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CHAPTER III

Theory of Calculus in Several Real Variables

Abstract. This chapter gives a rigorous treatment of parts of the calculus of several variables.
Sections1–3handle themore elementaryparts of the differential calculus. Section1 introduces an

operator norm that makes the space of linear functions fromRn toRm or fromCn toCm into a metric
space. Section 2 goes through the definitions and elementary facts about differentiation in several
variables in terms of linear transformations and matrices. The chain rule and Taylor’s Theoremwith
integral remainder are two of the results of the section. Section 3 supplements Section 2 in order to
allow vector-valued and complex-valued extensions of all the results.
Sections 4–5 are digressions. The material in these sections uses the techniques of the present

chapter but is not needed until later. Section 4 develops the exponential function on complex square
matrices and establishes its properties; it will be applied in Chapter IV. Section 5 establishes the
existence of partitions of unity in Euclidean space; this result will be applied at the end of Section 10.
Section 6 returns to the development in Section 2 and proves two important theorems about

differential calculus. The Inverse Function Theorem gives sufficient conditions under which a
differentiable function from an open set in Rn into Rn has a locally defined differentiable inverse,
and the Implicit Function Theorem gives sufficient conditions for the local solvability ofm nonlinear
equations in n + m variables for m of the variables in terms of the other n. The Inverse Function
Theorem is proved on its own, and the Implicit Function Theorem is derived from it.
Sections 7–10 treat Riemann integration in several variables. Elementary properties analogous

to those in the one-variable case are in Section 7, a useful necessary and sufficient condition for
Riemann integrability is established in Section 8, Fubini’s Theorem for interchanging the order of
integration is in Section 9, and a preliminary change-of-variables theorem for multiple integrals is
in Section 10.
Sections 11–13 give a careful treatment of integrals of scalar-valued and vector-valued functions

on simple arcs and other curves in Rn . The main theorem, proved in Section 13, is Green’s Theorem
for the plane, which for a suitably nice region of R2 relates a line integral over the boundary to a
double integral over the region. Section 13 concludes with some remarks about higher-dimensional
generalizations.

1. Operator Norm

This sectionworkswith linear functions from n-dimensional column-vector space
to m-dimensional column-vector space. It will have applications within this
chapter both when the scalars are real and when the scalars are complex. To
be neutral let us therefore write F for R or C. Material on the correspondence
between linear functions andmatricesmay be found in SectionA7ofAppendixA.

136



1. Operator Norm 137

Specifically for m > 0 and n > 0, let L(Fn, Fm) be the vector space of all
linear functions from Fn into Fm . This space corresponds to the vector space
of m-by-n matrices with entries in F, as follows: In the notation in Section A7
of Appendix A, we let (e1, . . . , en) be the standard ordered basis of Fn , and
(u1, . . . , um) the standard ordered basis of Fm . We define a dot product in Fm by

(a1, . . . , am) · (b1, . . . , bm) = a1b1 + · · · + ambm

with no complex conjugations involved. The correspondence of a linear function
T in L(Fn, Fm) to a matrix A with entries in F is then given by Ai j = T (ej ) · ui .
Let | · | denote the Euclidean norm on Fn or Fm , given as in Section II.1 by

the square root of the sum of the absolute values squared of the entries. The
Euclidean norm makes Fn and Fm into metric spaces, the distance between two
points being the Euclidean norm of the difference.

Proposition 3.1. If T is a member of the space L(Fn, Fm) of linear functions
from Fn to Fm , then there exists a finite M such that |T (x)| ≤ M|x | for all x in
Fn . Consequently T is uniformly continuous on Fn .
PROOF. Each x in Fn has x =

Pn
j=1 (x · ej )ej , and linearity gives T (x) =Pn

j=1 (x · ej )T (ej ). Thus

|T (x)| =
Ø
Ø
Ø

nX

j=1
(x · ej )T (ej )

Ø
Ø
Ø ≤

nX

j=1
|T (ej )||x · ej |.

The expression x · ej is just the j th entry of x , and hence |x · ej | ≤ |x |. Therefore
|T (x)| ≤

°Pn
j=1 |T (ej )|

¢
|x |, and the first conclusion has been proved with

M =
Pn

j=1 |T (ej )|. Replacing x by x − y gives

|T (x) − T (y)| = |T (x − y)| ≤ M|x − y|,

and uniform continuity of T follows with δ = ≤/M . §

Let T be in L(Fn, Fm). Using Proposition 3.1, we define the operator norm
kTk of T to be the nonnegative number

kTk = inf
M∏0

©
M

Ø
Ø |T (x)| ≤ M|x | for all x ∈ Fn

™
.

|T (x)| ≤ kTk |x | for all x ∈ Fn.Then

Since |T (cx)| = |c||T (x)| for any scalar c, the inequality |T (x)| ≤ M|x | holds
for all x 6= 0 if and only if it holds for all x with 0 < |x | ≤ 1, if and only if it
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holds for all x with |x | = 1. Also, we have T (0) = 0. It follows that two other
expressions for kTk are

kTk = sup
|x |≤1

|T (x)| = sup
|x |=1

|T (x)|.

Proposition 3.2. The operator norm on L(Fn, Fm) satisfies
(a) kTk ∏ 0 with equality if and only if T = 0,
(b) kcTk = |c| kTk for c in F,
(c) kT + Sk ≤ kTk + kSk,
(d) kT Sk ≤ kTkkSk if S is in L(Fn, Fm) and T is in L(Fm, Fk),
(e) k1k = 1 if n = m and 1 denotes the identity function on Fn .

PROOF. All the properties but (d) are immediate. For (d), we have

|(T S)(x)| = |T (S(x))| ≤ kTk |S(x)| ≤ kTkkSk |x |.

Taking the supremum for |x | ≤ 1 yields kT Sk ≤ kTkkSk. §

Corollary 3.3. The space L(Fn, Fm) becomes a metric space when a metric
d is defined by d(T, S) = kT − Sk.

PROOF. Conclusion (a) of Proposition3.2 shows thatd(T, S) ∏ 0with equality
if andonly ifT = S, conclusion (b) shows thatd(T, S) = d(S, T ), andconclusion
(c) yields the triangle inequality because substitution of T = T 0 − V 0 and S =
V 0 −U 0 into (c) yields d(T 0,U 0) ≤ d(T 0, V 0) + d(V 0,U 0). §

Suppose that F = C. If the matrix A that corresponds to some T in L(Cn, Cm)
has real entries, we can regard T as a member of L(Rn, Rm), as well as a member
of L(Cn, Cm). Two different definitions of kTk are in force. Let us check that
they yield the same value for kTk.

Proposition 3.4. Let T be in L(Cn, Cm), and suppose that the vector T (ej )
lies in Rm for 1 ≤ j ≤ n. Then T carries Rn into Rm , and kTk is consistently
defined in the sense that

kTk = sup
x∈Rn, |x |≤1

|T (x)| = sup
z∈Cn, |z|≤1

|T (z)|.

PROOF. The first conclusion follows since T is R linear. For the second
conclusion, let kTkR and kTkC be the middle and right expressions, respectively,
in the displayed equation above. Certainly we have kTkR ≤ kTkC . If z is in Cn ,



1. Operator Norm 139

write z = x + iy with x and y in Rn . Since T (x) and T (y) are in Rn and T is C
linear,

|T (z)|2 = |T (x) + iT (y)|2 = |T (x)|2 + |T (y)|2

≤ (kTkR |x |)2 + (kTkR |y|2) = kTk2
R
(|x |2 + |y|2) = kTk2

R
|z|2.

Hence |T (z)| ≤ kTkR |z|, and it follows that kTkC ≤ kTkR . The second
conclusion follows. §

We shall encounter limits of linear functions in the metric d given in Corollary
3.3, and it is worth knowing just what these limits mean. For this purpose, let T
be in L(Fn, Fm), and define the Hilbert–Schmidt norm of T to be

|T | =
≥ nX

j=1
|T (ej )|2

¥1/2
.

This quantity has an interpretation in terms of the m-by-n matrix A that is asso-
ciated to the linear function T by the above formula Ai j = T (ej ) · ui . Namely,
|T | equals

°P
i, j |Ai j |2

¢1/2, which is just the Euclidean norm of the matrix A
if we think of A as lying in Fnm . This correspondence provides the license for
using the notation of a Euclidean norm for the Hilbert–Schmidt norm of T . The
Hilbert–Schmidt norm has the same three properties as the operator norm that
allow us to use it to define a metric:

(i) |T | ∏ 0 with equality if and only if T = 0,
(ii) |cT | = |c| |T | for c in F,
(iii) |T + S| ≤ |T | + |S|.

Let us write d2(T, S) = |T − S| for the associated metric. Parenthetically we
might mention that the analogs of (d) and (e) for the Hilbert–Schmidt norm are
(iv) |T S| ≤ |T | |S| if S is in L(Fn, Fm) and T is in L(Fm, Fk),
(v) |1| =

p
n if n = m and 1 denotes the identity function on Fn .

We shall have no need for these last two properties, and their proofs are left to be
done in Problem 1 at the end of the chapter.

Proposition 3.5. The operator norm and Hilbert–Schmidt norm on L(Fn, Fm)
are related by

kTk ≤ |T | ≤
p
n kTk.

Consequently the associated metrics are related by

d ≤ d2 ≤
p
n d.
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PROOF. If |x | ≤ 1, then the triangle inequality and the classical Schwarz
inequality of Section A5 give

|T (x)| =
Ø
Ø
Ø

nX

j=1
(x · ej )T (ej )

Ø
Ø
Ø ≤

nX

j=1
|x · ej | |T (ej )|

≤
≥ nX

j=1
|x · ej |2

¥1/2≥ nX

j=1
|T (ej )|2

¥1/2
= |x |

≥ nX

j=1
|T (ej )|2

¥1/2
≤ |T |.

Taking the supremum over x yields kTk ≤ |T |. In addition,

|T |2 =
nX

j=1
|T (ej )|2 ≤

nX

j=1
kTk2|ej |2 = nkTk2,

and the second asserted inequality follows. §

Proposition 3.5 implies that the identity map between the two metric spaces
(L(Fn, Fm) , d) and (L(Fn, Fm), d2) is uniformly continuous and has a uniformly
continuous inverse. Therefore open sets, convergent sequences, and even Cauchy
sequences are the same in the two metrics. Briefly said, convergence in the
operator norm means entry-by-entry convergence of the associated matrices, and
similarly for Cauchy sequences.

2. Nonlinear Functions and Differentiation

We begin a discussion of more general functions between Euclidean spaces by
defining the multivariable derivative for such a function and giving conditions
for its existence. Let E be an open set in Rn , and let f : E → Rm be a

function. We can write f (x) =

√ f1(x)
...

fm(x)

!

, where fi (x) = f (x) · ui . Then

f (x) =
Pm

i=1 fi (x)ui . The functions fi : E → R are called the components of
f . The associated partial derivatives are given by

@ fi
@xj

(x) =
d
dt

fi (x + tej )
Ø
Ø
t=0.

We say that f is differentiable at x in E if there is some T in L(Rn, Rm) with

lim
h→0

| f (x + h) − f (x) − T (h)|
|h|

= 0.
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The linear function T is unique if it exists. In fact, if T1 and T2 both serve as
T in this limit relation, then we write

T2(h) − T1(h) =
°
f (x + h) − f (x) − T1(h)

¢
−

°
f (x + h) − f (x) − T2(h)

¢

and find that

|T1(h) − T2(h)|
|h|

≤
| f (x + h) − f (x) − T1(h)|

|h|
+

| f (x + h) − f (x) − T2(h)|
|h|

−→ 0.

If T1 6= T2, choose some v ∈ Rn with |v| = 1 and T1(v) 6= T2(v). As a nonzero
real parameter t tends to 0, we must have

|T1(v) − T2(v)|

= |tv|−1
Ø
Ø° f (x + tv) − f (x) − T1(tv)

¢
−

°
f (x + tv) − f (x) − T2(tv)

¢ØØ

−→ 0.

Since t does not appear on the left side but the right side tends to 0, the result is a
contradiction. Thus T1 = T2, and T is unique in the definition of “differentiable.”
If T exists, we write f 0(x) for it and call f 0(x) the derivative of f at x .

If f is differentiable at every point x in E , then x 7→ f 0(x) defines a function
f 0 : E → L(Rn, Rm). Wedealwith thedifferentiabilityof this functionpresently.
A differentiable function is necessarily continuous. In fact, differentiability at

x implies that | f (x + h) − f (x) − T (h)| → 0 as h → 0. Since T is continuous,
T (h) → 0 also. Thus f (x + h) → f (x), and f is continuous at x .

Proposition 3.6. Let E be an open set of Rn , and let f : E → Rm be a

function. If f 0(x) exists, then
@ fi
@xj

(x) exists for all i and j , and

@ fi
@xj

(x) = f 0(x)(ej ) · ui .

REMARKS. In other words, if f 0(x) exists at some point x , then it has to be

the linear function whose matrix is
h @ fi
@xj

(x)
i
. This matrix is called the Jacobian

matrix of f at x . We shall denote it by [ f 0(x)].

PROOF. We are given that

lim
h→0

| f (x + h) − f (x) − f 0(x)(h)|
|h|

= 0.
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Dot product with a particular vector is continuous by Proposition 3.1. Take
h = tej with t real in the displayed equation, and form the dot product with ui .
Then we obtain

lim
t→0

| fi (x + tej ) − fi (x) − t f 0(x)(ej ) · ui |
|t |

= 0.

The result follows. §

The natural converse to Proposition 3.6 is false: the first partial derivatives of
a function may all exist at a point, and it can still happen that f is discontinuous.
If f 0(x) exists at all points of the open set E in Rn , then we obtain a function

f 0 : E → L(Rn, Rm), and we have seen that we can regard L(Rn, Rm) as a
Euclidean space by means of the Hilbert–Schmidt norm. Let us examine what
continuity of f 0 means and then what differentiability of f 0 means.

Theorem 3.7. Let E be an open set of Rn , and let f : E → Rm be a function.
If f 0(x) exists for all x in E and x 7→ f 0(x) is continuous at some x0, then
x 7→

@ fi
@xj

(x) is continuous at x0 for all i and j . Conversely if each
@ fi
@xj

(x) exists

at every point of E and is continuous at a point x0, then f 0(x0) exists. If all
@ fi
@xj

are continuous on E , then x 7→ f 0(x) is continuous on E .

PROOF OF DIRECT PART. The partial derivative
@ fi
@xj

(x) is one of the entries of

f 0(x), regarded as a matrix, and has to be continuous if f 0(x) is continuous. §

PROOF OF CONVERSE PART. For the moment, let x be fixed. Regard h as
(h1, . . . , hn), and for 1 ≤ j ≤ n, put h( j) = (h1, . . . , hj , 0, . . . , 0). Define T

to be the member of L(Rn, Rm) with matrix
h @ fi
@xj

(x)
i
. Use of the Mean Value

Theorem gives

[ f (x + h) − f (x)]i =
nX

j=1
[ f (x + h( j)) − f (x + h( j−1))]i

=
nX

j=1
hj

d
dt

fi (x + h( j−1) + thj ej )
Ø
Ø
t=ti j

with 0 < ti j < 1

=
nX

j=1
hj

@ fi
@xj

(x + h( j−1) + ti j h j ej )

=
nX

j=1
hj

@ fi
@xj

(x) +
nX

j=1
hj

h @ fi
@xj

(x + h( j−1) + ti j h j ej ) −
@ fi
@xj

(x)
i
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and hence
[ f (x + h) − f (x) − T (h)]i

|h|
=

nX

j=1

hj
|h|

h @ fi
@xj

(x + h( j−1) + ti j h j ej ) −
@ fi
@xj

(x)
i
.

Consequently
| f (x + h) − f (x) − T (h)|

|h|
≤

mX

i=1

nX

j=1

Ø
Ø
Ø
@ fi
@xj

(x + h( j−1) + ti j h j ej ) −
@ fi
@xj

(x)
Ø
Ø
Ø.

Let ≤ > 0 be given, and recall that the partial derivatives are assumed to be
continuous at x0. If δ > 0 is chosen such that |h| < δ implies

Ø
Ø
Ø
@ fi
@xj

(x0 + h) −
@ fi
@xj

(x0)
Ø
Ø
Ø <

≤

mn
,

then we see that |h| < δ implies
| f (x0 + h) − f (x0) − T (h)|

|h|
< ≤.

Thus f 0(x0) exists.
Now assume that all the partial derivatives are continuous on E . Since

L(Rn, Rm) is identified with Rnm , the continuity of the entries
@ fi
@xj

(x) of the

matrix of [ f 0(x)] of f 0(x) implies the continuity of f 0(x) itself. This completes
the proof. §

If x 7→ f 0(x) is continuous on E , we say that f is of class C1 on E or is a C1
function on E . Let us iterate the above construction: Suppose that E is open in
Rn and that f : E → Rm is of class C1, so that x 7→ f 0(x) is continuous from E
into L(Rn, Rm). We introduce second partial derivatives of f and the derivative
of f 0. Namely, define

@2 fi
@xk@xj

=
@

@xk

≥ @ fi
@xj

¥
.

Since the entries of the matrix of f 0(x) are
@ fi
@xj

(x) = f 0(x)ej · ui , the expression

@2 fi
@xk@xj

is the partial derivative with respect to xk of an entry of the matrix of

f 0(x). Thus we can say that f is of class C2 from E into Rm if f 0(x) is of class
C1, and so on. We say that f is of class C∞ or is a C∞ function if it is of class
Ck for all k. A C∞ function is also said to be smooth.1 We write Ck(E) and
C∞(E) for the sets of Ck functions and C∞ functions on E .

1Warning: Many authors use the word “smooth” in the context of curves to mean something
less than C∞, but we shall be careful to avoid this practice. The curves in question arise in Sections
11–13 and also in Appendix B.
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Corollary 3.8. Let E be an open set ofRn , and let f : E → Rm be a function.
The function f is of class Ck on E if and only if all l th-order partial derivatives
of each fi exist and are continuous on E for l ≤ k.

This is immediate from Theorem 3.7 and the intervening definitions. The
definition of a second partial derivative was given in a careful way that stresses
the order in which the partial derivatives are to be computed. Reversing the order
of two partial derivatives is a problem involving an interchange of limits. In
addressing sufficient conditions for this interchange to be valid, it is enough to
consider a function of two variables, since n−2 variables will remain fixed when
we consider a mixed second partial derivative. The different components of the
function do not interfere with each other for these purposes, and thus we may
assume that the range is R1.

Proposition 3.9. Let E be an open set in R2. Suppose that f : E → R1 is

a function such that
@ f
@x
,

@ f
@y
, and

@2 f
@y@x

exist in E and
@2 f

@y@x
is continuous at

(x, y) = (a, b). Then
@2 f

@x@y
(a, b) exists and equals

@2 f
@y@x

(a, b).

PROOF. Put

1(h, k) =
f (a + h, b + k) − f (a + h, b) − f (a, b + k) + f (a, b)

hk
,

and let u(t) = f (t, b+ k)− f (t, b). The function u is a function of one variable
t whose derivative is @ f

@x (t, b + k) − @ f
@x (t, b). Use of the Mean Value Theorem

produces ξ between a and a + h, as well as η between b and b + k, such that

1(h, k) =
u(a + h) − u(a)

hk
=
u0(ξ)

k

=
@ f
@x (ξ, b + k) − @ f

@x (ξ, b)
k

=
@2 f

@y@x
(ξ, η).

(∗)

Let ≤ > 0 be given. By the assumed continuity of @2 f
±
@y@x at (a, b), choose

δ > 0 such that |(h, k)| < δ implies
Ø
Ø
Ø

@2 f
@y@x

(a + h, b + k) −
@2 f

@y@x
(a, b)

Ø
Ø
Ø < ≤.

Then (∗) shows that |(h, k)| < δ implies
Ø
Ø
Ø1(h, k) −

@2 f
@y@x

(a, b)
Ø
Ø
Ø < ≤.
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Letting k tend to 0 shows, for |h| < δ/2, that
Ø
Ø
Ø

@ f
@y (a + h, b) − @ f

@y (a, b)
h

−
@2 f

@y@x
(a, b)

Ø
Ø
Ø ≤ ≤.

Since ≤ is arbitrary,
@2 f

@x@y
(a, b) exists and equals

@2 f
@y@x

(a, b). §

Now that the order of partial derivatives up through order k can be interchanged
arbitrarily in the case of a scalar-valued Ck function, we can introduce the usual

notation
@k f

@xk11 · · · @xknn
to indicate the result of differentiating f a total of k

times, namely k1 times with respect to x1, etc., through kn times with respect
to xn . Simpler notation will be introduced later to indicate such iterated partial
derivatives.

Theorem 3.10 (chain rule). Let E be an open set in Rn , and let f : E → Rm

be a function differentiable at a point x in E . Suppose that g is a function with
range Rk whose domain contains f (E) and is a neighborhood of f (x). Suppose
further that g is differentiable at f (x). Then the composition g ◦ f : E → Rk is
differentiable at x , and (g ◦ f )0(x) = g0( f (x)) f 0(x).
PROOF. With x fixed, define y = f (x), T = f 0(x), S = g0(y), and also
u(h) = f (x + h) − f (x) − T (h) and v(k) = g(y + k) − g(y) − S(k).

Continuity of f at x and of g at y implies that
|u(h)| = ε(h)|h| and |v(k)| = η(k)|k|

with ε(h) tending to 0 as h tends to 0 and with η(k) tending to 0 as k tends to 0.
Given h 6= 0, put k = f (x + h) − f (x). Then

|k| = |T (h) + u(h)| ≤ [kTk + ε(h)]|h| (∗)

g( f (x + h)) − g( f (x)) − (ST )(h) = g(y + k) − g(y) − S(T (h))
and

= v(k) + S(k) − S(T (h))
= S(k − T (h)) + v(k)
= S(u(h)) + v(k).

Therefore
|h|−1|g( f (x + h)) − g( f (x)) − (ST )(h)| ≤ kSk |u(h)|/|h| + |v(k)|/|h|

≤ kSk ε(h) + η(k)|k|/|h|
≤ kSk ε(h) + η(k)[kTk + ε(h)],

the last inequality following from the upper bound obtained in (∗) for |k|. As h
tends to 0, k tends to 0, by that same bound. Thus ε(h) and η(k) tend to 0. The
theorem follows. §
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Let us clarify in the context of a simple example how the notation in Theorem
3.10 corresponds to the traditional notation for the chain rule. Let f and g be
given by

µ
x
y

∂
= f

µ
r
θ

∂
=

µ
r cos θ
r sin θ

∂
and z = g

µ
x
y

∂
= x2 − y2.

In traditional notation one of the partial derivatives of the composite function is
computed by starting from

@z
@r

=
@z
@x

@x
@r

+
@z
@y

@y
@r

= 2x cos θ − 2y sin θ

and then substituting for x and y in terms of r and θ . In notation closer to that of
the theorem, we replace derivatives by Jacobian matrices and obtain

≥
@(g ◦ f )

@r
@(g ◦ f )

@θ

¥
=

≥ @g
@x

@g
@y

¥ Ø
Ø
Ø
Øµ x

y

∂
= f

≥ r
θ

¥






@ f1
@r

@ f1
@θ

@ f2
@r

@ f2
@θ






= ( 2x −2y )
Ø
Ø
Øx=r cos θ,
y=r sin θ

µ
cos θ −r sin θ
sin θ r cos θ

∂
.

