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CHAPTER III

Topics in Euclidean Fourier Analysis

Abstract. This chapter takes up several independent topics in Euclidean Fourier analysis, all having
some bearing on the subject of partial differential equations.

Section 1 elaborates on the relationship between the Fourier transform and the Schwartz space,
the subspace of L' (RY) consisting of smooth functions with the property that the product of any
iterated partial derivative of the function with any polynomial is bounded. It is possible to make
the Schwartz space into a metric space, and then one can consider the space of continuous linear
functionals; these continuous linear functionals are called “tempered distributions.” The Fourier
transform carries the space of tempered distributions in one-one fashion onto itself.

Section 2 concerns weak derivatives, and the main result is Sobolev’s Theorem, which tells how
to recover information about ordinary derivatives from information about weak derivatives. Weak
derivatives are easy to manipulate, and Sobolev’s Theorem is therefore a helpful tool for handling
derivatives without continually having to check the validity of interchanges of limits.

Sections 3—4 concern harmonic functions, those functions on open sets in Euclidean space that
are annihilated by the Laplacian. The main results of Section 3 are a characterization of harmonic
functions in terms of a mean-value property, a reflection principle that allows the extension to all of
Euclidean space of any harmonic function in a half space that vanishes at the boundary, and a result
of Liouville that the only bounded harmonic functions in all of Euclidean space are the constants.
The main result of Section 4 is a converse to properties of Poisson integrals for half spaces, showing
that harmonic functions in a half space are given as Poisson integrals of functions or of finite complex
measures if their L? norms over translates of the bounding Euclidean space are bounded.

Sections 5-6 concern the Calder6n—Zygmund Theorem, a far-reaching generalization of the
theorem concerning the boundedness of the Hilbert transform. Section 5 gives the statement and
proof, and two applications are the subject of Section 6. One of the applications is to Riesz transforms,
and the other is to the Beltrami equation, whose solutions are “quasiconformal mappings.”

Sections 7-8 concern multiple Fourier series for smooth periodic functions. The theory is
established in Section 7, and an application to traces of integral operators is given in Section 8.

1. Tempered Distributions

We fix normalizations for the Euclidean Fourier transform as in Basic: For f in
L'(RV), the definition is

7o) = (FHO) = /R Fe T d,
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1. Tempered Distributions 55

with x - y referring to the dot product and with the 27 in the exponent. The
inversion formula is valid whenever f is in L'; it says that f is recovered as

w0 =F P = [ Foreray

almost everywhere, including at all points of continuity of f. The operator F
carries L' N L? into L? and extends to a linear map F of L? onto L? such that
IF£1l, = Il fll,. This is the Plancherel formula.

The Schwartz space S = S(RY) is the vector space of all functions f in
C*(R") such that the product of any polynomial by any iterated partial derivative
of f is bounded. This is a vector subspace of L' N L?, and it was shown in Basic
that F carries S one-one onto itself. It will be handy sometimes to use a notation
for partial derivatives and their iterates that is different from that in Chapter I.

Namely,! let D; = % If « = (aq,...,an) is an N-tuple of nonnegative
J
integers, we write |a| = Zj.vzlozj, al =l ayl,x® =x{" - xy¥, and D* =
D" --- D{. Addition of such tuples « is defined component by component, and
we say that o < Bif o; < B; for 1 < j < N. We write || for the total
order o + --- + ay, and we call @ a multi-index. If Q(x) = > a,x* is a
complex-valued polynomial on RY, define Q(D) to be the partial differential
operator ), a, D* with constant coefficients obtained by substituting, for each
jwithl < j < N, the operator D; = 8% for x;. The Schwartz functions are

then the smooth functions f on R" such that P(x)Q(D) f is bounded for each
pair of polynomials P and Q.

The Schwartz space is directly usable in connection with certain linear par-
tial differential equations with constant coefficients. A really simple example
concerns the Laplacian operator A = aa_jf 4+ 4 % which we can write as
A = | D|? in the new notation for differential operators. Specifically the equation

(I—Mu=f

has a unique solution « in S for each f in S. To see this, we take the Fourier
transform of both sides, obtaining Fu — F(Au) = Ff or Fu—F(|D|*(u)) = Ff.
Using the formulas relating the Fourier transform, multiplication by polynomials,
and differentiation,” we can rewrite this equation as (1 4+ 472|y|>) F(u) = F(f).
Problem 1 at the end of the chapter asks one to check that (1+472|y|?) ! g isin Sif

ISome authors prefer to abbreviate % as 0j, reserving the notation D; for the product of 9; and
; g

a certain imaginary scalar that depends on the definition of the Fourier transform.
2These, with hypotheses in place, appear as Proposition 8.1 of Basic.
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g isin S, and then existence of a solution in S to the differential equation is proved
by the formulau = F~'((1+4mx2|y|*) ' F(f)). For uniqueness let u; and u, be
two solutions in S corresponding to the same f. Then (1 — A)(u; —uy) = 0, and
hence (1 + 472 y|?)F(u; — uz)(y) = 0 for all y. Therefore F(u; — uz)(y) =0
everywhere. Since F is one-one on S, we conclude that u; = u5.

A deeper use of the Schwartz space in connection with linear partial differential
equations comes about because of the relationship between the Schwartz space
and the theory of “distributions.” Distributions are continuous linear functionals
on vector spaces of smooth functions, i.e., continuous linear maps from such a
space to the scalars, and they will be considered more extensively in Chapter V.
For now, we shall be content with discussing “tempered distributions,” the dis-
tributions associated with the Schwartz space. In order to obtain a well-defined
notion of continuity, we shall describe how to make S(R") into a metric space.

For each pair of polynomials P and Q, we define

Ifllp,o = sup [P(x)(Q(D)[f)(x)].

xeRN

Each function || - || , on S is a seminorm on S in the sense that?

@ IIfllp o =0forall finS,
(i) llefllp,o = lell fllp o forall fin S and all scalars c,

(i) |If + g”p,Q = ”f”p,Q + ||g||p‘Q forall f and g in S.

Collectively these seminorms have a property that goes in the converse direction
to (i), namely

@v) I fllp o =0forall P and Q implies f = 0.

In fact, f will already be O if the seminorm for P = Q = 1isOon f.

Each seminorm gives rise to a pseudometric dp o(f.g) = I f — gl P.0 in
the usual way, and the topology on S is the weakest topology making all the
functions dp (-, g) continuous. That is, a base for the topology consists of all
sets Ug p,on ={f | If —8llp o <1/n}.

A feature of S is that only countably many of the seminorms are relevant for
obtaining the open sets, and a consequence is that the topology of Sis defined by a
metric. The important seminorms are the ones in which P and Q are monomials,
each with coefficient 1. In fact, if P(x) = ), a,x* and Q(x) = > 5 bgx?, then
it is easy to check that dp o(f, g) < Za’ﬂ laobgld 6 (f, g). Hence any open
set that dp o defines is a union of finite intersections of the open sets defined by
the finitely many d ,s’s.

3The reader may notice that the definition of “seminorm” is the same as the definition of
“pseudonorm” in Basic. The only distinction is that the word “seminorm” is often used in the
context of a whole family of such objects, while the word “pseudonorm” is often used when there is
only one such object under consideration.
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Let us digress and consider the situation more abstractly because it will arise
again later. Suppose we have a real or complex vector space V on which are
defined countably many seminorms || - ||, satisfying (i), (ii), and (iii) above.

Each seminorm || - ||, gives rise to a pseudometric Zlvn on V and then to open

sets defined relative to Jn. For any pseudometric g, the function p = min{1, p}
is easily checked to be a pseudometric, and p defines the same open sets on V as
0 does. We shall use the following abstract result about pseudometrics; this was
proved as Proposition 10.28 of Basic, and we therefore omit the proof here.

Proposition 3.1. Suppose that V is a nonempty set and {d,},> is a sequence
of pseudometrics on V such that d,,(x, y) < 1 for all n and for all x and y in V.
Then d(x,y) = Zzozl 27"d, (x, y) is a pseudometric. If the open balls relative

to d, are denoted by B, (r; x) and the open balls relative to d are denoted by
B(r; x), then the B,,’s and B'’s are related as follows:

(a) whenever some B, (r,; x) is given with r, > 0, there exists some B(r; x)
with r > 0 such that B(r; x) C B, (r,; x),

(b) whenever B(r; x) is given with r > 0, there exist finitely many r, > 0,
say for n < K, such that ﬂ,f:l B, (rp; x) € B(r; x).

In the situation with countably many seminorms || - ||, for the vector space V,
we see that we can introduce a pseudometric d such that three conditions hold:

e d(x,y)=d(0,y —x) forall x and y,

e whenever some x in V is given and an index 7 and corresponding number
rp > 0 are given, then there is a number » > 0 such that d(x, y) < r
imphes ”y - X”n <Tn,

e whenever some x in V is given and some r > 0 is given, then there exist
finitely many r,, > 0, say forn < K, such that any y with ||y —x||,, < r,
forn < K impliesd(x,y) <r.

If the seminorms collectively have the property that ||x||, = O for all n only for
x = 0, then d is a metric, and we say that the family of seminorms is a separating
family. The specific form of d is not important: in the case of S, the metric d
depended on the choice of the countable subfamily of pseudometrics and the order
in which they were enumerated, and these choices do not affect any results about
S. The important thing about this construction is that it shows that the topology
is given by some metric.

The three conditions marked with bullets enable us to detect continuity of
linear functions with domain V and range another such space W by using the
seminorms directly.

Proposition 3.2. Let L : V — W be a linear function between vector spaces
that are both real or both complex. Suppose that V' is topologized by means of
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countably many seminorms || - ||, ,, and W is topologized by means of countably
many seminorms || - ||y, ,,. Then L is continuous if and only if for each n, there
is a finite set F = F(n) of m’s and there are corresponding positive numbers &,
such that |[v]ly, ,, < d, forallm € F implies [[L(v) |y, < 1.

PROOF. Let dy and dy be the distance functions in V and W. When n is
given, the second item in the bulleted list shows that there is some r > 0 such
that dw (0, w) < r implies ||w||y, , < 1. If L is continuous at 0, then there is a
& > 0 such that dy (0, v) < § implies dw (0, L(v)) < r. From the third item in
the bulleted list, we know that there is a finite set F' of indices m and there are
corresponding numbers §,, > 0 such that [v||y , < , implies dy (0, v) < 4.
Then [Jv]ly,, < &y forall m in F implies |L(v)[ly,, < L.

