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Abstract. This is a review of the variational principle proposed by Gustav
Hergotz and resent results related to it. In that variational principle the func-
tional is defined by a certain differential equation instead of an integral. The
solutions of the equations for the extrema of the functional determine contact
transformations. Some of those results are: two Noether-type theorems for
finding conserved quantities and identities, a method for calculating symme-
try groups of the functional and several applications.

1. Introduction

In the 1930-s Gustav Herglotz proposed a generalized variational principle with
one independent variable, which generalizes the classical variational principle by
defining the functional, whose extrema are sought, by a certain ordinary differential
equation. Herglotz variational principle contains the classical variational principle
as a special case. His original idea was published in 1979 in his collected works
[8] and [9]. It is especially suitable for a variational description of nonconservative
processes. It can give a variational description of such processes even when the
Lagrangian is not dependent on time, something which can not be done with the
classical variational principle. It is also closely related to contact transformations.
The generalized variational principle of Herglotz defines the functional z, whose
extrema are sought, by the differential equation

dz

dt
= L

(
t, x(t),

dx(t)

dt
, z
)

(1)

where t is the independent variable, and x(t) ≡ (x1(t), . . . , xn(t)) stands for the
argument functions. In order for the equation (1) to define a functional z = z[x] of
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x(t) it has to be solved with the same fixed initial condition z(0) for all argument
functions x(t), and the solution z(t) must be evaluated at the same fixed final time
t = T for all argument functions x(t).
The equations whose solutions produce the extrema of this functional are

∂L

∂xk
− d

dt

∂L

∂ẋk
+
∂L

∂z

∂L

∂ẋk
= 0 , k = 1, . . . , n (2)

where ẋk denotes dxk/dt. Herglotz called them the generalized Euler-Lagrange
equations. See Guenther et al [7] for a derivation of this system.
Dissipation and generation effects in physical processes can often be accounted for
in the equations describing these processes by terms which are proportional to the
first time derivatives ẋi(t) = dxi/dt of the dependent variables (see Goldstein
[6]). For example, the viscous frictional forces acting on an object which is moving
in a resistive medium, such as a gas or a liquid, are proportional to the object’s
velocity. Similarly, the dissipative effects (due to the ohmic resistance) in electrical
circuits can often be modeled by including terms which are proportional to the
first time-derivative of the corresponding dependent variables, such as the electric
charge.
All such dissipative processes can be given a unified description by the generalized
variational principle.
For example, let us consider the motion of a small object with massm (point mass)
under the action of some potential U = U(x) with x = (x1, x2, x3) in a resistive
medium. We assume that the resistive forces are proportional to the velocity. Then
the equations describing the motion of such an object are

mẍi = − ∂U

∂xi
− k ẋi , i = 1, 2, 3 (3)

where k > 0 is a constant and and . denotes differentiation with respect to t. All
equations of this form can be obtained from the generalized variational principle
by choosing for the Lagrangian function L the expression

L =
m

2

(
ẋ21 + · · ·+ ẋ2n

)
− U(x1, . . . , xn)− α z (4)

where U = U(x1, . . . , xn) is the potential energy of the system and α > 0 is a
constant. From (4) we obtain the generalized Euler-Lagrange equations

∂L

∂xi
− d

dt

(
∂L

∂ẋi

)
+
∂L

∂z

∂L

∂ẋi
= − ∂U

∂xi
− d

dt

(
mẋi

)
−mα ẋi = 0

which are the same as (3) for n = 3 and k = mα.
Depending on the choice of the function U , equations (3) can describe a variety of
systems. For instance
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1. When U = cr2 = c(x21 + · · · + x2n), with c > 0 constant, equations (3)
describe multi-dimensional isotropic damped harmonic oscillators.

2. When U = − c/r = − c/
√
x21 + x22 + x23, equations (3) describe the mo-

tion of a point massm under Coulomb (electrostatic) or gravitational forces
in a resistive medium characterized by the constant α.

3. The equations describing the currents, voltages and charges in single or
coupled electrical circuits have the same form as equations (3) with i =
1, . . . , n, where n is the number of state variables (currents, voltages and
charges) and U is an appropriately chosen function (see Goldstein [6], p.
52). Hence, the processes in electrical circuits can also be derived from a
Lagrangian function of the form (4) via the generalized variational princi-
ple. The interested reader can find more on this topic in Georgieva et al.
[2].