The formula above for @z/@r is just the first entry of this matrix equation.
The chain rule in several variables is a much more powerful result than its

one-variable prototype, permitting one to handle differentiations when a partic-
ular variable occurs in several different ways within a function. For example,
consider the rule for differentiating a product in one-variable calculus. The
function x 7→ f (x)g(x) can be regarded as a composition if we recognize that
one of the ingredients is the multiplication function from R2 to R1. Thus let

u = f (x) and v = g(x). If we define F(x) =

µ
f (x)
g(x)

∂
and G

µ
u
v

∂
= uv, then

(G ◦ F)(x) = f (x)g(x). Theorem 3.10 therefore gives

d
dx

(G ◦ F)(x) =
≥ @G

@u
@G
@v

¥µ
f 0(x)
g0(x)

∂
= ( v u )

Ø
Ø
Ø≥ u

v

¥
=F(x)

µ
f 0(x)
g0(x)

∂

= ( g(x) f (x) )

µ
f 0(x)
g0(x)

∂
= g(x) f 0(x) + f (x)g0(x).
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Theorem 3.11 (Taylor’s Theorem). Let N be an integer ∏ 0, and let E be an
open set in Rn . Suppose that F : E → R1 is a function of class CN+1 on E and
that the line segment from x = (x1, . . . , xn) to x + h, where h = (h1, . . . , hn),
lies in E . Then

F(x + h) = F(x) +
NX

K=1

X

k1+···+kn=K ,
all kj∏0

(k1! · · · kn!)−1
@K F(x)

@xk11 · · · xknn
hk11 · · · hknn

+
X

l1+···+ln=N+1,
all lj∏0

N + 1
l1! · · · ln!

hl11 · · · hlnn
Z 1

0
(1− s)N

@N+1F(x + sh)
@xl11 · · · xlnn

ds.

PROOF. Define a function f of one variable by f (t) = F(x + th). Taylor’s
Theorem in one variable (Theorem 1.36) gives

f (t) = f (0) +
NX

K=1
(K !)−1 f (K )(0) t K +

1
N !

Z t

0
(t − s)N f (N+1)(s) ds,

and we put t = 1 in this formula. If g(t) = G(x + th), the function g is the
composition of t 7→ x + th followed by G, and the chain rule (Theorem 3.10)
allows us to compute its derivative as

g0(t) =
≥ @G

@x1
· · ·

@G
@xn

¥ Ø
Ø
Ø
Ø
x+th




h1
...
hn



 =
nX

j=1
hj

@G
@xj

(x + th).

Taking G equal to any of various iterated partial derivatives of F and doing an
easy induction, we obtain

f (K )(s) =
X

k1+···+kn=K ,
all kj∏0

µ
K

k1, . . . , kn

∂
hk11 · · · hknn

@K F(x + sh)
@xk11 · · · @xknn

,

where
° K
k1,...,kn

¢
is the multinomial coefficient K !

(k1)!···(kn)! . Substitution of this
expression into the one-variable expansion with t = 1 yields the theorem. §

3. Vector-Valued Partial Derivatives and Riemann Integrals

It is useful to extend the results of Section 2 so that they becomevalid for functions
f : E → Cm , where E is an open set in Rn . Up to the chain rule in Theorem
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3.10, these extensions are consequences of what has been proved in Section 2
if we identify Cm with R2m . Achieving the extensions by this identification is
preferable to trying to modify the original proofs because of the use of the Mean
Value Theorem in the proofs of Theorem 3.7 and Proposition 3.9.
The chain rule extends in the same fashion, once we specify what kinds of

functions are to be involved in the composition. We always want the domain to
be a subset of some Rl , and thus in a composition g ◦ f , we can allow g to have
values in some Ck , but we insist as in Theorem 3.10 that f have values in Rm .
Now let us turn our attention to Taylor’s Theorem as in Theorem 3.11. The

statement of Theorem 3.11 allows R1 as range but not a general Rm . Thus the
above extension procedure is not immediately applicable. However, if we allow
the given F to take values inRm , a vector-valued version of Taylor’s Theoremwill
be valid if we adapt our definitions so that the formula remains true component by
component. For this purpose we need to enlarge two definitions—that of partial
derivatives of any order and that of 1-dimensional Riemann integration—so that
both can operate on vector-valued functions. There is no difficulty in doing so,
and we may take it that our definitions have been extended in this way.
In the case of vector-valued partial derivatives, let f : E → Rm be given. Then

@ f
@xj

is now defined without passing to components. The entries of this vector-

valued partial derivative are exactly the entries of the j th column of the Jacobian
matrix of f . Thus the Jacobianmatrix consists of the various vector-valued partial
derivatives of f , lined up as the columns of the matrix.
Riemann integration is being extended so that the integrand can have values

inRm orCm , rather than justR1. Among the expected properties of the extended
version of the Riemann integral, one inequality needs proof because it involves
interactions among the various components of the function, namely

Ø
Ø
Ø
Z b

a
F(t) dt

Ø
Ø
Ø ≤

Z b

a
|F(t)| dt.

The Riemann integral on the left side is that of a vector-valued function, while
the one on the right side is that of a real-valued function. To prove this inequality,
let ( · , · ) be the usual inner product for the range space—the dot product if the
range is Euclidean space Rm or the usual Hermitian inner product as in Section
II.1 if the range is complex Euclidean space Cm . If u is any vector in the range
space with |u| = 1, then linearity gives

≥ Z b

a
F(t) dt, u

¥
=

Z b

a
(F(t), u) dt.

Hence
Ø
Ø
Ø
≥ Z b

a
F(t) dt, u

¥Ø
Ø
Ø =

Ø
Ø
Ø
Z b

a
(F(t), u) dt

Ø
Ø
Ø ≤

Z b

a
|(F(t), u)| dt ≤

Z b

a
|F(t)| dt,
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the two inequalities following from the known scalar-valued version of our in-
equality and from the Schwarz inequality. If

R b
a F(t) dt is the 0 vector, then our

desired inequality is trivial. Otherwise, we specialize the above computation to
u =

Ø
Ø R b

a F(t) dt
Ø
Ø−1 R b

a F(t) dt , and we obtain our desired inequality.

4. Exponential of a Matrix

In Chapter IV, we shall make use of the exponential of a matrix in connection
with ordinary differential equations. If A is an n-by-n complex matrix, then we
define

exp A = eA =
∞X

N=0

1
N !

AN .

This definition makes sense, according to the following proposition.

Proposition 3.12. For any n-by-n complex matrix A, eA is given by a con-
vergent series entry by entry. Moreover, the series X 7→ eX and every partial
derivative of an entry of it is uniformly convergent on any bounded subset of
matrix space (= R2n2 ), and therefore X 7→ eX is a C∞ function.

REMARK. The proofwill be tidier if we use derivatives of n-by-nmatrix-valued
functions. If F and G are two such functions, the same argument as for the usual
product rule shows that d

dt (F(t)G(t)) = F 0(t)G(t) + F(t)G 0(t).

PROOF. Let us define kAk for an n-by-nmatrix A to be the operator normof the
member of L(Cn, Cn) with matrix A. Fix M ∏ 1. On the set where kAk ≤ M ,
we have

∞
∞
∞

N2X

N=N1

1
N !

AN
∞
∞
∞ ≤

N2X

N=N1

1
N !

kANk ≤
N2X

N=N1

1
N !

kAkN ≤
N2X

N=N1

1
N !

MN ,

and the right side tends to 0 as N1 and N2 tend to infinity. Hence for kAk ≤ M ,
the series for eA is uniformly Cauchy in the metric built from the operator norm
and therefore, by Proposition 3.5, uniformly Cauchy in the metric built from the
Hilbert–Schmidt norm. Uniformly Cauchy in the latter metric means that the
series is uniformly Cauchy entry by entry, and hence it is uniformly convergent.
The matrices that are 1 or i in one entry and 0 in all other entries form a

2n2 member basis over R of the n-by-n complex matrices. Call these matrices
by the names Ej , 1 ≤ j ≤ 2n2. To compute the kth partial derivative of
AN in a succession of not necessarily distinct directions E1, . . . , Ek , we form

@k

@t1...@tk (A +
P
tj Ej ) · · · (A +

P
tj Ej ) with N factors, evaluated with all tj = 0.
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We apply each derivative in turn, using the product rule in the remark. Each
differentiation replaces a product of N factors with a sum of N products of N
factors. The new factors are each the full expression A+

P
tj Ej or else a single

Ej or else 0, the 0 occurring when the factor to differentiate is some Ej 0 . When
all k differentiations have been computed, we evaluate the resulting expression
at t1 = · · · = tk = 0. The result is a sum of Nk terms, and each nonzero term is
the product of N factors equal to A or some Ej .
For a factor Ej , Proposition 3.5 gives kEjk ≤ |Ej | = 1 ≤ M . For a factor of

A, we have kAk ≤ M . Thus the operator norm of one such product is ≤ MN .
The operator norm of the sum of all Nk terms for a kth-order partial derivative is
therefore ≤ NkMN . Taking into account the coefficient 1/(N !) for the original
AN , we see that the operator norm of terms N1 through N2 of the term-by-term
k-times differentiated series is

≤
N2X

N=N1

NkMN

N !
.

We see as a consequence that the term-by-term k-times differentiated series
obtained from

P
(N !)−1AN is uniformly convergent entry by entry. By the

complex-valued version of Theorem 1.23, applied recursively to handle kth order
partial derivatives, we conclude that exp A is of class Ck and that the partial
derivatives can be computed term by term. Since k is arbitrary, the proof is
complete. §

Proposition 3.13. The exponential function for matrices satisfies
(a) eXeY = eX+Y if X and Y commute,
(b) eX is nonsingular,
(c) d

dt (e
t X ) = XetX ,

(d) eW−1XW = W−1eXW if W is nonsingular,
(e) det eX = eTr X , where the trace Tr X is the sum of the diagonal entries

of X .
REMARKS. The conclusion of (a) fails for general X and Y , as one sees by

taking X =
≥
0 1
0 0

¥
and Y =

≥
1 0
0 0

¥
. Relevant properties of the determinant

function det that appears in the statement of (e) are summarized in Section A7 of
Appendix A.

PROOF. The rate of convergencedetermined inProposition3.12 is good enough
to justify the manipulations that follow. For (a), we have



4. Exponential of a Matrix 151

eXeY =
≥ ∞X

r=0

1
r!
Xr

¥≥ ∞X

s=0

1
s!
Y s

¥
=

X

r,s∏0

1
r!s!

XrY s

=
∞X

N=0

NX

k=0

XkY N−k

k!(N − k)!
=

∞X

N=0

1
N !

NX

k=0

µ
N
k

∂
XkY N−k

=
∞X

N=0

1
N !

(X + Y )N = eX+Y .

Conclusion (b) follows by taking Y = −X in (a) and using e0 = 1. For (c), we
have

d
dt

°
et X

¢
=

d
dt

∞X

N=0

1
N !

(t X)N =
∞X

N=0

d
dt

h 1
N !

(t X)N
i

=
∞X

N=0

N
N !

t N−1XN = X
∞X

N=1

1
(N − 1)!

(t X)N−1 = XetX .

Conclusion (d) follows from the computation

eW
−1XW =

∞X

N=0

1
N !

(W−1XW )N =
∞X

N=0

1
N !

W−1XNW = W−1eXW.

For conclusion (e), define a complex-valued function f of one variable by
f (t) = det et X . By (a), we have

f 0(t) =
d
ds
det e(t+s)X Ø

Ø
s=0 =

d
ds
det(et XesX )

Ø
Ø
s=0 =

d
ds

(det et X )(det esX )
Ø
Ø
s=0

= (det et X )
d
ds

(det esX )
Ø
Ø
s=0 = f (t)

d
ds

(det esX )
Ø
Ø
s=0.

Now esX = 1 + sX + 1
2s
2X2 + · · · = 1 + sX + s2F(s) for some smooth

matrix-valued function F with entries Fi j . If X has entries Xi j , then

det esX = det




1+ sX11 + s2F11(s) sX12 + s2F12(s) · · ·
sX21 + s2F21(s) 1+ sX22 + s2F22(s) · · ·

...
...

. . .





= 1+ s Tr X + s2G(s)

for some smooth function G. Thus d
ds (det esX )

Ø
Ø
s=0 = Tr X , and we obtain

f 0(t) = (Tr X) f (t) for all t . Consequently
d
dt

°
e−(Tr X)t f (t)

¢
= e−(Tr X)t f 0(t) − (Tr X)e−(Tr X)t f (t) = 0

for all t , and e−(Tr X)t f (t) is a constant. The constant is seen to be 1 by putting
t = 0. Therefore f (t) = e(Tr X)t . Conclusion (e) follows by taking t = 1. §
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5. Partitions of Unity

In Section 10 we shall use a “partition of unity” in proving a change-of-variables
formula for multiple integrals. As a general matter in analysis, a partition of unity
serves as a tool for localizing analysis problems to a neighborhood of each point.
The result we shall use in Section 10 is as follows.

Proposition 3.14. Let K be a compact subset of Rn , and let {U1, . . . ,Uk} be
a finite open cover of K . Then there exist continuous functions ϕ1, . . . , ϕk onRn

with values in [0, 1] such that
(a) each ϕi is 0 outside of some compact set contained in Ui ,
(b)

Pk
i=1 ϕi is identically 1 on K .

REMARKS. The system {ϕ1, . . . ϕk} is an instance of a “partition of unity.”
For a general metric space X , a partition of unity is a family 8 of continuous
functions from X into [0, 1] with sum identically 1 such that for each point x in
X , there is a neighborhood of x where only finitely many of the functions are
not identically 0. The side condition about neighborhoods ensures that the sumP

ϕ∈8 ϕ(x) has only finitely many nonzero terms at each point and that arbitrary
partial sums are well-defined continuous functions on X . If U is an open cover of
X , the partition of unity is said to be subordinate to the cover U if each member
of8 vanishes outside somemember ofU. Further discussion of partitions of unity
beyond the present setting appears in the problems at the end of Chapter X. The
use of partitions of unity involving continuous functions tends to be good enough
for applications to integration problems, but applications to partial differential
equations and smooth manifolds are often aided by partitions of unity involving
smooth functions, rather than just continuous functions.2

We require a lemma.

Lemma 3.15. In RN ,
(a) if L is a compact set and U is an open set with L ⊆ U , then there exists

an open set V with V cl compact and L ⊆ V ⊆ V cl ⊆ U ,
(b) if K is a compact set and {U1, . . . ,Un} is a finite open cover of K , then

there exists an open cover {V1, . . . , Vn} of K such that V cli is a compact
subset of Ui for each i .

2Partitions of unity involving smooth functions play no role in the present volume, but they occur
in several places in the companion volume, Advanced Real Analysis, and their existence is addressed
there.
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PROOF. In (a), if L = ∅, we can take V = ∅. If L 6= ∅, then the continuous
function x 7→ D(x,Uc) on RN is everywhere positive on L since L ⊆ U .
Corollary 2.39 and the compactness of L show that this function attains a positive
minimum c on L . If R is chosen large enough so that L ⊆ B(R; 0) and if we
take V =

©
x ∈ U | D(x,Uc) > 1

2c
™

∩ B(R; 0), then L ⊆ V , V cl is compact
(being closed and bounded), and V cl ⊆

©
x ∈ RN | D(x,Uc) ∏ 1

2c
™

⊆ U .
For (b), since {U1, . . . ,Un} is a cover of K , we have K−(U2∪· · ·∪Un) ⊆ U1.

Part (a) produces an open set V1 with V cl1 compact such that

K − (U2 ∪ · · · ∪Un) ⊆ V1 ⊆ V cl1 ⊆ U1.

The first inclusion shows that {V1,U2, . . . ,Un} is an open cover of K . Proceeding
inductively, let Vi be an open set with

K − (V1 ∪ · · · ∪ Vi−1 ∪Ui+1 ∪ · · · ∪Un) ⊆ Vi ⊆ V cli ⊆ Ui .

At each stage, {V1, . . . , Vi ,Ui+1, . . . ,Un} is an open cover of K , and V cli ⊆ Ui .
Thus {V1, . . . , Vn} is an open cover of K , and V cli ⊆ Ui for all i . §

PROOF OF PROPOSITION 3.14. Apply Lemma 3.15b to produce an open cover
{W1, . . . ,Wk} of K such that W cl

i is compact and W cl
i ⊆ Ui for each i . Then

apply it a second time to produce an open cover {V1, . . . , Vk} of K such that V cli
is compact and V cli ⊆ Wi for each i . Proposition 2.30e produces a continuous
function gi ∏ 0 that is 1 on V cli and is 0 off Wi . Then g =

Pn
i=1 gi is continuous

and∏ 0 onRn and is> 0 everywhere on K . A second application of Proposition
2.30e produces a continuous function h ∏ 0 that is 1 on the set where g is 0
and is 0 on K . Then g + h is everywhere positive on Rn , and the functions
ϕi = gi/(g + h) have the required properties. §

6. Inverse and Implicit Function Theorems

The Inverse Function Theorem and the Implicit Function Theorem are results for
working with coordinate systems and for defining functions by means of solving
equations. Let us use the latter application as a device for getting at the statements
of both the theorems.
In the one-variable situation we are given some equation, such as x2 + y2 =

a2, and we are to think of solving for y in terms of x , choosing one of the possible
y’s for each x . For example, one solution is y = −

p
a2 − x2, −a < x < a;

unless some requirement like continuity is imposed, there are infinitely many
such solutions. In one-variable calculus the terminology is that this solution is
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“defined implicitly” by the given equation. In terms of functions, the functions
F(x, y) = x2 + y2 − a2 and y = f (x) = −

p
a2 − x2 are such that F(x, f (x))

is identically 0. It is then possible to compute dy/dx for this solution in two
ways. Only one of these methods remains within the subject of one-variable
calculus, namely to compute the “total differential” of x2+ y2−a2, however that
is defined, and to set the result equal to 0. One obtains 2x dx + 2y dy = 0 with
x and y playing symmetric roles. The declaration that x is to be an independent
variable and y is to be dependent means that we solve for dy/dx , obtaining
dy/dx = −x/y. The other way is more transparent conceptually but makes
use of multivariable calculus: it uses the chain rule in two-variable calculus to
compute d/dx of F(x, f (x)) as the derivative of a composition, the result being
set equal to 0 because (d/dx)F(x, f (x)) is the derivative of the 0 function. This

second method gives
@F
@x

+
@F
@y

f 0(x) = 0, with the partial derivatives evaluated

where (x, y) = (x, f (x)). Then we can solve for f 0(x) provided @F
±
@y is not

zero at a point of interest, again obtaining f 0(x) = −x/y. It is an essential feature
of both methods that the answer involves both x and y; the reason is that there
is more than one choice of y for some x’s, and thus specifying x alone does not
determine all possibilities for f 0(x).
In the general situation we have m equations in n + m variables. Some n of

the variables are regarded as independent, and we think in terms of solving for
the other m. An example is

z3x + w2y3 + 2xy = 0,
xyzw − 1 = 0,

with x and y regarded as the independent variables.
The classical method of implicit differentiation, which is a version of the first

method above, is again to form “total differentials”

2wy3 dw + 3z2x dz + (z3 + 2y) dx + (3w2y2 + 2x) dy = 0,
xyz dw + xyw dz + yzw dx + xzw dy = 0,

and then to solve the resulting system of equations for dw and dz in terms of dx
and dy. The system is

µ
2wy3 3z2x
xyz xyw

∂µ
dw
dz

∂
=

µ
−(z3 + 2y) dx − (3w2y2 + 2x) dy

−(yzw) dx − (xzw) dy

∂
,

and the solution is of the form

dw = coefficient dx + coefficient dy,
dz = coefficient dx + coefficient dy.
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Here the coefficients are the various partial derivatives of interest. Specifically

dw =
@w

@x
dx +

@w

@y
dy,

dz =
@z
@x

dx +
@z
@y

dy.

The analog of the second method above is to set up matters as a computation
of the derivative of a composition. Namely, we write

F






x
y
w
z




 =

µ
z3x + w2y3 + 2xy

xyzw − 1

∂
and

µ
w
z

∂
= f

µ
x
y

∂
.

We view the given equations as saying that a composition of

µ
x
y

∂
7→






x
y

f
≥ x
y

¥






followed by F is the 0 function, i.e.,

F






x
y

f
≥
x
y

¥




 = 0.

We apply the chain rule and compute Jacobian matrices throughout, keeping the
variables in the same order x, y, w, z. The Jacobian matrix of the 0 function is a
0 matrix of the appropriate size, and the other side of the differentiated equation
is the product of two matrices. Thus

µ
0 0
0 0

∂
=

µ
z3 + 2y 3w2y2 + 2x 2wy3 3z2x
yzw xzw xyz xyw

∂






1 0
0 1
@w
@x

@w
@y

@z
@x

@z
@y







=

µ
z3 + 2y 3w2y2 + 2x
yzw xzw

∂
+

µ
2wy3 3z2x
xyz xyw

∂µ @w
@x

@w
@y

@z
@x

@z
@y

∂
.

In other words,
µ
2wy3 3z2x
xyz xyw

∂µ @w
@x

@w
@y

@z
@x

@z
@y

∂
= −

µ
z3 + 2y 3w2y2 + 2x
yzw xzw

∂
,
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and we have the same system of linear equations as before. Comparing the two
methods, we see that we have computed the same things in both methods, merely
giving them different names; thus the two methods will lead to the same result in
general, not merely in this one example.
The theoretical question is whether the given system of equations, which was

F(x, y, w, z) = 0 above, can in principle be solved to give a differentiable
function; the latter was

° w

x
¢

= f
≥
x
y

¥
above. The two computational methods

show what the partial derivatives are if the equations can be solved, but these
methods by themselves give no information about the theoretical question. The
theoretical question is answered by the Implicit Function Theorem, which says
that there is no problem if the coefficient matrix of our system of linear equations,
namely

≥
2wy3 3z2x
xyz xyw

¥
in the above example, is invertible at a point of interest.

Theorem 3.16 (Implicit Function Theorem). Suppose that F is a C1 function
from an open set E in Rn+m into Rm and that F(a, b) = 0 for some (a, b) in
E , with a understood to be in Rn and b understood to be in Rm . If the matrixh@Fi
@yj

iØØ
Ø
x=a, y=b

is invertible, then there exist open sets U ⊆ Rn+m and W ⊆ Rn

with (a, b) in U and a in W with this property: to each x in W corresponds a
unique y in Rm such that (x, y) is in U and F(x, y) = 0. If this y is defined as
f (x), then f is aC1 function fromW intoRm such that f (a) = b, the expression
F(x, f (x)) is identically 0 for x in W , and the Jacobian matrix of f at x is

[ f 0(x)] = −
h@Fi
@yj

i−1h@Fi
@xj

i
at (x, y) = (x, f (x)).

We shall come to the proof shortly. In the example above, [ f 0(x)] is the matrixµ
@w
@x

@w
@y

@z
@x

@z
@y

∂
,
h

@Fi
@yj

i
is

≥
2wy3 3z2x
xyz xyw

¥
, and

h
@Fi
@xj

i
is

≥
z3+2y 3w2y2+2x
yzw xzw

¥
.

Let us use the same approach to the question of introducing a new coordinate
system in place of an old one. For example, we start with ordinary Euclidean
coordinates (u, v) for R2, and we want to know whether polar coordinates (r, θ)
define a legitimate coordinate system in their place. The formula for passing from
one system to the other is

° u
v

¢
=

≥
r cos θ
r sin θ

¥
, but this formula does not really define

r and θ . Defining r and θ entails solving for r and θ in terms of u and v. Thus
let us set up the system

r cos θ − u = 0,
r sin θ − v = 0.

This is a system of the kind in the Implicit Function Theorem, and the con-
siderations in that theorem apply. The independent vector variable is to be
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x =
° u

v

¢
, and the dependent vector variable is to be y =

° r
θ

¢
. The system

itself is F(u, v, r, θ) = 0, where

F(u, v, r, θ) =

µ
F1(u, v, r, θ)
F2(u, v, r, θ)

∂
=

µ
r cos θ − u
r sin θ − v

∂
.

The sufficient condition for solving the equations locally is that the matrix
h

@Fi
@yj

i

be invertible at a point of interest. This is just the matrix
µ
cos θ −r sin θ
sin θ r cos θ

∂
.

The determinant is r , and hence the matrix is invertible except where r = 0. The
Implicit Function Theorem is therefore telling us in this special case that r and θ
give us good local coordinates for R2 except possibly where r = 0. The Implicit
Function Theorem gives no information about what happens when r = 0.
The general result about introducing a new coordinate system in place of an

old one is as follows.