Conversely suppose for each # that there is a finite set F and there are numbers
S, > Oform in F such that the stated condition holds. To see that L is continuous
at 0, let ¢ > 0 be given. Choose K and numbers €, > 0 for n < K such
that [|w(y , < €, forn < K implies dyw (0, w) < €. Foreachn < K, the
given condition on L allows us to find a finite set F,, of indices m and numbers
8m > 0 such that |[vlly , < & implies [[L)[ly, < 1. If [vlly, < dmen
for all m in F = |J, g F, then [[L(W)|y,, < € forall n < K and hence
dw (0, L(v)) < €. We know that there is a number 8§ > 0 such that dy (0, v) < 8
implies [[vly ,, < dme, for all m in F, and then dw (0, L(v)) < €. Hence L is
continuous at 0.

Once L is continuous at 0, itis continuous everywhere because of the translation
invariance of dy and dy: dy (vi, v2) = dy (0, vo — vy) and dw (L(v;), L(v2)) =
dw (0, L(v2) — L(v1)) = dw(0, L(v2 — v1)). U

Now we return to the Schwartz space S to apply our construction and Propo-
sition 3.2. The bulleted items above make it clear that it does not matter which
countable set of generating seminorms we use nor what order we put them in; the
open sets and the criterion for continuity are still the same. The following corollary
is immediate from Proposition 3.2, the definition of S, and the behavior of the
Fourier transform under multiplication by polynomials and under differentiation.

Corollary 3.3. For the Schwartz space S on RV,

(a) a linear functional £ is continuous if and only if there is a finite set
F of pairs (P, Q) of polynomials and there are corresponding numbers
dp,o > Osuchthat||f||P’Q < ép,gforall (P, Q)in F implies [£(f)| < 1.

(b) the Fourier transform mapping F : S — & is continuous, and so is its
inverse.

A continuous linear functional on the Schwartz space is called a tempered
distribution, and the space of all tempered distributions is denoted by S’ =
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S’(RM). It will be convenient to write (T, @) for the value of the tempered
distribution 7 on the Schwartz function ¢. The space of tempered distributions
is huge. A few examples will give an indication just how huge it is.

EXAMPLES.

(1) Any function f on R with | f(x)| < (1 + |x|>)"|g(x)| for some integer n
and some integrable function g defines a tempered distribution 7 by integration:
(T,p) = fRN f(x)e(x)dx when ¢ is in S. In view of Corollary 3.3a, the
continuity follows from the chain of inequalities

UT, @) < Jan (ILFEIA 4 1xP) ™) (1 + 1x )" |@(x)]) dx
< (Jev 18I dx) (sup {(1 4 x )" [@(x)[})
= lglhllgllp,  for P(x) = (14 |x[»)".

(2) Any function f with | £ (x)| < (14|x]?)"|g(x)| for some integer n and some
function g in L>°(R") defines a tempered distribution 7' by integration: (T, ¢) =
Jav FO@()dx. In fact, [f(x)] < (1 + [x["™ (A + [x[)~V|g(x)]), and
(1+|x|>)~N|g(x)| is integrable; hence this example is an instance of Example 1.

(3) Any function f with | f(x)] < (1 + |x]*)"|g(x)| for some integer n and
some function g in L?(R"), where 1 < p < oo, defines a tempered distribution
T by integration because such a distribution is the sum of one as in Example 1
and one as in Example 2.

(4) Suppose that f is as in Example 3 and that Q (D) is a constant-coefficients
partial differential operator. Then the formula (7', ¢) = fRN QD)) (x)dx
defines a tempered distribution.

(5) In the above examples, Lebesgue measure dx may be replaced by any Borel
measure du(x) on RY such that [ (1 + |x[*)™ du(x) < oo for some ny. A
particular case of interest is that d ¢ (x) is a point mass at a point xp; in this case,
the tempered distributions ¢ +— (7', @) that are obtained by combining the above
constructions are the linear combinations of iterated partial derivatives of ¢ at the
point xg.

(6) Any finite linear combination of tempered distributions as in Example 5 is
again a tempered distribution.

Two especially useful operations on tempered distributions are multiplication
by a Schwartz function and differentiation. Both of these definitions are arranged
to be extensions of the corresponding operations on Schwartz functions. The
definitions are (YT, ¢) = (T, ¥¢) and (DT, ¢) = (=T, D%p); in the
latter case the factor (—1)/*! is included because integration by parts requires its
presence when T is given by a Schwartz function.
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A useful feature of distributions in connection with differential equations, as we
shall see in more detail in later chapters, is that we can first look for solutions of a
given differential equation that are distributions and then consider how close those
distributions are to being functions. The special feature of fempered distributions
is that the Fourier transform makes sense on them, as follows.

As with the operations of multiplication by a Schwartz function and differen-
tiation, the definition of Fourier transform of a tempered distribution is arranged
to be an extension of the definition of the Fourier transform of a member ¢ of
S when we identify the function ¥ with the distribution ¥ (x) dx. If ¢ is in S,
then [ Y@ dx = [ Y@ dx by the multiplication formula,* which we reinterpret
as (F(y dx), ¢) = (¥ dx, ¢ ). The definition is

(F(T), @) =(T.,9)

for T € S’ and ¢ € S. To see that F(T) is in S’, we have to check that
J(T) is continuous. The definition is F(T) = T o F, and F is continuous on S
by Corollary 3.3b. Thus the Fourier transform carries tempered distributions to
tempered distributions.

Proposition 3.4. The Fourier transform F is one-one from S’(R") onto
S’'(RM).

PROOF. If T is in S’ and F(T) = 0, then (T, F(¢)) = 0 for all ¢ in S. Since
F carries Sonto S, (T, ¥) = 0 for all ¥ in S, and thus T = 0. Therefore F is
one-one on §’.

If T'is given in S/, put T = T’ o F~!, where F~! is the inverse Fourier
transform as a map of Sto itself. Then 7' =T o Fand F(T) =T o F =T'.
Therefore Fis onto S’. g

2. Weak Derivatives and Sobolev Spaces

A careful study of a linear partial differential equation often requires attention
to the domain of the operator, and it is helpful to be able to work with partial
derivatives without investigating a problem of interchange of limits at each step.
Sobolev spaces are one kind of space of functions that are used for this purpose,
and their definition involves “weak derivatives.” At the end one wants to be
able to deduce results about ordinary partial derivatives from results about weak
derivatives, and Sobolev’s Theorem does exactly that.

We shall make extensive use in this book of techniques for regularizing func-
tions that have been developed in Basic. Let us assemble a number of these in
one place for convenient reference.

“4Proposition 8.1e of Basic.
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Proposition 3.5.

(a) (Theorems 6.20 and 9.13) Let ¢ be in L'(RY, dx), define ¢, (x) =
e Np(e~'x) fore > 0,and put c = [y (x) dx.

(i) If fisin LP(RY,dx) with 1 < p < oo, then
lgiﬁ)l lge x f—cfll, =0.

(i) If f is bounded on R" and is continuous at x, then lim, (@ *xfx) =
cf (x), and the convergence is uniform for any set £ of x’s such that
f is uniformly continuous at the points of E.

(b) (Proposition 9.9) If u is a Borel measure on a nonempty open set U in
RY and if 1 < p < oo, then LP(U, ) is separable, and C.on(U) is dense in
LP(U, ).

(c) (Corollary 6.19) Suppose that ¢ is a compactly supported function of
class C" on RY and that f isin L? (RN, dx) with I < p < co. Then ¢ * f is of
class C", and D%(¢ * f) = (D“¢p) % f for any iterated partial derivative D* of
order < n.

(d) (Lemma 8.11) If §; and §; are given positive numbers with §; < §;, then
there exists ¥ in C gg’m(RN ) with values in [0, 1] such that ¢ (x) = ¥ (|x]), P is
nonincreasing, ¥ (x) = 1 for |x| < §;, and ¥ (x) = O for |x| > §,.

(e) (Consequence of (d)) If § > 0, then there exists ¢ > 0 in Cé’gm(]RN )
such that ¢(x) = ¢o(|x]) with ¢y nonincreasing, ¢(x) = 0 for |x| > 1, and
Jev 0(x)dx = 1.

(f) (Proposition 8.12) If K and U are subsets of RN with K compact, U
open, and K C U, then there exists ¢ € CZo (U) with values in [0, 1] such that
@ is identically 1 on K.

In this section we work with a nonempty open subset U of RY, an index p
satisfying 1 < p < oo, and the spaces L?(U) = LP(U, dx), the underlying
measure being understood to be Lebesgue measure. Let p’ = p/(p — 1) be the
dual index. For Sobolev’s Theorem, we shall impose two additional conditions on
U, namely boundedness for U and a certain regularity condition for the boundary
U = U —U of the open set U, but we do not impose those additional conditions
yet.

Corollary 3.6. If U is a nonempty open subset of RV, then C%°_(U) is

com
(a) uniformly dense in Ccon (U),
(b) dense in L?(U) for every p with 1 < p < oo.

In (a), any member of Ceon (U) is the uniform limit of members of C° (U).

com



62 1I1. Topics in Euclidean Fourier Analysis

PROOF. Let f in C¢om(U) be given. Choose by Proposition 3.5¢ a function
¢ in CZ, (RV) that is > 0, vanishes outside the unit ball about the origin, and
has total integral 1. For ¢ > 0, define ¢,(x) = ¢ Vp(¢~'x). The function
e x f is of class C*° by (¢). If U = RY, let &g = 1; otherwise let gy be the
distance from the support of f to the complement of U. For ¢ < g9, ¢, * f has
compact support contained in U. As ¢ decreases to 0, Proposition 3.5a shows
that ||, * f — f||sup tends to 0 and so does || ¢; * f — f||p. This proves the first
conclusion of the corollary and proves also that C5o (U) is L? dense in Ceom(U)

if 1 < p < oo. Since Proposition 3.5b shows that C.o,n(U) is dense in L?(U),
the second conclusion of the corollary follows. O

Suppose that f and g are two complex-valued functions that are locally
integrable on U in the sense of being integrable on each compact subset of
U. If « is a differentiation index, we say that D“f = g in the sense of weak
derivatives if

/f(x)D"(p(x)dx = (—1)|a|/ g)p(x)dx  forallg € CZ (V).
U U

The definition is arranged so that g gives the result that one would expect
for iterated partial differentiation of type « if the integrated or boundary term
gives 0 at each stage. More precisely if f is in C!*/(U), then the weak derivative
of order o exists and is the pointwise derivative. To prove this, it is enough to
handle a first-order partial derivative D;h for a function 4 in C'(U), showing that
[y hDjpdx = — [, (Djh)pdx for ¢ € C, (U), i.e., that [, D;(hp)dx = 0.
Because ¢ is compactly supported in U, ¥ = h¢ makes sense as a compactly
supported C' function on RY, and we are to prove that [,y D;y dx = 0. The
Fundamental Theorem of Calculus gives ffu Diyrdx; = [w]i’;a_a fora > 0,
and the compact support implies that this is O for a sufficiently large. Thus
[z Dj¥r dx; = 0, and Fubini’s Theorem gives [,y D;jy dx = 0.