Further we use the generalized variational principle of Herglotz to give a variational
description of several named ordinary differential equations.
First we show that the class of ordinary differential equations

ẍ+ f(x)ẋ2 + g(t)ẋ+ h(x) = 0 (5)

for the function x = x(t) can be given a variational description via the Herglotz
variational principle, by letting L in the defining equation (1) be

L =
1

2
ẋ2 −

(
2f(x)ẋ+ g(t)

)
z − U(x)

where U(x) is any solution of the ODE

dU(x)

dx
+ 2f(x)U(x) = h(x).

Equation (5) contains several well known named equations as special cases

a. When h(x) = kx, with k = const, f(x) = 0 and g(t) = a = const,
equation (5) is the equation of the damped harmonic oscillator

ẍ+ aẋ+ kx = 0.

The corresponding Lagrangian is

L =
1

2

(
ẋ2 − kx2

)
− az.

b. In the case when h(x) = xn , f(x) = 0 and g(t) = 2/t, equation (5)
becomes the Lane-Emden equation

ẍ+
2

t
ẋ+ xn = 0, n ̸= −1.
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In that case the Lagrangian is

L =
1

2
ẋ2 − xn+1

n+ 1
− 2

t
z.

c. As a final example consider the special case when h(x) = 0. Then equation
(5) is the Liouville’s equation

ẍ+ f(x)ẋ2 + g(t)ẋ = 0.

The Lagrangian for it is

L =
1

2
ẋ2 −

(
2f(x)ẋ+ g(t)

)
z.

These and other examples of using the Herglotz functional to give a variational
description of non-conservative ordinary differential equations can be found in
Georgieva [5].

2. Contact Transformations and Their Relation to Herglotz Principle

The solutions of the generalized Euler-Lagrange equations, when written in terms
of the dependent variables xk and the associated momenta pk = ∂L/∂ẋk, deter-
mine a family of contact transformations. In the present section we will prove this
remarkable fact, which has both theoretical and applied significance. The proofs
of the theorems in this section as well as a detailed treatment of contact transfor-
mations can be found in Guenther et al [7].
First we will recall a few facts about contact transformations.
Consider surfaces z = f(x, y) in R3. Denote p = ∂f

∂x , q = ∂f
∂y ·

Definition 1. (x, y, z, p, q) is called a surface element if (−p,−q, 1) is orthogonal
to the tangent plane to the surface at the point (x, y, z), i.e., pdx+ q dy−dz = 0.

Consider the transformation T of the (x, y, z, p, q)-space to the (X,Y, Z, P,Q)-
space defined by X = X(x, y, z, p, q), Y = Y (x, y, z, p, q), Z = Z(x, y, z, p, q),

P = P (x, y, z, p, q), Q = Q(x, y, z, p, q).

Definition 2. Let T be a one-to-one, onto, continuously differentiable transforma-
tion of the (x, y, z, p, q)-space to the (X,Y, Z, P,Q)-space with a nonzero Jaco-
bian. Then T is called a contact transformation if p dx + q dy − dz = 0 implies
P dX +Q dY − dZ = 0.

Theorem 1. The one-to-one, onto, continuously differentiable transformation T
of the (x, y, z, p, q)-space to the (X,Y, Z, P,Q)-space with a nonzero Jacobian
is a contact transformation if and only if there exists a nonzero function ρ =
ρ(x, y, z, p, q) such that

P dX +QdY − dZ = ρ(pdx+ q dy − dz). (6)
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Example 1. The Legendre transformation X = p, Y = q, P = x, Q = y,
Z = px+ qy− z is a contact transformation. A necessary and sufficient condition
for the function ρ in the previous theorem is ρ = −1.

Let now x = (x1, . . . , xn), p = (p1, . . . , pn) and St be a one-parameter family of
contact transformations

X = X(x, z, p, t), Z = Z(x, z, p, t), P = P (x, z, p, t)

where t is the parameter, X = (X1, . . . , Xn) stands for the images of x1, . . . , xn
under St, Z is the image of z under St and P = (P1, . . . , Pn) stands for the images
of p1, . . . , pn under St.
The summation convention on repeated indicesis is used in the entire paper.
For one-parameter families of contact transformations the necessary and sufficient
condition (6) for a contact transformation is replaced by

Pi dXi − dZ = ρ
(
pi dxi − dz

)
+Hdt (7)

where
H = Pi

∂Xi

∂t
− ∂Z

∂t
·

We will show below that the solutions of the generalized Euler-Lagrange equations
(2), when written in terms of the dependent variables xk and the associated mo-
menta pk = ∂L/∂ẋk, determine a family of contact transformations. For this let
us write the defining equation (1) for the functional z and the generalized Euler-
Lagrange equations (2) in the following manner

ż = L(x1, . . . , xn, ẋ1, . . . , ẋn, z, t) (8)

ṗj = Lj + Lzpj , j = 1 . . . , n

where we have denoted
∂L

∂xj
= Lj ,

∂L

∂ẋj
= pj .

