’) is

wj "

identical on (A \ T)/H. ’ n

3. Preliminaries

!
In order to specify A" | = (]R / F(_6i8)) let us note that the blow-down & : A’ | —

A_1 of the (—1)-curves maps 7" to a divisor 7' = £(T”) with smooth elliptic irre-
ducible components 7;. Such T are called multi-elliptic divisors. Any irreducible
component T; of T lifts to a 71 (A_1)-orbit of complex lines on the universal cover

A’ | = C?. That allows to represent
Tj = {(u(mod Z + Zi),v(mod Z + Zi)); aju + bjv + ¢; = 0}.

If T} is defined over the field Q(i) of Gauss numbers, there is no loss of generality
in assuming a;, b; € Z[i] to be Gaussian integers.

Theorem 1 (Holzapfel [4]). Let A_1 = E_1 x E_1 be the Cartesian square of the
elliptic curve E_y = C/Z+7Zi, w1 = Ly =iws, w3 = w1 + wa be half-periods,

oL
Qo = 0(mod Z+Zi), Q1 =wi(mod Z+Zi), Q2 =1Q1, @3=0Q1+ Q2
be the two-torsion points on E_1, Qi; = (Q;, Q) € A2 and
Ti = {(uw(mod Z + Zi),v(mod Z + Zi); u — i*v =0} with 1<k <4,
Titm = {u(modZ + Zi),v(mod Z + Zi); u — wy, = 0} for 1 <m <2 and
To+m = {u(mod Z + Zi),v(mod Z + Zi); v — wy, = 0} for 1 <m < 2.
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sing
Then the blow-up of A_1 at the singular locus (T£%8)> = Qoo + Q33 +

2 2 8
> > Qij of the multi-elliptic divisor T£61’8) = > T; is a neat toroidal ball quo-
i=1j=1 i=1

/
tient compactification A’ | = (IB%/F(_GiS)) )

Theorem 2 (Kasparian and Kotzev [6]). The group G_1 = Aut(A_q, T(Gl’g)) =

Aut(A’ ,T") of order 64 is generated by the translation 133 with Qs3, the multi-

plications
i0 . 10
I = (0 1> , respectively J = (0 i)

with 1€ Z[i] on the first, respectively, the second factor E_ of A_1 and the trans-
position
01
- (1)

Throughout, we use the notations from Theorem 1 and Theorem 2, without men-
tioning this explicitly. With a slight abuse of notation, we speak of Kodaira-
Enriques classification type, irregularity and geometric genus of A_;/H, H <
G _1, referring actually to a smooth minimal model Y of A_;/H.

of these factors.

Theorem 3 (Kasparian and Nikolova [7]). Let
L: Gy — GLo(Z[i]) = {g € Zi]2x2; det(g) € Z[i]" = ()}
be the homomorphism, associating to g € G _1 its linear part L and
Li(G-1) ={g € G_1; tk(L(g) — I2) = 1}
= (It gk g, 0<n <1, 1<k<3, 0<1<3)
Then

i) A_1/H is an abelian surface for H = (T33)
ii) A_1/H is a hyperelliptic surface for H = (1331%) or H = (133.J%)
iii) A_1/H is a ruled surface with an elliptic base for

H=(h), heLi(G_1)\{m3I% m33J%} or H={(m3,hs), ho € L(L1(G_1))
iv) A_1/H is a K3 surface for (t35) # H < K = ker det L, where
K = {rL 1" g% 157>k 0<n <1, 0<k<3}
v) A_1/H is an Enriques surface for H = (I*J?, t331%)
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vi) A_1/H is a rational surface for
(RY < H, h € {riyIJ,mI* ], 7IJ*; 0 <n <1} or (rRI*J* h)<H
hy € {IQmJQ_zm,T§§I,T§§J,T§7§IZJ_19; 0<m<1, 0<I<3}, 0<n<Ll.

The following lemma specifies some known properties of Weierstrass o-function
over Gaussian integers Z][i].

z,1(2z)2
Lemma2. Leto(z) =z [ (1—2)3"2 (%) be the Weierstrass o-function,
AeZ[i]\{0}
associated with the lattice Z[i] of C. Then

i) o(if2) =ifo(z), 2€C, 0<k<3
i) 2 e(M\)e ™= 3R’ e €, e Z[i], where

o(z)
) = 1 if AeZ[i]\ 2Z][i]
Sl 1 i ae 2z

Proof: 1) follows from

1 (1_116/\2)if+5(if) o (1_Z>Z+5<u> |

A€zl {0) p=dezinoy ©

ii) According to Lang’s book [8]
o(z+A)

o(z)
where ) : Z[i] — C is the homomorphism of Z-modules, related to Weierstrass

¢-function ((z) = ZZ by the identity ((z + \) = ((2) + n(A). It suffices

—eWe™WERR) | e, ezl

to establish that n(\) = —m\, A € Z[i]. Recall from [8] Legendre’s equality
n(i) —in(1l) = 21, in order to derive
A+ A A=A ~ _
N(A) = =5 =n(1) + —5—=n()) = (n(1) + M)A =7, A € Z[i].

Combining with homogeneity n(i\) = 1n()), A € Z[i] (cf.[8]), one obtains

(n(1) + m)X + miX = n(i\) = —in(\) = —(n(1) + 7)iX + 7w, A € Z[i].
Therefore (1) = —m and n()\) = —7\, X € Z[i]. [ |
Corollary 1.

U(Z + wm) _ _62(—1)mwm7rz
o(z — wm)



270 Azniv Kasparian

o(z + wm + 2ews—m) _ (_1)m+1gie*%+2(*1)m+15w3—mﬂ'2+2(7].)mwmﬂ'z
o(z —wm)

o(z —wm + 2ews—m) mt1

e _ (_1)m+1€ie—§+2(—1) Ews—mTZ
for the half-periods w1 = %, wo = iwy and e = +1.
Corollary 2.
0(z 4 2ewm) _ o= (— 1) 26w 2
o(z—1)
o(z+ (=D)"wm +e(=1)"wW3-m) _  (c1m 49D gumat(1-ejwsomrs

o(z — (=1)"wm + (=1D)™w3_m)

for the half-periods w1 = % wo = iwj and e = +1.

Corollary 1 and Corollary 2 follow from Lemma 2 ii) and @,, = (—1)""lw,,,
2 _ (=pmH
-4

W,

In [5] the map @ : B/ I‘(_GiS) — IP’([F(_GiS), 1]) is shown to be a regular embedding.
This is done by constructing a C-basis of L = L4_, (T(Gl’s), <T(61’8)>Slng> , con-

sisting of binary parallel or triangular o-quotients. An abelian function f, 3 € £
is binary parallel if the pole divisor (fo 3)oc = 7o + T3 consists of two dis-
joint smooth elliptic curves T;, and T3. A o-quotient f; o, g € L is triangular if
iNT,NTg = () and any two of T}, T,, and T} intersect in a single point.