Theorem 3.17 (Inverse Function Theorem). Suppose that ϕ is a C1 function
from an open set E of Rn into Rn , and suppose that ϕ0(a) is invertible for some
a in E . Put b = ϕ(a). Then

(a) there exist open sets U ⊆ E ⊆ Rn and V ⊆ Rn such that a is in U , b is
in V , ϕ is one-one from U onto V , and

(b) the inverse f : V → U is of class C1.
Consequently, f 0(ϕ(x)) = ϕ0(x)−1 for x in U .

REMARKS. Theorems 3.16 and 3.17 are closely related. We saw in the con-
text of polar coordinates that the Implicit Function Theorem implies the Inverse
Function Theorem, and Problem 6 at the end of the chapter points out that this
implication is valid in complete generality. Actually, the implication goes both
ways, and within this section we shall follow the more standard approach of
deriving the Implicit Function Theorem from the Inverse Function Theorem and
subsequently proving the Inverse Function Theorem on its own.

PROOF OF THEOREM 3.16 IF THEOREM 3.17 IS KNOWN. Let n, m, E , F ,
and (a, b) be given as in the statement of Theorem 3.16. We define a function
ϕ : Rn+m → Rn+m to which we shall apply Theorem 3.17 in dimension n + m.
The function is

ϕ(x, y) = (x, F(x, y)) for (x, y) in E .
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This satisfies ϕ(a, b) = (a, F(a, b)) = (a, 0), and its Jacobian matrix at (a, b)
is

[ϕ0(a, b)] =










1 · · · 0
...

. . .
...

0 · · · 1
0

h@Fi
@xj

iØØ
Ø
x=a,
y=b

h@Fi
@yj

iØØ
Ø
x=a,
y=b










.

The upper left block of [ϕ0(a, b)] is the n-by-n identitymatrix, and the lower right

block is of size m-by-m. Since Theorem 3.16 has assumed that
h@Fi
@yj

iØØ
Ø
x=a, y=b

is invertible, [ϕ0(a, b)] is invertible. Theorem 3.17 therefore applies to ϕ and
produces an open neighborhood W 0 of ϕ(a, b) = (a, 0) such that ϕ−1 exists
on W 0 and carries W 0 to an open set. Let U = ϕ−1(W 0). Define W to be the
open neighborhood W 0 ∩ (Rn × {0}) of a in Rn , and define f (x) for x in W by
(x, f (x)) = ϕ−1(x, 0). Then f is of class C1 on W , and f (a) = b because
(a, f (a)) = ϕ−1(a, 0) = (a, b). The identity

(x, 0) = ϕ(ϕ−1(x, 0)) = ϕ(x, f (x)) = (x, F(x, f (x)))

shows that F(x, f (x)) = 0 for x in W . The latter equation and the chain rule
(Theorem 3.10) give the formula for [ f 0(x)].
Finally we are to see that y = f (x) is the unique y inRm for which (x, y) is in

U and F(x, y) = 0. Thus suppose that x is inW and that y1 and y2 are inRm with
(x, y1) and (x, y2) inU and F(x, y1) = F(x, y2) = 0. Then we have ϕ(x, y1) =
(x, F(x, y1)) = (x, 0) = (x, F(x, y2)) = ϕ(x, y2). Since (x, y1) and (x, y2) are
in U , we can apply ϕ−1 to this equation and obtain (x, y1) = (x, y2). Therefore
y1 = y2. This completes the proof of Theorem 3.16 if Theorem 3.17 is known.

§

Let us turn our attention to a direct proof of the Inverse Function Theorem
(Theorem 3.17). When the dimension n is 1, a nonzero derivative at a point
yields monotonicity, and the theorem is greatly simplified; this special case is the
subject of Section A3 of Appendix A.
For general dimension n, it may be helpful to begin with an outline of the

proof. The first step is to show that ϕ is one-one near the point a in question;
this is relatively easy. The hard step is to prove that ϕ is locally onto some
open set; this uses either the compactness of closed balls or else their complete-
ness, and we return to a discussion of this step in a moment. The argument
for differentiability of the inverse function depends on the continuity of the
inverse function; this dependence was already seen in the 1-dimensional case
in Section A3 of Appendix A. Continuity of the inverse function amounts to the
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fact that small open neighborhoods of a get carried to open sets, and this is part
of the proof that ϕ is locally onto some open set. Finally the chain rule gives
(ϕ−1)0(x) =

°
ϕ0(ϕ−1(x))

¢−1, and the continuity of (ϕ−1)0 follows. Thus ϕ−1 is
of class C1.
In carrying out the hard step, one has a choice of using either the compactness

of closed balls or else their completeness. The argument using completeness
lends itself to certain infinite-dimensional generalizations that are well beyond
the scope of this book. Since the argument using compactness is the easier one,
we shall use that.
The first step and the hard step mentioned above will be carried out in three

lemmas below. After them we address the continuity and differentiability of the
inverse function, and the proof of the Inverse Function Theoremwill be complete.

Lemma 3.18. If L : Rn → Rn is a linear function that is invertible, then there
exists a real number m > 0 such that |L(y)| ∏ m|y| for all y in Rn .

REMARK. We shall apply this lemma in Lemma 3.19 with L = ϕ0(a).

PROOF. The linear inverse function L−1 : Rn → Rn is one-one and onto. Thus
if y is given, there exists x with y = L−1(x), and we have |y| = |L−1(x)| ≤
kL−1k|x | ≤ kL−1k|L(y)|. The lemma follows with m = kL−1k−1. §

Lemma 3.19. In the notation of Theorem 3.17 and Lemma 3.18, choose
m > 0 such that |ϕ0(a)(y)| ∏ m|y| for all y ∈ Rn , and choose, by continuity
of ϕ0, any δ > 0 for which x ∈ B(δ; a) implies kϕ0(x) − ϕ0(a)k ≤ m

2
p
n . Then

|ϕ(x 0) − ϕ(x)| ∏ m
2
p
n |x 0 − x | whenever x 0 and x are both in B(δ; a).

REMARKS. This proves immediately that ϕ is one-one on B(δ; a), and it gives
an estimate that will establish that ϕ−1 is continuous, once ϕ−1 is known to exist.
It proves also that the linear function ϕ0(x) is invertible for x ∈ B(δ; a) because

m|y| ≤ |ϕ0(a)(y)|
≤ |ϕ0(x)(y)| + |ϕ0(x)(y) − ϕ0(a)(y)|
≤ |ϕ0(x)(y)| + kϕ0(x) − ϕ0(a)k |y|

≤ |ϕ0(x)(y)| +
m|y|
2
p
n

;

if ϕ0(x) were not invertible, then any nonzero y in the kernel of ϕ0(x) would
contradict this chain of inequalities.

PROOF. The line segment from x to x 0 lies within B(δ; a). Put z = x 0 − x ,
write this line segment as t 7→ x + t z for 0 ≤ t ≤ 1, and apply the Mean Value
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Theorem to each component ϕk of ϕ to obtain

ϕk(x 0) − ϕk(x) = ϕk(x + t z)
Ø
Ø
t=1 − ϕk(x + t z)

Ø
Ø
t=0

= ϕ0(x + tk z)(z) · ek with 0 < tk < 1
= ϕ0(a)(z) · ek + (ϕ0(x + tk z) − ϕ0(a))(z) · ek .

Taking the absolute value of both sides allows us to write

|ϕ(x 0) − ϕ(x)| ∏ |ϕk(x 0) − ϕk(x)|
∏ |ϕ0(a)(z) · ek | − |(ϕ0(x + tk z) − ϕ0(a))(z)|

∏ |ϕ0(a)(z) · ek | −
m
2
p
n

|x 0 − x |.

Therefore

|ϕ(x 0) − ϕ(x)| ∏
1

p
n

|ϕ0(a)(z)| −
m
2
p
n

|x 0 − x |

∏
m
p
n

|x 0 − x | −
m
2
p
n

|x 0 − x |

=
m
2
p
n

|x 0 − x |. §

Lemma 3.20. With notation as in Lemma 3.19, ϕ(B(δ; a)) is open in Rn .

PROOF. Let c = m
±
(2

p
n ) be the constant in the statement of Lemma 3.19.

Fix x0 in B(δ; a) and let y0 = ϕ(x0), so that y0 is the most general element of
ϕ(B(δ; a)). Find δ1 > 0 such that B(δ1; x0)cl ⊆ B(δ; a). It is enough to prove
that B(cδ1/2; y0) ⊆ ϕ(B(δ; a)). Even better, we prove that B(cδ1/2; y0) ⊆
ϕ(B(δ1; x0)cl).
Thus let y1 have |y1 − y0| < cδ1/2. Choose, by compactness of B(δ1; x0)cl,

a member x = x1 of B(δ1; x0)cl for which |ϕ(x) − y1|2 is minimized. Let us
show that x1 is not on the edge of B(δ1; x0)cl, i.e., that |x1 − x0| < δ1. In fact, if
|x1 − x0| = δ1, then Lemma 3.19 gives

|ϕ(x1) − y1| ∏ |ϕ(x1) − y0| − |y1 − y0|
> |ϕ(x1) − ϕ(x0)| − cδ1/2
∏ c|x1 − x0| − cδ1/2
= cδ1/2
> |y1 − y0|
= |ϕ(x0) − y1|,
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in contradiction to the fact that |ϕ(x)− y1|2 is minimized on B(δ1; x0)cl at x = x1.
Thus |x1−x0| < δ1. In this case the scalar-valued function (ϕ(x)−y1)·(ϕ(x)−y1)
is minimized at an interior point of B(δ1; x0)cl, and all its partial derivatives must
be 0. Therefore ϕ0(x1)(z) · (ϕ(x1) − y1) = 0 for all z in Rn . Since the linear
function ϕ0(x1) is onto Rn , we conclude that ϕ(x1) − y1 = 0, and the lemma
follows. §

COMPLETION OF PROOF OF THEOREM 3.17. Lemma 3.19 showed that the
restriction of ϕ to B(δ; a) is one-one, and Lemma 3.20 showed that the image is
an open set in Rn . Let f : ϕ(B(δ; a)) → B(δ; a) be the inverse function. To
complete the proof of Theorem 3.17, we need to see that f is differentiable on
ϕ(B(δ; a)). Fix x in B(δ; a), and suppose that x + h is in B(δ; a) with h 6= 0.
Define y and k by y = ϕ(x) and y + k = ϕ(x + h). Since ϕ is one-one on
B(δ; a), k is not 0. in fact, Lemma 3.19 gives

|k| ∏ c|h|, (∗)

where c = m
±
(2

p
n ). The definitions give

f (y + k) − f (y) − ϕ0(x)−1(k) = (x + h) − x − ϕ0(x)−1(k)

= h − ϕ0(x)−1
°
ϕ(x + h) − ϕ(x)

¢

= −ϕ0(x)−1
°
ϕ(x + h) − ϕ(x) − ϕ0(x)(h)

¢
.

Combining this identity with (∗) gives

| f (y + k) − f (y) − ϕ0(x)−1(k)|
|k|

≤
kϕ0(x)−1k

c
|ϕ(x + h) − ϕ(x) − ϕ0(x)(h)|

|h|
.

If ≤ > 0 is given, choose η > 0 small enough so that

kϕ0(x)−1k
c

|ϕ(x + h) − ϕ(x) − ϕ0(x)h|
|h|

< ≤

as long as |h| < η. If |k| < cη, then |h| < η by (∗) and hence

| f (y + k) − f (y) − ϕ0(x)−1(k)|
|k|

< ≤.

In other words, f is differentiable at y, and f 0(y) = ϕ0(x)−1. §
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Suppose that the given function ϕ in the Inverse Function Theorem is better
than a C1 function. What can be said about the inverse function f ? The answer
is carried by the formula f 0(ϕ(x)) = ϕ0(x)−1 for the derivative of the inverse
function f . This formula implies that the partial derivatives of f are quotients
of polynomials in partial derivatives of ϕ by a nonvanishing polynomial (the
determinant) in partial derivatives of ϕ. Thus the iterated partial derivatives of f
can be computed harmlessly in terms of the iterated partial derivatives of ϕ and
this same determinant polynomial. Consequently if ϕ is of class Ck with k ∏ 1,
then so is f . If ϕ is smooth, so is f . In the case that ϕ and f are both smooth,
we say that ϕ is a diffeomorphism. Let us summarize these facts in a corollary.

Corollary 3.21. Suppose, for some k ∏ 1, that ϕ is a Ck function from an
open set E of Rn into Rn , and suppose that ϕ0(a) is invertible for some a in E .
Put b = ϕ(a). Let U and V be open subsets of Rn as in the Inverse Function
Theorem such that a is in U , b is in V , and ϕ is one-one from U onto V . Then
the inverse function f : V → U is of class Ck . If ϕ is smooth, then ϕ is a
diffeomorphism of U onto V .

7. Definition and Properties of Riemann Integral

Section I.4 contained a careful but limited development of the Riemann integral in
one variable. The present section extends that development to several variables.
A certain amount of the theory parallelswhat happened in one variable, and proofs
for that part of the theory can be obtained by adjusting the notation and words of
Section I.4 in simple ways. Results of that kind are much of the subject matter
of this section.
In later sections we shall take up results having no close analog in Section I.4.

The main results of this kind are
(i) a necessary and sufficient condition for a function to be Riemann inte-
grable,

(ii) Fubini’s Theorem, concerning the relationship betweenmultiple integrals
and iterated integrals in the various possible orders,

(iii) a change-of-variables formula for multiple integrals.
We begin a discussion of these in the next section.
The one-variable theoryworkedwith a bounded function f : [a, b] → R, with

domain a closed bounded interval, and we now work with a bounded function
f : A → R with domain A a “closed rectangle” in Rn . For this purpose a closed
rectangle (or “closed geometric rectangle”) in Rn is a bounded set of the form

A = [a1, b1]× · · · × [an, bn]
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with aj ≤ bj for all j . Let us abbreviate [aj , bj ] as Aj . In geometric terms
the sides or faces are assumed parallel to the axes or coordinate hyperplanes.
We shall use the notion of open rectangle in later sections and chapters, an open
rectanglebeing a similar product of boundedopen intervals (aj , bj ) for 1 ≤ j ≤ n.
However, in this section the term “rectangle” will always mean closed rectangle.
If Pj is a one-variable partition of Aj , thenwe can form an n-variable partition

P = (P1, . . . , Pn) of the given rectangle A into component rectangles [c1, d1]×
· · ·× [cn, dn], where cj and dj are consecutive subdivision points of Pj . A typical
component rectangle is denotedby R, and itsn-dimensionalvolume

Qn
j=1(dj−cj )

is denoted by |R|. The mesh µ(P) of the partition P is the maximum of the
meshes of the one-dimensional partitions Pj , hence the largest length of a side of
all component rectangles of P .
Relative to our given function f and a given partition P , define MR( f ) =

supx∈R f (x) and mR( f ) = infx∈R f (x) for each component rectangle R of P .
Put

U(P, f ) =
X

R
MR( f ) |R| = upper Riemann sum for P,

L(P, f ) =
X

R
mR( f ) |R| = lower Riemann sum for P,

Z

A
f dx = inf

P
U(P, f ) = upper Riemann integral of f,

Z

A
f dx = sup

P
L(P, f ) = lower Riemann integral of f.

We say that f is Riemann integrable on A if
R
A f dx =

R
A
f dx , and in this

case we write
R
A f dx for the common value of these two numbers. We write

R(A) for the set of Riemann integrable functions on A. The following lemma is
proved in the same way as Lemma 1.24.

Lemma 3.22. Suppose that f : A → R has m ≤ f (x) ≤ M for all x in A.
Then for any partition P of A,

m|A| ≤ L(P, f ) ≤ U(P, f ) ≤ M|A|,

m|A| ≤
Z

A
f dx ≤ M|A|,

m|A| ≤
Z

A
f dx ≤ M|A|.

A refinement of a partition P of A is a partition P∗ such that every component
rectangle for P∗ is a subset of a component rectangle for P . If P = (P1, . . . , Pn)
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and P 0 = (P 0
1, . . . , P 0

n) are two partitions of A, then P and P 0 have at least one
common refinement P∗ = (P∗

1 , . . . , P∗
n ); specifically, for each j , we can take

P∗
j to be a common refinement of Pj and P 0

j . Arguing as in Lemma 1.25 and
Theorem 1.26, we obtain the following two results. The key to the second one of
these is the uniform continuity of any continuous function f : A → R; for the
uniform continuity we appeal to the Heine–Borel Theorem (Corollary 2.37) and
Proposition 2.41 in several variables, the corresponding one-variable result being
Theorem 1.10.

Lemma 3.23. Let f : A → R satisfy m ≤ f (x) ≤ M for all x in A. Then
(a) L(P, f ) ≤ L(P∗, f ) and U(P∗, f ) ≤ U(P, f ) whenever P is a parti-

tion of A and P∗ is a refinement,
(b) L(P1, f ) ≤ U(P2, f ) whenever P1 and P2 are partitions of A,
(c)

R
A
f dx ≤

R
A f dx ,

(d)
R
A f dx −

R
A
f dx ≤ (M − m)|A|,

(e) the function f is Riemann integrable on A if and only if for each ≤ > 0,
there exists a partition P of A with U(P, f ) − L(P, f ) < ≤.

Theorem 3.24. If f : A → R is continuous on A, then f is Riemann
integrable on A.

Next we argue as in Proposition 1.30 and Theorem 1.31 to obtain two more
generalizations to several variables. The several-variable version of uniform
continuity is needed in the proof of Proposition 3.25d.

Proposition 3.25. If f1 and f2 are Riemann integrable on A, then
(a) f1 + f2 is inR(A) and

R
A ( f1 + f2) dx =

R
A f1 dx +

R
A f2 dx ,

(b) c f1 is inR(A) and
R
A c f1 dx = c

R
A f1 dx for any real number c,

(c) f1 ≤ f2 on A implies
R
A f1 dx ≤

R
A f2 dx ,

(d) m ≤ f1 ≤ M on A and ϕ : [m,M] → R continuous imply that ϕ ◦ f1 is
inR(A),

(e) | f1| is inR(A), and
Ø
Ø R

A f1 dx
Ø
Ø ≤

R
A | f1| dx ,

(f) f 21 and f1 f2 are inR(A),
(g)

p
f1 is inR(A) if f1 ∏ 0 on A.

Theorem 3.26. If { fn} is a sequence of Riemann integrable functions on A
and if { fn} converges uniformly to f on A, then f is Riemann integrable on A,
and limn

R
A fn dx =

R
A f dx .
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There is also a several-variable version of Theorem 1.35, which says that Rie-
mann integrability can be detected by convergence of Riemann sums as the mesh
of the partition gets small. Relative to our standard partition P = (P1, . . . , Pn),
select a member tR of each component rectangle R relative to P , and define

S(P, {tR}, f ) =
X

R
f (tR)|R|.

This is called a Riemann sum of f .

Theorem 3.27. If f is Riemann integrable on A, then

lim
µ(P)→0

S(P, {tR}, f ) =
Z

A
f dx .

Conversely if f is bounded on A and if there exists a real number r such that for
any ≤ > 0, there exists some δ > 0 for which |S(P, {tR}, f ) − r | < ≤ whenever
µ(P) < δ, then f is Riemann integrable on A.
REMARK. The proof of the direct part is more subtle in the several-variable

case than in the one-variable case, and we therefore include it. The proof of the
converse part closely imitates the proof of the converse part of Theorem 1.35, and
we omit that.
PROOF. For the direct part the function f is assumed bounded; suppose

| f (x)| ≤ M on A. Let ≤ > 0 be given. Choose a partition P∗ = (P∗
1 , . . . , P∗

n )
of A with U(P∗, f ) ≤

R
A f dx + ≤. Fix an integer k such that the number of

component intervals of P∗
j is ≤ k for 1 ≤ j ≤ n. Put

δ1 =
≤

Mk
Pn

j=1
Q

i 6= j |Ai |
,

and suppose that P = (P1, . . . , Pn) is any partition of A = A1 × · · · × An with
µ(P) ≤ δ1. For each j with 1 ≤ j ≤ n, we separate the component intervals
of Pj into two kinds, the ones in F ( j) being the component intervals of Pj that
do not lie completely within a single component interval of P∗

j and the ones in
G( j) being the rest. Similarly we separate the component rectangles of P into two
kinds, the ones in F being the component rectangles that do not lie completely
within a single component rectangle of P∗ and the ones in G being the rest.
If R = R1 × · · · × Rn is a member of F, then Rj is in F ( j) for some j with

1 ≤ j ≤ n; let j = j (R) be the first such index. Let Fj be the subset of R’s in
F with j (R) = j , so that F =

Sn
j=1Fj disjointly. Then we have

U(P, f ) =
nX

j=1

X

R∈Fj

MR( f ) |R| +
X

R∈G
MR( f ) |R|. (∗)
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For the first term on the right side,

Ø
Ø
Ø

nX

j=1

X

R∈Fj

MR( f ) |R|
Ø
Ø
Ø ≤ M

nX

j=1

X

R∈Fj

|R|

= M
nX

j=1

X

R1×···×Rn∈Fj

|R1| × · · · × |Rn|

≤ M
nX

j=1

X

Rj∈F ( j)

|Rj |
Q

i 6= j |Ai |.

Each member Rj of F ( j) contains some point of the partition P∗
j in its interior,

and two distinct Rj ’s cannot contain the same point. Thus the number of Rj ’s in
F ( j) is ≤ k. Also, |Rj | ≤ µ(P). Consequently we have

Ø
Ø
Ø

nX

j=1

X

R∈Fj

MR( f ) |R|
Ø
Ø
Ø ≤ Mkµ(P)

nX

j=1

Q
i 6= j |Ai | ≤ Mkδ1

Pn
j=1

Q
i 6= j |Ai | = ≤.

The contribution to U(P, f ) of the second term on the right side of (∗) is
X

R∈G
MR( f )|R| =

X

R∗

X

R⊆R∗

MR∗( f )|R| ≤
X

R∗

MR∗( f )|R∗| ≤ U(P∗, f ).

Thus
U(P, f ) ≤ ≤ +U(P∗, f ) ≤

Z

A
f dx + 2≤.

Similarly we can define δ2 such that µ(P) ≤ δ2 implies

L(P, f ) ∏
Z

A
f dx − 2≤.

If δ = min{δ1, δ2} and µ(P) ≤ δ, then
Z

A
f dx − 2≤ ≤ L(P, f ) ≤ S(P, {tR}, f ) ≤ U(P, f ) ≤

Z

A
f dx + 2≤

for any choice of points tR , and hence
Ø
ØS(P, {tR}, f ) −

R
A f dx

Ø
Ø ≤ 2≤. This

completes the proof of the direct part of the theorem. §

Finally we include one simple interchange-of-limits result that is handy in
working with integrals involving derivatives.
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Proposition 3.28. Let f be a complex-valued C1 function defined on an open
set U in Rm , and let K be a compact subset of U . Then

(a) the convergence of 1h [ f (x + hej ) − f (x)] to @ f
@xj (x), as h tends to 0, is

uniform for x in K ,
(b) the function g(x2, . . . , xn) =

R b
a f (x1, . . . , xn) dx1 is of class C1 on

the set of all points y = (x2, . . . , xn) for which [a, b] × {y} lies in
U , and @

@xj

R b
a f (x) dx1 =

R b
a

@ f
@xj (x) dx1 for j 6= 1 as long as the set

[a, b]× {(x2, . . . , xn)} lies in U .

PROOF. In (a), wemay assume that f is real-valued. TheMeanValue Theorem
gives

1
h

£
f (x + hej ) − f (x)

§
−

@ f
@xj

(x) =
@ f
@xj

(x + tej ) −
@ f
@xj

(x)

for some t between 0 and h, and then (a) follows from the uniform continuity of
@ f

±
@xj on K . Conclusion (b) follows by combining (a) and Theorem 1.31. §

As we did in the one-variable case in Sections 3 and I.5, we can extend our
results concerning integration in several variables to functions with values in Rm

or Cm ∼= R2m . Integration of a vector-valued function is defined entry by entry,
and then all the results from Theorem 3.24 through Proposition 3.28 extend. The
one thing that needs separate proof is the inequality

Ø
Ø R

A f1 dx
Ø
Ø ≤

R
A | f1| dx of

Proposition 3.25e, and a proof can be carried out in the same way as at the end
of Section 3 in the one-variable case.