The function g in the definition of weak derivative is unique up to sets of
measure O if itexists. In fact, if g, and g, are both weak derivatives of order o, then
fU (g1 — &2)pdx = 0 for all ¢ in CZ (U). Fix an open set V having com-
pact closure contained in U. If f is in Ccom(V), then Corollary 3.6a pro-
duces a sequence of functions ¢, in Cg,, (V) tending uniformly to f. Since
g1 — & is integrable on V, the equalities f v (&1 — 82)¢, dx = 0 for all n imply
fv (g1 — &2) f dx = 0. By the uniqueness in the Riesz Representation Theorem,
g1 = grae.on V. Since V is arbitrary, g, = g» a.e. on U.

EXAMPLE. In the open set U = (—1,1) € R!, the function ¢!/*! is locally
integrable and is differentiable except at x = 0, but it does not have a weak
derivative. In fact, if it had g as a weak derivative, we could use ¢’s vanishing in
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neighborhoods of the origin to see that g(x) has to be —ix~?(sgnx)e’/ ! almost
everywhere. But this function is not locally integrable on U.

If f has o™ weak derivative D*f and D*f has B weak derivative D? (D*f),
then f has (8 + «)™ weak derivative DfT*f and DPT*f = DP(D®f). In fact, if
@ isin CZ, (U), then this conclusion follows from the computation

[y fDP ™ pdx = [, fD*(DPp)dx = (=) [, D*f DPpdx
= (=D)AL [ DP(D*f)pdx.

If f has weak j" partial derivative D; f and if ¥ is in C*°(U), then f has a
weak j" partial derivative, and it is given by (D; f)¥+ f(Djy). Infact, this con-
clusion holds because [, f¥(Djp)dx = [, fD;j(yp)dx — [, f(Djy)pdx =
~ [uDiHvedx — [, fF(Diy)pdx = — [, (f(D;j¥) + (D; fHy)pdx.

If f has B weak derivative DPf for every g with 8 < a andif ¥ is in C*®(U),
then £ has an o™ weak derivative. It is given by the Leibniz rule:

D” 7Df3 D
(fy) = ﬂ;ﬁ% —g1 LN,

This formula follows by iterating the formula for D;( f) in the previous para-
graph.

Now we can give the definition of Sobolev spaces. Let k > 0 be an integer,
and let 1 < p < oo. Define

L{(U) ={f € LP(U) | all D*f exist weakly for || < k and are in L”(U)}.

Then L,f (U) is a vector space, and we make it into a normed linear space by

defining
11y = Z/ fp dx)”

la|<k

The normed linear spaces Lf (U) are the Sobolev spaces for U. All the remaining
results in this section concern these spaces.’

3The subject of partial differential equations makes use of a number of families that generalize
these spaces in various ways. Of particular importance is a family H* such that H® = L,% when s is
an integer k > 0 but s is a continuous real parameter with —0co < s < co. The spaces H*(RV) are
introduced in Problems 8—12 at the end of the chapter. For an open set U, the two spaces H3, (U)
and Hj} .(U) are introduced in Chapter VIIL. All of these spaces are called Sobolev spaces.
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Proposition 3.7. If £ > 0 is an integer and if 1 < p < oo, then the normed
linear space LY (U) is complete.

PROOF. If { f,,;} is a Cauchy sequence in L,f (U), then for each o with || < k,
the sequence {D*f,,} is Cauchy in L?(U). Since L?(U) is complete, we can
define @ to be the L?(U) limit of D*f,,. For ¢ in CX . (U), we then have

Jy f@¢dx = [, (im, Df,) dx = lim,, [, (D*fy)pdx,

the second equality holding since ¢ is in the dual space L” (U). In turn, this
expression is equal to

(=DMim,, [, (f)(D*@)dx = (=D [, (fO)(D¢) dx,

the second equality holding since D% is in L? (U). Therefore f@ = D¥f©
and f,, tends to £ in LY (U). O

Proposition 3.8. If £ > 0 is an integer and if 1 < p < o0, then a function f
isin L,’:(U) if fisin L?(U) and there exists a sequence { f,,} in C¥(U) such that
@) limy, | f — full, =0,
(b) for each o with || < k, the iterated pointwise partial derivative D*f,, is
in L?(U) and converges in L?(U) as m tends to infinity.

PROOF. By (b), || D*(f; — fu)ll f,’ for each fixed o tends to 0 as / and m tend to
infinity. Summing on & and taking the p™ root, we see that || f; — f,, | . tends to 0.
k

In other words, { f,,} is Cauchy in L,f (U). By Proposition 3.7, { f,,} converges to
some g in L} (U). The limit function g has to have the property that || f,, — g/l »
tends to 0, and (a) shows that we must have g = f. Therefore f is in Lf (). O

The key theorem is the following converse to Proposition 3.8.

Theorem 3.9. If k > 0 is an integer and if 1 < p < oo, then C*°(U)N Lf(U)
is dense in L} (U).

On the other hand, despite Corollary 3.6b, it will be a consequence of Sobolev’s
Theorem that Coo, (U) is not dense in L,f (U) if k is sufficiently large. The proof
of the present theorem will be preceded by a lemma affirming that at least the
members of L,f (U) with compact support in U can be approximated by members
of CZ . (U).

In addition, the proof of the theorem will make use of an “exhausting sequence”
and a smooth partition of unity based on it. Since U is locally compact and

o -compact, we can find a sequence {K,}° , of compact subsets of U with union



2. Weak Derivatives and Sobolev Spaces 65

U suchthat K, € K, forall n. This sequence is called an exhausting sequence
for U. We construct the partition of unity {v,},>1 as follows. Forn > 1, we use
Proposition 3.5f to choose a C* function ¢,, with values in [0, 1] such that

) { 1 for x € K3,
X) =
. 0 for x € (K7)<,
and forn > 2,
1 forx € Kyo — K2, |,
%m:{ o
0 forx € (K 3)UK,.

In the sum Yo | ¢,(x), each x has a neighborhood in which only finitely many
terms are nonzero and some term is nonzero. Therefore ¢ = Y 7o, ¢, is a
well-defined member of C*®°(U). If we put ¥, = ¢, / @, then ¥, is in C*(U),
Y ¥ =1onU, ¥(x)is > 0on K3 and is = 0 on (KY)*, and for n > 2,

>0 forx € K12 — K4,

=0 forx € (K 3)UK,.

Lemma 3.10. Let ¢ be a member of ngm(RN ) vanishing for [x| > 1 and

having total integral 1, put ¢,(x) = e Vp(e7'x) for & > 0, and let f be a
function in L,f (U) whose support is a compact subset of U. For ¢ sufficiently
small, ¢, * fisin CZ_(U), and

com

Y (x) {

lim llge % f = £l =0.

PROOF. As in the proof of Corollary 3.6, ¢, * f has compact support contained
in U if & < g9, where g is 1 if U = R" and ¢ is the distance of the support
of f to the complement of U if U # RY. Moreover, the function ¢, * f is in
C®(RYN) with D*(g, * f) = (D%@,) * f for each a. Thus ¢, * f is in cxL.)
if ¢ < g9. By the first remark after the definition of weak derivative, ¢, * f
has weak derivatives of all orders for € < o, and they are given by the ordinary

derivatives D (¢, * f). For ¢ < &,
D¥(@e * [)(x) = [, fF(D(DY@e)(x — y)dy
= (=Dl [, FOD*(y = @e(x — ) dy.

Since f by assumption has weak derivatives through order k and since y
s (x — y) has compact support in U, the right side is equal to

Ju D f e (x — y)dy = (¢ * D*f)(x)
for || < k. Therefore, for ¢ < g9 and || < k, we have
ID%(¢e % [ = ), = llge % (D°f) — DSl

For these same «’s, Proposition 3.5a shows that the right side tends to O as ¢ tends
to 0. Therefore ¢, * f — f tends to O in L,f(U). O
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PROOF OF THEOREM 3.9. Let f be in Lf (U). The idea is to break f into a
countable sum of functions of compact support, apply the lemma to each piece,
and add the results. The difficulty lies in arranging that each of the pieces of f
have controlled weak derivatives through order k. Thus instead of using indicator
functions to break up f, we shall use an exhausting sequence {K,},>; and an
associated partition of unity {,},>1 of the kind described after the statement of
the theorem. The discussion above concerning the Leibniz rule shows that each
¥, f has weak derivatives of all orders < k, and the construction shows that v, f
has support in K§ forn = 1 and in K], , — K, forn > 2.

Let € > 0 be given, let ¢ be a member of CZ, (RV) vanishing for |x| > 1 and
having total integral 1, and put ¢, (x) = e " Vp(e~'x) fore > 0. Applying Lemma
3.10 to ¥, f, choose &, > 0 small enough so that the function u,, = ¢,, * (¥, f)
has support in K¢ forn = 1 and in K, , — K, forn > 2 and so that

llun — WHf”L/I: <2™.

Putu =) o2 u,. Bach x in U has a neighborhood on which only finitely many
of the functions u, are not identically 0, and therefore u is in C*°(U). Also,

o0
u =
n=

(n = Yuf)+f  since Y v =1.
n=1

1

Since for each compact subset of U, only finitely many u, — i, f are not
identically O on that set, the weak derivatives of order < k satisfy D%u =
> o2 D*(uy — Y f) + D*f. Hence

o0

Du— f) = D*(up — Yu f).
n=1
Minkowski’s inequality for integrals therefore gives

2"[

n=1

1D = P, < 3 ND Gt = Ya )l < Y ltw =V fll,p <D o =€
n=1

n=1

Finally we raise both sides to the pth power, sum for o with || < k, and extract
the p'M root. If m (k) denotes the number of such «’s, we obtain

= flly <m0,

and the proof is complete. (]
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Now we come to Sobolev’s Theorem. For the remainder of the section, the
open set U will be assumed bounded, and we shall impose a regularity condition
on its boundary 8U = U — U. When we isolate one of the coordinates of
points in RY, say the j™, let us write y’ for the other N — 1 coordinates, so that
y = (yj,y"). We say that U satisfies the cone condition if there exist positive
constants ¢ and & such that for each x in U, there are a sign + and an index j
with 1 < j < N for which the closed truncated cone

Ie=x+{y=0;Y)| £y =clyland|y| <h}

lies in U for one choice of the sign . See Figure 3.1. Problem 4 at the end of the
chapter observes that if the bounded open set U has a C' boundary in a certain
sense, then U satisfies the cone condition.