Theorem 4 (Kasparian and Kotzev [5]). Let

o(z—=1)o(z +wi —ws) o(u—1iv + ws)

Piz(z) = o(z—wr)o(z —ws) 1= o(u—1iv)
22:0(u+v+w3) 3:a(u+iv+w3) 4:a(u—v+w3)
o(u+v) 7 o(u+iv) ’ o(u—v)
_o(u—ws) _o(u—wy) _o(v—uws) _o(v—wi)
25 = o(u—wp)’ 26 = o(u—wsy)’ 7 = o(v—wy)’ 2 = o(v—ws)
Then

i) the space L = L4, <T\(/6§1), (T\(/(;%))Slng contains the binary parallel
= 212 u

o-quotients fs6(u,v) (u), frs(u,v) = X12(v) and the triangular
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o-quotients

P i — i
fis7 =ie”2TTUE 550, fieg = — e T THTTUTTIVE g Yig
. .
fasr = — e THTUATUATIVS TS, fags = —ieT 2T TN Y
fass =€ THTUTTIVS TN faer =€ TS, Y6,
. _T _ - T 3 3
fiss = —ie 21TV, Mg, fae7 =ie "2 TUATIVY, M5,

it) a C-basis of L is
Jo =1, f1:= fis7, fo := foss, f3 1= faes, fa:= fae7, [5 := f56, fo6 := frs.

4. Technical Preparation

The group G_; = Aut (A_l, T £61’8)) permutes the eight irreducible components

of T£61’8) and the F(_(Sis)—cusps. For any subgroup H of G_1, the I'f7-cusps are the
H-orbits of (9F(6,8>IB3/F(_618) ={ki; 1 <i<8}.
-1

Lemma 3. If ¢ : G_1 — Ss(k1, ..., Ks) is the natural representation of G_1 =
Aut (A_l, Tg’s)) in the symmetric group of the F(_618)-cusps, then

©(733) = (K5, k6) (K7, Kg), ©(I) = (K1, k4, K3, K2) (K5, Ke)
o(J) = (K1, ke, k3, k1) (K7, K8), ©(0) = (K1, K3) (K5, K7)(Ke, K8).-

Proof: The F(_Gis)—cusps ki are obtained by contraction of the proper transforms
sing

T! of T; under the blow-up of A_; at (Tg’g) . Therefore the representations

of G_; in the permutation groups of {7;; 1 < i < 8}, {T/; 1 < i < 8} and

{ki; 1 <i < 8} coincide.

According to 733(u — i*v) = u — i*v + (1 — iF)ws = u — i*v(mod Z + Zi),

the translation 733 acts identically on Ty, Tb, T3, Ty. Further, m33(u — wy,) =

U~+ wW3—m = U — w3_my(mod Z + Zi) reveals the permutation (75, Ts) (7%, Tg) of

the last four components of T£61’8).

k sk—1

v = i(u — i*'v), the automorphism
I induces the permutation (7%, Ty, T3, T5) of the first four components of TEGI’S).
Further, (v — wy,) = i(u 4+ w3_,,) reveals that I permutes 75 with Ty. Note that

I acts identically on v and fixes 17, Tg.

Due to the identity I(u — i*v) = iu — i

In a similar vein, J(u — i*v) = u — ¥, J(v — wy,) = i(v £ iws ) de-
termine that ¢©(.J) = (k1, k2, K3, K4 )(k7, Kg). According to O(u — iFv) = v —
i*fu = —if(u — i7%v) and O(u — w,,) = v — Wy, one concludes that p(#) =
(K1, k3) (K5, £7) (K6, Ks). u
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The following lemma incorporates several arguments, which will be applied re-
peatedly towards determination of the target P([I'z7, 1]) and the rank of the loga-
rithmic canonical map ®%.

Lemma 4. In the notations from Theorem 4, for an arbitrary subgroup H of
G_1 = Aut (A_l,Tﬁﬁl’g)> andany f € L = L4, <T£61’8), (Tg’s))51ng), let
Ru(f) = > h(f) be the value of Reynolds operator Ry of H on f.

heH

i) The space LM of the H-invariants of L is spanned by { Ry (f;); 0 < i < 6}.

8
i) Let T; C (Ru(fia1,80))e0s (RE(fisa2,8:))00 © Orbu(T3) + 3 Ta for
a=5H
somel <i<4,5<a; <6,7<p; <8 Then

RH(fi,OLQ,BQ) € Span(C(]-a RH(fSG)a RH(f'?S), RH(fi,al,Bl))'
iii) Let Ky, ..., ki, with1 <y < ... <y, < 4 be different I -cusps

8
Tlij - (RH(fzj))oo c OI'bH(EJ) + ZTO‘ forall 1<j<p

a=>5
8 H
and B be a C-basis of LY = L4 _, < > Ta> . Then the set
a=5>

{Bu(fija;8,); 1<j<ptUB
consists of linearly independent invariants over C.

iv) If Rj = Ry(fja;8) #Z const, Rj|r, = oo and R; = Ry (fia,p;) has
RZ-|T]. =% const then for any subgroup H, of H the projective maps

o . X/H, > P(LHe),  ®He . B/Tp > P(ji[lx,,1])
are of rank tk®e = rk¥Ho = 2,

v) Ifthe group H' is obtained from the group H by replacing all 7541 kJlgm ¢
H with %IV J*0™, then the spaces of modular forms j1[Ugr, 1] =~ j1[Cy, 1]

are isomorphic and the logarithmic-canonical maps have equal rank rk® =
k',

Proof: i) By Theorem 4 ii), £L = Spanc(f;; 0 < 6). Therefore any f € Lisa
6

C-linear combination f = Y ¢; f;. Due to H-invariance of f and the linearity of
i=0
the representation of H in Aut(L), Reynolds operator

6

|H|f = Ru(f) =) ciRu(fi)-
=0
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H
ii) Let ws € j1 [F(_Esis), 1] are the modular forms, which transfer to Rz (fi o, 3,),

1 < s < 2. Since wi(k;) # 0, there exists ¢; € C, such that w, = wy — ¢;w; van-

8
ishes at x;. By the assumption (R (fi a,,8,))0c © Orbg(T;)+ > Ty, the transfer
a=5H

F; e ﬁH of w; belongs to Span(c(l, f56, f78>H = Span(c(l, RH(f56), RH(f78))

iii) As far as the transfer Trans! : j; [Tz, 1] — L is a C-linear isomorphism, it
suffices to establish the linear independence of the corresponding modular forms

P
{wi;; 1 <j <p}U{ws; b € B}. Evaluating the C-linear combination Z_:l Ci;Wi;

+ > cwp = 0 at Rjy, ..., Ry, one obtains ¢;; = 0, according to w;, (R;,) = 5Js-
beB
and wy(Fi;) = 0,b€ B, 1 < j <p. Then ) w, = 0 requires the vanishing of all
beB

¢y, due to the linear independence of B.

iv) If H,, is a subgroup of H then £ is a subspace of £L/°, j;[I's7, 1] is a subspace
of j1[T'x,,1] and U = prewHe dH = prl'udHo for the projections pr”
P(LHe) — P(LH), prt# : P(j1[Tg,,1]) — P(j1[Cxy, 1]). That is why, it suffices
to justify that rk®" = rk¥# = 2 is maximal. Assume the opposite and consider
Ri,R;j : X/H > PL. The commutative diagram

R;,R;
X/H S P! x P!