8. Riemann Integrable Functions

Let E be a subset of Rn . We say that E is of measure 0 if for any ≤ > 0, E can
be covered by a finite or countably infinite set of closed rectangles in the sense
of Section 7 of total volume less than ≤. It is equivalent to require that E can be
covered by a finite or countably infinite set of open rectangles of total volume
less than ≤. In fact, if a system of open rectangles covers E , then the system of
closures covers E and has the same total volume; conversely if a system of closed
rectangles covers E , then the system of open rectangles with the same centers
and with sides expanded by a factor 1+ δ covers E as long as δ > 0.
Several properties of sets of measure 0 are evident: a set consisting of one

point is of measure 0, a face of a closed rectangle is a set of measure 0, and any
subset of a set of measure 0 is of measure 0. Less evident is the fact that the
countable union of sets of measure 0 is of measure 0. In fact, if ≤ > 0 is given
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and if E1, E2, . . . are sets of measure 0, find finite or countably infinite systems
Rj of closed rectangles for j ∏ 1 such that the total volume of the members of
Rj is< ≤/2n . ThenR =

S
j Rj is a system of closed rectangles covering

S
j Ej

and having total volume < ≤.
The goal of this section is to prove the following theorem, which gives a

useful necessary and sufficient condition for a function of several variables to be
Riemann integrable. The theorem immediately extends from the scalar-valued
case as stated to the case that f has values in Rm or Cm .

Theorem 3.29. Let A be a finite closed rectangle in Rn of positive volume,
and let f : A → R be a bounded function. Then f is Riemann integrable if and
only if the set

B =
©
x

Ø
Ø f is not continuous at x

™

has measure 0.

Theorem 3.29 supplies the reassurance that a finite closed rectangle of positive
volume cannot havemeasure 0. In fact, the function f on A that is 1 at every point
with all coordinates rational and is 0 elsewhere is discontinuous everywhere on
A. By inspection everyU(P, f ) is |A| for this f , and every L(P, f ) is 0; thus f
is not Riemann integrable. The theorem then implies that A is not of measure 0.
The proof of the theorem will make use of an auxiliary notion, that of “con-

tent 0,” in order to simplify the process of checking whether a given compact
set has measure 0. A subset E of Rn has content 0 if for any ≤ > 0, E can
be covered by a finite set of closed rectangles in the sense of Section 7 of total
volume less than ≤. It is equivalent to require that E can be covered by a finite
set of open rectangles of total volume less than ≤. A set consisting of one point
is of content 0, a face of a closed rectangle is a set of content 0, any subset of a
set of content 0 is of content 0, and the union of finitelymany sets of content 0 is
of content 0.
Every set of content 0 is certainly ofmeasure 0, but the question of any converse

relationship is more subtle. Consider the set E of rationals in [0, 1] as a subset
of R1. Since this set is a countable union of one-point sets, it has measure 0.
However, it does not have content 0. In fact, if we were to have E ⊆

SN
n=1[aj , bj ]

with
PN

n=1 (bj −aj ) < ≤, then wewould have Ecl ⊆
SN

n=1[aj , bj ] by Proposition
2.10, since

SN
n=1[aj , bj ] is closed. Then Ecl would have content 0 and necessarily

measure 0. This contradicts the fact observed after the statement of the theorem—
that a closed rectangle of positive volume, such as Ecl = [0, 1] inR1, cannot have
measure 0. We conclude that a bounded set of measure 0 need not have content 0.

Lemma 3.30. If E is a compact subset of Rn of measure 0, then E is of
content 0.
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PROOF. Let E be ofmeasure 0, and let ≤ > 0 be given. Choose open rectangles
Ej with E ⊆

S∞
j=1 Ej and

P∞
j=1 |Ej | < ≤. By compactness, E ⊆

SN
j=1 Ej for

some N . Then
PN

j=1 |Ej | < ≤. Since ≤ is arbitrary, E has content 0. §

Recall from Section II.9 that the oscillation at x0 of a function f : A → R is
given by

osc f (x0) = lim
δ↓0

sup
x∈B(δ;x0)

| f (x) − f (x0)|.

The oscillation is 0 at x0 if and only if f is continuous there. Lemma 2.55 tells
us that ©

x ∈ U
Ø
Ø oscg(x) ∏ 2≤

™cl
⊆

©
x ∈ U

Ø
Ø oscg(x) ∏ ≤

2
™

for any ≤ > 0.

Lemma 3.31. Let A be a nontrivial closed rectangle inRn , and let f : A → R
be a bounded function with osc f (x) < ≤ for all x in A. Then there is a partition
P of A with U(P, f ) − L(P, f ) ≤ 2≤|A|.

PROOF. For each x0 in A, there is an open rectangle Ux0 centered at x0 such
that | f (x)− f (x0)| ≤ ≤ on A∩U cl

x0 . ThenMU cl
x0
( f )−mU cl

x0
( f ) ≤ 2≤. These open

rectangles cover A. By compactness a finite number of them suffice to cover A.
Write A ⊆ Ux1 ∪ · · · ∪Uxm accordingly. Let P be the partition of A generated by
the endpoints in each coordinate of A and the endpoints of the closed rectangles
U cl
xj ; we discard endpoints that lie outside A. Each component rectangle R of P

then lies completely within some U cl
xj , and we have MR( f ) − mR( f ) ≤ 2≤ for

each component rectangle R of P . Therefore

U(P, f ) − L(P, f ) =
X

R

°
MR( f ) − mR( f )

¢
|R| ≤ 2≤

X

R
|R| = 2≤|A|. §

PROOF OF THEOREM 3.29. Define B≤ =
©
x

Ø
Ø osc f (x) ∏ ≤

™
for each ≤ > 0,

so that B =
S∞

n=1 B1/n . For the easy direction of the proof, suppose that f is
Riemann integrable. We show that B1/n has content 0 for all n. Since content 0
implies measure 0, Bn will have measure 0 for all n. So will the countable union,
and therefore B will have measure 0.
Given ≤ > 0 and n, use Lemma 3.23e to choose a partition P of A with

U(P, f ) − L(P, f ) ≤ ≤/n. Let

R =
©
component rectangles R of P

Ø
Ø Ro ∩ B1/n 6= ∅

™
,

where Ro is the interior of R. Then B1/n is covered by the closed rectangles inR
and the boundaries of the component rectangles of P . The latter are of content 0.
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For R inR, let us see that MR( f ) −mR( f ) ∏ 1/n. In fact, if x0 is in Ro ∩ B1/n ,
then osc f (x0) ∏ 1/n, so that lim

δ↓0 sup|x−x0|<δ | f (x) − f (x0)| ∏ 1/n and

sup
|x−x0|<δ,
x∈Ro

| f (x) − f (x0)| ∏ 1/n for all δ > 0.

Therefore MR( f ) − mR( f ) ∏ 1/n. Summing on R ∈ R gives

1
n

X

R∈R
|R| ≤

X

R∈R

°
MR( f ) − mR( f )

¢
|R| ≤

X

all R

°
MR( f ) − mR( f )

¢
|R|

= U(P, f ) − L(P, f ) ≤ ≤/n,

and thus
P

R∈R |R| ≤ ≤. Consequently B1/n has content 0, as asserted.
For the converse direction of the proof, suppose that B has measure 0. We

are to prove that f is Riemann integrable. Let ≤ > 0 be given. The inclusion
of Lemma 2.55 gives Bcl≤ ⊆ B≤/4 ⊆ B, and thus Bcl≤ has measure 0. The set
Bcl≤ is compact, and Lemma 3.30 shows that it has content 0. Hence the subset
B≤ has content 0. Choose open rectangles U1, . . . ,Um such that B≤ ⊆

Sm
j=1Uj

and
Pm

j=1 |Uj | < ≤. Form the partition P of A generated by the endpoints in
each coordinate of A and the endpoints of the closed rectangles U cl

xj ; we discard
endpoints that lie outside A.
Then every component closed rectangle R of P is in one of the two classes

R1 =
©
R

Ø
Ø R ⊆ U cl

j for some j
™
,

R2 =
©
R

Ø
Ø R ∩ B≤ = ∅

™
.

In fact, our definition is such that R ∩Uj 6= ∅ implies R ⊆ U cl
j . If R ∩ B≤ 6= ∅,

let x0 be in R ∩ B≤ . Then x0 is in someUj , and R ∩Uj 6= ∅ for that j . Hence R
is inR1.
We shall construct a particular refinement P 0 of P in a moment. Let R0 be a

typical component rectangle of P 0. For any refinement P 0 of P , we have

U(P 0, f ) − L(P 0, f )

≤
X

R∈R1

X

R0⊆R

°
MR0( f ) − mR0( f )

¢
|R0| +

X

R∈R2

X

R0⊆R

°
MR0( f ) − mR0( f )

¢
|R0|

≤ 2
°
sup
A

| f |
¢ X

R∈R1

X

R0⊆R
|R0| +

X

R∈R2

X

R0⊆R

°
MR0( f ) − mR0( f )

¢
|R0|

≤ 2
°
sup
A

| f |
¢
≤ +

X

R∈R2

X

R0⊆R

°
MR0( f ) − mR0( f )

¢
|R0|
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since
Pm

j=1 |Uj | < ≤. For R inR2, we have osc f (x) < ≤ for all x in R. Lemma
3.31 shows that there is a partition PR of R such that U(PR, f ) − L(PR, f ) ≤
2≤|R|. In other words,

P
R0⊆R

°
MR0( f ) − mR0( f )

¢
|R0| ≤ 2≤|R| if P 0 is fine

enough to include all the n-tuples of PR . If P 0 is fine enough so that this happens
for all R inR2, then we obtain

U(P 0, f ) − L(P 0, f ) ≤ 2
°
sup
A

| f |
¢
≤ +

X

R∈R2

2≤|R| ≤ 2≤
°
sup
A

| f | + |A|
¢
,

and the theorem follows. §

9. Fubini’s Theorem for the Riemann Integral

Fubini’s Theorem is a result asserting that a double integral is equal to an iterated
integral in either order. An unfortunate feature of the Riemann integral is that
when an integrable function f (x, y) is restricted to one of the two variables,
then the resulting function of that variable need not be integrable. Thus a certain
amount of checking is often necessary in using the theorem. This feature is
corrected in the Lebesgue integral, and that, as we shall see in Chapter V, is one
of the strengths of the Lebesgue integral.

Theorem 3.32 (Fubini’s Theorem). Let A ⊆ Rn and B ⊆ Rm be closed
rectangles, and let f : A × B → R be Riemann integrable. For x in A let fx be
the function y 7→ f (x, y) for y in B, and define

L(x) =
Z

B
fx(y) dy =

Z

B
f (x, y) dy,

U(x) =
Z

B
fx(y) dy =

Z

B
f (x, y) dy,

as functions on A. Then L and U are Riemann integrable on A and
Z

A×B
f dx dy =

Z

A
L(x) dx =

Z

A

hZ

B
f (x, y) dy

i
dx,

Z

A×B
f dx dy =

Z

A
U(x) dx =

Z

A

hZ

B
f (x, y) dy

i
dx .

PROOF. Let P be a partition of the form (PA, PB), and let R = RA × RB be a
typical component rectangle of P . Then

L(P, f ) =
X

R
mR( f ) |R| =

X

RA

≥X

RB

mRA×RB ( f ) |RB |
¥
|RA|.
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For x in RA, mRA×RB ( f ) ≤ mRB ( fx). Hence x in RA implies

X

RB

mRA×RB ( f ) |RB | ≤
X

RB

mRB ( fx) |RB | ≤
Z

B
fx dy = L(x).

Taking the infimum over x in RA and summing over RA gives

L(P, f ) =
X

RA

≥X

RB

mRA×RB ( f ) |RB |
¥
|RA| ≤

X

RA

mRA(L) |RA| = L(PA,L).

Similarly
U(PA,U ) ≤ U(P, f ).

Thus

L(P, f ) ≤ L(PA,L) ≤ U(PA,L) ≤ U(PA,U ) ≤ U(P, f ).

Since f is Riemann integrable, the ends of the above display can be made close
together by choosing P appropriately. The second and third members of the
display will then be close, and hence

Z

A×B
f dx dy =

Z

A
L dx =

Z

A
L dx .

The result for L follows. The result for U follows in similar fashion immediately
from the inequalities

L(P, f ) ≤ L(PA,L) ≤ L(PA,U ) ≤ U(PA,U ) ≤ U(P, f ).

This proves the theorem. §

REMARKS.
(1) Equality of the double integral with the iterated integral in the other order

is the same theorem. Thus the iterated integrals in the two orders are equal.
(2) If f is continuous on A× B, then fx is continuous on B as a consequence

of Corollary 2.27, so that
R

B
f (x, y) dy =

R
B f (x, y) dy. Hence

Z

A×B
f dx dy =

Z

A

h Z

B
f (x, y) dy

i
dx

when f is continuous on A× B. This result is isolated as Corollary 3.33 below.
Evidently it immediately extends to continuous functions with values in Rk or
Ck .
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(3) In practice one often considers integrals of the form
R
U f (x, y) dx dy

for some open set U , where f is continuous on some closed rectangle A × B
containing U . Then the double integral equals

R
A×B f (x, y)IU (x, y) dx dy,

where IU is the indicator function3 of U equal to 1 on U and 0 off U . In
many applications the functions (IU )x have harmless discontinuities for each x ,
and ( f IU )x is therefore Riemann integrable as a function of y. In this case, the
upper and lower integrals can again be dropped in the statement of Theorem 3.32.

Corollary 3.33 (Fubini’s Theorem for continuous integrand). Let A ⊆ Rn

and B ⊆ Rm be closed rectangles, and let f : A × B → R be continuous. Then
Z

A×B
f dx dy =

Z

A

h Z

B
f (x, y) dy

i
dx =

Z

B

h Z

A
f (x, y) dx

i
dy.

10. Change of Variables for the Riemann Integral

The goal in this section is to prove a several-variables generalization of the one-
variable formula Z b

a
f (x) dx =

Z B

A
f (ϕ(y))ϕ0(y) dy

given in Theorem 1.34. In the one-variable case we assumed in effect that ϕ
was a strictly increasing function of class C1 on [A, B] and that f was merely
Riemann integrable. The several-variables theorem in this section will be only
a preliminary result, with a final version stated and proved in Chapter VI in the
context of the Lebesgue integral. In particular we shall assume in the present
section that f is continuous and that it vanishes near the boundary of the domain,
and we shall make strong assumptions about ϕ. To capture succinctly the notion
that f vanishes near the boundary of its domain, we introduce the notion of the
support of f , which is the closure of the set where f is nonzero.

Theorem 3.34 (change-of-variables formula). Let ϕ be a one-one function of
class C1 from an open subsetU of Rn onto an open subset ϕ(U) of Rn such that
detϕ0(x) is nowhere 0. Then

Z

ϕ(U)

f (y) dy =
Z

U
f (ϕ(x))| detϕ0(x)| dx

for every continuous function f : ϕ(U) → R whose support is a compact subset
of ϕ(U).

3Indicator functions are called “characteristic functions” by many authors, but the term “charac-
teristic function” has another meaning in probability theory and is best avoided as a substitute for
“indicator function” in any context where probability might play a role.
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Before a discussion of the sense in which this result has to regarded as pre-
liminary, a few remarks are in order. The function ϕ0 is the usual derivative of
ϕ, and ϕ0(x) is therefore a linear function from Rn to Rn that depends on x .
The matrix of the linear function ϕ0(x) is the Jacobian matrix [@ϕi/@xj ], and
detϕ0(x) is the determinant of this matrix. In classical notation, this determinant
is often written as

@(y1, . . . , yn)
@(x1, . . . , xn)

, and then the effect on the integral of changing

variables can be summarized by the formula dy =
Ø
Ø
Ø
@(y1, . . . , yn)
@(x1, . . . , xn)

Ø
Ø
Ø dx . The

absolute value signs did not appear in the one-variable formula in Theorem 1.34,
but the assumption that ϕ was strictly increasing made them unnecessary, ϕ0(x)
being > 0. Had we worked with strictly decreasing ϕ, we would have assumed
ϕ0(x) < 0 everywhere, and the limits of integration on one side of the formula
would have been reversed from their natural order. The minus sign introduced
by putting the limits of integration in their natural order would have compensated
for a minus sign introduced in changing ϕ0(x) to |ϕ0(x)|.
The hypotheses on ϕ make the Inverse Function Theorem (Theorem 3.17)

applicable at every x in U . Consequently ϕ(U) is automatically open, and ϕ has
a locally defined C1 inverse function about each point ϕ(x) of the image. Since
ϕ has been assumed to be one-one, ϕ : U → ϕ(U) has a global inverse function
ϕ−1 of class C1.
We can use ϕ−1 to verify that f ◦ϕ has compact support inU : To the equality

ϕ
°©
x ∈ U

Ø
Ø f (ϕ(x)) 6= 0

™¢
=

©
y ∈ ϕ(U)

Ø
Ø f (y) 6= 0

™
, we apply ϕ−1 and obtain©

x ∈ U
Ø
Ø f (ϕ(x)) 6= 0

™
= ϕ−1°©y ∈ ϕ(U)

Ø
Ø f (y) 6= 0

™¢
. Hence

©
x ∈ U

Ø
Ø f (ϕ(x)) 6= 0

™cl
=

°
ϕ−1°©y ∈ ϕ(U)

Ø
Ø f (y) 6= 0

™¢¢cl
.

The identity F(Ecl) ⊆ (F(E))cl holds whenever F is a continuous function
between two metric spaces, by Proposition 2.25. When Ecl is compact, equality
actually holds. The reason is that Propositions 2.34 and 2.38 show F(Ecl) to
be closed; since F(Ecl) is a closed set containing F(E), it contains (F(E))cl.
Applying this fact to the displayed equation above, we obtain

©
x ∈ U

Ø
Ø f (ϕ(x)) 6= 0

™cl
= ϕ−1°©y ∈ ϕ(U)

Ø
Ø f (y) 6= 0

™cl¢
.

In other words,
support( f ◦ ϕ) = ϕ−1(support( f )).

Applying Proposition 2.38 a second time, we see that f ◦ϕ has compact support.
As a result, we can rewrite the formula to be proved in Theorem 3.34 as

Z

Rn
f (y) dy =

Z

Rn
f (ϕ(x))| detϕ0(x)| dx,
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and the supports will take care of themselves in the proof.
The result of Theorem 3.34 has to be regarded as preliminary. To understand

the sense in which the result is limited, consider the case of polar coordinates in
R2. In this case we can take

U =

Ωµ
r
θ

∂ Ø
Ø
Ø
Ø 0 < r < +∞ and 0 < θ < 2π

æ
,

ϕ

µ
r
θ

∂
=

µ
r cos θ
r sin θ

∂
=

µ
x
y

∂
,

and we have
ϕ(U) = R2 −

Ωµ
x
0

∂ Ø
Ø
Ø x ∏ 0

æ
.

We readily compute that detϕ0
° r

θ

¢
= r , and the desired formula is

Z

R2
f (x, y) dx dy =

Z

0≤r<∞, 0≤θ<2π
f (r cos θ, r sin θ) r dr dθ.

At first glance this formula seems fine. But if we refer to the precise hypotheses,
we see that f is assumed to vanish in a neighborhoodof the set of points (x, 0)with
x ∏ 0, as well as when (x, y) is sufficiently far from the origin. Without some
sort of passage to the limit, the theorem therefore settles few cases of interest.
This passage to the limit will be accomplished easily with the Lebesgue integral,
and we therefore postpone the final form of the change-of-variables formula to
Chapter VI.
In any event, we shall use Theorem 3.34 in proving the final change-of-

variables formula, and thus a proof is warranted now. Before coming to the
formal proof, it is well to understand the mechanism of the theorem. The proof
will then flow easily from the analysis that is done for motivation.
The motivation for the theorem comes from taking f to be the constant func-

tion 1 and from thinking of ϕ as of the form ϕ(y) = y0+ L(y− y0)with L linear.
In R3, if we take U to be the cube

©
y = (y1, y2, y3)

Ø
Ø 0 ≤ yi ≤ 1 for all i

™
,

along with f = 1, the formula asserts that ϕ(U) has volume | det L|. This is just
the well-known fact about 3-by-3 matrices that the volume of the parallelepiped
with sides u, v,w is the scalar |(u × v) · w|. For a corresponding result in Rn ,
where vector product is not available, the relationship between the determinant
and a volume has to be argued differently. One way of proceeding in Rn is to use
row or column reduction to write the given matrix as the product of elementary
matrices (those corresponding to the effect of a single step in the reduction), to
check the change of variables for each factor, and to use themultiplication formula
det(AB) = det A det B to obtain the result. This argument can be adjusted so as
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to work with a function f in place; the elementary matrices that interchange two
variables are handled by Fubini’s Theorem (Theorem3.32 or Corollary 3.33), and
the other elementarymatrices are handledby the one-variable change-of-variables
formula (Theorem 1.34).
That being the case, one can envision a proof of Theorem 3.34 that proceeds

by approximation, using Taylor’s Theorem (Theorem 3.11), at least if f is of
class C2. The contribution to the integrand from the integral remainder term in
the Taylor expansion of ϕ is to be estimated as an error term. The approximation
generates an additional error term because the image of U under ϕ does not
match the image of U under the approximating first-order expansion of ϕ. Of
course, one cannot expect the approximation to be very good far away from the
point where the Taylor expansion is centered, and thus the argument needs to be
carried out locally. The local contributions can then be pieced together by using a
partition of unity. Such an argument can actually be carried out, but the argument
is lengthy.
A more economical argument comes by finding a nonlinear analog of row or

column reduction. The Inverse Function Theorem will allow us to prove that a
generalϕ decomposes into suitablydefinednonlinear elementary transformations,
but the decomposition is valid only locally. A partition of unity is used to piece
together the local results and obtain the theorem. We introduce two kinds of
nonlinear elementary transformations:

(i) a flip β, which interchanges two coordinates. This is a linear function,
and it satisfies | detβ 0(x)| = 1 for all x . Application of Fubini’s Theorem
in the form of Corollary 3.33 shows that Theorem 3.34 is valid when ϕ
is a flip.

(ii) a primitive mapping

√(x1, . . . , xn) =














x1
...

xi−1
g(x1, . . . , xn)

xi+1
...
xn














,

where g is real-valued and occurs in a single entry. If that entry is the i th
entry, then the Jacobian matrix of √ is the identity matrix except in the
i th row, where the entries are @g

@x1 , . . . ,
@g
@xn . Hence | det√ 0(x)| =

Ø
Ø @g
@xi

Ø
Ø.

To prove Theorem 3.34 for a primitive mapping as in (ii), it is enough to handle
i = 1. If we write x = (x1, x 0) and y = (y1, x 0) with x 0 in Rn−1, Fubini’s
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Theorem (Corollary 3.33) reduces matters to showing that
Z

Rn−1

h Z

R
f (y1, x 0) dy1

i
dx 0

=
Z

Rn−1

h Z

R
f (g(x1, x 0), x 0)

Ø
Ø
Ø
@g
@x1

(x1, x 0)
Ø
Ø
Ø dx1

i
dx 0

under suitable hypotheses on g, and it is enough to prove that the inner integrals
are equal for all x 0. Theorem 1.34 yields the equality of the inner integrals if g is
a C1 function for which g(x1, x 0) is defined for x1 in an interval for any relevant
x 0, and if

Ø
Ø @g
@x1 (x1, x

0)
Ø
Ø is everywhere positive at the points in question.

In the linear case a primitive mapping √ for which g(x) appears in the i th
entry is given by a matrix that is the identity except in the i th row. For √ 0 to be
nonvanishing, the diagonal entry in the i th row must be nonzero. This kind of
matrix is not always elementary but is the product of n elementary matrices.
What needs to be proved for Theorem 3.34 is that apart from translations, any

nonlinear ϕ as in Theorem 3.34 can be decomposed into the product of primitive
transformations and flips, at least locally. The argument will peel primitive
mappings from the right side of ϕ and flips from the left side. In that sense
it will be a nonlinear version of column reduction with primitive mappings and
row reduction with flips. The decomposition will be forced to be local because it
uses the Inverse Function Theorem, which guarantees the existence of an inverse
function only locally.