Let (x0, ẋ0, ż0) be the initial condition for the system (8) of n+ 1 ordinary differ-
ential equations for the functions x1(t), . . . , xn(t), z(t) . Then the solution of the
system (8) with this initial condition is

x = x(x0, ẋ0, ż0, t), ẋ = ẋ(x0, ẋ0, ż0, t), z = z(x0, ẋ0, ż0, t). (9)

Theorem 2. Let L = L(x, ẋ, z, t) be such that

det

(
∂2L

∂ẋi∂ẋj

)
̸= 0.

Then the solution of the system (8) defines a one-parameter family of contact trans-
formations.
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Proof: Let us differentiate the first equation in (8) with respect to the t-variable to
obtain

z̈ = Lj ẋj + Lz ż + pj ẍj + Lt .

Let us denote also

λ = exp
(
−
∫ t

0

∂L

∂z
dθ

)
. (10)

Then

d

dt
(λż) = λ

(
Lj ẋj + pj ẍj

)
+ λLt + λLz ż + λ̇ż

= λLj ẋj − ẋj
d

dt
(λpj) +

d

dt

(
λpj ẋj

)
+ λLt

= λLj ẋj − ẋj
(
−λLzpj + λ(Lj + Lzpj)

)
+

d

dt

(
λpj ẋj

)
+ λLt

=
d

dt

(
λpj ẋj

)
+ λLt.

Therefore
d

dt

(
λ
(
ż − pj ẋj

))
= λLt.

Next we integrate the last equation with respect to t, to obtain

λ
(
ż − pj ẋj

)
−

(
ż0 − p0j ẋ

0
j

)
=

∫ t

0
λLθ dθ

or equivalently

pj ẋj − ż =
1

λ

(
p0j ẋ

0
j − ż0

)
− 1

λ

∫ t

0
λLθ dθ. (11)

Let us denote with

H = − 1

λ

∫ t

0
λLθ dθ and ρ =

1

λ
·

Then equation (11) can be written as

pjdxj − dz = ρ
(
p0jdx

0
j − dz0

)
+H dt

which is the necessary and sufficient condition for the transformation (9), depend-
ing on the parameter t, to be a contact transformation. In order to write the trans-
formation (9) with the pj-s instead of the ẋj-s , we recall the relations

pj =
∂L

∂ẋj

(
x, ẋ, z, t

)
, j = 1, . . . , n
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and solve this system of n equations for the ẋj-s as functions of the pj-s. This last
step is justified by the hypothesis that the Hessian of L is nonzero. �

3. First Noether-type Theorem

In this section we discuss a theorem which gives a method for a systematic deriva-
tion of conserved quantities for equations which have a variational description via
Herglotz variational principle.
Consider the one-parameter group of transformations

t̄ = ϕ(t, x, ε), x̄k = ψk(t, x, ε), k = 1, ..., n (12)
where ε is the parameter, ϕ(t, x, 0) = t, and ψk(t, x, 0) = xk, with infinitesimal
generator

v = τ(t, x)
∂

∂t
+ ξk(t, x)

∂

∂xk
where

τ(t, x) =
dϕ

dε

∣∣∣
ε=0

and ξk(t, x) =
dψk

dε

∣∣∣
ε=0

. (13)

Theorem 3 (First Noether-type theorem for the generalized variational principle).
If the functional z = z[x(t)] defined by the differential equation ż = L(t, x, ẋ, z)
is invariant under the one-parameter group of transformations (12) then the quan-
tity

exp

(
−
∫ t

0

∂L

∂z
dθ

)((
L− ẋk

∂L

∂ẋk

)
τ +

∂L

∂ẋk
ξk

)
(14)

is conserved along the solutions of the generalized Euler-Lagrange equations (2).

The conserved quantities (14) have a remarkable form - they are products of λ
defined in (10) with the expressions(

L− ẋk
∂L

∂ẋk

)
τ +

∂L

∂ẋk
ξk

whose form is exactly the same as that of the conserved quantities obtained from
the classical first Noether theorem. In the special case ∂L/∂z = 0 the functional
z is defined by the integral

z =

∫ t

0
L(t, x, ẋ) dθ

and λ = 1. Hence, in that case Theorem 3 reduces to the classical first Noether
theorem.
We are now ready to apply the first Noether-type theorem to find specific conserved
quantities corresponding to several basic symmetries. Because of their generality
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and physical significance we state the results as corollaries to the first Noether-type
theorem.