R .
7 pro

[P;l

has surjective R;, as far as R; # const. If the image C' = (R;, R;)(X/H) is
a curve, then the projection pr, : C' — P! has only finite fibers. In particular,
pry 1 (00) = Ri((Rj)s0) 00 O R;(T;) x 00 consists of finitely many points. How-
ever, R;(T;) = P! as an image of the non-constant elliptic function R;: T} -3 PL.
The contradiction implies that dim¢ C' = 2 and tk¥# = 2.

v) The transposition of the holomorphic coordinates (u,v) € C? affects non-
trivially the constructed o-quotients. However, one can replace the equations
uw—1ifv = 00f T}, 1 < k < 4 by v — i *u = 0 and repeat the above con-
siderations with interchanged u,v. The dimension of j;[['f7, 1] and the rank of
®H are invariant under the transposition of the global holomorphic coordinates on
A =C2 [
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With a slight abuse of notation, we write g(f) instead of ¢*(f), for g € G_,
6,3 6,8) 5in8
fecL= £A1<£ L (15Y) )

Lemma 5. The generators 133, 1, J, 0 of G_1 act on the binary parallel and trian-
gular o-quotients from Corollary 4 as follows

3733(f56) = — f6. 733(f78) = — frs
T33(f157) = —ie2 fies,  T33(fies) = i€ 2 fisy, T33(f357) = — ie 2 faes
T33(fags) = ie? fazr, 733(f258) = faer, 733(f267) = foss
733(fa58) = — faer, 733(fa67) = — fass
I(fs6) = — ifs6, I(frs) =frs
I(fi57) = —ifaer, I(fies) = — €2 fuss, I(f357) = ifae7
I(f368) = — €2 foss, (fas8) = if168, I(fa67) = — €72 fi57
I(fa58) = — if36s, I(fa67) = — €2 fa57
J(fs6) =156, J(fzs) = —ifrs
J(fi57) = —ie2 fass,  J(fies) =fao7, J(fs57) = ie7 2 fuss
J(f368) =f167, J(f258) =f357, J(fag7) = — 172 fas
J(fass) =f157, J(fie7) = ie? fies
0(fs6) =frs; 0(fzs) =fs6
0(fis7) = — €2 fssr, 0(fies) = —€ 2 fsgs,  O(fss7) =—e 2 fis7
0(f368) = — €2 fies, 0(fass) = fa67, 0(f267) =f258
0(f158) =fa67, 0(fa67) = fass-

Proof: Making use of Lemma 2 and Corollary 2, one computes that

Tag0(u — 1) = —e™ g (4 + wi — ws), Te30(u+wi —we) = e o (u— 1)
7330 (u — wl) = — ”iua(u —wa), T330(u—we) =—e "Yo(u—wr)
T33(21) = —ie T2 D, T33(Ta) = e "Xy, T33(N3) =ieT2%3, m33(X4) = B4

7,33( 5) — efrrufﬂiuz& 733(26) — e7ru+7riu25
7_33(27) _ efm)fﬂ'ivzs’ 7_33(28) — e7r'u+7rivz7

Io(u—1) =ie ™ g(y — 1), To(u+w; —w) = —e™o(u+ w; —wo)
Io(u —w) = —ie™o(u — ws), To(u—ws) =io(u —w)
I(El) . —7riu+7rivz I(Ez) — ie—ﬂ'iu—ﬂ'vzl

I(Zg) —Tiu— 7rw22’ 1(24) — ie—7riu+7rvz3
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I(35) = —e ™%, I(S6) = —e™%5, [(S7) =7, I(3g) = Xy
Jo(w+ p) = Io(u+ p)|u=o, pweC
4J(21) =B, J(Z9) =33, J(X3) =3y, J(24) =%
J(25) =35, J(Z6) =6 J(X7)=—e "N, J(Xg)=—e"%;
Oo(u+p) =o(v+ p), peC
0(31) = —ie™TUN; 9(8y) = By
0(X3) = ie MUY G(Dy) = —eTuTmuT U Uy,
0(%5) = 87, H(Z6) = Bs, 9(27) =5, 0(X5) = Y.
[

The following lemma is an immediate consequence of Lemma 2 and Corollary 1.

Lemma 6.
fis7 _~  fies —x Joss —x Joer o
—_— = —1le 2, —_— = e s —_— = e s —_— g
21 T 21 T 22 Ts 22 Ts
f357 _x  [368 _x fasg .= Jfaer _x
L0 =T LB —emz, 2| = ez, 2| —je2
23 T3 23 T3 24 Ty 24 Ty
. T PR
fis7 +ie2 f357 fosg —ie” 2 fys8
- - —= 07 == O
25 Ts s Ts
Lemma 7.

[(fis7 — ie? fies) + c(f357 — i€ 2 f368)]|7, = ie "2 ™ (1 + Ce_%)

o((1+1)v+ ws) [e (1+i)m
o((1+1i)v)

is non-constant for all ¢ € C \ {—e2

(’U — w2) e—(1+i)7TUJ(U — w1)2
o(v—wr)? + o(v— wg)Q]
|2

Proof: Note that
F) = [(fis7 — ie? figs) + c(fa57 — ie™ 2 fzes)] |7
= [ie_g_le(—v,v) — ce_”J”ri“Zg(—v,v)]

x [B5(—v)E7(v) + Xe(—v)Es(v)]

it (o) 2o

X |:e(1+i)m’o-(v_w2)2 (1+i)7rv0-(v_w1)2:|

o(v—wi)? te o(v—w9)?
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making use of Lemma 2 and Corollary 1. Obviously, f(v) has no poles outside
Q(i). It suffices to justify that lir% f(v) = oo, in order to conclude that f(v) #
v—>

const. To this end, use o(wy) = io(wy) to observe that

f@o((L+1)| =217 (1 + ce*%) o(ws) # 0

whenever ¢ # —eg, while o((1 4 1)v)|y—=o = 0. -

5. Basic Results

Lemma 8. For H = (I.J? 133J?%), (I*J,m331%) with rational A_1/H and any
—Id € H < G_y, the map &7 : B/Ty; —> P([I', 1]) is constant.
Proof: By Lemma 4 (iv), the assertion for (I 2], 331 2) is a consequence of the

one for (I.J%,733.J2). In the case of H = (I.J%,733.J%), the space £ is spanned
by Reynolds operators

Ru(fs6) =0, Ry(f) =0

Ry (fi57) = fis7 +1e2 fies + €2 fagr — €2 foss +ie2 fas7 — faes + if1e7 + ifass.

The I'g-cusps are k1 = kg = K3 = K4, ks = kg and k7 = Kg. By Lemma 6,

histtie? fies . = 0, so that RH(f157)|T1 7'5 00. Therefore RH(f157) S ﬁg =C
1

31
and k@ = 0.
It suffices to observe that — Id changes the signs of the C-basis

fs6, frs, fis7, fos8, [f368s fae7 (1)
sing
of L = L4, (Tﬁﬁl’S), (Tﬁﬁl’g))b . Then for H, = (—Id) the space £ is
generated by Ry, (1) = 1. Any subgroup H, < H < G_; decomposes into
k

cosets H = UlehiHo and Ry = Y hiRp, vanishes on (1). Thus, L7 = C and
i=1
rk®H = 0. [ |

Note that A_; /(— Id) has 16 double points, whose minimal resolution is the Kum-
mer surface X _1 of A_;. Thus, H 5 — Id exactly when the minimal resolution Y’
of the singularities of A_;/H is covered by a smooth model of X_;. More pre-
cisely, all A_/H with —Id € H have vanishing irregularity 0 < q(A_1/H) <
q(X_1) = 0. These are the Enriques A_; /(—Id, 73312), all K3 quotients A_/H
with (r35) # H < K = kerdet L, except A_;/(m33(—1d)) and the rational
A_1/H with 1331J € H for0 <n < 1lor (—1Id, hy) < H for

hi € {IZmJ2_2m, To5l, T35, TQ%IIJ_ZQ ;0<m<1, 0<I[<3}.
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Lemma 9. The non-trivial subgroups H Z —1d of G_1 are
1) cyclic of order two