Lemma 3.35. Suppose that E is an open neighborhood of 0 in Rn and that
ϕ : E → Rn is a C1 function such that ϕ(0) = 0 and ϕ0(0)−1 exists. Then there
is a subneighborhood of 0 in Rn in which ϕ factors as

ϕ = β1 ◦ · · · ◦ βn−1 ◦ √n ◦ · · · ◦ √1,

where each βj is a flip or the identity and each √j is a primitive C1 function in
some open neighborhood of 0 such that √j (0) = 0 and √ 0

j (0)−1 exists.

PROOF. Let us set up an inductive procedure by assuming at the start that

ϕ(x1, . . . , xn) =












x1
...

xi0−1
ϕi0(x1, . . . , xn)

...
ϕn(x1, . . . , xn)












(∗)
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with 1 ≤ i0 ≤ n. We shall make use of the following formula for multiplying two
matrices A and B when B has the property that it is equal to the identity matrix
except possibly in row i0. The formula is

(AB)i j =

Ω Aii0Bi0 j + Ai j Bj j if j 6= i0,
Aii0Bi0i0 if j = i0.

(∗∗)

It will be convenient to identify linear functions like ϕ0(x) with their matrices, so
that the (i, j)th entry ϕ0(x)i j of ϕ0(x) is meaningful.
Let j = j0 be the least row index for which the ( j, i0)th entry of ϕ0(0) is

nonzero. The index j0 exists because ϕ0(0) is nonsingular, and j0 is ∏ i0 since
the top i0 − 1 rows of ϕ0(x)match the corresponding rows of the identity matrix.
Let

βi0 =

Ω identity function if j0 = i0,
flip of entries j0 and i0 if j0 > i0.

Then βi0 ◦ ϕ has the general form of (∗) except that the i th0 and j th0 entries have
been interchanged. By inspection the Jacobian matrix at 0 of βi0 ◦ ϕ equals the
identity matrix in rows 1 through i0 − 1 and has (i0, i0)th entry nonzero.
Thus if we possibly incorporate a composition with a flip into the definition of

ϕ, we may assume that ϕ0(0)i0i0 is nonzero. Put

√(x1, . . . , xn) =














x1
...

xi0−1
ϕi0(x1, . . . , xn)

xi0+1
...
xn














.

Then √ 0(x) is an n-by-n matrix with

√ 0(x)i j =

Ω
δi j if i 6= i0,
ϕ0(x)i0 j if i = i0,

where δi j is the Kronecker delta. Since det√ 0(0) = ϕ0(0)i0i0 6= 0, we can
apply the Inverse Function Theorem (Theorem 3.17) to√ , obtaining aC1 inverse
function √−1 that carries an open neighborhood of 0 onto an open subset of the
domain of ϕ, has √−1(0) = 0, and has derivative (√−1)0(y) = √ 0(x)−1, where
x and y are related by y = √(x) and x = √−1(y). Using (∗∗), we readily verify
that

(√ 0(x)−1)i j =






δi j if i 6= i0,
−(ϕ0(x)i0i0)−1ϕ0(x)i0 j if i = i0 6= j,
(ϕ0(x)i0i0)−1 if i = j = i0.
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Therefore

((√−1)0(y))i j =






δi j if i 6= i0,
−(ϕ0(x)i0i0)−1ϕ0(x)i0 j if i = i0 6= j,
(ϕ0(x)i0i0)−1 if i = j = i0.

Form η = ϕ ◦ √−1. By the chain rule (Theorem 3.10), we have η0(x) =
ϕ0(x)(√−1)0(y), and this is nonsingular for x close enough to 0. Combining
the formula for ((√−1)0(y))i j with the chain rule and (∗∗) gives

η0(x)i j = (ϕ0(x)(√−1)0(y))i j

=

Ω
ϕ0(x)i i0(√−1)0(y))i0 j + ϕ0(x)i j (√−1)0(y))j j if j 6= i0,
ϕ0(x)i i0(√−1)0(y))i0i0 if j = i0,

=

Ω
ϕ0(x)i i0(−(ϕ0(x)i0i0)−1ϕ0(x)i0 j ) + ϕ0(x)i j if j 6= i0,
ϕ0(x)i i0(ϕ0(x)i0i0)−1 if j = i0.

Since ϕ0(x)i i0 is 0 for i < i0, the above formula shows that η0(x)i j = δi j for
i < i0. For i = i0, the formula shows first that η0(x)i0 j is 0 for j 6= i0 and then
that η0(x)i0 j is 1 for j = i0. Thus η0(x)i j = δi j for i ≤ i0. Consequently the i th
entry of η(x) is xi + ci if i ≤ i0, where ci is a constant. Evaluating η at x = 0,
we see that ci = 0. Thus η(x) has the same general shape as (∗) except that the
i th0 entry is now xi0 .
Following this argument inductively for i = 1, . . . , n−1 leads us to a decom-

position
η = βn−1 ◦ · · · ◦ β1 ◦ ϕ ◦ √−1

1 ◦ · · · ◦ √−1
n−1, (†)

where each βj is a flip or the identity andwhere each√j is primitive. The function
η has η(0) = 0 and η0(0) nonsingular, and η has the form

η(x1, . . . , xn) =







x1
...

xn−1
ξ(x1, . . . , xn)





 .

Therefore η is primitive. Solving (†) for ϕ thus exhibits ϕ as decomposed into
the required form. §

PROOF OF THEOREM 3.34. We are to prove that
Z

ϕ(U)

f (y) dy =
Z

U
f (ϕ(x))| detϕ0(x)| dx (∗)
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whenever ϕ : U → ϕ(U) is a C1 function between open sets with a C1 inverse
and f : ϕ(U) → R is continuous and has compact support lying in ϕ(U). In the
argument we shall work with several functions in place of ϕ, and the setU may be
different for each. Wehave seen that (∗) holds ifϕ is a flip or an invertible primitive
function. Let us observe also that (∗) holds if ϕ is a translation ϕ(x) = x + x0 for
some x0 in Rn; the reason is that (∗) in this case can be reduced via successive
uses of Fubini’s Theorem (Corollary 3.33) to the 1-dimensional case, where we
know it to be true by Theorem 1.34.
If (∗) holds when ϕ is either α : U → α(U) or β : α(U) → β(α(U)), then

(∗) holds when ϕ is the composition ∞ = β ◦ α : U → β(α(U)) because
Z

Rn
f (z) dz =

Z

Rn
f (β(y))| detβ 0(y)| dy

=
Z

Rn
f (β(α(x))| detβ 0(α(x))|| detα0(x)| dx

=
Z

Rn
f (∞ (x))| det(β 0(α(x))α0(x))| dx

=
Z

Rn
f (∞ (x))| det ∞ 0(x)| dx,

the last two steps holding by the formula det(BA) = det B det A and the chain
rule (Theorem 3.10).
For any a in the given set U , Lemma 3.35 applies to the function ϕa carrying

U − a to ϕ(U) − ϕ(a) and defined by ϕa(x) = ϕ(x + a) − ϕ(a) because
ϕa(0) = 0 and ϕ0

a(0) = ϕ0(a). The lemma produces an open neighborhood Ea of
0 on which ϕa factors as a composition of flips and invertible primitive functions.
If τx0 denotes the translation τx0(x) = x + x0, then ϕa = τ−ϕ(a) ◦ ϕ ◦ τa shows
that ϕ = τϕ(a) ◦ ϕa ◦ τ−a . Therefore ϕ factors on the open neighborhood Ea + a
as the composition of translations, flips, and invertible primitive functions. From
the previous paragraph we conclude for each a ∈ U that (∗) holds for ϕ if f is
continuous and is compactly supported in the open neighborhood ϕ(Ea + a) of
ϕ(a).
As a varies throughU , the subsetsVa = ϕ(Ea+a) ofϕ(U) form an open cover

of ϕ(U). Fix f continuous with compact support K in ϕ(U). By compactness
a finite subfamily of the family {Va} forms an open cover of K . Applying
Proposition 3.14, we obtain a finite family 9 = {√} of continuous functions
defined on ϕ(U) and taking values in [0, 1] with the properties that

(i) each √ is 0 outside of some compact set contained in some Va ,
(ii)

P
√∈9 √ is identically 1 on K .

Then property (i) and the conclusion of the previous paragraph show that (∗) holds
for √ f . From (ii), we have

P
√ √ f = f on ϕ(U). Since there are only finitely
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many terms in the sum, we can interchange sum and integral and conclude that
(∗) holds for f . This completes the proof. §

One final remark is appropriate: Theorem 3.34 immediately extends from the
scalar-valued case as stated to the case that f takes values in Rm or Cm .

11. Arc Length and Integrals with Respect to Arc Length

This section gives a careful treatment of arc length and of integrals of scalar-
valued functions on simple arcs inRn . Most readers will already have seen some
form of this material in a calculus course, and the point here will be to give precise
definitions and to make the proofs rigorous.
The term “curve” is used in various contexts in mathematics and has not yet

been defined in this book. In this chapter we shall be interested in a paramet-
rically defined curve in Rn , a set given as the image of a continuous function
from a closed bounded interval of the line into Rn . Such a function was called a
“path” in Section II.8, but the term “path” is not commonly used in the present
context.4 Curves can alsobedefined implicitly as the set of simultaneous solutions
to a system of (nonlinear) equations, and this kind of curve will play a role in
Chapter IV.
For parametrically defined curves such as t 7→ c(t), with c(t) in Rn for

each t , the interplay between the function c and its image will be of the utmost
importance in the theory, and we shall pay attention to what notions concerning a
parametrically defined curve are defined by the geometry of the image and what
notions depend on the actual parametrization.

EXAMPLE. The quarter of the unit circle in the first quadrant of the (x, y) plane
is given in three standard ways:

(i) as the image of x 7→ (x,
p
1− x2 ) for 0 ≤ x ≤ 1, i.e., as part of the

graph of y =
p
1− x2 ,

(ii) as the image of y 7→ (
p
1− y2 , y) for 0 ≤ y ≤ 1, i.e., as part of the

graph of x =
p
1− y2 ,

(iii) as the image of t 7→ (cos t, sin t) for 0 ≤ t ≤ π/2, with the angle t as
the parameter.

There are, of course, many other ways that are less standard. When we get to
Green’s Theorem in Section 13, it will be essential to be able to view this set as
given both by (i) and by (ii). In making computations, such as for the length of
the quarter circle, it will often be convenient to view the set as given by (iii).

4This book will resist any temptation to come into conflict with longstanding traditions in
terminology.
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If we think of the function giving a parametrization as tracing out its image as
the domain variable t increases from one endpoint to the other, we realize that we
cannot tell from the image whether particular points have been traced out more
than once. Thus in order to have an easy time isolating useful geometric notions
that are independent of the parametrization, we should assume that this retracing
does not occur. We build that condition into a definition.
A simple arc in Rn is a one-one function ∞ from a closed bounded interval

of the line into Rn . Let ∞1 and ∞2 be simple arcs in Rn with respective domains
[a1, b1] and [a2, b2]. We say that ∞2 is a reparametrization of ∞1 if there exists
a continuous function ϕ : [a1, b1] → [a2, b2] with a continuous inverse such
that ∞1 = ∞2 ◦ ϕ. The relation “is a reparametrization of” is an equivalence
relation. The three parametrizations of the quarter circle in the example above are
reparametrizations of one another; one can check this fact by direct computation,
or one can appeal to Proposition 3.36 below. A reparametrization ϕ must carry
a1 to an endpoint of [a2, b2] because the complement of ϕ(a1) in the image has
to be connected, and we introduce terminology to distinguish these two cases.
A reparametrization is orientation-preserving if ϕ(a1) = a2 and orientation-
reversing if ϕ(a1) = b2.
When two simple arcs are reparametrizations of one another, they have the

same image. The virtue of considering simple arcs is that there is a converse.

Proposition 3.36. If ∞1 and ∞2 are simple arcs in Rn with the same image,
then they are reparametrizations of one another.
PROOF. Let E be the common image of ∞1 and ∞2, and let [a1, b1] and [a2, b2]

be the respective domains. The function ∞2 : [a2, b2] → E is continuous one-one
and onto, and its domain [a2, b2] is compact. Corollary 2.40 shows that it has a
continuous inverseη : E → [a2, b2]. Defineϕ = η◦∞1. Thenϕ is continuous and
one-one from [a1, b1] onto [a2, b2], and it has a continuous inverse and satisfies
∞1 = ∞2 ◦ ϕ because ∞2 ◦ ϕ = ∞2 ◦ (η ◦ ∞1) = (∞2 ◦ η) ◦ ∞1 = ∞1. Thus ∞2 is
exhibited as a reparametrization of ∞1. §

∞ (t0)
∞ (t1)

∞ (t2)

∞ (t3)

∞ (t4)

FIGURE 3.1. Polygonal approximation for estimating arc length.

The arc length of a simple arc is defined to be the least upper bound of the
lengths of all inscribedpolygonal approximations. SeeFigure 3.1. Specifically let
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∞ : [a, b] → Rn be a simple arc. As in Section I.4, let P = {tj }mj=0 be a partition
of [a, b]. We write `(∞ (P)) for the sum of the lengths of the line segments con-
necting the consecutive points ∞ (tj ), namely `(∞ (P)) =

Pm
j=1 |∞ (tj )− ∞ (tj−1)|,

and we put
`(∞ ) = sup

P
`(∞ (P)),

the supremum being taken over all partitions P of [a, b]. We say that ∞ is
rectifiable if `(∞ ) is finite. Simple arcs that are rectifiable will be the ones of
interest to us. Obtaining a usable formula for their length is a question that we
shall address later in this section.
Observe that the length of a simple arc is a geometric property in that it

depends only on the image. In fact, any two simple arcs with the same image are
reparametrizations of one another, according to Proposition 3.36. Thus we may
assume that the two arcs whose lengths are to be compared are ∞ and ∞ ◦ϕ. Then

`(∞ (P)) =
mP

j=1
|∞ (tj ) − ∞ (tj−1)|

=
mP

j=1
|∞ ◦ ϕ(ϕ−1(tj )) − ∞ ◦ ϕ(ϕ−1(tj−1))| = `(∞ ◦ ϕ)(ϕ−1(P)).

Taking the supremum over P , we obtain `(∞ ) = `(∞ ◦ ϕ), as asserted.
A sufficient condition for rectifiability appears in Proposition 3.37. Unfortu-

nately that condition will be too strong for our purposes, as two examples after
the proposition will illustrate.

Proposition 3.37. A sufficient condition for a simple arc ∞ : [a, b] → Rn to
be rectifiable is that the derivative ∞ 0(t) exist for a < t < b and be bounded.

PROOF. LetM be an upper bound for the absolute value of the derivative of each
entry ∞i (t) of ∞ (t), and let a partition P = {ti }mi=0 of [a, b] be given. Applying the
Mean Value Theorem to the i th entry ∞i (tj ) − ∞i (tj−1) of ∞ (tj ) − ∞ (tj−1) shows
that

|∞i (tj ) − ∞i (tj−1)| ≤ M(tj − tj−1).

Squaring both sides, summing on i , and taking the square root gives

|∞ (tj ) − ∞ (tj−1)| ≤ n1/2M(tj − tj−1).

`(∞ (P)) =
mP

j=1
|∞ (tj ) − ∞ (tj−1)| ≤ n1/2M

mP

j=1
(tj − tj−1) = n1/2M(b − a).

Hence

Taking the supremum over all partitions P , we obtain `(∞ ) ≤ n1/2M(b − a). §
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EXAMPLES.
(1) The quarter circle in the example earlier in this section. Here one

parametrization of the arc is ∞ (t) = (t,
p
1− t2 ) for 0 ≤ t ≤ 1. We definitely

want to have this arc fit within our theory, since we know perfectly well that the
length of one quarter of the unit circle ought to be π/2. Yet the derivative of the
second entry is unbounded as t increases to 1. Fortunately the length of a simple
arc does not depend on the parametrization, and we can reparametrize the quarter
circle with angle as the parameter. Then Proposition 3.37 applies and shows the
rectifiablility. Later in this section we shall see that the arc length is indeed π/2
as expected.
(2) The simple arc given by ∞ (0) = 0 and∞ (t) = (t, t2 sin(t−2)) for 0 < t ≤ 1.

The derivative of the second entry exists everywhere. (At t = 0, use of the
definition of derivative shows that the derivative is 0.) A little computation
shows that the derivative is unbounded as t decreases to 0. In this respect this
example is nicer than the previous one because the derivative exists everywhere
this time. But in fact this example is not nice at all: the arc in question is
not rectifiable. To see this, we use a partition that includes as many of the
points t =

p
2/(πk) as we please. The corresponding point in the plane is

pk =
°p
2/(πk), 2 sin(πk/2)/(πk)

¢
, and

|pk+1 − pk | ∏

Ø
Ø
Ø
Ø
2 sin(π(k + 1)/2)

π(k + 1)
−
2 sin(πk/2)

πk

Ø
Ø
Ø
Ø .

The expression on the right collapses to 2/(πk) if k is odd and to 2/(π(k+1)) if k
is even. Since

P
1/k diverges, the sum over k of the expressions on the right can

be made as large as we want by taking enough terms. Thus ∞ is not rectifiable.

Before proceeding, let us make some observations about the definitions of
simple arcs and arc length. Throughout let us suppose that ∞ : [a, b] → Rn is
a simple arc. When a ≤ a0 ≤ b0 ≤ b, we write ∞[a0,b0] for the restriction of ∞ to
the domain [a0, b0]; this too is a simple arc. Also we write −∞ for the reverse
simple arc with domain [−b,−a] and with values given by (−∞ )(t) = ∞ (−t).

(i) If P 0 is a partition obtained by including one additional point in the
partition P , then `(∞ (P)) ≤ `(∞ (P 0)). In fact, if the new point is t 0, what
is happening is that a term of the form |∞ (tj ) − ∞ (tj−1)| in the sum for
`(∞ (P)) gets replaced by an expression |∞ (tj )−∞ (t 0)|+|∞ (t 0)−∞ (tj−1)|
in the sum for `(∞ (P 0)), and the term in the sum for `(∞ (P)) is ≤ the
expression in the sum for is `(∞ (P 0)) by the triangle inequality.

(ii) If a < b, then `(∞ ) > 0. In fact, use of the partition P0 with t0 = a and
t1 = b already has `(∞ (P0)) = |∞ (b) − ∞ (a)|, and this is positive since
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∞ is one-one. Adding further points to the partition cannot decrease the
sum of lengths, by (i), and thus `(∞ ) > 0.

(iii) If a ≤ c ≤ b and if c is a point in a partition P of [a, b], we can
regard P as the union of the set P1 of members of the partition ≤ c
and the set P2 of members of the partition ∏ c, and we evidently have
`(∞ (P)) = `(∞[a,c](P1)) + `(∞[c,b](P2)). Observation (i) implies that
if we are computing lengths, we can disregard partitions of [a, b] not
containing c, and thus

`(∞ ) = `(∞[a,c]) + `(∞[c,b]).

(iv) The simple arc −∞ is an orientation-reversing reparametrization of ∞ ,
and thus `(−∞ ) = `(∞ ).

We shall use these observations to show that any rectifiable simple arc
∞ : [a, b] → Rn can be reparametrized in such away that the new parameter is the
cumulative arc length starting from ∞ (a). For this purpose define a real-valued
function on [a, b] by s(t) = `(∞[a,t]). The function t 7→ s(t) has s(a) = 0 and
s(b) = `(∞ ), and it is strictly increasing by observations (ii) and (iii).

Proposition 3.38. If ∞ : [a, b] → Rn is a rectifiable simple arc, then the
function s : [a, b] → [0, `(∞ )] giving the cumulative arc length starting from
∞ (a) is continuous.

PROOF. We prove continuity from the left, and then we prove continuity from
the right. For continuity from the left, let {tk} be any increasing sequence in [a, b]
with limit t in [a, b]. Since s is an increasing function, we certainly have

lim sup s(tk) ≤ s(t). (∗)

Choose a sequence of partitions Pr of [a, t] with limr `(∞ (Pr )) = `(∞[a,t]).
By observation (i), we may assume that the Pr form an increasing sequence
of partitions. Let the last interval of Pr be [ur , t], and let P[

r be Pr with the last
interval omitted. By observation (i), there is no loss of generality in assuming
that lim ur = t . Then

`(∞[a,t](Pr )) = `(∞[a,ur ](P
[
r )) + |∞ (t) − ∞ (ur )| ≤ s(ur ) + |∞ (t) − ∞ (ur )|.

The lim sup of this inequality on r gives

s(t) ≤ lim sup
r

s(ur ) + lim sup
r

|∞ (t) − ∞ (ur )| = lim sup
r

s(ur ), (∗∗)

the equality holding since ∞ is continuous and {ur } increases to t . Continuity of
s from the left follows by combining (∗) and (∗∗).
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For right continuity let {tk} be a decreasing sequence in [a, b] with limit t . We
are to show that lim s(tk) = s(t). To do so, we make use of the reverse arc −∞
and take into account that {−tk} is an increasing sequence in [−b,−a] with limit
−t . The observations before the proposition show that

s(tk) = `(∞[a,tk ]) = `((−∞ )[−tk ,−a]) = `((−∞ )[−b,−a] − `((−∞ )[−b,−tk ]).

The first half of the proof, applied to −∞ , shows that limk `((−∞ )[−b,−tk ]) =
`((−∞ )[−b,−t]). Therefore

lim
k
s(tk) = `((−∞ )[−b,−a]) − `((−∞ )[−b,−t]) = `((−∞ )[−t,−a] = `(∞[a,t]),

as required. §

As a result of Proposition 3.38 and Corollary 2.40, s : [a, b] → [0, `(∞ )] has
a continuous inverse function. Classically this inverse is written as s 7→ t (s),
but let us call it ω in order to be careful. Then e∞ = ∞ ◦ ω is a simple arc with
domain [0, `(∞ )] and with the same image as ∞ ; it is an orientation-preserving
reparametrization of ∞ , and its parameter is s. The result is that ∞ has been
reparametrized so that the new parameter is the cumulative arc length starting
from ∞ (a). With this parameter in place, we can do integration. As in Section
I.4, we define the mesh of the partition P = {tj }mj=0 of [a, b] to be the number
µ(P) = maxmj=1(tj − tj−1).

Theorem 3.39 (Existence Theorem). If ∞ : [a, b] → Rn is a rectifiable simple
arc and f is a continuous complex-valued function on the image of ∞ , then there
exists a unique complex number, denoted

R
∞ f ds, with the following property.

For any ≤ > 0, there exists a δ > 0 such that any partition P = {tj }mj=0 of [a, b]
with µ(P) < δ has

Ø
Ø
Ø
Z

∞

f ds −
mX

j=1
f (∞ (tj−1))

Ø
Ø∞ (tj ) − ∞ (tj−1)

Ø
Ø
Ø
Ø
Ø < ≤.

Moreover, Z

∞

f ds =
Z `(∞ )

0
f (e∞ (s)) ds,

where e∞ is the reparametrization of ∞ by the cumulative arc length starting from
∞ (a).
REMARKS. The number

R
∞ f ds is called the integral of f over ∞ with respect

to arc length. When ∞ is an arc in the plane and when a nonnegative f is graphed
in R3 with the z axis vertical, the number has a geometric interpretation as the
area under the fence determined by the graph. The proof of the theorem will be
completed after two preliminary lemmas.
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Lemma 3.40. Suppose that ∞ : [a, b] → Rn is a rectifiable simple arc.
Let ω : [0, `(∞ )] → [a, b] be the inverse of the cumulative arc length function
t 7→ s(t) from ∞ (a), and define e∞ = ∞ ◦ ω. Whenever s and s0 are members of
[0, `(∞ )] with s < s0, then

|e∞ (s 0) − e∞ (s)| ≤ |s0 − s|.