Yj

Iy

X y/

FIGURE 3.1. Cone condition for a bounded open set.

Theorem 3.11 (Sobolev’s Theorem). Let U be a nonempty bounded open set
in RY, and suppose that U satisfies the cone condition with constants ¢ and h.
If1 < p <ooandk > N/p, then there exists a constant C = C(N, ¢, h, p, k)
such that
sup [u(x)| < Cllull»
xeU k

for all u in C*(U) N LY (V).

REMARK. Under the stated conditions on k and p, the theorem says that the
inclusion of C*°(U)N L,f (U) into the Banach space C (U) of bounded continuous
functions on U is a bounded linear operator relative to the norm of L ,f (U). Since
C>®(U)NLY(U)isdensein LY (U) by Theorem 3.9 and since C (U) is complete,
the inclusion extends to a continuous map of L ,f (U) into C(U). In other words,
every member of L{ (U) can be regarded as a bounded continuous function on
U.

PROOF. Fix g in C2°_(R!) with g(¢) equal to 1 for |¢]| < % and equal to O for

com
3

l£] > 4. Fixx in U and its associated sign & and index j. We introduce spherical
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coordinates about x with the indices reordered so that j comes first, writing x + y
for a point near x with

yj = %rcos g,
y1 = rsing cos 6y,
(with y; omitted)
YN—1 =Fsingsinf ---sinfy_3cosOy_,

Yy =rsingsinb ---sinfy_3sinfy_,

when
0<¢=m,

0<6, <mfori < N-2,

0 <0Ony_p <2m.

All the points x + y with 0 < ¢ < ®(c), where ®(c) is some positive number
and 0 < r < h, lie in the cone I, at x. For such ¢’s and for 0 < r < 1, we define

F(t) = g($)u(x + (£t cos g, tsingpcos by, ...))
and expand F in a Taylor series through order k£ — 1 with remainder about the
point + = h. Because of the behavior of g, F and all its derivatives vanish at
t = h. Therefore F(t) is given by the remainder term:
F(t) = g7 fy ¢ =) FO(s) ds.
Putting + = 0, we obtain
0 _ k
u(x) = (k—ll)! fh (=)t %[g(%)u(x + ¢ ))] dr

= ity o Y dels(ula + )]V ar

We regard the integral on the right side as taking place over the radial part of the
spherical coordinates that describe the set of y’s in ', and we want to extend
the integration over all of I'y. To do so, we have to integrate over all values
of 1,...,0y_p and for 0 < ¢ < ®(c). We multiply by the spherical part of
the Jacobian determinant for spherical coordinates and integrate both sides. The
integrand on the left side is constant, being independent of y, and gives a positive
multiple of u#(x). Dividing by that multiple, we get

u(x) =cr fr_ N S [g(Bux + y)]dy.
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Suppose temporarily that p > 1. With p’ still denoting the index dual to p,
application of Holder’s inequality gives

Ol < e1(fr, o VN7 dn) 7 (fr [ (e (Bhu + ]| ).

The first integral on the right side is the critical one. The radius extends from
0 to h, and the integral is finite if and only if (k — N)p’ > —N > 0, ie.,
k > N — N/p’ = N/p. This is the condition in the theorem.

The differentiation d% in the second factor on the right can be expanded in
terms of derivatives in Cartesian coordinates, and then the integration can be
extended over all of U. The result is that the second factor is dominated by a

multiple of [|ul|, ,. This completes the proof when p > 1.
k

Now suppose that p = 1. Then the above result from applying Holder’s
inequality is replaced by the inequality

)l < eIy o e |2 g (B)ute + ]| dy.

The first factor is finite if K > N, and the second factor is handled as before. This
completes the proof if p = 1. (]

Corollary 3.12. Suppose that U is a nonempty bounded open subset of RV
satisfying the cone condition, and suppose that 1| < p < oo and that m and k are
integers > O such thatk > m + N/p. If f isin L,’;(U), then f can be redefined
on a set of measure 0 so as to be in C™(U).

PROOF. Choose by Theorem 3.9 a sequence { f;} in C*°(U) N L,f (U) such that
lim f; = f in L,f(U). For |a| < m, we apply Theorem 3.11 to see that

sup |Df; — D*f;l
U

tends to 0 as i and j tend to infinity. Thus all the D®f; converge uniformly. It
follows that the uniform-limit function f = lim f; is in C"(U). Since f; — f
in LP(U) and f; — f uniformly, we conclude that f f almost everywhere.
Thus f tells how to redefine f on a set of measure 0 so as to be in C"(U). [

3. Harmonic Functions

Let U be an open setin R . The discussion will not be very interesting for N = 1,
and we exclude that case. A function u in C%(U) is harmonic in U if Au = 0
identically in U. Harmonic functions were introduced already in Chapter I and
investigated in connection with certain boundary-value problems. In the present
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section we examine properties of harmonic functions more generally. Harmonic
functions in a half space, through their boundary values and the Poisson integral
formula, become a tool in analysis for working with functions on the Euclidean
boundary, and the behavior of harmonic functions on general open sets becomes
a prototype for the behavior of solutions of further “elliptic” second-order partial
differential equations.

Harmonic functions will be characterized shortly in terms of a certain mean-
value property. To get at this characterization and its ramifications, we need the
N-dimensional “Divergence Theorem” of Gauss for two special cases—a ball
and a half space. The result for a ball will be formulated as in Lemma 3.13
below; we give a proof since this theorem was not treated in Basic. The argument
for a half space is quite simple, and we will incorporate what we need into the
proof of Proposition 3.15 below. For the case of a ball, recall® that the change-
of-variables formula x = rw, withr > 0 and |w| = 1, for transforming integrals
in Cartesian coordinates for R" into spherical coordinates involves substituting
dx = r¥Vdr dw, where dw is a certain rotation-invariant measure on the unit
sphere S¥~! that can be expressed in terms of N — 1 angular variables. The
open ball of radius xy and radius r is denoted by B(r; xy), and its boundary is
dB(r; xo).

Lemma 3.13. If F is a C' function in an open set on R" containing the closed
ball B(r; 0) andif 1 < j < N, then

oF N2
/ —(xo+x)dx = / X F(xo +row)r dw.
x€B(r:0) 8xj rwedB(r;0)

REMARKS. The lemma is a special case of the Divergence Theorem, whose
usual formula of is f y divFdx = f oy (F-m)dS, where U is a suitable bounded
openset, dU = U o _ U isits boundary, n is the outward-pointing unit normal,
F is a vector-valued C! function, and dS is surface area. In Lemma 3.13, U
is specialized to the ball B(r; 0), dS is the (N — 1)-dimensional area measure
rN=1 dw on the surface d B(r; 0) of the ball, F is taken to be the product of F by

the j™ standard basis vector ¢;, and ¢; - nis r ~'x;.

PROOF. Without loss of generality, we may take j = 1 and x9p = 0. Write
x = (x1,x), where x’ = (x2, ..., xy), and write @ = (w1, @) similarly. The
left side in the displayed formula is equal to

/r2_|x/|2 aF
‘/ix/lfr f)ﬂ:—\/m E(xl,x/) d.X] d_x/
S [FGPT= W2 = F(—/r? = WP x)] di

SFrom Section VL5 of Basic.
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Thus the lemma will follow if it is proved that

[ F(Jr?—x'12,x)dx = [ xFroyV?de (%)

[x'|<r lw|=1, ;>0

and

— [ F(=yr2=x2x)dx'= [ xiFroy"?do. (k)

|x'|<r lw]=1, ;=0

Let us use ordinary spherical coordinates for w, with

r cos 0
rwi r sin 6} cos 6,
roy rsin@)---sinfy_» cos Oy

rsin@y---sinOy_, sinOy_;

and
do =sinV 720, sinV 36, .. sinOy_,db; - -dOy_,.

The right side of (x) is equal to
[ Feowor"?de

lwl=1, w1=0
= [ FGo)yN='coso sin"=20,sin" >0, -sinOy_»db; ---doy_i,
0<6,=<m/2,
0<6j<m for 1<j<N—1,
0<On_1<27
and we show that it equals the left side of () by carrying out for the left side of
() the change of variables x’ <> (61, ..., Oy_1) given with r constant by

r sin6 cos 6
X2

x = . = .

) rsin@;---sinfy_s cosfy_1

XN . . .
rsin@g---sinOy_p sin Oy _;

The Jacobian matrix is the same as for the change to spherical coordinates
(r, 07, ...,0xn_1) except that the first column has a factor r cos 6, instead of 1
and the other columns have an extra factor of sin ;. Consequently

dx' = N1 (| cos 6| sin™ 2 91)(sinN_3 6, - -sin QN,z) do,---dby_;.

Therefore the measures match in the two transformed sides, the sets of integration
for (61, ..., Oy_1) are the same, and the integrands are the same because cos 6, =
| cos 8. This proves (). For (%) we make the same computation but the interval
of integration for 6, is 7 /2 < 0; < m. To get a match, the minus sign is necessary
because cos8; = —|cos 6. O
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Proposition 3.14 (Green’s formula’ for a ball). Let B be an open ball in RV,
let @ B be its surface, and let do be the surface-area measure of 0B. If u and v
are C? functions in an open set containing B, then

ov ou
Av —vA = — — v —
/;;(u v —vAu)dx /aB (u o v 8n) do,

where n : 9§ — R" is the outward-pointing unit normal vector.