Hy(m, 1) = (r33I*™J?) with 0<m,l <1
HY(n, k) = (T 18 J7%0) with 0 <n <1, 0<k <3, Hy= (1%, Hj = (J?
ii) cyclic of order four
Hj(n,m) = (T35 IJ*™) with 0 <n,m <1
HY(n,m) = (t355I*™J) with 0 <n,m <1
iii) isomorphic to the Klein group 7o X Zo
Hboo(m) = (133J*™ I%) with 0 <m <1
HY o(m) = (1331*™,J%) with 0<m <1
HS. o(k) = (I*J7%0, 133) with 0 <k <1
HS. o(n, k) = (7515 J7%0, 73312 J%) with 0 <n,k <1
iv) isomorphic to 7.4 X Zo
H)o(m, 1) = (IJ*™ 133.J%) with 0 <m,l<1
HY o(m, 1) = (I*™J, 7331%) with 0<m,l<1.
Proof: If H is a subgroup of G_;, which does not contain —Id, then H C §

={g€G_1; —1d & (g)}. Decompose G_1 = G’_; U G"_,0 into cosets modulo
the abelian subgroup

G ={mI" ] 0<n<1,0<k1<3}<G_y.

The cyclic group, generated by (7241%.J'0)2 = (IJ)**! does not contain —Id
— (1.J)? ifand only if k 4+ 1 = O(mod 4). If S) = {g € S; g is of order 7'} then

SNG,0={rsI"T % 0;0<n <1, 0<k<3}=5PNnaG 0= 57

and SN G" 0 C S@ consists of elements of order two. Concerning S NG’ ,,
observe that (725 I* Jk+2m)2 = (1.J)?* € Sfor 0 < n,m < 1,0 < k < 3 requires
k = 2p to be even. Consequently

{rp1"J": k = I(mod 2)}N S
— (T 12, T2 0<m <1} =SSP NG, = 5

{r 1% J' k=14 1(mod 2)}N S

= {22 P g2 0 < nym, 1 < 1) = SW.
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In such a way, one obtains S = {Id}USéz) US%Q) US™ of cardinality | S| = 31. If
a subgroup H of G_1 is contained in S, then |H| < |S| = 31 divides |G_1| = 64,
ie., |H| = 1,2,4,8 or 16. The only subgroup H < G_; of |H| = 1 is the
trivial one H = {Id}. The subgroups —Id ¢ H < G_; of order two are the
cyclic ones, generated by h € 582) U S, We denote Hy(m,1) = (r53?mJ2)
for 0 < m,l < 1, H{(n, k) = (tx1*J7%0) for0 < n < 1,0 < k < 3 and
Hy = (I?), Hy = (J?).

For any h € S™ one has (h) = (h3), so that the subgroups —Id ¢ H ~ 7,
of G_; are depleted by Hj(n,m) = (r51J*™), H}(n,m) = (r3I1*™J) with
0<nm<I1.

The subgroups — Id &€ H ~ Zs X Zs of G_; are generated by commuting g1, go €
S@ = S(()Q) U S@. If g1,92 € S@ then g1g2 € G’_4, so that one can always
assume that go € S((]Z). Any g1 # g2 from 582) C G, generate the Klein group of
order four. Moreover, if

S = {mal?mJ? 0 <m 1< 1), S5 = {12, J%)
then for any g1, g2 € Sé?l) with g1g2 € S there follows g1g2 € S((fg . Thus, any

562) D H ~ Zs X Zs has at least one generator go € S(g?g. The requirement

I?J% = —1d ¢ H specifies that g; € Sé?l). In the case of go = I? there is no loss
of generality to choose g; = 733J?™, in order to form Hj, ,(m). Similarly, for
g2 = J? it suffices to take g1 = 7331°™, while constructing HY, ,(m). In order to
determine the subgroups —Id € H = (g1) x (ga2) ~ Zo X Zs with g1 € Sf), ge €
S(()Q), note that g1 = 7351 k 7-%6 does not commute with 72, J2 and commutes with
go = 133I%™J% if and only if 2m = 2/(mod 4),ie., 0 < m =1 < 1. Bearing
in mind that (T4 TFJ7FQ, 73312 J?™) = (riFLk+2m J=kt2mg oo p2m j2m),
one restricts the values of kto 0 < k < 1. For m = 0 denote HY, (k) =
(I*J7%0, 733). For m = 1 put HY, o(n, k) = (3 I*J %0, 73312 J2).

Let —Id € H C S be a subgroup of order 8. The non-abelian such H are isomor-
phic to quaternionic group Qg = (s,t; s* =1d, s?> =2, sts = t) or to dihedral
group Dy = (s,t; s* =1d, t> =1d, sts = t). Note that s € S*) and sts = t re-
quire st # ts. As far as 5(4)USé2) C G'_; for the abelian group G’ | = (733, 1, J),
it suffices to consider ¢ = 72,757 %0 € §¥ and s = 7R IPJ2+1-P € () with
0<n,m,l <1,0 < p,k < 3. However, sts = i, [F+2+1 Jh+2419 £ ¢ reveals
the non-existence of a non-abelian group —Id ¢ H < (G_; of order eight.

The abelian groups H € S = {Id} U S (2) U §™ of order eight are isomorphic
t0 Zy X Zo or Lo X Lo X Zo. Any Zy X Zo ~ H C S is generated by s =
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R IP AP ¢ S and t € S(g?), as faras t’ = T, IF J k0 € S§2) has

st — T£+nlp+k<]2l+lf(p+k)9 ?é T£+n12l+17(p7k) prke — s

For s = 7121 7% ¢ SM) there holds (s, t) = (s, t) and it suffices to consider
s = 73, IJ%. Further, t ¢ (s%) = (I?) and 5%t # — Id specify that t = 733122
for some 0 < p,q < 1. Replacing eventually ¢ by ts?> = tI?, one attains ¢ =
733J%4. On the other hand, the generator s = 733/J% € S @ of H = (s,t)
can be restored by st = I.J2+9), so that H = H. ,(l,q) = (IJ*, 733.J%) for
some 0 < [,q < 1. Exchanging I with J, one obtains the remaining groups
HY 5(1,q) = (I%J,7331%9) ~ 74 x 73, contained in S.

If —1d ¢ H C S is isomorphic to Zo X Zg X Zo then arbitrary different elements
s,t,r € H of order two commute and generate H. For any z € S and M C S,
consider the centralizer Cp(x) = {y € M; zy = ya} of x in M. Looking for
s €SP, t € Cypm(s)and r € Oy (s) N Cyw(t), one computes that

2
Cyear (T I%) = Oy (135J%) = S
Cye (r33?m1%m) = §@) = 58P U s
Cyo) (T3P T 7210) = {75,171 7296, T33P J*; 0 < p,q < 1}

Cyo (T3P 72m710) = {7l P9 729710, 73 1*PJ%; 0 < p,q < 1},
Any subgroup Zs X Zg x Zo ~ H C {Id} U S((]?) U S§2) intersects S§2), due to
|S(()2)] = 6. That allows to assume that s € SP and observe that

CS(Q)(S) = {S, (—Id)s, T33S, 7’33(— Id)S, 733, ng(—Id)}.
Ift = 7_33]2pj2p € 05(2) (S) then CS(Q) (t) = 5(2), so that