PROOF. Define t = ω(s) and t 0 = ω(s 0). Then we have

s 0 − s = `(∞[a,t 0]) − `(∞[a,t]) = `(∞[t,t 0])

= `(∞[ω(s),ω(s0)]) = sup
R

`(∞[ω(s),ω(s0)](R)), (∗)

the supremum being taken over all partitions R of [ω(s), ω(s 0)]. The expression
`(∞[ω(s),ω(s0)](R)) is the length of a polygonal path connecting e∞ (s) = ∞ (ω(s))
to e∞ (s0) = ∞ (ω(s0)), and the triangle inequality shows that

|e∞ (s0) − e∞ (s)| ≤ `(∞[ω(s),ω(s0)](R)).

Since (∗) shows that the right side can be made arbitrarily close to |s0 − s| by
choosing R suitably, the inequality |e∞ (s 0) − e∞ (s)| ≤ |s0 − s| follows. §

Lemma 3.41. If ∞ : [a, b] → Rn is a rectifiable simple arc and if ≤ > 0 is
given, then there exists δ > 0 such that any partition P of [a, b] with µ(P) < δ
has |`(∞ ) − `(∞ (P))| < ≤.
REMARK. This lemma is the special case of Theorem 3.39 in which f is the

constant function 1. We shall see that the special case implies the general case
because of Lemma 3.40.
PROOF. Let ω : [0, `(∞ )] → [a, b] be the inverse of the cumulative arc length

function t 7→ s(t) from ∞ (a), and let ≤ > 0 be given. Choose by definition of
`(∞ ) a partition P∗ of [a, b] with the property that |`(∞ ) − `(∞ (P∗))| ≤ ≤/3.
Say that P∗ has k + 1 points and therefore determines k subintervals of [a, b].
We shall say that these subintervals are the “intervals of P∗.” Put η = ≤

6(k+1)2 .
Theorem 1.10 shows that ω is uniformly continuous; choose δ > 0 small enough
so that |s − s0| ≤ δ implies |t − t 0| ≤ η, where t = ω(s) and t 0 = ω(s 0).
Let P be any partition of [a, b] with µ(P) ≤ δ. Then Q = s(P) = ω−1(P) is

a partition of [0, `(∞ )], and the choice of η makes µ(Q) ≤ η. Define e∞ = ∞ ◦ ω
as above. Sincee∞ is a reparametrization of ∞ , `(e∞ ) = `(∞ ). Thus Q is a partition
of [0, `(e∞ )] with µ(Q) ≤ η.
Let Q∗ be the partition of [0, `(e∞ )] given by Q∗ = ω−1(P∗), and let Q# be

the common refinement of Q and Q∗. Since Q# is a refinement of Q∗,

|`(e∞ ) − `(e∞ (Q#))| ≤ |`(e∞ ) − `(e∞ (Q∗))|

= |`(∞ ) − `(∞ (ω(Q∗))| = |`(∞ ) − `(∞ (P∗))| ≤ ≤/3.
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Therefore

|`(e∞ ) − `(e∞ (Q))| ≤ |`(e∞ ) − `(e∞ (Q#))| + |`(e∞ (Q#)) − `(e∞ (Q))|

≤ |`(e∞ (Q#)) − `(e∞ (Q))| + ≤/3. (∗)

Many of the terms that contribute to the polygonal length `(e∞ (Q)) contribute
also to `(e∞ (Q#)) and therefore cancel. Such a cancellation occurs except when
the interval of Q fails to lie in a single interval of Q∗. In the exceptional case
an interval I of Q is the union of two or more intervals I # of Q#, and I contains
a point of Q∗ in its interior. For these exceptional cases we shall regard the
contribution from I to `(e∞ (Q)) as one kind of error term, and we shall regard the
contribution to `(e∞ (Q#)) from the two or more intervals I # as a second kind of
error term.
Since Q∗ has k+1 points, at most k+1 such points are involved in exceptional

intervals. Hence there at most k + 1 such intervals I . Each such is of the form
[s, s 0] and contributes to `(e∞ (Q)) an amount |e∞ (s0) − e∞ (s)| with

|e∞ (s0) − e∞ (s)| ≤ |s0 − s| ≤ µ(Q) ≤ η

by Lemma 3.40. The first error term, coming from their total contribution to
`(e∞ (Q)), is thus ≤ (k + 1)η.
Similarly each of the constituent intervals I # of I contributes to `(e∞ (Q#)) an

amount≤ η. Each such interval I # contains a point of Q∗ at one end or the other
or possibly in its interior. The number of constituent intervals is ≤ 2(k + 1), and
the total contribution to `(e∞ (Q#)) from the constituents of the exceptional I is
≤ 2(k + 1)η. Since at most k + 1 intervals I are exceptional, the second error
term, coming from the total contribution to `(e∞ (Q#)), is ≤ 2(k + 1)2η.
Taking the two error terms into account and using (∗), we see that

|`(e∞ ) − `(e∞ (Q))| ≤ ≤/3+ (k + 1)η + 2(k + 1)2η ≤ ≤/3+ ≤/3+ ≤/3 = ≤.

Since |`(e∞ ) − `(e∞ (Q))| = |`(∞ ) − `(P)|, this inequality proves the lemma. §

PROOF OF THEOREM 3.39. Let M be an upper bound for | f | on the image of
∞ . Let s : [a, b] → [0, `(∞ )] be the cumulative arc length function from ∞ (a)
given by s(t) = `(∞ |[a,t]), and let ω : [0, `(∞ )] → [a, b] be its inverse function.
Define e∞ = ∞ ◦ ω. If P = {tj }mj=0 is a partition of [a, b], then ω−1(P) = {sj }mj=0
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is a partition of [0, `(∞ )], and
Ø
Ø R `(∞ )

0 f (e∞ (s)) ds −
mP

j=1
f (∞ (tj−1))|∞ (tj ) − ∞ (tj−1)|

Ø
Ø

=
Ø
Ø R `(∞ )

0 f (e∞ (s)) ds −
mP

j=1
f (e∞ (sj−1))|e∞ (sj ) − e∞ (sj−1)|

Ø
Ø

≤
Ø
Ø R `(∞ )

0 f (e∞ (s)) ds −
mP

j=1
f (e∞ (sj−1))|sj − sj−1|

Ø
Ø

+
Ø
Ø
mP

j=1
f (e∞ (sj−1))

°
|sj − sj−1| − |e∞ (sj ) − e∞ (sj−1)|

¢ØØ.

The first of the two terms on the right side of the inequality is the error term in
approximating a Riemann integral by a Riemann sum, and Theorem 1.35 shows
that it tends to 0 as the mesh tends to 0. By Lemma 3.40 the second of the two
terms is

≤ M
mP

j=1

°
|sj − sj−1| − |e∞ (sj ) − e∞ (sj−1)|

¢
= M

°
sm − s0 − `(e∞ (ω−1(P)))

¢

= M
°
`(e∞ ) − `(∞ω(ω−1P))

¢
= M

°
`(∞ ) − `(∞ (P))

¢
,

and Lemma 3.41 shows that this expression tends to 0 as the mesh tends to 0. §

Tobeable tomakecalculations,we introduceanicenessconditionon rectifiable
arcs. In Section 2 we said that an Rn valued function on an open set is of class
C1 if it is everywhere differentiable and if its derivative is continuous. We need
to extend this definition to allow the domain to be a closed interval. To do so, we
say that a simple arc ∞ : [a, b] → Rn is tamely behaved if it is of class C1 on
(a, b) and if near each endpoint, each entry of ∞ 0 has the property of being either
bounded below or bounded above (or both).5

Theorem 3.42. If ∞ : [a, b] → Rn is a tamely behaved simple arc, then ∞ is
rectifiable, and

`(∞ ) = lim
a0↓a, b0↑b,
a<a0<b0<b

Z b0

a0
|∞ 0(t)| dt

5Other authors use other concepts here, and the names for them vary. The notion of “tamely
behaved” on [a, b] is emphatically different from the notion of having a continuous derivative on
[a, b] in the sense of Section A2 of Appendix A, and the extra generality here is vital. The exact
notion that is needed is that |∞ 0| is “Lebesgue integrable” on [a, b], as will be shown in Section V.10,
but “tamely behaved” is sufficient for the theory in this chapter. Example 1 following Proposition
3.37 shows that it would be too restrictive to assume as in Section A2 of Appendix A that ∞ is of
classC1 on (a, b) and that the derivative has a finite one-sided limit at each endpoint, and Example 2
shows that we encounter nonrectfiable arcs if we assume instead that ∞ is of class C1 on (a, b) and
extends beyond the endpoints so as to be everywhere differentiable.
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REMARKS. The Riemann integral is well defined for each a0 and b0 since |∞ 0(t)|
is continuous, and the limit indicates that the length is obtained by passing to the
limit as a0 and b0 tend to a and b. The limits as a0 decreases to a and b0 increases
to b can be taken in either order or in any joint fashion, according to Theorem
1.13. One frequently writes this formula in shortcut language as

`(∞ ) =
Z b

a
|∞ 0(t)| dt

even though Riemann integrals are not defined for unbounded functions.6 Recall
that the cumulative arc length function is given by s(t) = `(∞[a,t]). Then the
above formula shows that

s(t) =
Z t

a
|∞ 0(u)| du

PROOF. With a0 and b0 fixed such that a < a0 < b0 < b, Proposition 3.37
shows that ∞[a0,b0] is rectifiable. Let ≤ > 0 be given. Choose δ1 > 0 small
enough by Lemma 3.41 so that any partition P of [a0, b0] with µ(P) < δ has
|`(∞[a0,b0]) − `(∞[a0,b0](P))| < ≤, choose δ2 > 0 small enough by Theorem 1.35

so that
Ø
Ø
mP

j=1
|∞ 0(tj )|(tj − tj−1) −

R b0

a0 |∞ 0(t) dt
Ø
Ø < ≤, and choose δ3 > 0 small

enough by uniform continuity (Theorem 1.10) so that |t 0 − t | < δ3 implies
|∞ 0(t 0) − ∞ 0(t)| < ≤. Put δ = min{δ1, δ2, δ3}. Then any partition P of [a0, b0]
with µ(P) < δ satisfies all three of the following conditions:

|`(∞[a0,b0]) − `(∞[a0,b0](P))| < ≤
Ø
Ø
mP

j=1
|∞ 0(tj )|(tj − tj−1) −

R b0

a0 |∞ 0(t) dt
Ø
Ø < ≤

|∞ 0(t 0) − ∞ 0(t)| < ≤ whenever t and t 0 are in the same interval of P.





(∗)

Let P = {tj }mj=0 be any such partition of [a0, b0]. Then

`(∞[a0,b0](P)) =
mP

j=1
|∞ (tj ) − ∞ (tj−1)| (∗∗)

by definition. By the Mean Value Theorem, to each i and j corresponds a real
number t#i, j with tj−1 < t#i, j < tj such that the i th component of ∞ (tj ) − ∞ (tj−1)

6Lebesgue integrals are introduced in Chapter V. The integral in this theorem can be interpreted
as a Lebesgue integral, and then no limit sign is needed.
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is of the form

∞i (tj ) − ∞i (tj−1) = ∞ 0
i (t

#
i, j )(tj − tj−1)

=
°
∞ 0
i (tj ) + (∞ 0

i (t
#
i, j ) − ∞ 0

i (tj ))
¢
(tj − tj−1)

= (∞ 0
i (tj ) + ϕ

( j)
i )(tj − tj−1),

say, with |ϕ( j)
i | ≤ ≤. If ϕ( j) denotes the vector whose i th entry is ϕ

( j)
i , then the

triangle inequality gives

|∞ (tj ) − ∞ (tj−1) − ∞ 0(tj )(tj − tj−1)| ≤ |ϕ( j)|(tj − tj−1) ≤ n1/2≤(tj − tj−1),

n being the dimension. By the triangle inequality,
Ø
Ø|∞ (tj ) − ∞ (tj−1)| − |∞ 0(tj )|(tj − tj−1)

Ø
Ø ≤ n1/2≤(tj − tj−1). (†)

Summing (†) on j and again using the triangle inequality, we obtain
Ø
Ø

kP

j=1
|∞ (tj ) − ∞ (tj−1)| −

kP

j=1
|∞ 0(tj )|(tj − tj−1)

Ø
Ø

≤
kP

j=1

Ø
Ø|∞ (tj ) − ∞ (tj−1)| − |∞ 0(tj )|(tj − tj−1)

Ø
Ø ≤ n1/2≤(b0 − a0).

(††)

Therefore
Ø
Ø`(∞[a0,b0]) −

R b0

a0 |∞ 0(t) dt
Ø
Ø ≤

Ø
Ø`(∞[a0,b0]) − `(∞[a0,b0](P))|

+
Ø
Ø`(∞[a0,b0](P)) −

mP

j=1
|∞ (tj ) − ∞ (tj−1)|

Ø
Ø

+
Ø
Ø
mP

j=1
|∞ (tj ) − ∞ (tj−1)| −

mP

j=1
|∞ 0(tj )|(tj − tj−1)

Ø
Ø

+
Ø
Ø
mP

j=1
|∞ 0(tj )|(tj − tj−1) −

R b0

a0 |∞ 0(t) dt
Ø
Ø.

The first line on the right side of the above display is≤ ≤ by the first condition in
(∗), the second line is 0 by (∗∗), the third line is≤ n1/2≤(b0−a0) as a consequence
of (††), and the fourth line is ≤ ≤ by the second condition in (∗). Thus the left
side is ≤ (2+ n1/2(b0 − a0))≤, and the proof is complete.
This proves the formula `(∞ |[a0,b0]) =

R b0

a0 |∞ 0(t)| dt . We are left with proving
that ∞ is rectifiable on [a, b] as a consequence of the fact that ∞ is tamely behaved,
since the limit formula for `(∞ )will then follow from Proposition 3.38. Theorem
1.13, which is an interchange-of-limits result, shows that the two endpoints a and
b operate independently of each other, and it will be enough by symmetry to treat
b. Thus we want to see that ∞ is rectifiable on [a0, b], and the relevant assumption
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is that each entry of ∞ 0(t) is bounded below near b, or is bounded above near b,
or both.
Imagine a fixed partition and the computation of the polygonal length from it.

A typical term is of the form |∞ (tj ) − ∞ (tj−1)|, where tj−1 and tj are consecutive
points of the partition. If an entry of the column vector ∞ (t) is replaced by its
negative, the value of the term in the computation of the partition does not change.
Thus we may assume that each entry of ∞ 0(t) is bounded below.
Nextwe can replace∞ by the sumof it and any rectifiable arc ≥(t), and the effect

on the computation will be harmless, as a consequence of the triangle inequality.
The rectifiable arc we choose is one of the form ≥(t) = tc, where c is a vector of
constants. (This is rectifiable by Proposition 3.37, for example.) With the entries
of c chosen large enough, the effect will be to make all the entries of ∞ 0(t) be
everywhere positive on [a0, b]. Choosing the vector of constants suitably, we can
arrange that every entry of ∞ 0(t) is ∏ 0.
Thus we may assume that ∞ 0(t) is continuous on [a0, b) and that every entry

∞i (t) of ∞ (t) is positive there. Hence every entry∞i (t) is a nondecreasing function.
We make use of the inequality

° nP

i=1
|ci |2

¢1/2
≤

nP

i=1
|ci |,

which follows by squaring both sides, canceling the squared terms, and observing
that the left side reduces to 0while the right side reduces to the sumof nonnegative
terms. Using this inequality we compute that

kP

j=1
|∞ (tj ) − ∞ (tj−1)| =

kP

j=1

° nP

i=1
(∞i (tj ) − ∞i (tj−1))2

¢1/2

≤
kP

j=1

nP

i=1
|∞i (tj ) − ∞i (tj−1)|

≤
kP

j=1

nP

i=1
(∞i (tj ) − ∞i (tj−1)) since ∞i is nondecreasing

=
nP

i=1
(∞i (b) − ∞i (a0)),

and this is bounded independently of the partition. Thus ∞ is rectifiable. §

Corollary 3.43. If ∞ : [a, b] → Rn is a tamely behaved simple arc and f is
a continuous complex-valued function on the image of ∞ , then the integral of f
over ∞ with respect to arc length is given by

Z

∞

f ds =
Z b

a
f (∞ (t))|∞ 0(t)| dt.
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PROOF. Theorem 3.39 and the boxed formula in the remarks with Theorem
3.42 give
R
∞ f ds =

R `(∞ )

0 f (e∞ (s)) ds =
R b
a f (e∞ (s(t))) dsdt dt =

R b
a f (∞ (t))|∞ 0(t)| dt. §

EXAMPLE. Cycloid. A cycloid is the locus of points swept out by a point
on the circumference of a circle when the circle rolls without slipping along a
straight line. When the radius of the circle is r and the circle rolls along the x-axis
starting from the origin, the parametric equations are

x = r(t − sin t)
y = r(1− cos t).

Aplot appears in Figure 3.2. The cusps occur on the x-axiswhen y equals 0, hence
when t = 2πm for some integer m, and the corresponding value of x is 2πmr .

y

x

FIGURE 3.2. Cycloid.

Theorem 3.42 says that the length s(t) of the locus swept out from 0 to t satisfies

ds
dt =

q° d
dt (r(t − sin t))

¢2
+

° d
dt (r(1− cos t))

¢2

= r
p
2− 2 cos t

= 2r | sin(t/2)|.

Therefore s(t) = 4r(1− cos(t/2)) for 0 ≤ t ≤ 2π.

The end of the first arch corresponds to t = 2π , and the length of the arch is
s(2π) = 8r . If, say, we build a fence over the first arch of the cycloid with height
(1− cos t) in the z direction above (x(t), y(t)), then Corollary 3.43 allows us to
use the formula ds

dt = 2r sin(t/2) to compute the area of the fence as

area =
R
first
arch

(height) ds =
R 2π
0 (1− cos t)(2r sin(t/2)) dt.

The first cusp occurs at the point (x, y) = (2πr, 0), which corresponds to t = 2π .
Notice that the simultaneousC1 behavior of x(t) and y(t) at t = 2π is insufficient
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to rule out corners and other irregular behavior for the curve. However, there is
a sufficient condition to rule out such irregular behavior: if (x(t), y(t)) is a
parametrically defined C1 curve in R2 and at least one of x 0(t0) and y0(t0) is
nonzero, as is the case here at t = 2π , then irregular behavior can be ruled out
near t = t0. The reason is that the Inverse Function Theorem in principle allows
us locally to solve one of x(t) and y(t) for t near t = t0 and to substitute the result
into the other of x(t) and y(t). The result is that one of x and y is exhibited as a
C1 function of the other.

12. Line Integrals and Conservative Vector Fields

While integrals with respect to arc length are motivated by the geometric problem
of calculating the area under the graph of a numerical-valued function on a
parametrically defined curve in the plane, line integrals are motivated by physical
considerations. In physics thework done (energy expended) by a constant force in
moving an object is the product of the force by the displacement.7 More precisely
force is given as a vector quantity, say F ; the displacement is given by another
vector quantity, say s; and the product in question is the dot product F · s. In
particular, no work is done when the motion is perpendicular to the force.
When the force varies from point to point and the object moves along a curve,

it is natural to think of replacing the product F · s by a sum of contributions
from successive small displacements

P
Fj · (sj − sj−1) and to hope for a realistic

answer in the limit as the displacements tend to 0. This situation arises in the
case of motion in an electrical, gravitational, or magnetic field. Themathematical
object that abstracts this kind of field in physics is a “vector field.”
A vector field on a subset U of Rn is a function F : U → Rn . The vector

field is continuous if F is a continuous function.8 The traditional geometric
interpretation of F , particularly when n = 2 or n = 3, is to attach to each point p
of U the vector F(p) as an arrow based at p. This interpretation is appropriate,
for example, if F represents the velocity vector at each point in space of a time-
independent fluid flow. It is appropriate also for an electrical, gravitational, or
magnetic field. Let an object (or particle) move along a parametrically defined
curve ∞ (t) in Rn , starting at t = a and ending at t = b.
For the moment we suppose that the curve is a simple rectifiable arc. It will

be important eventually to allow for more general parametrically defined curves,
such as ones that retrace themselves and ones whose value at a equals the value at

7The exact wording is important. Careless wording can lead to an answer that differs in a sign
from the usual notion of work.

8In Section IV.4 we shall consider “smooth vector fields.” In this case we shall require U to be
open in Rn , so that the notion of a smooth function is meaningful.
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b. But for now, we stick with rectifiable simple arcs. We think of computing an
approximation to the work done by the force as a sum of amounts involving small
displacements. If P = {tj }mj=1 is a partition of [a, b], the vector F(∞ (tj−1)) plays
the role of Fj in the above formula, and the displacements sj − sj−1 above are the
differences ∞ (tj ) − ∞ (tj−1). Then the work done by the force field in moving the
particle along the curve is to be approximately given by a sum

mP

j=1
F(∞ (tj−1)) · (∞ (tj ) − ∞ (tj−1)).

The hope is that a suitable limit of this quantity exists and can be computed.
One virtue of formulating work as a limit of a sum of this kind is that we can

see by inspection that the answer is independent of the parametrization as long as
a reparametrization is orientation-preserving. In fact, let ∞1 : [a1, b1] → Rn and
∞2 : [a2, b2] → Rn be simple arcs related by ∞1 = ∞2 ◦ ϕ, where ϕ : [a1, b1] →
[a2, b2] is continuous, has a continuous inverse, and has ϕ(a1) = a2. Then the
same kind of computation as for arc length before Proposition 3.37 shows that
the approximating sum for ∞1 using the partition P = {tj }mj=0 is equal to the
approximating sum for ∞2 using the partition ϕ(P) = {uj }kj=0, where uj = ϕ(tj ).
That being said, the existence theorem is as follows.

Theorem 3.44 (Existence Theorem). If ∞ : [a, b] → Rn is a rectifiable simple
arc and F is a continuous vector field on the image of ∞ , then there exists a unique
number, denoted

R
∞ F · ds, with the following property. For any ≤ > 0, there

exists a δ > 0 such that any partition P = {tj }mj=0 of [a, b] with µ(P) < δ has

Ø
Ø
Ø
Z

∞

F · ds−
mX

j=1
F(∞ (tj−1)) ·

°
∞ (tj ) − ∞ (tj−1)

¢ØØ
Ø < ≤.

REMARKS. The number
R
∞ F ·ds is called the line integral of F over ∞ . In this

generality and unlike in the case of integration with respect to arc length, a line
integral is not given in terms of a Riemann integral. Instead it is given in terms
of a generalization of the Riemann integral called a “Stieltjes integral.” Stieltjes
integrals are not developed in this book other than in problems at the end of this
chapter,9 and accordingly we omit the proof of Theorem 3.44.

9The defining properties of “Stieltjes integration” as in the proof are simple enough that they
can be summarized here. The first relevant fact is that for any partition P = {tj }mj=0 of [a, b], each
component ∞i (t) of ∞ (t) satisfies an inequality

Pm
j=1 |∞i (tj )−∞i (tj−1)| ≤

Pm
j=1 |∞ (tj )−∞ (tj−1)| ≤

`(∞ ), a condition summarized in the language of Section VI.9 below by saying that ∞i is of “bounded
variation” on [a, b]. Proposition 6.54 below will show that such a function is the difference of two
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Let us observe from the approximation formula in Theorem 3.44 that if −∞
denotes the reverse simple arc of ∞ , then the line integral of F over −∞ is the
negative of the line integral of F over ∞ .
We turn now to the question of obtaining a useful formula for the value of a

line integral. We make the same assumption as in the case of arc length: that the
simple arc ∞ is tamely behaved. Theorem 3.42 ensures that ∞ is rectifiable.

Theorem 3.45. If ∞ : [a, b] → Rn is a tamely behaved simple arc and if F
is a continuous vector field on the image of ∞ , then the line integral of F over ∞ ,
which exists by Theorem 3.44, is given by

Z

∞

F · ds = lim
a0↓a, b0↑b,
a<a0<b0<b

Z b0

a0
F(∞ (t)) · ∞ 0(t) dt.