Corollary 1. If we start with the functional z defined by the differential equation
ż = L(t, x, ẋ, z) which is invariant with respect to the translations in time, t̄ =
t+ ε, x̄ = x the quantity

E = exp

(
−
∫ t

0

∂L

∂z
dθ

)(
L(x, ẋ, z)− ∂L

∂ẋk
ẋk

)
is conserved on solutions of the generalized Euler-Lagrange equations.

Corollary 2. If we start with the functional z defined by the differential equation
ż = L(t, x, ẋ, z) which is invariant with respect to the translations in space direc-
tion xk, i.e, t̄ = t, x̄k = xk + ε, x̄i = xi for i = 1, ..., k − 1, k + 1, ..., n the
quantity

Mk = exp

(
−
∫ t

0

∂L

∂z
dθ

)
∂L

∂ẋk

is conserved on solutions of the generalized Euler-Lagrange equations.

Corollary 3. Let the functional z defined by the equation ż = L(t, x, ẋ, z) is
invariant with respect to the rotations in the xixj-plane. Then the quantity

Aij = exp

(
−
∫ t

0

∂L

∂z
dθ

)(
∂L

∂ẋi
xj −

∂L

∂ẋj
xi

)
is conserved along solutions of the generalized Euler-Lagrange equations.

The proof of Theorem 3 can be found in Georgieva et al [2].

4. Variational Symmetries of the Herglotz Functional

Physical systems described by the generalized Euler-Lagrange equations (2) are
not conservative in general. Below we show how the first Noether-type theorem
can be used to find conserved quantities in non-conservative systems. For this, we
must describe the physical system with the generalized Euler-Lagrange equations
and then find symmetries of the functional z = z[x(t); t] defined by the differ-
ential equation ż = L(t, x, ẋ, z), that is, transformations of both dependent and
independent variables which leave z[x(t); t] invariant.
In order to apply the first Nother-type theorem to find conserved quantities for the
system in consideration, one needs to know a one-parameter group of symmetries
of the Herglotz functional z. In this section we discuss a method for calculating
such symmetries.
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Historically, the question of calculating the symmetries of a given Lagrangian func-
tional (defined by an integral) was answered by W. Killing [10] in 1892 in the con-
text of describing the motions of a n-dimensional manifold with fundamental form
given by

L =
1

2
gklẋ

kẋl

(see Eisenhart [1] and Logan [12]). In the case of a classical variational functional,
some authors refer to the system of partial differential equations for the unknown
symmetry group generators as the generalized Killing equations.
The following theorem gives a method for finding symmetry groups of the Herglotz
functional.
Consider one-parameter families of transformations of the independent variable t
and the dependent variables x1, . . . , xn, like in (12).

Theorem 4. The coefficients τ(t, x) and ξk(t, x) of the infinitesimal generator of
a one-parameter group which preserve the value of the functional z = z[x(t)],
defined by the differential equation (1), are solutions to the system of partial dif-
ferential equations obtained from the identity

∂L

∂t
τ+

∂L

∂xk
ξk+

∂L

∂ẋk

(∂ξk
∂t

+
∂ξk
∂xj

ẋj−ẋk
∂τ

∂t
−ẋkẋj

∂τ

∂xj

)
+L

(∂τ
∂t

+
∂τ

∂xj
ẋj

)
= 0

by equating to zero the coefficients in front of the powers of z and ẋk and in front
of products of such powers.

In analogy with the classical case, we call this identity the fundamental invariance
identity and the resulting partial differential equations for the coefficients of the
infinitesimal generator of the variational symmetry group the generalized Killing
equations.
Next we show an example of calculating a variational symmetry group with this
method, by applying it to the Liouville’s equation ẍ+ f(x)ẋ2 + g(t)ẋ = 0 with
a specific choice of the coefficient functions, namely

f(x) =
h

kx+ a
, g(t) =

c

2kt+ b
(15)

where a, b, c, h, and k are arbitrary constants (if k = 0 then a and b must be non-
zero). As noted earlier, this equation can be given a variational description via
the Herglotz variational principle if the functional z is defined by the differential
equation

ż =
1

2
ẋ2 − (2f(x)ẋ+ g(t))z.
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The fundamental invariance identity of Theorem 4 takes the form

− dg

dt
zτ − 2

df

dx
ẋzξ + (ẋ− 2f(x)z)

(∂ξ
∂t

+
∂ξ

∂x
ẋ− ẋ

∂τ

∂t
− ẋ2

∂τ

∂x

)
+

(1
2
ẋ2 − 2f(x)ẋz − g(t)z

)(∂τ
∂t

+
∂τ

∂x
ẋ
)
= 0.