HA\A{Id, 5,1} € [Cg2(s) N Cga (D] \ {5, 8} = C) \ {31} (2)
with 5 = |[H \ {Id, s, t}| < |Cg(s)\ {s,t}| =4isanabsurd. Fort € Cg(s)\
{r331*J?P; 0 < p < 1} one has Cg2)(t) = Cg2)(s), which again leads to (2).
Therefore, there is no subgroup Zo X Zo X Zo ~ H Z —1d of G_1.
Concerning the non-existence of subgroups — Id ¢ H C S of order 16, the abelian
—1d ¢ H C S of order 16 may be isomorphic to Zy X Zy4, Zy X Zg X Zo Or
Zo X Ly X Ly X L. Any H ~ Zy x 74 is generated by s, ¢t € S® with s # ¢2.
Replacing, eventually, s by s and ¢ by ¢3, one has s = TaalJ m ot = iyl 2a g
with 0 < n,m,p,q < 1. Then s’t> = I?J?> = —1d € H is an absurd. The
groups H ~ Zy x Zy x Zy are generated by s € S and t,rinCgw)(s) with
r € Cge(t). In the case of s = 7 1J?™, the centralizer Cg2)(s) = 582).
Bearing in mind that s?> = I2, one observes that (t,7) N {12, J?} = (). Therefore
t,r € {r331*PJ%9; 0 < p,q < 1}, whereas tr € {Id, I?, J2,—Id}. That reveals
the non-existence of Z4 X Zo X Zy ~ H F — Id. The groups H =~ Zo X Zo X Lo X Zio
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contain 15 elements of order two, while |S(?)| = 14. Therefore there is no abelian
group —Id ¢ H < G_; of order 16.

There are three non-abelian groups of order 16, which do not contain a non-abelian
subgroup of order 8 and consist of elements of order 1, 2 or 4. If

(s,t; s =e, tt=e, st=ts>\~HCS
then s,t € S® C G’ | = (r33,1,J) commute and imply that s is of order two.
The assumption

4 2

(a,b,c; a” = e, V¥ =e, ?=ce, cbea’b=c¢e, ba = ab, ca=ac)~HCS

requires b, ¢ € Cyz)(a) = S = {r3sI>™J%, 12, J?;0 < m,l < 1}. Then b
and ¢ commute and imply that cbca’b = e = a® = e. Finally, for

Gua = (s,t; st=e, th=e, stst=e, ts>=std)
there follows s,t € S® C G’ |, whereas st = ts. Consequently, s> = t* and

Gia = {sit/;0<i<3, 0<j<1}isoforder < 8, contrary to |G44] = 16.
Thus, there is no subgroup — Id ¢ H < G_; of order 16. |

Throughout, we use the notations H () from Lemma 9 and denote by rs () the
HZ (7).

Theorem 5. For the groups H = H}, 5(p,q) = (IJ?,133J%9), HY o(p,q) =
(I ], 7331%9), Hy(1 —m,m) = (1a3 "IJ*™), H}(1 — m,m) = (145 ™I*™J),
H§><2(1) = <T33J2a]2>’ Hé/><2(1) = <T33I27J2>’ H29><2(n7 m) = <T§L3Im']7m07
13312 J%) with 0 < p,q < 1, (p,q) # (1,1) and 0 < n,m < 1 the logarithmic-
canonical map

corresponding lattices with e (v)/ F(_Gis)

oH . B/Ty > P([Ty,1]) = P!

is dominant and not globally defined. The Baily-Borel compactifications W
are birational to ruled surfaces with elliptic bases whenever H = H} ,(0,0),
HJ. 5(0,0), Hi(1,0) or HJ(1,0). The remaining ones are rational surfaces.

Proof: According to Lemma 4(v), it suffices to prove the theorem for H}, 5(p, q)
with (p, Q) 7é (1> 1)’ Hz’l(l - m, m) Hé><2(1) and H20><2(n7m)'

If H = H)(1,0) = (7331), then L is generated by 1 € C and Reynolds operators
Ru(fs6) =0, Rp(frs) =0, Ry(fis7) = fis7 — 2 fass +ie? fasy + ifuss
Ry (fies) = fies — ifoer +ie” 2 fags + e 2 fagr = ie” 2 Rpr(faes).

There are four I"(1,0)-cusps : k1 = ke = k3 = R4, ks, R, i7 = Ks. Applying

8
Lemma 4ii) to 71 C (Ryg(f157))00, R (f168)0c S Y. Ti, one concludes that

i=1

Rr(fies) € Spang(1, Ry (fi57). Therefore £ ~ C? and dH1(1.0) 5 a dominant
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map to P(L7) ~ PL. Since Ry (fi57)|1, # oo, the entire [I;(1,0), 1] vanishes at
K¢ and PH1(1.0) i5 not defined at Ke-

The group H = H},4(0,0) = (I, 733) contains F' = H)(1,0) as a subgroup of
index two with non-trivial coset representative I. Therefore Ry (f56) = Rr(f56)+
IRr(fs6) =0, R (frs) = 0 and 1k®Hix2(0:0) < 1. Due to

Ry (fis7) = fis7 — ie? fies — €2 fosg — €7 fagr + f3es + 102 fas7 + ifass — ifaer

. T
fis7—ie? fies
1

L7 = Spanc(1, Rg(fi57)). Lemma 6 provides

= —2ie”2 #£0,
1

whereas Ry (f157)|7, = oc. Therefore dim¢ £ = 2 and PH1x2(0.0) 5 3 dominant
map to P1. The T'4»2(0,0)-cusps are k1 = Ky = Rz = R4, k5 = Kg and Ry =

6, flm_e?f258'£;eff357+if458 = 0, so that Ry (fi57) is

Kg. Again from Lemma

T5
regular over 15 + T§y. As a result, ®M1x2(00) i5 not defined at Rs = Rg.

For H = H)(0,1) = (I.J?), the space L is spanned by 1 and Reynolds operators
Ru(fss) =0, Ru(frs) =0, Ru(fis7) = fisr + e fogr +ie? fas7 + ifaer

Ry (fies) = fies + ifass +ie 72 fags + €72 fass = iRu (foss)-
The I(0,1)-cusps are &1 = Ko = K3 = R4, ks = kg, k7 and Rg. Note that

8
Ty C (Ru(f157)) 0o, (R (f168))o0 C D T;, in order to conclude that Ry (fies) €
i=1

Spanc(1, Ry (fi57)) by Lemma 4 ii). Therefore £/ = Spanc(1, Ry (fi57)) ~
fsrHied fisr]|
S5 T

0,0)

C2? and ®H4(%1) is a dominant map to PL. Lemma 6 supplies

and justifies that ®Hi(0.1) §s not defined at &s.