PROOF. Apply Lemma 3.13 to F = u 2% and then to F = v 2, and subtract

dx; ax;°
the results. Then sum on j. (|

Let Qy_; be the surface area f gN-1 dw of the unit sphere in RY. A continuous
function u on an open subset U of R" is said to have the mean-value property
in U if the value of u at each point x in U equals the average value of u over each
sphere centered at x and lying in U, i.e., if

1
f u(x +tw)dw
Qn-1 Joesy-1

for every x in U and for every positive ¢ less than the distance from x to U€.
The mean-value property over spheres implies a corresponding average-value
property over balls. In fact, the volume | B(fy; 0)| of the ball B(#; 0) is given by
Ot" fovar N Ndwdt = N Sovo do = N~'#)'Qy_1. When the mean-value
property over spheres is satisfied and # is less than the distance from x to U, we
can apply the operation N7, N Oto (—) dt to both sides of the mean-value formula
and obtain

u(x) =

-N
N

N-1

to 1
u(x+to)t" 'dodt = ——— u(x+y)dy.
/0 /wESN‘l | B(to; 0)| JB(s:0

Proposition 3.15 (Green’s formula for a half space). Let H be the subset of
RN = {(x/,xy) | x’ € R¥"Tand xy € R} with xy > 0. Suppose that u and v
are C? functions on an open subset of R containing the closure H and that at
least one of 1 and v is compactly supported. Then

ou av ,
(uAv —vAu)dx = (v——u—)dx.
xeH X'eRN-1 N\ OXy dxy

PROOF. Suppose F is a C'! function compactly supported on an open subset of
RN containing H. If 1 < j < N — 1, then f " % dx = 0 since the integral with
7

u(x) =

TThis formula is related to but distinct from the formula with the same name at the beginning of
Section 1.3.
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respect to dx; is the difference between two values of F' and since these are 0 by
the compactness of the support. For j = N, however, one of the boundary terms

may fail to be 0, and the result is that fH oF. dx = — [pyv1 F(x')dx'.

Apply the j" of these formulas first to F = u Y and thento F = vg, sum
the results on j, and subtract the two sums. The result is the formula of the
proposition. ([l

Theorem 3.16. Let U be an open set in RY, and let u be a continuous scalar-
valued function on U. If u is harmonic on U, then u has the mean-value property
on U. Conversely if u# has the mean-value property on U, then u is in C*°(U)
and is harmonic on U.

PROOF. Suppose that u is harmonic on U. We prove that u has the mean-value
property. It is enough to treat x = 0. Green’s formula, as in Proposition 3.14,
directly extends from balls to the difference of two balls.® Thus we have

[ wAv —vAwydx = [, (u ﬂ—v )do (%)

whenever E is a closed ball B; of radius ¢ contained in U or is the difference
— (B¢)? of two concentric balls with € < ¢. Taking E = B, and v = 1 in (%),

we obtain
s, 3 do =0. (k)

Routine computation shows that the function given by

{ |x|~N-2) for N > 2,
log |x| for N = 2,

is harmonic for x # 0 and has 2! equal to a nonzero multiple of |x| V=1, r being
the spherical coordinate radlus |x|. If we apply (x) to this v and our harmonic u
when E = B, — (B.)°, we obtain

fa(B, (B. )o)( o vg—ﬁ)d0=0-

Since v depends only on |x|, (xx) shows that the second term of the integrand
yields 0. Thus this formula becomes

Jocw, 5.y wimdo =0.

8For the extended result, suppose that the balls have radii 7| < r». Then u and v are defined from
radius r; — € to ro + ¢ for some ¢ > 0. We can adjust u and v by multiplying by a suitable smooth
function that is identically 1 for radius > r; — 38 and identically O for radius < r; — %s and then
u and v will extend as smooth functions for radius < r, + ¢. Consequently Proposition 3.14 will
apply on each ball to the adjusted functions, and subtraction of the results gives the desired version
of Green’s formula.
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The normal vector for the inner sphere points toward the center. Hence we can
rewrite our equality as

Ju _ v
f\X|=e ustdo = fm:t ust do.

Since 2% = ¢|x|~V=D with ¢ # 0, we obtain

—-(N-1) — ¢~ (N=-D
€ e Udo =1 S wdo.

On the left side, do = €V~'dw, while on the right side, do = " !dow.
Therefore

S uew)do = [ u(tw)dw

whenever 0 < € < ¢ and B, is contained in U. Dividing by Qy_;, letting €
decrease to 0, and using the continuity of u, we see that u(0) = fw cgv—1 u(tw) do.
Thus u has the mean-value property.

For the converse direction suppose initially that u is in C?(U). Define

m(u)(x) = Q" f\w\:l u(x +tw)dw

whenever x is in U and ¢ is a positive number less than the distance of x to U°€.
With x fixed, the function m,(u)(x) has two continuous derivatives. We shall

show that 5

d
T M|y =N Au), (t)

the derivatives being understood to be one-sided derivatives as ¢ decreases to 0.
If u is assumed to have the mean-value property, m,(u)(x) is constant in ¢, and

we can conclude from (f) that Au(x) = 0. The computation of % m;(u)(x) is
m(u)(x) = Q' S #x1 + o1, .., xy + toy) do,
Lm,u)(x) = QL [l T 0 Dju(x + tw) do,
Lom)(x) = Q1 [ Yoy 0y Dy D (x + tw) do.
Letting ¢ decrease to 0, we obtain
om0 )],y = QL T DiDan) f,, @y do.

If j # k, then |

wj=1 @@k dw = 0 since the integrand is an odd function of

the j™ variable taken over a set symmetric about 0. The integral flw|=1 a)jz dowis
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independent of j and has the property that N times it is equal to f‘ lw]?dw =

f\wl:l dw = Qn_;. Thus f\a)l:l wjz do=N"'Qy_;, and

w|=1

Lom)],_y=N"" YN, D2ux) = N~ Au(x).

This proves (1) and completes the argument that a C? function in U with the
mean-value property is harmonic.

Finally suppose that u# has the mean-value property and is assumed to be
merely continuous. Proposition 3.5e allows us to choose a function ¢ > 0 in
ng’m(RN) with ¢ (x) = @o(|x]), fRN ¢(x)dx = 1,and p(x) = 0 for |x| > 1. Put
@:(x) = e Np(e7'x), and define u, (x) = fRN u(x — y)@:(y) dy in the open set
U, ={x e U | D(x,U°) > ¢}. Proposition 3.5c¢ shows that u, is in C*°(U,),
and the mean-value property of u, in combination with the radial nature of ¢, as
expressed by the equality ¢, (fw) = @ (tey), forces u.(x) = u(x) for all x in U,:

Ue(¥) = [ fio 4(x — t0)ge(t0)tN " dwdt
= [, Qn_1u(x)g.(te)tV " dt
= u(x) fgn () dy = u(x).

Since ¢ is arbitrary, u is in C*°(U). The function 1 has now been shown to be in
C?(U), and it is assumed to have the mean-value property. Therefore the previous
case shows that it is harmonic. ]

Corollary 3.17. If u is harmonic on an open subset U of RY, then u is in
C®(W).

PROOF. This follows by using both directions of Theorem 3.16. U

A sequence of functions {u,} on a locally compact Hausdorff space X is said
to converge uniformly on compact subsets of X if limu, = u pointwise on X
and if for each compact subset K of X, the convergence is uniform on K. For
example the sequence {x"} converges to the O function on (0, 1) uniformly on
compact subsets.

Corollary 3.18. If {u,} is a sequence of harmonic functions on an open subset
U of RV and if {u,} converges uniformly on compact subsets to u, then u is
harmonic on U.

PROOF. About any point of U is a compact neighborhood lying in U, and
the convergence is uniform on that neighborhood. Therefore u is continuous.
Each integration needed for the mean-value property occurs on a compact subset
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of U, and the uniform convergence allows us to interchange limit and integral.
Therefore the mean-value property for each u,,, valid because of one direction of
Theorem 3.16, implies the mean-value property for u. Hence u is harmonic by
the converse direction of Theorem 3.16. O

Suppose that U is open in R" and that u is harmonic on U. If B is an
open ball in U, then fU uAy dx = 0 forall ¥y € CZ_(B) by Green’s formula

com
(Proposition 3.14), since ¥ and % are both identically O on the boundary of B.
We shall use a smooth partition of unity to show that |, y WAV dx is therefore 0
forall Y € Cgy(U). Corollary 3.19 below provides a converse; we shall use the
converse in a crucial way in Corollary 3.23 below.

The argument to construct the partition of unity goes as follows. To each point
of K = support(y), we can associate an open ball centered at that point whose
closure is contained in U. As the point varies, these open balls cover K, and
we extract a finite subcover {Uq, ..., U;}. Lemma 3.15b of Basic constructs an
open cover {Wy, ..., Wi} of K such that Wfl is a compact subset of U; foreach i.
Now we argue as in the proof of Proposition 3.14 of Basic. A second application
of Lemma 3.15b of Basic gives an open cover {Vy, ..., Vi} of K such that Vl.Cl is
compact and ViCl C W; for each i. Proposition 3.5f constructs a smooth function
gi > O thatis 1 on ViC] and is O off W;. Then g = Zle gi 1s smooth and > 0
on R" and is > 0 everywhere on K. A second application of Proposition 3.5f
produces a smooth function # > 0 on R" that is 1 on the set where g is 0 and is 0
on K. Then g+h is everywhere positive on RY, and the functions ¢; = g; /(g+h)
form the smooth partition of unity that we shall use.

To apply the partition of unity, we write = ). ¢;¥. Then each term ¢;y/
is smooth and compactly supported in an open ball whose closure is contained in
U. Consequently we have fU uA(p;) dx = 0 for each i. Summing on i, we
obtain f v UAY dx = 0, which was what was being asserted.

Corollary 3.19. Suppose that U is open in R", that u is continuous on U, and
that fU uAy dx =0 forally € CZ (U). Then u is harmonic on U.

com
PROOF. Let B be an open ball of radius r with closure containedin U, fixe > 0
so as to be < r, and let B, be the open ball of radius r — ¢ with the same center as
B. Construct ¢, as in the proof of Theorem 3.16, and let u, = u * ¢.. Suppose
that ¥ is in Coo (B). For ¢ and x in RY with |¢]| < e, define ¥, (x) = ¥ (¢ + x).