With the specific choices (15) for f(x) and g(t) the system of partial differential
equations obtained from this identity after equating to zero the proper coefficients
has the solutions ξ = kx + a and τ = 2kt + b. Thus, the variational symmetry
of the Liouville’s equation produced by this method is

x̄ = x+ (kx+ a)ε, t̄ = t+ (2kt+ b)ε.

The corresponding conserved quantity of the Liouville’s equation, obtained through
an application of the first Noether-type Theorem 3, is

Q =
( kx(t) + a

kx(0) + a

)2h/k(2kt+ b

b

)c/2k(
ẋ(kx+ a)− (2kt+ b)

ẋ2

2
− (2h+ c)z

)
.

This method also produces a variational symmetry for the equation

ẍ+
2

t
ẋ+

1

x3
= 0.

In this case the functional z is defined by the equation

ż =
1

2
ẋ2 +

1

2x2
− 2

t
z

and the fundamental invariance identity of Theorem 4 assumes the form

2
1

t2
zτ − 1

x3
ξ + ẋ

(∂ξ
∂t

+
∂ξ

∂x
ẋ− ẋ

∂τ

∂t
− ẋ2

∂τ

∂x

)
+

(1
2
ẋ2 +

1

2x2
− 2

t
z
)(∂τ

∂t
+
∂τ

∂x
ẋ
)
= 0.

The system of PDE’s for the coefficients τ(t, x) and ξ(t, x) of the infinitesimal
generator of the variational symmetry group has the solution τ = 2kt, ξ = kx,
where k is an arbitrary constant. The corresponding conserved quantity is

Q = −kt2
((
ẋ2 − 1

x2

)
t− xẋ+ 4z

)
.

The proof of Theorem 4 as well as the above and other examples can be found in
Georgieva [5].



224 Bogdana Georgieva

5. Second Noether-type Theorem for the Generalized Variational
Principle of Herglotz

The following theorem extends the classical second theorem of Emmy Noether
so that it applies to the generalized variational principle of Herglotz. This theo-
rem, which we called the second Noether-type theorem, provides an identity for
each infinite–dimensional symmetry group of the functional z[x; s] as defined by
equation (1).

Theorem 5. Let the infinite-dimensional group of transformations

t̄ = ϕ
(
t, x, p(t), p(1)(t), . . . , p(r)(t)

)
(16)

x̄k = ψk

(
t, x, p(t), p(1)(t), . . . , p(r)(t)

)
, k = 1, . . . , n

which depends on the function p(t) ∈ C r+2 and its derivatives p(i) = dip/dti,
subject to the conditions t̄ = t and x̄k = xk if p(t) = p(1)(t) = . . . = p(r)(t) = 0,
be a symmetry group of the functional z[x; s] defined by the differential equation
(1). Then the identity

X̃k

(
EQk

)
− Ũ

(
EQk ẋk

)
= 0 (17)

holds. Here Ũ and X̃k are the adjoints of the linear differential operators

U =
∂ϕ

∂p
+

∂ϕ

∂p(1)
d

dt
+ . . .+

∂ϕ

∂p(r)
dr

dtr

Xk =
∂ψk

∂p
+

∂ψk

∂p(1)
d

dt
+ . . .+

∂ψk

∂p(r)
dr

dtr
, k = 1, . . . , n

evaluated at p(t) = p(1)(t) = . . . = p(r)(t) = 0, Qk denote the generalized
Euler-Lagrange expressions

Qk =
∂L

∂xk
− d

dt

∂L

∂ẋk
+
∂L

∂z

∂L

∂ẋk
, k = 1, . . . , n and

E = exp
(
−
∫ t

0

∂L

∂z
dθ

)
.

Observe that E = 1 if L does not depend on z. Then the identity (17) reduces to
the identity provided by the classical second Noether theorem, namely

X̃k

(
∂L

∂xk
− d

dt

∂L

∂ẋk

)
− Ũ

((
∂L

∂xk
− d

dt

∂L

∂ẋk

)
ẋk

)
= 0.

Thus, we see that when the generalized variational principle of Herglotz reduces
to the classical variational principle Theorem 5 reduces to the classical second
Noether theorem. The proof of this theorem can be found in Georgieva et al [4].
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The interested reader can find a generalization of the variational principle of Her-
glotz in the case of several independent variables in Georgieva et al [3].
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