For H = H},5(1,0) = (I.J? 733) note that Ry (f56) = 0, R (f7s) = 0, as far as
H}(1,0) is a subgroup of H}, ,(1,0). Further,

Ry (fis7) = fis7 — ie? figs 4 €2 fosr + €2 fosg +ie2 fasr + faes + ifa67 — ifas8

4 . 7r
has a pole over »_ Tj, according to f”’%‘ffws o= —2ie”2 # 0 by Lemma 6
i=1 1

and the transitiveness of the H)(1,0)-action on {k;; 1 < i < 4}. Therefore
£ = Spanc(1, Ry (fi57)) ~ C2 and ®74x2(10) is a dominant map to PL. One
computes immediately that the I}, ,(1, 0)-cusps are &1 = Ko = R3 = R4, k5 = g

s s
_ — . 2 ie2 —1
and K7 = Kg. Again from Lemma 6, £157+¢ f258‘£‘: fasr—ifass o= 0, R (fi57)
5

has no pole at T5 + T and PHax2(19) g not defined at K5 = Kg.
If H= H}, ,(1) = (I?, 733J2) then

Ry(fss) =0, Ru(frs) =4frs, Ru(fisr) = fist +ie? figs + i€ fas7 — faes
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R (fass) = foss — fosr — i€ 2 fagr —ie 2 fisg and 1€ C

span £H. The I, 5(1)-cusps are Ky = R3, Ra = K4, k5 = kg and Ry =
w w
_ ie? ieZ fas7— -
Ks. Lemma 6 reveals that f157+§1:e1 f168 _ e f:sg3 f368 — f25822f267 _
T3 Ts

T
fae7+ fass o= 0, so that Ry (fi57), R (fass) € Spanc(1, frs) and £ ~ C2.
4

2y
As aresult, ®2x2(1) j5 a dominant map to P!, which is not defined at 7 and &o.
For the group H = H}.,,(0,1) = (I, 733.J%), containing H} (1) = (I?,733.J%)
there follows Ry (fs6) = 0 and rk®7ax2(O1) < 1. Therefore Ry (frs) = 8 s,
Ry (fis7) = fist +ie? figs + €2 foss — €2 fogr +ie? fasr — fags — ifass — ifaer
and 1 € C span £. The I')5(0,1)-cusps are &1 = Ry = k3 = ka4, ks = K¢ and
k7 = Rg. By Lemma 6, fﬁ%‘f‘fl% T = 0, so that RH(f157) € Span(c(l, f78) ~

1

C2. Thus, ®74x2(%1) is a dominant map to P!, which is not defined at &1.
If H = HY ,(0,0) = (0, 7331%J?) then £ is spanned by 1 € C,

Ru(fs6) = 2(fs6 + frs), Ru(fist) = fisy +ie? fies — e fasr — ifses
and Ry (fi67) = 2(fa67 + fas8), due to Ry (fass) = 0. The I'5(0,0)-cusps are

R1 = R3, K2, R4 and K5 = K¢ = K7 = Kg. Lemma 6 provides m%‘ffws .= 0,
1
w = 0, whereas RH(f157), RH(f467) S Span(c(l, RH(f56)) ~ C2.

4 T4
Therefore 520 is a dominant map to P!, which is not defined at &1, 72 and Ra.
For H = HY. ,(0,1) = (IJ7'0,7331?.J%) one has

Ry (fs6) = 2(fs6 +1ifs), Ry (fis7) =0, Ry (fies) =0

R (fses) = 2(faes — 12 fas7), Ru(foss) = foss — foer — € 2 fass — €™ 2 fagr.
The I, ,(0,1)-cusps are &1, A3, &z = F1, s = Fg = Ry = Fs. Lemma 6

. T
implies that faes—ie2 fsst| o fass_faer| (o fasstfaer|  — () whereas
Y3 Ty Yo Ty >4 Ty

Ri(fa68), Rer(fass) € Spang(1, Ry (fs6)) =~ C. Consequently, ®x2(01) is
dominant map to P!, which is not defined at %1, <2 and &4.
In the case of H = HY, ,(1,0) = (7336, 7331%J2), the Reynolds operators are

Ru(fs6) = 2(fs56 — frs), Ru(fis7) = fis7 +1e2 figs + ifs6s + €2 fas7

Ry (f2s8) = 2(fass — f267), Ry (fass) =0, Rp(faer) = 0.
The FSXQ(l,O)—cusps are K1, K3, ko = kg and k5 = RKg = k7 = Kg. Lemma 6
f157+£i)e%f168 — if368+e%f357|T _  Jess—foer
3

3 X2
Ty T
RH(f157), RH(f258) S Spanc(l, RH(f56)) Bearing in mind that RH(f56)|T5 =

yields = 0. Consequently,
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00, one concludes that @Hg «2(1.0) is a dominant map to P!, which is not defined at
K1, kKo and Kg.
Finally, for H = HY, ,(1,1) = (1331716, 73312 J?) one has

Ri(fs6) = 2(fs6 — ifrs), Ru(fist) = 2(fis7 +ie? figs), Ru(fasr) =0

R (fses) =0 and Ry (fass) = foss — fosr + € 2 fagr + ¢ 2 fass.
The Fgw(l, 1)-cusps are k1, k3, ke = R4 and kK5 = K¢ = Ry = Rg. Lemma 6

implies that f157+§17f168 .= f2582—2f267 = 0, so that Ry (fis7), Ru(fos8) €
1 2

Spang(1, Ry (fs6)) ~ C2. As aresult, $H2x2(11) is 3 dominant map to P!, which

is not defined at K1, kK3 and Ro. |

Theorem 6. If H = H} ,(0) = (733,12), HJ,4(0) = (733, J%), HY 5(n) =

(I"J "0, 733) with 0 < n < 1, Hj(n,n) = (£51J*"), HY(n,n) = (tx1*"J)

with 0 < n < 1or Hy(1,1) = (1331?J2) then the logarithmic-canonical map
o" . BTy > P([Ty,1]) = P2

is dominant and not globally defined. The surface m is K3 for H = H»(1,1),
rational for H = H}(1,1), H}(1,1) and ruled with an elliptic base for all the
other aforementioned H.

Proof: By Lemma 4 v), it suffices to consider Hb. ,(0), HS, o(n), H;(n,n) and
Hs(1,1).

In the case of H = H}, ,(0) = (733, I?), L is spanned by

Ru(fs6) =0, Rp(frs) =0, Ru(fisr) = fist —ie? figs +ie? fasr + fass

Rz (fass) = foss + foor —ie” 2 fuss +ie 2 figr and 1€ C.
The I, ,(0)-cusps are k1 = k3, k2 = R4, k5 = K¢ and Ry = Rg. Lemma 6

provides m%effws o= —2ie”2 # 0, whereas Ry (fis7)|r; = oo. Simi-
1
larly, f%%f‘” = 2e¢7 ™ # 0 suffices for Ry (fas8)|7, = oo. Therefore 1,
2

Ry (fi57), Ru(f2ss) are linearly independent, according to Lemma 4 iii) and
constitute a C-basis for £Z. Tn order to assert that rkd2x2(0) — 2, we use
that Ry (foss)|m, = oo and Ry (fis7)|7, # const by Lemma 7 with ¢ = ie3.

Lemma 6 provides %eff‘m = 0, in order to conclude that Ry (fi57)|1y #
Ts

oo and the entire [I’), ,(0), 1] vanishes at 75. Therefore ®72x2(%) is a dominant
map to P([T,5(0), 1]) = P2, which is not defined at &5.

For H = HY..,(0) = (6, 733), the Reynolds operators are
Ru(fss) =0, Ru(frs) =0, Ru(fis7) = fisr —ie2 figs — €2 fas7 + ifses
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Ry (f2s8) = 2(fa58 + fa67), Ry (faer) =0
generate L. The Y, ,(0)-cusps are &y = kg3, R, k4 and Ry = Rg = Ry =

X

8-
= —2ie”2 # 0, so that Ry (fis7)|7, =o0.