REMARKS.
(1) The proof will follow these remarks and an example.
(2) The limit sign is present in the formula because we are allowing ∞ 0(t)

to be unbounded near either endpoint. It is customary to write the integral asR b
a in every case even though Riemann integrals are not defined for unbounded
functions,10 and we shall follow this convention once Theorem 3.45 has been
proved. Then the displayed formula in the theorem becomes

Z

∞

F · ds =
Z b

a
F(∞ (t)) · ∞ 0(t) dt

(3) Before this theorem the expression dswas only symbolic; it meant nothing
mathematically. Now we can see that it provides a handy reminder that equality
in the boxed formula comes by taking ds/dt = ∞ 0(t). (For comparison we know
from Theorem 3.42 that the derivative of the cumulative arc length of a tamely
behaved simple arc is ds/dt = |∞ 0(t)|.)
(4) The Schwarz inequality gives
Ø
Ø
Ø
R b
a F(∞ (t)) · ∞ 0(t) dt

Ø
Ø
Ø ≤

R b
a |F(∞ (t)) · ∞ 0(t)| dt ≤

R b
a |F(∞ (t)||∞ 0(t)| dt,

nondecreasing functions. There is even a natural such decomposition as a difference. (Problem 23
at the end of Chapter VI will show for this case that the two nondecreasing functions are continuous,
and this fact simplifies the relevant theory somewhat.) Stieljes integration is defined relative to a
nondecreasing function α in a way similar to that for Riemann integration. The new ingredient
is that whenever the length of an interval [a0, b0] appears in an argument, it is to be replaced by
α(b0) − α(a0). For more details see Problems 24–26 at the end of this chapter.

10Lebesgue integrals are introduced in Chapter V. The integral in this theorem can be interpreted
as a Lebesgue integral, and then no limit sign is needed.
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which translates into a way of estimating a line integral in terms of an integral
with respect to arc length:

Ø
Ø
Ø
Z

∞

F · ds| ≤
Z

∞

|F | ds

(5) The traditional way of writing the line integral is as
Z

∞

F · ds =
Z

∞

F1 dx1 + · · · + Fn dxn

with just the one integral sign for all n terms. This too is handy notation, since
it points to an evaluation procedure for the line integral that correctly gives the
formula of the theorem. Namely for each argument xi of F , we substitute xi =
∞i (t), and for each dxi we use the formula dxi = dxi

dt dt = ∞ 0
i (t) dt . Here is an

example.

EXAMPLE. To evaluate the line integral of the vector field F(x, y, z) =
(x, x2y2, x3z3) over the simple arc ∞ (t) = (t5, t4, 1), defined for 0 ≤ t ≤ 1,
we use ∞ 0(t) = (5t4, 4t3, 0) and compute

R
∞ x dx + x2y2 dy + x3z3 dz

=
R 1
0 t

5(5t4 dt) + (t5)2(t4)2(4t3 dt) + (t5)3(1)30 dt

=
R 1
0 (5t9 + 4t21 + 0) dt = 5

10 + 4
22 = 1

2 + 2
11 = 15

22 .

PROOF OF THEOREM 3.45. For the moment fix a0 and b0 such that a < a0 <
b0 < b. We prove the formula of the theorem on [a0, b0]. Write the values of F
in terms of the standard basis {ei } of Rn as F(t) =

Pn
i=1 Fi (t)ei . By linearity it

is enough to handle a single Fi . Fix that i .
Let ≤ > 0 be given. Choose δ1 > 0 by Theorem 3.44 to be small enough so

that any partition P = {tj }mj=0 of [a0, b0] with µ(P) < δ1 has

Ø
Ø
Ø
R b0

a0 Fi (∞ (t))∞ 0
i (t) dt −

mP

j=1
Fi (∞ (tj−1))

°
∞i (tj ) − ∞i (tj−1)

¢ØØ
Ø < ≤. (∗)

Choose δ2 > 0 small enough by Theorem 1.35 so that any partition P = {tj }mj=0
of [a0, b0] with µ(P) < δ2 has

Ø
Ø
mP

j=1
Fi (∞ (tj−1))∞ 0

i (tj−1)(tj − tj−1) −
R b0

a0 Fi (∞ (t))∞ 0
i (t) dt

Ø
Ø < ≤. (∗∗)
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Let C be an upper bound for |Fi | on the image of ∞ . Choose δ3 > 0 by
uniform continuity of ∞ 0(t) on [a0, b0] (Theorem 1.10) so that |∞ 0(t 0) − ∞ 0(t)| <
C−1(b0 − a0)−1≤ whenever t 0 and t are members of [a0, b0] with |t 0 − t | < δ3.
Put δ = min{δ1, δ2, δ3}. Then any partition P of [a0, b0] with µ(P) < δ

satisfies (∗), (∗∗), and

|∞ 0
i (t

#
i, j ) − ∞ 0

i (tj−1)| < C−1(b0 − a0)−1≤ whenever tj−1 ≤ t#i, j ≤ tj . (†)

Let P = {tj }mj=0 be any such partition. By the Mean Value Theorem the i th
component of ∞ (tj ) − ∞ (tj−1) is of the form

∞i (tj ) − ∞i (tj−1) = ∞ 0
i (t

#
i, j )(tj − tj−1)

=
°
∞ 0
i (tj−1) + (∞ 0

i (t
#
i, j ) − ∞ 0

i (tj−1))
¢
(tj − tj−1)

= (∞ 0
i (tj−1) + ϕ

( j)
i )(tj − tj−1),

say, and (†) shows that |ϕ( j)
i | ≤ C−1(b0 − a0)−1≤. We estimate

Ø
Ø R

∞[a0,b0]
Fiei · ds−

R b0

a0 Fi (∞ (t))∞ 0
i (t) dt

Ø
Ø

≤
Ø
Ø R

∞[a0,b0]
Fiei · ds−

mP

j=1
Fi (∞ (tj−1))ei ·

°
∞ (tj ) − ∞ (tj−1)

¢ØØ

+
Ø
Ø
mP

j=1
Fi (∞ (tj−1))

°
∞i (tj ) − ∞i (tj−1)

¢
−

mP

j=1
Fi (∞ (tj−1))∞ 0(tj−1)(tj − tj−1)

Ø
Ø

+
Ø
Ø
mP

j=1
Fi (∞ (tj−1))∞ 0(tj−1)(tj − tj−1) −

R b0

a0 Fi (∞ (t))∞ 0
i (t) dt

Ø
Ø.

The first line of the right side of the above inequality is < ≤ by (∗), and the third
line is < ≤ by (∗∗). The second line on the right side is equal to

Ø
Ø
mP

j=1
Fi (∞ (tj−1))

°
∞i (tj ) − ∞i (tj−1) − ∞ 0(tj−1)(tj − tj−1)

¢ØØ

=
Ø
Ø
mP

j=1
Fi (∞ (tj−1))(ϕ

( j)
i )(tj − tj−1)

Ø
Ø

≤
mP

j=1
|Fi (∞ (tj−1))||ϕ

( j)
i |(tj − tj−1)

≤
mP

j=1
C(C−1(b0 − a0)−1≤)(tj − tj−1)

= ≤.
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The whole right side is therefore < 3≤.
Since ≤ is arbitrary,

Ø
Ø R

∞[a0,b0]
Fiei · ds −

R b0

a0 Fi (∞ (t))∞ 0
i (t) dt

Ø
Ø = 0. Hence

R
∞[a0,b0]

Fiei · ds =
R b0

a0 Fi (∞ (t))∞ 0
i (t) dt , and the proof is complete for the interval

[a0, b0].
To complete the proof, we need to consider the effects from near the endpoints.

For the right endpoint it is enough to show that

lim sup
b0↑b

Ø
Ø
Ø

P

1≤ j≤m,
b0≤tj≤b

Fi (∞ (tj−1))ei ·
°
∞ (tj ) − ∞ (tj−1)

¢ØØ
Ø = 0 (††)

and
lim sup
b0↑b, b0≤b00

Ø
Ø
Ø
R b00

b0 Fi (∞ (t))∞ 0
i (t) dt

Ø
Ø
Ø = 0. (‡)

Still with C as an upper bound for |Fi | on the image of ∞ , we have
Ø
Ø
Ø

P

1≤ j≤m,
b0≤tj≤b

Fi (∞ (tj−1))ei ·
°
∞ (tj ) − ∞ (tj−1)

¢ØØ
Ø ≤ C

P

1≤ j≤m,
b0≤tj≤b

Ø
Ø∞ (tj ) − ∞ (tj−1)

Ø
Ø

≤ C`(∞ |[b0,b]),

and the right side has limit 0 as b0 ↑ b by Proposition 3.38. This proves (††). For
(‡) we have Ø

Ø
Ø
R b00

b0 Fi (∞ (t))∞ 0
i (t) dt

Ø
Ø
Ø ≤ C

R b00

b0 |∞ 0(t)| dt,

and Theorem 3.42 shows that the right side is = C`(∞ |[b0,b00]). In turn this is
≤ C`(∞ |[b0,b]), which has limit 0 as b0 ↑ b by Proposition 3.38.
This proves (‡). A similar argument applies to handle the left endpoint of

[a, b] and completes the proof of the theorem. §

Now we enlarge the definition of the kind of parametrically defined curve we
consider, no longer restricting ourselves to simple rectifiable arcs. A continuous
function ∞ : [a, b] → Rn is said to be a piecewiseC1 curve if there is a partition
P0 = {cj }mj=0 of [a, b] such that each ∞ |[cj−1,cj ] for 1 ≤ j ≤ m is a tamely behaved
simple arc in the sense of the previous section. Piecewise C1 curves can cross
themselves and can even retrace their steps. Most parametrically defined curves
that arise in practice are piecewise C1. The piecewise C1 curve ∞ : [a, b] → Rn

is said to be closed if ∞ (a) = ∞ (b). The adjective simple is sometimes used in
connection with closed curves; it means that ∞ (a) = ∞ (b) but that otherwise ∞
is one-one.
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If ∞ : [a, b] → Rn is a piecewise C1 curve given relative to a partition P0 as
above and if F is a vector field on the image of ∞ , then the definition of the line
integral of F over ∞ extends to this situation by the formula

Z

∞

F · ds =
mX

j=1

Z

∞[cj−1,cj ]

F · ds.

As far as line integrals go, the value of a line integral over a single con-
stituent simple arc of the piecewise C1 curve ∞ is unchanged by any orientation-
preserving reparametrization, as we know. However, the value changes in sign
if the reparametrization is orientation-reversing. For this reason it is common
in diagrams of piecewise C1 curves to indicate the direction that such a curve is
traced out.
One often encounters line integrals over piecewiseC1 curves of the kind shown

in Figure 3.3, in which geometrically one of the segments is a reparametrization
of the reverse of another. Then the contributions to the line integral from the two
segments cancel.

FIGURE 3.3. A piecewise C1 curve that retraces part of itself.

In electrostatics the (vector) field resulting from a configuration of charges has
an accompanying potential, a scalar-valued function whose value at a point gives
the change in potential energy of moving a unit charge from infinity to that point.
The existence of that potential imposes a condition on the vector field, and we
now study that condition.
Any connected open subset of Rn is called a region.

Lemma 3.46. Any two points in a region U of Rn can be connected by a
piecewise C1 curve.

PROOF. Fix p inU , and let E be the set E of points inU that can be connected to
p by a piecewiseC1 curve. The set E is nonempty, and it is open since it certainly
contains an open ball about any of its members. To see that it is relatively closed
in U , suppose that {xk} is a sequence in E with a limit point q in U . Choose an
open ball about q that is contained in U . Some xk lies in the ball, and xk can be
connected to q by a line segment within the ball. Since xk can be connected to
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q by a piecewise C1 curve in U , the extension of the curve by the straight line
segment is a piecewise C1 curve connecting p to q. Therefore E is relatively
closed. Since U is connected, E = U . §

If f is aC1 numerical-valued function on an open subsetU ofRn , the gradient
of f , denoted ∇ f , is the vector field given by the transpose of the row vector
[ f 0(x)] for the derivative f 0(x), namely11

∇ f =






@ f
@x1
...

@ f
@xn




 .

Proposition 3.47. If F is a continuous vector field on a region U of Rn , then
F is the gradient of aC1 numerical-valued function onU if and only if the values
of the line integrals

R
∞ F · ds over piecewise C1 curves ∞ : [a, b] → U depend

only on the endpoints ∞ (a) and ∞ (b) and not on the values of ∞ (t) for a < t < b.

REMARKS. Briefly F is a gradient if and only if “line integrals of F in U
are independent of the path.” In this case we say that the vector field F is
conservative.

PROOF OF NECESSITY. Suppose F = ∇ f . We first give the argument under
the assumption that ∞ : [a, b] → Rn is a tamely behaved simple arc. In this case
the chain rule gives

R
∞ F · ds =

R b
a F(∞ (t)) · ∞ 0(t) dt =

R b
a

nP

i=1

@ f
@xi (∞ (t))∞ 0

i (t) dt

=
R b
a

d
dt ( f ◦ ∞ )(t) dt = ( f ◦ ∞ )(b) − ( f ◦ ∞ )(a),

and the right side depends only on ∞ (a) and ∞ (b). For a general piecewise C1
curve ∞ , we write

R
∞ F · ds as a sum of terms

R
∞ |[cj−1,cj ]

F(∞ (t)) · ∞ 0(t) dt and go
through the above argument. The sum of all the terms is then

mP

j=1
[( f ◦ ∞ )(cj ) − ( f ◦ ∞ )(cj−1)] = ( f ◦ ∞ )(b) − ( f ◦ ∞ )(a),

and again the right side depends only on ∞ (a) and ∞ (b). §

PROOF OF SUFFICIENCY. Suppose
R
∞ F · ds depends only on ∞ (a) and ∞ (b),

and fix a point p in U . If x is given in U , define f (x) =
R
∞ F · ds for any

11The symbol ∇ is called “nabla.”
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piecewiseC1 curve ∞ connecting p to x . Let us see that f is of classC1 inU and
that F = ∇ f . Fix attention on points in U in a closed ball centered at x0. On
the closed ball, |F | is bounded, say by M . Such a point x can be connected to x0
by a straight line segment ∞0, and | f (x) − f (x0)| = |

R
∞0
F · ds| ≤

R
∞0

|F | ds ≤
M`(∞0) = M|x − x0|. Hence f is continuous at x0.
Similarly let us connect x0 to x0 + hei by the straight line ∞0(t) = x0 + thei

defined for t in [0, 1]. Then ∞ 0
0(t) = hei , and

f (x0 + hei ) − f (x0) =
R
∞0
F · ds =

R 1
0 F(x0 + thei ) · hei dt.

So

1
h
°
f (x0 + hei ) − f (x0)

¢
− Fi (x0) =

R 1
0 [Fi (x0 + thei ) − Fi (x0)] dt,

and
Ø
Ø 1
h
°
f (x0 + hei ) − f (x0)

¢
− Fi (x0)

Ø
Ø ≤

R 1
0 |Fi (x0 + thei ) − Fi (x0)| dt,

Given ≤ > 0, choose δ > 0 by continuity of Fi at x0 so that |Fi (x) − Fi (x0)| ≤ ≤
whenever |x − x0| ≤ δ. If |h| ≤ δ, then the integrand on the right is ≤ ≤, and
hence so is the integral. Thus @ f

@xi (x0) = Fi (x0), and the sufficiency follows. §

Proposition 3.48. Let F be aC1 vector field on a regionU ofRn , and suppose
that F = ∇ f for some scalar-valued f of class C2 on U . Then

@Fi
@xj

=
@Fj
@xi

for all i and j .

Conversely for U = Rn if F is a C1 vector field such that @Fi
@xj = @Fj

@xi for all i and
j everywhere on Rn , then there exists a C2 scalar-valued function f on Rn with
F = ∇ f .

REMARKS. The converse part depends on the global geometry of the region
where F is defined. It holds for Rn , as is asserted, and it extends to any star-
shaped open set, i.e, a setU having a point p such that for each point x ofU , the
straight line segment from p to x lies completely in U . It fails in dimension two
if U is an annulus, i.e., the open set lying between two concentric circles, as is
shown in Problem 29 at the end of the chapter.

PROOF. We proceed by induction on the dimension n. If n = 1, then a C1
vector field F is just an ordinary scalar-valued function, and the condition on the
partial derivatives of F is vacuous. The function f (x) =

R x
0 F(u) du has the

required property that F = ∇ f = d f
dx .
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Inductively assume that the result holds for dimension n − 1. The functions
Gj (x2, . . . , xn) = Fj (0, x2, . . . , xn) have the property that @Gi

@xj = @Gj
@xi for i ∏ 2

and j ∏ 2, and the inductive hypothesis produces a C2 function g(x2, . . . , xn)
such that @g

@xj = Gj for all j ∏ 2. Define

f (x1, . . . , xn) =
R x1
0 F1(u1, x2, . . . , xn) du1 + g(x2, . . . , xn).

The @ f
@x1 = F1 by Theorem 1.32a. Also for j > 1, we have

@ f
@xj (x1, . . . , xn)

= @
@xj

R x1
0 F1(u1, x2, . . . , xn) du1 + @g

@xj (x2, . . . , xn)

=
R x1
0

@F1
@xj (u1, x2, . . . , xn) du1 + @g

@xj (x2, . . . , xn) by Proposition 3.28b

=
R x1
0

@Fj
@x1 (u1, x2, . . . , xn) du1 + @g

@xj (x2, . . . , xn) by hypothesis
= Fj (x1, x2, . . . , xn) − Fj (0, x2, . . . , xn) + Gj (x2, . . . , xn)
= Fj (x1, x2, . . . , xn),

as required. §

13. Green’s Theorem in the Plane

Green’s Theorem in the plane relates a line integral over the boundary of certain
kinds of regions to a double integral over the region. The core idea is visible in
the case of a closed geometric rectangle, which we discuss in the first example.
There the theorem reduces to the Fundamental Theorem of Calculus.

EXAMPLE 1. Green’s Theorem for a closed rectangle. Suppose we are given
the closed rectangle R with a ≤ x ≤ b and c ≤ y ≤ d. Let P(x, y) and Q(x, y)
be C1 functions on a region containing R, and let ∞ denote the boundary of R
regarded as a piecewise C1 curve that is traversed counterclockwise. Then

Z

∞

P dx + Q dy =
ZZ

R

≥@Q
@x

−
@P
@Y

¥
dx dy.

To see this equality, we start from
R d
c

£ R b
a

@Q
@x dx

§
dy =

R d
c (Q(b, y) − Q(a, y)) dy

and R b
a

£ R d
c

@P
@y dy

§
dx =

R b
a (P(x, d) − P(x, c)) dx .
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The difference of the two left sides equals the double integral by Theorem 3.32,
and the difference of the right sides equals the line integral if we understand ∞ to
consist of four parts: the bottom, parametrized by t 7→ (t, c) for a ≤ t ≤ b; the
right side, parametrized by t 7→ (b, t) for c ≤ t ≤ d; the top, parametrized by
t 7→ (−t, d) for −b ≤ t ≤ −a; and the left side, parametrized by t 7→ (a,−t)
for −d ≤ t ≤ −c.

Notice in Example 1 that we did not actually write ∞ as a single piecewise
C1 curve but instead wrote it as four curves. This is an artificial distinction;
we could have followed the definition literally by merely using a translation of
the parameter for each interval. For example, we could have parametrized the
bottom as (a + t, c) for 0 ≤ t ≤ b − a, the right side as (b, c + t − (b − a)) for
b − a ≤ t ≤ (b − a) + (d − c), and so on.
To adapt our definition to be able to handle these matters automatically, we can

introduce the notion of a piecewise C1 chain. This is a formal sum of piecewise
C1 curves, say ∞ = ∞1 + · · · + ∞r with r ∏ 0, without regard to the order of the
terms. We regard two chains as equal if they can be obtained from each other by
a sequence of operations of the form

(i) subdivision of an arc,
(ii) fusion of subarcs into a single arc,
(iii) reparametrization of an arc,
(iv) cancellation of a pair of opposite arcs,
(v) insertion of a pair of opposite arcs,
(vi) dropping a one-point arc (with domain of the form [a, a]), or
(vii) insertion of a one-point arc.
A line integral over ∞ is defined as the corresponding sum of line integrals

over the constituent piecewise C1 curves:

Z

∞

F · ds =
rX

k=1

Z

∞k

Fds.

If two such chains are equal, then all line integrals defined on both are equal.
We denote the reverse of ∞ by−∞ . If ∞ = ∞1+· · ·+∞r and σ = σ1+· · ·+σs

are chains, let ∞ + σ = ∞1 + · · · + ∞r + σ1 + . . . σs . Then
R
∞+σ F · ds =R

∞ F · ds+
R
σ F · ds. We shall write n∞ for ∞ + · · · + ∞ (n times) and−n(∞ ) =

n(−∞ ) and 0(∞ ) = (empty arc). Then every chain can be written as ∞ =
a1∞1 + · · · + an∞n with the aj positive integers and the ∞j distinct, and if we
allow some coefficients to be 0, then any two chains can be expressed as sums of
the same ∞j ’s.
If we look carefully at Example 1, we see that it admits a generalization.
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EXAMPLE 2. The set between two graphs. A certain amount of the argument
for Example 1 works if the rectangle is replaced by the set between two graphs.
Namely if we replace the y limits c and d in the formula

R b
a

£ R d
c

@P
@y dy

§
dx =

R b
a (P(x, d) − P(x, c)) dx

by two functions f (x) and g(x) with f (x) ≤ g(x), then the integration formula
is still meaningful when written as

R b
a

£ R g(x)
f (x)

@P
@y dy

§
dx =

R b
a (P(x, g(x)) − P(x, f (x))) dx .

At first glance it looks as if the full argument will go through for this more
general situation, but there is a difficulty: the corresponding argument for the Q
term works for the set between two graphs of functions with x given in terms of
y, not y in terms of x . To handle both P and Q this way, the set of integration
must look like the set between two graphs in both directions.12 The closed unit
disk x2+ y2 ≤ 1 inR2 provides an example. This is the set between the graphs of
y = −

p
1− x2 and y = +

p
1− x2, and also it is the set between the graphs of

x = −
p
1− y2 and x = +

p
1− y2. Notice that our ability to get the argument

to go through this way for a disk depends crucially on two points:
(i) Handling the P term and handling the Q term involved two different
parametrizations of the boundary circle x2+ y2 = 1, and it was important
that these two parametrizations were related by an orientation-preserving
reparametrization.

(ii) The functions whose graphs were involved had unbounded first deriva-
tives. This behavior had to show up for a curve with a well-defined
tangent line at every point. Thus the definition of piecewiseC1 curve had
to allow for an unbounded derivative at the endpoints of each piece.

Theorem 3.49 (Green’s Theorem, first form). Suppose that a region U in R2

can be described as the set between two graphs of y as a continuous function
of x and also as the set between two graphs of x as a continuous function of y.
Suppose further that all four graphs are piecewise C1 curves.13 Write ∞ for the
chain consisting of the four graphs, and assume that each piece of ∞ is oriented
so thatU is on the left. If P and Q are C1 functions on an open set containingU
and its boundary, then

Z

∞

P dx + Q dy =
ZZ

U

≥@Q
@x

−
@P
@Y

¥
dx dy.

PROOF. The argument has already been given in Example 1, as amended in
Example 2, and there is no need to repeat it. §

12Some authors refer to such a set as a “Type III region.” We shall not use this term.
13The hypothesis “tamely behaved” has been built into the definition of a piecewise C1 curve.
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The theoremadmits several useful generalizations, andwe say somethingabout
those now. The first such is that we can get more scope from the theorem by
piecing together regions for which it holds. The example of an annulus (washer)
will illustrate.

(a) (b)

(c)

FIGURE 3.4. Green’s Theorem for an annulus.