Since v is supported in B, ¥, is supported in B, and therefore
Jpulx =AY (x)dx = [u(x)AY(x +1)dx = [ulAy, dx =0,

the last equality holding by the hypothesis. Multiplying by ¢, (), integrating for
|t| < e, and interchanging integrals, we obtain

0= [, [pvulx — D@ (DAY (x)dtdx = [pu.(x)AY(x)dx.
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Since 1 vanishes identically near the boundary of B, this identity and Green’s
formula (Proposition 3.14) together yield f g Y (X)Aug(x)dx = 0 for all ¢ in
CS . (Bg). Application of Corollary 3.6a allows us to extend this conclusion to
all ¥ in C¢om(B,), and then the uniqueness in the Riesz Representation Theorem
shows that we must have Au.(x) = O for all x in B,. As & decreases to 0, u,
tends to u uniformly on compact sets. By Corollary 3.18, u is harmonic in B.
Since the ball B is arbitrary in U, u is harmonic in U. g

Corollary 3.20. Let U be a connected open set in RY. If u is harmonic in U
and |¢| attains a maximum somewhere in U, then u is constant in U.

PROOF. Suppose that || attains a maximum at xo. Multiplying u by a suitable
constant ¢, we may assume that u(xo) = M > 0. The subset E of U where
u(x) equals M is closed and nonempty. It is enough to prove that E is open. Let
x1 be in E, and choose an open ball B centered at x, say of some radius r > 0,
that lies in U. We show that B lies in E. For 0 < ¢t < r, Theorem 3.16 says that
u has the mean-value property

Q;,l_l Sonor u(x + tw)do = u(x)) = M.
Arguing by contradiction, suppose that u(x; + fowg) 7# u(x1) for some fywy with
0 <ty < r. Then Reu(x; + towg) < M — € for some € > 0, and continuity
produces a nonempty open set S in the sphere S¥~! such that Re u(x| + tyw) <
M — ¢ for w in S. If o is the name of the measure on SV~!, then we have

MQy_; =Re ( fonor u(x) + tw) dw)

= [sReu(x; +1w)do + [(n_¢Reu(x; +tw)dw

= (M —€)o(S)+Ma(SV 1 -9)

=MQy_; —€a(S),

and we have arrived at a contradiction since o (S) > 0. O

Corollary 3.21. Let U be a bounded open subset of RY, and let U be its
boundary. If  is harmonic in U and is u is continuous on U, then sup,y lu(x)|=
maxyepy |u(x)|.

PROOF. Since u is continuous and U is compact, |u| assumes its maximum
M somewhere on U, If |u(xo)| = M for some xo in U, then Corollary 3.20
shows that u is constant on the component of U to which xy belongs. The closure
of that component cannot equal that component since R is connected. Thus the
closure of that component contains a point of dU, and |u| must equal M at that
point of 0U. Consequently sup,..;; [u(x)| < max,eyy |u(x)|. Since every point
of AU is the limit of a sequence of points in U, the reverse inequality is valid as
well, and the corollary follows. O
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Corollary 3.22 (Liouville). Any bounded harmonic function on RY is
constant.

REMARKS. The best-known result of Liouville of this kind is one from complex
analysis—that a bounded function analytic on all of C is constant. This complex-
analysis result is actually a consequence of Corollary 3.22 because the real and
imaginary parts of a bounded analytic function on C are bounded harmonic
functions on R?.

PROOF. Suppose that u is harmonic on RY with |u(x)| < M. Let x; and x,
be distinct points of RV, and let R > 0. Since u has the mean-value property
over spheres by Theorem 3.16, u equals its average value over balls. Hence

u(x;) = |B(R; 0)|! fB(R;xl) u(x)dx and u(x;) = |B(R; 0)|™! fB(R;xz) u(x)dx.
Subtraction gives
M(X])—M()Cz) == IB(R’ O)|_1(fB(R;x1) M(X) dx — fB(R;xz) M(X)dX)

= [B(R; O)| ™" (fror)— BeRe e # ) dX = [ o) peon 4 (X) dX).

Therefore
@) = u)| < IBR; O™ [ypiri)an(Riny 1) dx,

where B(R; x1) AB(R; x,) is the symmetric difference (B(R; x;) — B(R; x3)) U
(B(R; x3) — B(R; x1)). Hence

M|B(R; x1)AB(R; x2)| _ MRY|B(1: x1/R)AB(l; x2/R)|
lu(xy) —u(xz)| < - = N BT .
[B(R;0)] RY|B(1;0)]
The right side is | B(1; x;/R)AB(1; x/R)|, apart from a constant factor, and the
sets B(1; x;/R)AB(1; x;/R) decrease and have empty intersection as R tends
to infinity. By complete additivity of Lebesgue measure, the measure of the
symmetric difference tends to 0. We conclude that u(x) = u(x,). Therefore u
is constant. ]

In the final two corollaries let Rﬁ“ be the open half space of points (x, ¢) in
RN*! such that x is in RN and # > 0.

Corollary 3.23 (Schwarz Reflection Principle). Suppose that u(x, t) is har-
monic in R, that u is continuous on (RY ™)', and that u(x, 0) = 0 for all
x. Then the definition u(x, —t) = —u(x, t) for t > 0 extends u to a harmonic
function on all of RV +!,
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PROOF. Define

{ u(x,t) fort >0,
—u(x, —1t) fort <O0.

The function w is continuous. We shall show that fRN wAY dx = 0 for all
¥ € CL (RN, and then Corollary 3.19 shows that w is harmonic. Write ¥
as the sum of functions even and odd in the variable 7. Since w is odd in ¢, the
contribution to f]RN wA1r dx from the even part of i is 0. We may thus assume
that ¢ is odd in ¢.

Fore > 0, let R, = {(x,1) | t > ¢}. It is enough to show that fRs ulAy dx dt
has limit O as & decreases to O since fRN+I wAY dx dt is twice this limit. We
apply Green’s formula for a half space (Proposition 3.15) with v = i on the set
R. € RN*! except for one detail: to get the hypothesis of compact support to be
satisfied, we temporarily multiply y» by a smooth function that is identically 1 for
t > ¢ and is identically O for ¢ < %8. Since u is harmonic in R, the result is that

— [p uAYdxdt = [ (YAu—uAY)dxdi = [i oy (s — %) dx.

On the right side, limg o f{(x’l)‘t:g} uaa—‘f dx = 0 since u( -, €) tends uniformly
to 0 on the relevant compact set of x’s in RV,

Thus it is enough to prove that lim, o f{(xmt:s} %—'; dx = 0. Since ¥(x,t)
is of class C2, is odd in x, and is compactly supported, we have | (x, t)| < Ct
uniformly in x for small positive ¢. Thus it is enough to prove that

tim| 1 % e )| = 0 *)
im|t —(x,t)| = *
110 ot

uniformly on compact subsets of RY.

To prove (%), let ¢ be a function as in Proposition 3.5e, and let ¢, (x, 1) =
e~ WHDo(e~1(x, 1)). Fix xo in RY, and define Xy = (xo, fo) and X = (xo, 1).
If | X — Xo| < %t(), then the mean-value property of u in Rﬁ“ gives u(X) =
(u * (p%to)(X). Hence we have

500 = fawnr 93, (X = Vu(¥) dY
= favo 2 [ GNP ((G10) T (X = V) Ju(Y) dY.

In the computation of the partial derivative on the right side, the variable ¢ appears
as the last coordinate of X. Therefore this expression is equal to

(310) 7" faver G1o) N+ 22 (1o)X — Y))u(Y) dY.
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Changing variables in the integration by a dilation in Y shows that this expression
is equal also to

G1) ™" S F(G0) X = Y)u(3nY)dy.

If we write Y = (y, s) and take absolute values, we obtain

—1 8
|5 (o, 0 <315 |52, sup Ju()I.
|s—to|<2t0/3,
Y near X,
The required behavior of taa—’; follows from this estimate. (]

Corollary 3.24. Suppose that u (x, ¢) is harmonic in Rf“ , that u is continuous
on (RY <! and that u(x, 0) = O forall x. If u is bounded, then u is identically 0.

REMARK. Without the assumption of boundedness, the function u(x, t) = ¢ is
a counterexample.

PROOF. Corollary 3.23 shows that u extends to a bounded harmonic function
on all of R¥*!, and Corollary 3.22 shows that the extended function is constant,
hence identically 0. O

4. H? Theory

As was said at the beginning of Section 3, harmonic functions in a half space,
through their boundary values and the Poisson integral formula, become a tool in
analysis for working with functions on the Euclidean boundary. The Poisson in-
tegral formula, which was introduced in Chapters VIII and IX of Basic, generates
harmonic functions from boundary values.

The details are as follows. Let Rf *1 be the open half space of pairs (x, 7) in
RV*!withx € RN andwith7 > 0inR'. We view the boundary {(x, 0) | x € RV}
as RY. The function

CN T

P(x,t) = P(x) = ,
(X ) t(x) (tz + |x|2)%(N+l)

fort > 0, with cy = n‘%(N“)F(NT“), is called the Poisson kernel for RY*!.
The Poisson integral formula for Rﬁ“ isu(x,t) = (P, x f)(x), where f is
any given function in L?(RV) and 1 < p < o0, and the function u is called the
Poisson integral of f.
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If fisin LP?, then u is harmonic on Rﬁ“, u(-,t)isin L? foreacht > 0, and
luC-.0Oll, =lfll,- Forl < p < 00, lim; o u( -, t) = f inthe norm topology of
L7, while for p = oo, lim, o u(-, t) = f inthe weak-star topology of L> against
L'. Inboth cases, lim, o flu(-, Oll, =fIl, and lim; o u(x,t) = f(x) a.e.; this
latter result is known as Fatou’s Theorem. When p = oo, the a.e. convergence
occurs at any point where f is continuous, and the pointwise convergence is
uniform on any subset of RY where f is uniformly continuous.

The L? theory for p = 1 extends from integrable functions to the Banach space
M (RN) of finite complex Borel measures. Specifically if v is a finite complex
Borel measure on R, then the Poisson integral of v is defined to be the function
u(x, 1) = (P % n)(x) = [gn Pr(x — y)dv(y). Then u is harmonic on R,
lu(-, )ll; < llv|l foreacht > 0, lim; o u( -, t) = v in the weak-star topology of
M (RY) against Ceom(RY), and lim o [lu(-, D[, = l|p]l.

The new topic for this section is a converse to the above considerations. For
1 < p < oo, we define H? (RP') to be the vector space of functions u(x, ) on
RY*! such that

(i) u(x, t) is harmonic on RY ™",

(ii) sup,_g llu(-, |, < oo.
With [|u|,,, defined as sup,_ [[u(-, 1)||,, the vector space H” (]Rﬁ+l ) is anormed
linear space. If f isin L”(R"), then the facts about the Poisson integral formula
show that the Poisson integral of f is in H”(RY™") and its H”(RY™") norm
matches the L” (R") norm of f. For p = 1, we readily produce further examples.
Specifically if v is any member of M(R"), then the Poisson integral of v is in
H! (Rﬁ“ ), with the H! (Rﬁ +1) norm matching the M(R") norm. The theorem
of this section will say that there are no other examples.