T
Further, hf’%{f” _— 2¢™™ # 0 and the lemma provides Ry (fas8)|1, = oc.
2

jus
6. f157=ie2 fies
’ s

According to Lemma -

Therefore 1, Ry (fi57), Ru(fass) are linearly independent and £ ~ C3 by
Lemma 4 iii). We claim that
o((1+i)v+ws) [o(v—w)? +82W(1+i)va(v—w2)2
o((1+1)v) o(v—wsy)? o(v—wr)?
is non-constant. On one hand, Ry (fa58)|7, has no poles on C \ Q(i). On the
other hand, [%RH(f%s)‘T] o((1+ i)v)‘ .= —o(ws) [ +i%] # 0, so that
1 v=

lin%) [Rir(f258)|1] = oo. According to Lemma 4 iv), Ry (fis7)|y = oo and
v—

Ry (foss)|r, = —2e7 ™

Ry (fas8)|1, # const suffice for dH2x2(0) (o be a dominant map to P2. The entire
L takes finite values on T}, so that <I>Hi‘3 «2(0) i5 not defined at R4.
Concerning H = HY (1) = (IJ~'0, 733), one computes that

Ry (fs6) =0, Ry (fs) =0, Ry (fis7) = 2(fis7 — ie? fies)

Ru(fses) =0, Ru(fass) = foss + foor — € 2 fass + € 2 fagr.
The Fgw(l)—cusps are K1, K3, kg = kg and k5 = K¢ = Ky = Kg. By Lemma 6
we have f“”%effwg = —2ie"2 # 0 and hf’%ﬁ‘” . 2e~™ # 0. Therefore
2

Ry (fis7)lry, = o0, Ru(fass)|r, = oo and 1, Ry (fis7), Ru(f2ss) constitute a
C-basis of £, according to Lemma 4 iii). Applying Lemma 7 with ¢ = 0, one
concludes that Ry (f157)|r, # const. Then Lemma 4 iv) implies that dH2x2(D) g
a dominant map to P2, The lack of f € L with f|7, = oo reveals that 22D
is not defined at k3.

If H = H}(0,0) = (I) then the Reynolds operators are

Ru(fs6) =0, Ru(frs) =4frs, Ru(fist) = fisr — €2 faer +ie2 fasy — ifuer

Ry (fies) = fis — ifoss +ie 2 fags —e 2 fass and Rp(l)=1€C
span L7 . The I,(0,0)-cusps are k1 = Ko = R3 = R4, ks = K¢, 7 and Rg.
According to Lemma 4 ii), the inclusions 71 C (Rg(f157))c0, (Ru(f168))oo C

8

3" T; suffice for Ry (fies) € Spang(1, Ry (fs), R (fis7). Therefore £ ~ C3.
i=1
Observe that Ry (frs)|r, = 4X12(v) # const, in order to apply Lemma 4 iv) and

assert that ®4(%:0) js a dominant map to P2. As far as ﬁ"%‘fﬁ” =0 by
Ts
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Lemma 6, the abelian function Rz ( f157) has no pole on T5. Therefore PHi(0,0) jg
not defined at 5.

For H)(1,1) = (7331J?) the Reynolds operators are

Ri(fs6) =0, Rp(frs) =4frs, Ru(fist) = fis+e? fass+ie? fasr —ifiss
Rir(fies) = fies + ifasr +ie” 2 fags — e 2 fagr.

The T7(1,1)-cusps are i1 = Ko = R3 = R4, ks, ke and K7 = Rg. Due to

T1 C (Ru(fi57))oo, (Ru(f168))00 C 28:1TZ Lemma 4 ii) applies to provide

1=
Ry (fies) € Spanc(1, Ry(frs), Ry (fis7)). Thus, L7 ~ C3. According to
Lemma 4 iv), Ry (frs)|r, = 4%12(v) # const suffices for @111 to be a dom-

inant rational map to P2. Further, % = 0 by Lemma 6 implies that
5 T

Ry (fi57) has no pole over Ty and 411 is not defined at &s.
If H= Hy(1,1) = (r331%J?) then £ is generated by

1€C, Rpu(fss)=2fs, Ru(frs)=2frs, Ru(fisr) = fisr +ie? fies

Ry (fses) = faes—ie? fasr, Ru(foss) = foss—fasr,  Ru(far) = faer+fass-
The T'2(1, 1)-cusps are <1, ko, K3, k4, k5 = k¢ and K7 = Kg. By Lemma 6 one

has fis7+ie? fis — faes—ie? fas7 _ Jfass—foer _ Jaer+fass — 0. Thus
1 Ty 3 T3 22 T2 24 Ty ’
Ru(fi57), Ru(fses), Ru(f2s8), Ru(fae7) € Spanc(l, Ru(fs6), Ru(frs)) and
LH ~ C3. Bearing in mind that Ry (fs6)|7; = oo, Ry(frs)|my # const, one
applies Lemma 4 iv) and concludes that ®/2(1.1) is a dominant map to P2. Since
L£H has no pole over 24: T;, the map ®2(11) is not defined at 71, 7o, Rz, k4. M
i=1
Let us recall from Hacon and Pardini’s [1] that the geometric genus py(X) =
dime HY(X, Qg() of a smooth minimal surface X of general type is at most 4.
The next theorem provides a smooth toroidal compactification ¥ = (IB% / F<T33>)/
with abelian minimal model A_;/(733) and dim¢ H(Y, Q2.(T")) = 5.

Theorem 7. i) For H = H}) = (I?), HY = (J?), Hy(n,1 —n) = (133[?"J?72")
or Hg(n, k) = <7‘§‘3I’“J_k¢9> with) < n <1, 0 < k < 3 the logarithmic-
canonical map

" BTy —>P([y, 1)) =P
has maximal tk®" = 2. For H # Hy(n,1 — n) the rational map ® is not
globally defined and B/T iy are ruled surfaces with elliptic bases. In the case of
H = Hs(n,1 — n) the surface B/T 1 is hyperelliptic.
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ii) For H = H»(0,0) = (733) the smooth surface (IB%/F<733>)/ has abelian minimal
model A_1 /(T33) and the logarithmic-canonical map

&) BT () 3 P([C gy, 1]) = P4

733 733
is of maximal rk®(™33) = 2,
Proof: i) By Lemma 4 v), it suffices to prove the statement for Hj, H5(1,0) and
HY(n, k) = (T I*J7%9) with0 <n < 1,0 < k < 2.
Note that H}, Ho(1,0) are subgroups of H}. ,(0) = (733, I2) and rk®2x2(0) = 2,
By Lemma 4 iv) that suffices for rk®2 = rk@2(1.0) = 9,
In the case of H = H} = (I?), the Reynolds operators
Ru(fse) =0,  Ru(frs) =2frs
. .z
Ry (fis7) = fis7 +ieg fasr,  Ru(fies) = fies +1ie72 fes

Ry (fas8) = fass —ie™ 2 fusg, Ry (fa67) = fae7 +ie™ 2 faer.
The I'}-cusps are i1 = R3, Ra = R4, K5, R, k7 and Kg. According to Lemma

8
4 ii), the inclusions 77 C (RH(f157))oo; (RH(flﬁg))oo C T +15 + 2 T,
a=5

suffice for Ry (fi6s) € Spanc(l, Ry (f7s), Ru(fis7)). Similarly, from 7o C

8
(Ru(f258))00s (RE(f267))00 € 1o + Ty + ) T, there follows Ry (fa67) €
a=>5

Spang(1, Ry (f78), Ru(foss)). As a result, one concludes that the space of the
invariants £ = Spanc(1, Ry (frs), Ru(fi57), R (f2ss)) =~ C*. Since £ has
no pole over 7§, the rational map ™2 is not defined at &g.
If H= H(1,0) = (r3312), then L is spanned by
1eC, Ru(fs56) = 2f56, Ru(frs) =0
Ry (fis7) = fis7 + fes, Ry (fass) = foss +ie” 2 fagr.
The T'2(1,0)-cusps are Ky = R3, Ry = R4, kK5 = K¢, ky = Rs. According to