EXAMPLE 3. Annulus orwasher, the set between two concentric circles. Figure
3.4 showshowwecanhandle this set by applyingTheorem3.49 four times, adding
the results, and canceling contributions from arcs where the curve retraces itself.
A single quarter of the annulus is a set to which Theorem 3.49 applies, provided
the boundary is traversed with the region on the left. The boundary chain is the
sum of four arcs. See Figure 3.4a. But we can equally well handle any other
quarter of the annulus, as in Figure 3.4b. If we look at all the quarters together,
the straight line segments cancel in pairs, as in Figure 3.4c, and the result is a
annulusU with two boundary components, the outer circle ∞1 and the inner circle
∞2. The outer circle is traversed counterclockwise, as it is in a simple application
of the theorem to a disk and its boundary circle. But the inner circle is traversed
clockwise. The formula of Green’s Theorem applies with this understanding of
how the pieces of the boundary are oriented. If P and Q are C1 functions on an
open set containing the annulus and the boundary, then Green’s Theorem applies
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to those functions on each quarter annulus and hence on the whole annulus. For
example, let the outer and inner circles have respective radii 1 and ρ, and let them
becenteredat theorigin. Theouter circle canbeparametrizedby t 7→ (cos t, sin t)
for 0 ≤ t ≤ 2π , and then it is traversed counterclockwise. The inner circle can
be taken as parametrized by t 7→ (ρ cos t,−ρ sin t). The line integral over the
outer circle with clockwise orientation equals

Z 2π

0

≥
P(cos t,sin t)
Q(cos t,sin t)

¥
·
≥

cos t
− sin t

¥
dt.

To this is to be added the line integral over the inner circle with counterclockwise
orientation, which equalsZ 2π

0

≥
P(ρ cos t,−ρ sin t)
Q(ρ cos t,−ρ sin t)

¥
·
≥

ρ cos t
ρ sin t

¥
dt.

The sum equals the double integral, which we can conveniently write in polar
coordinates as Z

ρ≤r≤1,
0≤θ≤2π

≥@Q
@x

−
@P
@y

¥
r dr dθ.

It is fairly clear that the technique of Example 3 applies to more complicated
bounded regions of R2 with finitely many holes in them. Every component of
the boundary has to be taken into account in the line integral. We shall not try to
formulate a general result.
A variation on this technique handles any “simple closed polygon.” By a

simple closed polygon inR2 is meant a piecewiseC1 simple closed curve whose
component arcs are straight line segments. The following result says how the
ingredients of such a polygon fit into the context of Green’s Theorem, and the
formula of Green’s Theorem is a corollary.

Proposition 3.50 (Jordan Curve Theorem for polygons). If ∞ is a simple
closed polygon with image A, then the open complement of A in R2 has exactly
two connected components, A is the boundary of each, and exactly one of the
components is a bounded set.

REMARK. The bounded component is called the inside of the polygon, and the
unbounded component is called the outside.

SKETCH OF PROOF. Since A is a bounded set, all points sufficiently far from the
origin are connected to one another by paths, and there can be only one unbounded
component. Fix a line L in R2 going in a direction not parallel to any edge of
A. We divide the complement of A into two open subsets, U and V . U consists
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of those points p not in A such that the line through p parallel to L intersects A
an odd number of times, and V consists of those points p not in A such that the
line through p parallel to L intersects A an even number of times. In counting
the number of times the line intersects A, one has to take the vertices of A into
account; the vertex is to be counted if the adjacent edges lie on opposite sides of
the line but not if the adjacent edges lie on the same side of the line. ThenU and
V are open and disjoint, andU ∪V equals the complement of A. Some checking
is needed that A is the boundary of U and of V and that U and V are actually
connected, and we omit those steps. §

Corollary 3.51 (Green’s Theorem for a simple closed polygon). Let ∞ be a
simple closed polygon in R2, let A be its image, and let U be its inside. Assume
that ∞ is traversed in such a way that V is always on the left. If P and Q are
scalar-valued C1 functions on an open set containing A and U , then

Z

∞

P dx + Q dy =
ZZ

U

≥@Q
@x

−
@P
@Y

¥
dx dy.

REMARK. The meaning of the phrase “always on the left” is intuitively clear,
but the mathematical meaning is subtle and its details are omitted. Accurate use
of the word “left” depends on having the coordinate axes oriented in the usual
way so that the positive y axis is on the left of the positive x axis. If the x and y
axes are interchanged, for example, then “left” and “right” get interchanged.

SKETCH OF PROOF. The idea is to decompose A into nonoverlapping triangles,
each regarded as a simple closed polygon. For each triangle we apply Theorem
3.49. The sum of the double integrals over the insides of the triangles equals
the double integral over U because the edges of the triangles contribute nothing
to the double integral. In the sum of the line integrals over the triangles, the
contributions from the edges that lie in the inside of A cancel in pairs, and the
contributions from the remaining edges add to the contribution from A. The
formula of Corollary 3.51 therefore results.
What needs proof is that the decomposition into nonoverlapping triangles is

possible. Fix a line L inR2 going in a direction not parallel to any edge of A, and
adjoin to A all lines parallel to L and passing through vertices of A. One readily
checks that U gets decomposed into nonoverlapping triangles and trapezoids.
Each trapezoid decomposes into two nonoverlapping triangles, and the desired
decomposition into triangles results. §

The above techniques amount to the classical method for approaching Green’s
Theorem. Themodern geometric approach uses a partition of unity, first handling
matters locally and referring them to standard sets in R2. Its details are written
out in the book by M. Spivak entitled Calculus on Manifolds. Two notions that
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play a role are those of “C1 manifold-with-boundary” and “singular n-cube.”
Smooth manifolds are not defined in the present volume but instead appear in
Chapter VIII of Advanced Real Analysis. Spivak defines a subset M of Rn to be
a two-dimensional smooth manifold if for each point p of M there exist an open
setU containing p, an open set V ⊂ Rn , and a diffeomorphism h : U → V such
that

h(U ∩ M) = {x ∈ V | xk+1 = · · · = xn = 0}.

He defines a subset M of Rn to be a two-dimensional smooth manifold-with-
boundary if for each point p of M , either the above manifold condition holds or
there exist an open setU containing p, an open set V ⊆ Rn , and a diffeomorphism
h : U → V such that

h(U ∩ M) = {x ∈ V | xk ∏ 0 and xk+1 = · · · = xn = 0}.

He states Green’s Theorem for subsets M of R2 that are smooth manifolds-
with-boundary. The set U of Green’s Theorem will be the manifold part of the
smooth-manifold-with-boundary, and the image of ∞ will be the boundary part of
the smooth manifold-with-boundary. In our situation this assumption will forbid
the “piecewise” aspect of the boundary and insist on no corners. It will also have
the minor effect of replacing the assumption of C1 behavior on the boundary by
C∞. The machinery of singular 2-cubes in effect examines matters locally and
refers local sets to the plane or the upper half plane, where Example 1 applies
directly. The local results are assembled into a final theorembymeans of a smooth
partition of unity.14

This completes our discussion of Green’s Theorem in the plane. We conclude
with some comments about generalizations to other dimensions. In the first place
the idea of computing arc length by taking the supremum of inscribed polygonal
arcs does not generalize well. If one takes a finite part of a right circular cylinder
in R3 and defines the surface area to be the supremum of the sum of the areas of
inscribed filled triangles, the result is infinity. Figure 3.5 illustrates.15 It assumes
that the axis of the cylinder is vertical, that the height is h, and that the radius is
r . One tries to estimate a part of the area by using inscribed triangles. The large
rectangle in the picture has height h and width b, with b less than the horizontal
diameter 2r of the cylinder. Regard the rectangle as placed inside the back half of
the cylinder so that its left and right edges lie in the surface of the cylinder and its
top and bottom edges are chords of the top and bottom circles of the cylinder. One

14As was mentioned earlier, the partitions of unity in use in this chapter involve only continuous
functions, but smooth partitions of unity will be constructed and used in Advanced Real Analysis.

15This figure is based on the one by Spivak on page 129 of Calculus on Manifolds.
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takes a positive integer m, which is 5 in Figure 3.5, and introducesm rectangular
pyramids, each turned on its side so the apex is at the back of the cylinder. The
four triangles in each pyramid are each inscribed in the cyclinder, and we get 4m
triangles in this way. If a limit of the sum of the areas of inscribed triangles is to
have any hope of giving the surface area of the cylinder, then the sum of the areas
of these particular triangles had better be at most the surface area of the cylinder.

FIGURE 3.5. Failure of inscribed triangles to give a useful notion
of surface area.

For each pyramid we can give a lower bound for the areas of the top and
bottom triangles. The top and bottom triangles are isosceles, each with base b,
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and their common height is at least what it would be if the face of the triangle
were perpendicular to the cylinder. A little computation shows that this amount
is r−

p
r2 − b2/4, which is some positive number independent ofm. Since there

are 2m such triangles, the sum of the areas of these triangles is unbounded. The
sum of the areas of them left and right triangles is some number∏ 0, and thus the
sum of the areas of all 4m triangles is∏ m(r−

p
r2 − b2/4), which is unbounded.

Thus surface area cannot be defined by using inscribed polygons. It is worth
examining how the above example defies intuition. For parametrically defined
curves we inscribed line segments, and we were guided by the fact that the length
of each line segment was at most the length of the corresponding part of the curve.
In the above example, we inscribed triangles, and we would have expected the
area of each triangle to be atmost the area of a certain part of the surface. Butwhat
part of the surface is relevant? The difficulty is that our intuition is working with
some projection of the triangle onto the surface, and there is no canonical such
projection in this case. To get something canonical, it would be really helpful to
have a notion of perpendicularity.
For this reason the area of a bounding surface in R3 is defined by taking

advantage of the direction perpendicular to the surface, and good behavior of
the surface becomes essential. A desire to make use of perpendicularity is the
reason Spivak’s book works with smooth manifolds-with-boundary. The notion
of a “normal” to the surface is then available. We shall not elaborate except to
observe that the introduction of normals means that geometry now plays a much
more significant role in the higher-dimensional theory than it did in the theory
for curves.
There is one higher-dimensional situationwhere everything is accessible with-

out a whole new theory, and this particular situation happens to be an especially
useful one for analysis. This is the case of a closed ball in Rn , whose boundary
is a sphere. Section III.3 of Advanced Real Analysis gives a direct proof of a
theorem relating a volume integral over the ball and a surface integral over the
sphere.
Green’s Theorem in the plane admits a generalization for smooth manifolds-

with-boundary of dimension k in Rn for every pair (k, n) with 2 ≤ k ≤ n. The
result is that an integral on the boundary “surface” is related to a “volume” integral
over the set. The results of this kind are collectively known as Stokes’s Theorem.
See Spivak’s book for details. The classical results that fit into this framework are
Green’s Theorem when k = n = 2, the Divergence Theorem16 when k = n = 3,
and Stokes’s Theorem when k = 2 and n = 3.
In the usual modern approach to the general Stokes’s Theorem, the mechanism

of proof is the same as the one in Spivak’s book, using “smooth manifolds-with-

16The Divergence Theorem is known also as Gauss’s Theorem.
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boundary” and “singular n-cubes.”. The reader is referred to that book for the
details.

14. Problems

1. Let F be R or C. Prove that the Hilbert–Schmidt norm satisfies
(a) |T S| ≤ |T | |S| if S is in L(Fn, Fm) and T is in L(Fm, Fk),
(b) |1| =

p
n if n = m and 1 denotes the identity function on Fn .

2. Suppose that f : Rn → Rm is a linear function with Jacobian matrix A. What
is f 0(x0)?

3. Suppose that f : R2 → R1 has | f (x)| ≤ |x |2 for all x . Prove that f is
differentiable at x = 0.

4. Let x = (x1, . . . , xn) and u = (u1, . . . , un) be in Rn . For f : Rn → R
differentiable at x , use the chain rule to derive a formula for d

dt f (x + tu)
Ø
Ø
t=0.

5. Compute exp t X from the definition for X =
≥
1 0
0 −1

¥
,
≥
1 1
0 1

¥
,
≥

0 1
−1 0

¥
,
≥
0 i
i 0

¥
,

and
≥
0 1
1 0

¥
.

6. It was observed in Section 6 in the context of polar coordinates that the Implicit
Function Theorem implies the Inverse Function Theorem. Namely, the pair of
polar-coordinate formulas (u, v) = (r cos θ, r sin θ) was inverted by applying
the Implicit Function Theorem to the system of equations

r cos θ − u = 0, r sin θ − v = 0.

Using this example as a model, derive the Inverse Function Theorem in the
general case from the Implicit Function Theorem in the general case.

7. Define
R ∞
1 to mean limN→∞

R N
1 when the integrand is continuous. Prove or

disprove:

Z 1

0

h Z ∞

1
(e−xy − 2e−2xy) dx

i
dy =

Z ∞

1

h Z 1

0
(e−xy − 2e−2xy) dy

i
dx .

Problems 8–9 use Fubini’s Theorem to supplement the theory of Fourier series as
given in Section I.10.
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8. Let f and g be continuous complex-valued periodic functions of period 2π , and
define their convolution to be the function

f ∗ g(x) =
1
2π

Z π

−π
f (x − t)g(t) dt.

(a) Show that f ∗ g is continuous periodic and that f ∗ g = g ∗ f .
(b) Let f (x) ∼

P∞
n=−∞ cneinx and g(x) ∼

P∞
n=−∞ dneinx . Prove that

( f ∗ g)(x) ∼
P∞

n=−∞ cndneinx .
(c) Prove that the Fourier series of f ∗ g converges uniformly.

9. Let f , g, and h be continuous complex-valued periodic functions of period 2π .
Prove that f ∗ (g ∗ h) = ( f ∗ g) ∗ h.

Problems 10–13 deal with homogeneous functions. If f : Rn−{0} → R is a function
not identically 0 such that f (r x) = rd f (x) for all x inRn −{0} and all r > 0, we say
that f is homogeneous of degree d. For example, the function in the first problem
below is homogeneous of degree 0.
10. On R2, define

f (x, y) =

( xy
x2 + y2

if (x, y) 6= (0, 0),

0 if (x, y) = (0, 0).

Prove that @ f
@x and

@ f
@y exist everywhere in R2 and that f is not continuous at

(0, 0).

11. Let f : Rn − {0} → R be smooth and homogeneous of degree d.
(a) Prove that if d = 0, then f (x) is bounded on Rn − {0} and that f extends

to be continuous at 0 only if it is constant.
(b) Prove that if d > 0, then the definition f (0) = 0 makes f continuous for all

x inRn , while if d < 0, then no definition of f (0)makes f continuous at 0.
(c) Prove that @ f

@xj is homogeneous of degree d − 1 unless it is identically 0.
(d) If f is homogeneous of degree 1 and satisfies f (−x) = − f (x) and f (0) =

0, prove that each @ f
@xj exists at 0 but that

@ f
@xj is not continuous at 0 unless it

is constant.

12. On R2, let f be the function homogeneous of degree 1 given by

f (x, y) =






x3

x2 + y2
if (x, y) 6= (0, 0),

0 if (x, y) = (0, 0).
(a) Prove that f is continuous at (0, 0).
(b) Prove that @ f

@x and
@ f
@y exist at (0, 0) but are not continuous there.
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(c) Calculate d
dt f (t+tu)

Ø
Ø
t=0 for x = 0 and u =

≥
cos θ
sin θ

¥
. Show that the formula

in Problem 4 fails, and conclude that f is not differentiable at (0, 0).

13. On R2, let f be the function homogeneous of degree 2 given by

f (x, y) =






xy(x2 − y2)
x2 + y2

if (x, y) 6= (0, 0),

0 if (x, y) = (0, 0).

(a) Prove that f , @ f
@x , and

@ f
@y are continuous on all of R2.

(b) Prove that @2 f
@x@y and

@2 f
@y@x exist at (0, 0) but are not continuous there.

(c) Prove that @2 f
@x@y (0, 0) = 1 and @2 f

@y@x (0, 0) = −1.

Problems 14–15 concern “harmonic functions” in {(x, y) ∈ R2
Ø
Ø |(x, y)| < 1}, the

open unit disk of the plane. A harmonic function is a complex-valued C2 function
satisfying the Laplace equation 1u(x, y) = 0, where 1 is the Laplacian 1 =
@2

@x2 + @2

@y2 .
14. If (r, θ) are regarded as polar coordinates, prove for all integers n that each

function r |n|einθ is a C∞ function in the open unit disk and is harmonic there.
Deduce that if {cn} is a doubly infinite sequence such that

P∞
n=−∞ cnr |n|einθ

converges absolutely for each r with 0 ≤ r < 1, then the sum is a C∞ function
in the open unit disk and is harmonic there.

15. Prove that if u is harmonic in the unit disk, then so is the function u ◦ R, where
R is the rotation about the origin given by

≥ x
y

¥
7→

≥
cos θ − sin θ

sin θ cos θ

¥ ≥ x
y

¥
.

Problems 16–20 illustrate the Inverse and Implicit Function Theorems.
16. Verify that the equations u = x4y + x and v = x + y3 define a function

from R2 to R2 whose derivative at (1, 1) is given by the matrix
≥
5 1
1 3

¥
. This

matrix being invertible, the Inverse Function Theorem applies. Let the locally
defined C1 inverse function be given by x = F(u, v) and y = G(u, v) in an
open neighborhood of (u, v) = (2, 2), the point (2, 2) having the property that
F(2, 2) = 1 and G(2, 2) = 1. Find @F

@u (2, 2).

17. Show that the equations
x2 − y cos(uv) + z2 = 0,

x2 + y2 − sin(uv) + 2z2 = 2,
xy − sin u cos v + z = 0,

implicitly define x, y, z as C1 functions of (u, v) near x = 1, y = 1, u = π/2,
v = 0, and z = 0, and find @x

@u and
@x
@v for the function x(u, v). Is the function

x(u, v) of class C∞?
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18. Regard the operation of squaring an n-by-n matrix as a function fromRn2 toRn2 ,
and show that this mapping is invertible on some open set of the domain that
contains the identity matrix.

19. (Lagrange multipliers) Let f and g be real-valued C1 functions defined on an
open subset U of Rn , and let S =

©
x ∈ U

Ø
Ø g(x) = 0

™
. Prove that if f

Ø
Ø
S has a

local maximum or minimum at a point x0 of S, then either g0(x0) = 0 or there
exists a number ∏ such that f 0(x0) + ∏g0(x0) = 0.

20. (Arithmetic-geometric mean inequality) Using Lagrange multipliers, prove
that any n real numbers a1, . . . , an that are ∏ 0 satisfy

n
p
a1a2 · · · an ≤

a1 + a2 + · · · + an
n

.

Problems 21–23 concern arc length and integrals with respect to arc length.
21. Sometimes a parametrically defined curve is given in polar coordinates by an

equation r = r(θ). Show that the arc length of a simple arc of the form r = r(θ)

from θ1 to θ2 is
R θ2
θ1

q
r(θ)2 +

° dr
dθ

¢2 dθ .

22. Only a few tamely behaved simple arcs are known for which arc length can be
expressed in terms of elementary functions. These include the straight line, the
circle, the cycloid, the helix, the catenary, the semicubical parabola, the parabola,
and the logarithmic spiral. The first two are part of Euclidean geometry, and the
cycloid was treated as an example in Section 11. This problem treats the last
five. In each case, do not necessarily go through all the steps of evaluating the
integral, but carry out enough of the computation to show that the result can be
expressed in terms of elementary functions.
(a) Express as a function of t the cumulative arc length of the helix (x, y, z) =

(cos t, sin t, t) starting from the origin.
(b) Express as a function of x the cumulative arc length of the catenary y =

1
2 (e

t + e−t ) starting from the origin.
(c) Express as a function of x the cumulative arc length of the semicubical

parabola y = x3/2 starting from the origin.
(d) Express as a function of x the cumulative arc length of the parabola y = x2

starting from the origin.
(e) Express as a function of θ with 0 < θ ≤ 2π the cumulative arc length from

θ = θ0 of the logarithmic spiral r(θ) = θ , using the result of Problem 21.
(f) Is the logarithmic spiral in (d) tamely behaved as θ tends down to 0?

23. Let ∞ be the piecewise C1 curve defined for t ∈ [0, 3] given by

∞ (t) =

(
(t2, t) for 0 ≤ t ≤ 1
(t, t) for 1 ≤ t ≤ 2
(t, 2+ (t − 2)2) for 2 ≤ t ≤ 3.

Find the total length `(∞ ).



216 III. Theory of Calculus in Several Real Variables

Problems 24–26 elaborate on the remarks in a footnote connected with Theorem 3.44
that explained that the line integral

R
∞ F · ds of the theorem always has a meaning in

terms of “Stieltjes integrals.” No assumption that ∞ be piecewise C1 is needed, only
that ∞ is a rectifiable simple arc. Let α : [a, b] → R be a continuous nondecreasing
function. (Continuity of α is not needed in the theory but will be assumed here to
simplify the statements.) If f : [a, b] → R is a continuous function, it is desired to
define the Stieltjes integral

R
[a,b] f dα.

24. For any partition P = {xj }mj=1 of [a, b], define the upper and lower sums of f
relative to P and α by

U(P, f, α) =
mP

j=1

°
maxxj−1≤x≤xj f (x)

¢°
α(xj ) − α(xj−1

¢

L(P, f, α) =
mP

j=1

°
minxj−1≤x≤xj f (x)

¢°
α(xj ) − α(xj−1

¢
.

Show that if P 0 is a refinement of P , then

U(P, f, α) ∏ U(P 0, f, α) ∏ L(P 0, f, α)) ∏ L(P, f, α).

Explain how it follows that

inf
P
U(P, f, α) ∏ sup

P
L(P, f, α).

25. With µ(P) equal to the mesh of P , prove that

lim
µ(P )→0

°
U(P, f, α) − L(P, f, α)

¢
= 0.

26. Conclude from Problems 24 and 25 that U(P, f, α) and L(P, f, α) tend to
a common limit as µ(P) tends to 0. This common limit is what is taken as the
definition of

R
[a,b] f dα.

Problems 27–30 concern line integrals and conservative vector fields.
27. Let (x1, y1) and (x2, y2) be two points in R2, and let ∞ be the line segment from

(x1, y1) to (x2, y2). Parametrize ∞ , and compute
R
∞ x dy − y dx .

28. Let F =
≥
P
Q

¥
be the vector field on R2 − {(0, 0)} with P(x, y) = x

x2+y2 and
Q(x, y) = y

x2+y2 .
(a) Check that @Q

@x = @P
@y .
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(b) Exhibit a C1 function f : R2 − {(0, 0)} → R such that
≥
P
Q

¥
= ∇ f .

29. Let F =
≥
P
Q

¥
be the vector field on R2 − {(0, 0)} with P(x, y) = y

x2+y2 and
Q(x, y) = −x

x2+y2 .
(a) Check that @Q

@x = @P
@y .

(b) Evaluate
R
∞ F · ds counterclockwise around the unit circle, thus over the

curve ∞ (t) =
≥
cos t
sin t

¥
for 0 ≤ t ≤ 2π .

(c) Show that there is no C1 function f : R2 − {(0, 0)} → R such that
≥
P
Q

¥
=

∇ f .
30. Let F(x, y, z) = (x, y2, z3). Evaluate

R
∞ F · ds over the curve ∞ (t) = (t, t2, t3)

for 0 ≤ t ≤ 1.

Problems 31–33 concern Green’s Theorem in the plane.

31. With ∞ as in Problem 29b, evaluate
R
∞

≥
y+ex cos y

−x−ex sin y

¥
· ds.

32. LetU be any bounded open subset ofR2 to which Green’s Theorem applies, and
let ∞ be the boundary of U oriented so that U is always on the left. Prove that
1
2
° R

∞ x dy − y dx
¢
equals the area of U .

33. (Shoelace formula) Combine Problems 27 and 32 with Corollary 3.51 to prove
that the area of the inside of any simple closed polygon whose m consecutive
vertices are {(xj , yj )}mj=1 is given by

Area =
Ø
Ø
mP

j=0
(xj yj+1 − yj xj+1)

Ø
Ø,

where by convention (x0, y0) is defined to be (xm, ym). In fact, the absolute
value signs are not needed if the polygon is traversed with the inside always
on the left. (Educational notes: This formula is of historical importance in the
transfer of ownership of pieces of land; traditional surveying tools easily allow
rather accurate measurements of distances and angles, and this formula gives
a comparably accurate measurement of area. The name of the formula derives
from the criss-cross pattern made if one forms an (n+ 1)-by-2 matrix with rows
(xj yj ) and then indicates the pairs of entries that are to be multiplied.)