The members of H*® (RT’I) are exactly the bounded harmonic functions in
the half space Rﬁ“, and the tool for obtaining an L*> function on R" from
this harmonic function is the preliminary form of Alaoglu’s Theorem proved in
Basic:® any norm-bounded sequence in the dual of a separable normed linear
space has a weak-star convergent subsequence.'® We shall use Corollary 3.24 to
see that the harmonic function has to be the Poisson integral of this L°° function.

Theorem 3.25. If 1 < p < oo, then any harmonic function in H” (RT’I) is
the Poisson integral of a function in L?(R"). For p = 1, any harmonic function
in H'(RY ™) is the Poisson integral of a finite complex measure in M (R").

PROOF. We begin by proving that u(x, t) is bounded for ¢t > #y. For this step
we may assume that p < oo. Theorem 3.16 shows that u has the mean-value

9Theorem 5.58 of Basic.
10The full-fledged version of Alaoglu’s Theorem will be stated and proved in Chapter IV.
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property. We know as a consequence that if B denotes the ball with center (x, ¢)
and radius %to, then the value of u at (x, ¢) equals the average value over B:
u(x,t) = ﬁ Jzu(y,s)dyds.
Since the measure |B|~! dy ds on B has total mass 1, Holder’s inequality gives
e, 1P < b [y lu(y. )7 dyds
1
181 JIs—t1<kno Jyern 1u(y, $)I7 dy ds

IA

IA

[(%to)N—HQN]_l (N + Do ”u”%pv

and the boundedness is proved.
For each positive integer k, define fi(x) = u(x,1/k) and w(x,t) =
(P; * fi)(x). Then the function wy(x, t) —u(x,t + 1/k) is
(i) harmonicin (x, t) for ¢t > 0 since wy and any translate of u are harmonic,
(ii) bounded as a function of (x, ¢) for ¢ > 0 since u(x, t 4+ 1/k) is bounded
fort > 0, according to the previous paragraph, and since wy, is the Poisson
integral of the bounded function f,
(iii) continuous in (x, t) for ¢ > 0 since u(x, t + 1/k) and wy (x, t) both have
this property, the latter because f; is continuous and bounded.
By Corollary 3.24, wy(x,t) —u(x,t + 1/k) = 0. That is,

u(x,t+1/k) = [en Pi(x — y) fi(y) dy.

Now suppose p > 1, so that L? is the dual space to L? if p~' + p/~! = 1.
Since u is in H?, || fill, < M for the constant M = ”“”H,,' By the preliminary
form of Alaoglu’s Theorem, there exists a subsequence { fi, } of { i} that is weak-
star convergent to some function f in L”. Since for each fixed ¢, P, isin L' N L™
and hence is in L?', each (x, t) has the property that

u(x,t+1/kj) = [on Pi(x — ) fi, ) dy = [pn Pi(x — y) f(y) dy.
But u(x,t + 1/k;) — u(x,t) by continuity of u. We conclude that u(x,t) =
Jrv Pr(x = y) f(y) dy.

This proves the theorem for p > 1. If p = 1, the above argument falls short
of constructing a function f in L' since L' is not the dual of L>°. Instead, we
treat f; as a complex measure fj(x) dx. The norm of f;(x)dx in M(R") equals
l fxll,, and thus the norms of the complex measures fi(x) dx are bounded. The
space M(R") is the dual of Ccom(R") and hence also of its uniform closure,
which is the Banach space Co(R") of continuous functions on R" vanishing at
infinity. Let { fi, (x) dx} be a weak-star convergent subsequence of { fi(x) dx},
with limit v in M(R"). Since each function y > P;(x — y) is in Co(R"), we
have limy fRN P(x —y) fiy ) dy = fRN P,(x — y)dv(y). This completes the
proof. O
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For N = 1, every analytic function in the upper half plane ]R.z+ is automatically
harmonic, and one can ask for a characterization of the subspace of analytic
members of H” (]Ri). Aspects of the corresponding theory are discussed in
Problems 13-20 at the end of the chapter.

5. Calderén—-Zygmund Theorem

The Calderon—Zygmund Theorem asserts the boundedness of certain kinds of
important operators on L?(RY) for 1 < p < oo. It is an N-dimensional
generalization of the theorem giving the boundedness of the Hilbert transform,
which was proved in Chapters VIII and IX of Basic. We state and prove the
Calder6n—Zygmund Theorem in this section, and we give some applications to
partial differential equations in the next section.

Theorem 3.26 (Calderén—Zygmund Theorem). Let K (x) be a C ! function on
RM — {0} homogeneous'! of degree 0 with mean value O over the unit sphere,
i.e., with

/ K(w)dw = 0.
SN-1

For each ¢ > 0, define

Tgf(X)=/ KO v

fze 1INV

whenever 1 < p < oo and f is in L?(R"). Then

(@) IIT: fll, < Ayl fll, for a constant A, independent of ¢ and f,
(b) liII(} T, f = Tf exists as an L? limit,
&

©) ITfll, < Apllifll, for a constant A, independent of f.

REMARKS. If 1 < p < oo and if p’ is the dual index to p, then the function
equal to K (¢)/|t|N for |t| > & and equal to O for |¢| < & is in L?'. Therefore, for
each such p, T, f is the convolution of an L?" function and an L? function and is
a well-defined bounded uniformly continuous function. In proving the theorem,
we shall use less about K (x) than the assumed C'! condition on RY — {0} but more
than continuity. The precise condition that we shall use is that | K (x) — K(y)| <
1//1(|x —y]) on S¥~! for anondecreasing function v/ (8) of one variable that satisfies
f Q)

ITA function F of several variables is homogeneous of degree m if F(rx) = r™ F (x) for all
r > 0andall x # 0.
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The main steps in the proof are to show that the operator 7 equal to 7, fore = 1
is bounded on L? and is of weak-type (1, 1) in the sense that |{x | |(T} f)(x) > £}
< C|fll1/€. The remainder of the argument is qualitatively similar to the
argument with the Hilbert transform, not really involving any new ideas. We
handle matters in the following order: First we prove as Lemma 3.27 two facts
needed in the L? analysis, second we give the proof of the boundedness of T}
on L2, third we establish in Lemmas 3.28 and 3.29 a weak-type (1, 1) result
for a wide class of operators, and fourth we show as a special case that 7} is of
weak-type (1, 1). Finally we tend to the remaining details of the proof.

Lemma 3.27. There is a constant C such that for all R > 1, all ¢ with
0 < & < 1, and all nonzero real a and b,

R sinar dr
@ | = =c
B r

R (cosar — cosbr) dr ‘ -

(b) ‘ C (1 + |log(la/b))|).

,
PROOF. In (a) and (b), the signs of @ and » make no difference, and we may
therefore assume that a > 0 and b > 0.
In (a), the change of variables s = ar converts the integral into f
—1

aR sinsds
s

Since s~ sin s is integrable near 0, it is enough to consider fo S“’j ds | Integration

by parts shows that this integral equals [lcﬂ] — fOS (CO”S# The integrated
term tends to a finite limit as S tends to infinity, and the integral is absolutely
convergent. Hence (a) follows.

In (b), possibly by interchanging a and b, we may assume thatc = b/a is < 1.
The change of varlables s = ar converts the integral into | R w Since
|1 —coss| < 1s2forall s, wehave |1 —coscs| < lc2s2 < 2s So the integrand
is<sin absolute value everywhere and in partlcular is integrable for s near 0. Itis

therefore enough to show that | /, 1S w | < C(1+log(c™1)). Integration
by parts gives f | cossds _ [w]s + ]S Si“; 45 The integrated term tends to a

N N

S cossds
s

finite limit, and the integral is absolutely convergent. Hence the term f

S coscsds
s

is bounded, and it is enough to handle . Putting + = cs changes this

integral to fc ,CS Co‘t—td’. If ¢S > 1, the 1ntegral from 1 to ¢S contributes a bounded
amount, as is seen by integrating by parts, and the integral from c to 1 contributes
in absolute value at most [ < bt — =logc~!. If ¢S < 1, the integral from ¢ to ¢S
contrlbutes in absolute value at most [ < bty + [ ! 4 = logc! 4 log(c$) ™! <
2logc™!. O

PROOF FOR THEOREM 3.26 THAT T IS BOUNDED ON L2. Define k(x) to be
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K (x)/|x|N for |x] > 1 and to be O for [x| < 1. Then k is an L? function, and
T, f = k % f. We show that 7} is bounded on L? by showing that the Fourier
transform Fk of k is an L°° function.

If I, denotes the indicator function of {|x| < n}, then the sequence {kI,}
converges to k in L2. By the Plancherel formula, {F(kI,)} converges to Fk in
L?. Thus a subsequence converges almost everywhere. To simplify the notation,
let n run through the indices of the subsequence. We have just shown that
k(x)e 2"*Y dx,

(Fk)(x) = limnf|

x|<n

the limit existing almost everywhere. Write x = rw and y = r'o’, where r = |x|
andr’ = |y|. Thenx - y =rr’'cosy, where y = w - &', and (Fk)(x) is the limit
on n of

n _2wirr! _
fsN—l Kr([\(/o) e 2wirr coser ldr dw

1
_ fSN—l [ ln e—2ﬂirr;'cosy dr]K(a)) da)

n —27irr’ oSy _npye ’ .
= fovr [ S| s K (w)dw  since K has
mean value 0

_ fsN,l [fln (cos(2ﬂrr’cosy)—0052ﬂrr’) dr]K(w) dw

r

. inQwrr’ d
— fSN?I [ 1n sin( nrrrcosy) r]K(a)) do.

Let us call the terms on the right side Term I and —i Term II. The inner integral
for Term II is bounded independently of r, ¥/, y, n by Lemma 3.27a. Since K is
bounded, Term II is bounded.

The inner integral for Term I is bounded by C (1 +log(| cos y|~! )), according
to Lemma 3.27b. Since K is bounded, the contribution from C by itself yields a
bounded contribution to Term I and is harmless. We are left with a term that in
absolute value is

< C [onoi log(lcos y| ™)K ()| dw = C [y log(| cos(w - )| )| K (w)| dw.