8
Lemma 4 iii), the inclusions 77 + 75 C (Ru(fi57))oc € T1 + 13 + > Ty and

a=>5
8
To+ Ty C (Ru(f2s8))c0 € To + Ty + > T, suffice for the linear independence
a=5>
of 1, Ru(fs6), Ru(fi57), Ru(f2s8)-
Further, observe that /Y (n,0) = (73,6) are subgroups of H, ,(0) = (733, 0) with
rkd2x2(0) = 2. Therefore rkd(0) = 2 by Lemma 4 iv).
If H = HY(0,0) = (§) then

Ri(fs6) = fso+frs,  Ru(fist) = fist—e2 fasz,  Ru(fass) = faes —e2 fies
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Ry (f2s8) = fass + faer, Ry (fi67) = fae7 + fass.
The Fg((),())-cusps are K1 = K3, Ra, R4, k5 = Ky and kg = Kg. According
8
to Lemma 4 ii), 71 C (Ru(fi57))oo, (R (f168))0c € T1 + T3 + > Ti, im-
a=>b

plies R(fios) € Spanc(1, Ru(fz), R(fis7)). Lemma 6 supplies [2o5tfar|
2

2e"" #£ 0 and 1646%4’[458 - 0. Therefore Ry (fas8)|7, = 0o and Ry (fae7) C
4

Spang (1, Ry (fs6)). Thus, £ = Span(c(lvRHQ(fE)G)aRH(flE)?);RH(f258))
C*. The entire [['9(0, 0), 1] vanishes at &4 and ®2(*9) is not globally defined.
For H = HY(1,0) = (1330) the space L is generated by
1eC, Ry (fs6) = fs6 — fr8
Ry (fis7) = fis7 +ifses,  Ru(fess) = 2foss, Ru(fier) =
The Fe(l 0)-cusps are k1 = ka3, I’u‘g, Ra, K5 = kg and kg = Kr. Makmg use of
(RH(f157)) - T1 +T3 + Z T and TQ C (RH(f258)) C TQ + Z Ta,
a=>5
one applies Lemma 4 iii), in order to conclude that

LH = Spanc (1, Ry (fs6), Rir(fis7), Rir(fass)) ~ C*.

The abelian functions from £ have no poles along T}, so that dH(10) j5 not
defined at k4.

Observe that HY(n,1) = (r3%1J~10) are subgroups of HY, (1) = (733, 1J710)
with rk@ng?(l) = 2, so that rk®H2 (1) — 9 a5 well.
More precisely, Reynolds operators for H = H$(0,1) = (IJ~16) are

Ry(fse) = fse+ifrs, Ru(fisr) = fisr—ie? fies, Ru(fzes) = faes—ie? fasr
R (foss) = foss — €2 fuss, Ry (fosr) = fasr + €72 fagr.
The Fg—cusps are k1, kK3, ko = K4, kK5 = Rg, kg = k7. By Lemma 6 one has

jus s

—ie?2 PR—. —ie?2

hsr—ie? fues =23 £0, Loie 12 e .. = 0, whereas Ry (fi57)l7; = oo,
1 3

12

Rp(fs6s) € Spang(1, Ry (fs6)). Applying Lemma 4 ii) to the inclusions 75 C
8

(R (f258)) 00y (R (f267)) o0 € To+Ty+ > Ty, one concludes that Ry ( fa7) €
a=5
Spanc (1, Ry (fs6), Ru(f2s8)). Altogether
L% = Spanc (1, Ru(fs6), R (fi57), Ru(foss)) =~ C*.

Since £ has no pole over T3, the rational map HH(0.1) js not defined at k3.
If H = HY(1,1) = (r331J76) then

Ry (fs6) = fs6 —1ifrs, Ry (fis7) = 2f157
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Ry(fses) =0,  Ru(fass) = foss + € 2 fagr.
The T9(1,1)-cusps are &1, k3, ko = k4, ks = k7 and kg = kg. Making use
of Ry (fis7)|lmy = 00, Tr(fass)|m, = o0, one applies Lemma 4 iii), in order to
conclude that £ = Spang(1, Ry (fs6), Ru(fis57), Ru(fass)) ~ C*. Since £LH
has no pole over T3, the rational map &5 (1.1) g not defined at K3.
Reynolds operators for H = HY(0,2) = (I2J?6) are

Ry (fs6) = fso—frss  Ru(fist) = fist+e? fssz,  Ru(fies) = fies+e 2 faas
Ry (fass) = foss — foe7, Ry (faer) = faer — [ass-
The Fg(0,2)—cusps are K1 = K3, ko, K4, ks = K7, kg = kg. Lemma 4 ii)

8
applies to 71 C (Rg(f157))oos (Ru(f168))0c0 © T1 + T3 + > T, to provide
a=5H

RH(flﬁS) S Span(c(l, RH(f56), RH(f157)). By Lemma 6 one has f2582;2f267 7

0 and 15‘672;4’[458 " 2ie”2 # 0. As aresult, Ry (foss) € Spanc(1, Ry (fs6))
and Ry (fae7)|7, = o0o. Lemma 4 iii) reveals that 1 € C, Ry (fs6), Ru(fis7),
Ry (fi67) form a C-basis of £, Since £ has no pole over T, the rational map
HH2(0.2) is not defined over R9.

In the case of H = HY(1,2) = (r331%J26) one has

Ru(fs6) = fs6 + frss Ry (fi57) = fi57 — if368
R (fass) =0, Ry (fi67) = 2 fae7-
The T'§(1,2)-cusps are &y = K3, ko, R4, K5 = Kg and Rg = 7. Lemma 4 iii)
8
applies to T1 C (Ru(f157))oc € Th + T3+ Y To, Tu C (Ru(fa67))oc <

a=5>
Ty + T + T7, in order to justify the linear independence of 1, Ry (f56), R (f157)s
Ry (fag7). Since £H ~ C* has no pole over T, the rational map HHI(1.2) is not
defined at ks.

ii) For H = H(0,0) = (733) one has the following Reynolds operators
Ry(fse) =0, Ru(fs) =0,  Ru(fisr) = fis7 —ie? fies

Ry (foss) = foss+faor, Ru(faes) = faes+ie? fssz,  Ru(fasr) = fier— fass-
There are six F< y-Cusps: K1, Ko, K3, K4, K5 = K¢ and k7 = kg. By the means

us
fis7—ie? fies _ _o9i—Z f258+ fa67
> = —2le”z # 0, AT

733

of Lemma 6 one observes that

.
= 2ie"2 # 0. Therefore

T

2e™™ £ 0, f368+zi:€i%f357 — i~ 3 £ 0, f4672_f458
3 T3 4 Ty

8
Ti C (Ru(fia;8:))o0 CTi+ > Tsforl <i<4,(on,pr1)=(57), (a2, p2) =
i=5
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(5,8), (as,P3) = (6,8), (a4,P4) = (6,7). According to Lemma 4 iii), that
suffices for 1, Ry (fi57), Ri(f258), Rii(fses), Rir(fa67) to be a C-basis of L.
Bearing in mind that Ho(0,0) = (733) is a subgroup of Hb. ,(0) = (733, I?) with
rk®H2x2(0) — 2, one concludes that rkd(ms) — 2 |
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