Since K is bounded, it is enough to estimate fstl log(] cos(w - @')|~") dw. This
integral is independent of @’. We introduce spherical coordinates

w] = cos Oy,

wp = sin 6B cos b,
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and take ' = (1,0, ..., 0). The integral becomes

f log(| cos 6, =1 sinV =26, - -sinOy_rdOy_; - --dby,
0<6;<m for j<N-1,
0<Oy_1 <27

which is a constant times f0" log(] cos@|~1) sin" 26 d6. This integral in turn
is < foﬂ log(| cos8|~") df, whose finiteness reduces to the local integrability of
log(|x|~") on the line. Thus TermI is bounded, and the boundedness of Fk
follows. O

Lemma 3.28 (Calder6n—Zygmund decomposition). Let f be in L' (RY), and
let £ be a positive real number. Then there exists a finite or infinite disjoint
sequence {E,},>1 of Borel subsets of RY such that

(a) foreach E,, there exists a ball B,, = B(r,; x,,) such that the balls B,, and
B} = B(5ry; x,) have B, C E, C B},

) X, 1E <5NIf1, /&,

(¢) |f(x)| < & almost everywhere off | J,, E,,

(d) ! |/ | f(y)|dy < 5V& for each n.
n E,

|E
FIGURE 3.2. Calderén—Zygmund decomposition of R" relative to a function at a
certain height. The set where the maximal function of f exceeds & lies in the
union of the gray balls. The gray balls have radii 5 times those of the black
balls, and the black balls are disjoint. The function | f] is < & almost

everywhere off the union of the gray balls, and the sum of the volumes
of the gray balls is controlled.

®

REMARKS. In the 1-dimensional case, this result was embedded in the proof
of Theorem 8.25 of Basic. The sets E, were open intervals. Extending that
argument too literally to the N-dimensional case is unnecessarily complicated
for current purposes. Instead, we settle for an n' set that contains a ball of some
radius about a point and is contained in a ball of 5 times that radius. Thus the n™"
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set E,, consists of a black ball and part of the corresponding gray ball in Figure
3.2. The fact that E,, has not been precisely located makes the proof of weak-type
(1, 1) in the present section more difficult than the proof of Theorem 8.25 of
Basic.

PROOF. Let f* be the Hardy—Littlewood maximal function
FH0) = SUPg_y o (B0 [y [ £ dy,

andlet E = {x | f*(x) > &}. If x isin E, then | B(r; x)| ™! fB(r;x) [fn)ldy > &
for some r > 0. On the other hand, lim,_, ~ |B(r; x)|™! fB(r;x) lf()]dy =0
since f is integrable. Thus, for each x in E, there exists an r = r, depending on
x such that

1Bra; O™ 5.0 1D dy > &
and 1B 0™ fyspin f W dy <.

Since || fll1 = [g.00) [N dy > E|B(re; x)| = rY £|B(1; 0)], the radii r, are
bounded. Applying the Wiener Covering Lemma'? to the cover { B(r; x) | x € E}

of E, we obtain a finite or infinite sequence of points xy, x3, ... such that the
balls B(r,,; x,) are disjoint and
E C U, B(5ry,; Xn). (%)

Write r,, for r,, . Put Ey = B(5ry; x1) — U#] B(rj; xj), and define inductively

En = B(5ry: x) — U2} Ej — U BGji X))
By inspection
(i) the sets E, are disjoint,

(i1) B(r,; x,) € E, C B(5r,; x,) for each n,

(ii)) U, En = U, BGra: xa).
Property (ii) immediately yields (a). The second inclusion of (ii) gives £ |E,| <
E|B(5ra; xa)| = SNEIB(ra; xa)| < 5V [g, . 1f(¥)dy. Summing on n and
taking into account the disjointness of the sets B(r,; x,), we obtain & ), |E,| <
5N fUnB(rn;xn) | f)|dy < 5M||fll;. This proves (b). The two inclusions

of (ii) together yield [, [f(MIdy < [gs, ..\ | fODIdy < EIB(Sry; x| =
5NE|B(ry; x,)| < 5VE|E,|, and this proves (d). Finally (%) and (iii) together
show that E C J, E,. Therefore f*(x) < & everywhere off | J, E,. Since

lim, 4o [B@: )™ [y [FO)dy = £(0)

almost everywhere on RY, we see that | f (x)| < & almost everywhere off U, En-
This proves (c). O

121 emma 6.41 of Basic.
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Lemma 3.29. Let k be in L>(R"), and define Tf = k * f for f in L' + L?.
If

@ ITfll, < Allfll, and
(b) there exist constants B and « > 0 such that

/ lk(x —y) —k(x)|dx < B
RN

independently of y,

then the operator T is of weak-type (1, 1) with a constant depending only on A,
B, o,and N.

PROOF. We are to estimate the measure of the set of x where [(T f)(x)| > &.
Fix f and &, and apply Lemma 3.28 to obtain disjoint Borel sets E, and balls
B, = B(ry; x,) and B} = B(5r,; x,) with B, € E, € B} and with the other
properties listed in the lemma. Now that the sets E, have been determined, we
decompose f into the sum f = g + b of a “good” function and a “bad” function
by

w1Jp, fO)dy  forx € E,,
gx) =

f(x) forx ¢ (U, En,
{ f(x)—lE—lle fO)dy forx € E,,
b(x) — n n
0 forx ¢ U, En.

Since {x | ITf(x)| > &} € {x||Tg)| > &/2} U{x|ITbx)| > &/2}, itis
enough to prove
() [{x]1Tg)| > &/2}| < ClfIl, /€ and
(i) {x|ITb)| > &/2}| < ClfIl, /8
for some constant C independent of £ and f.
The definition of g shows that [, |g(x)|dx < [ |f(x)|dx for all n and

that |g(x)| = | f(x)| for x ¢ |, En; therefore [py [g(x)|dx < [pn | f(X)]dx.
Also, properties (b) and (c) of the E,,’s show that |g(x)| < 5V& a.e. These two
inequalities, together with the bound || Tg|l, < Al gll,, give

Jan ITg@)[Pdx < A? [ 1g(x)|* dx
< 5NEA? [on lg(x)dx < SVEA? v [f(0)ldx.

Combining this result with Chebyshev’s inequality

{x | IF@)| > B} < B2 fan |F () |* dx
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for the function F = T g and the number § = £/2, we obtain
4-5NA%N £

4
[{x | ITg)| > &/2}] < —zstAZ/ |f ()] dx =
& RV 3

This proves (i).

For the function b, let b, be the product of b with the indicator function of
E,. Then we have b = ), b, with the sum convergent in L'. Inspection of
the definition shows that ||b, ||, < 2fEn | f ()| dy, and therefore ||b]|; < 2| fl,.

Since T is convolution by the L? function k and since b = Y, b, in L', Tb =
> Tb, with the sum convergent in L. A subsequence of partial sums therefore
converges almost everywhere. Inserting absolute values consistently with the
subsequence and then inserting absolute values around each term, we see that

Th(x)| < X, ITh(x)]  ace.
Let o be the constant in hypothesis (b). The measure of |, B(5ar,; x,) is
| U, BGary; x)| < X, |BGary; x)| =Y, 5N o |B(ry; x,)|
<5NaN 3 E.| < 5NN £l /6.

Let X = RY — |, B(5ary; x,). If we show that [, |Tb(x)|dx < C'| f]l1, then
we will have

[{x [ ITb@)] > &/2}] < 5N +2C)II£1, /&, (%)

and (ii) will be proved. Put 7,(X) = {x — x, | x € X}. Since fE b(y)dy =0
for each n,

fx [Th(x)|dx < Zn fx |Th,(x)|dx
=2 [y | Jg, k(x = y)b(y) dy| dx
=3, [y | Jo eGx = ¥) = k(x = x)1b(y) dy| dx
<Y [y Jp, k(x = ) —k(x — x)[1b(y)| dy dx
S fe [ oo G+ = y) — k()] dx]Ib()| dy
< S [ saro G+ %0 — ) — k()| dx]1b(y)| dy.

In the n'™ term on the right side, y is in £, € B}, and hence |x, — y| < 5ry;
meanwhile, |x| > Sar,. Therefore |x| > Sar, > a|x, — y|. The right side in the
display is not decreased by increasing the region of integration in the x variable,
and hence the right side is

< 3 i, [izate,—y KO+ 050 = 3) = k()| dx]1b(y)| dy
<> Jg, BIb(W)|dy = Blbll, <2BI fl,.
Therefore () is proved with C' = 2B, and the proof of (ii) is complete. ]
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PROOF FOR THEOREM 3.26 THAT T} IS OF WEAK-TYPE (1, 1). With k(x) taken
to be K (x)/|x|" for |x] > 1 and to be O for |x| < 1, Lemma 3.29 shows that it
is enough to prove that

Sz kG = ) —k(x)|dx < B )

with B independent of y. The function & is bounded, and thus the contribution
to the integral in (x) from the bounded set of x’s where |x| < 1 is bounded
independently of y. The set of x’s where |x — y| < 1 is a ball whose measure is
bounded as a function of y, and thus this set too contributes a bounded term to
the integral in (). It is therefore enough to prove that

/ Kx—-y) K

dx
lx —yI¥ x|V

|x1=2[yl,

[x=yl=1, |x|=1

is bounded as a function of y. If M is an upper bound for | K |, then this expression
is

Sf|K(X—Y)||W—ﬁ‘dx+fde

x|V
1 1 [K(x=y) =K (x)|
[x|=2]yl, [x|=2]yl,
lx|=1 |x|=1

We use the two estimates

lx — | < |xl + Iyl < x|+ 31x| = 3|x]
and lx =yl = |xl = Iyl = Glxl = [yD + 3lx| = 31x[.
The integrand in the first term of () is equal to

L — | = BT < o | bl
=y® T IV V=V | = Jx 2N

< N Lxl=lx—yl| [N Y 2 ey e x =y VD)
— ‘x|2N

< N LY e N 2 e —y =y [V < 2N(%)N [ i B i B |

|)C|2N |X|2N
= N3N |x“?\]/|+l .
Thus the integral in the first term of () is
N y] — N o lyl_ .N—1
< N3 [ max2yt) et 4% = N3VQN—1 [y iy e 7 dr

= N3¥Qy_, 7 < IN3NQN_y,

B
max{1,2|y|
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and this is bounded independently of y.
For the second term of (xx), we start from the estimate

z _ w lz=w]
15— il < e ()

IzI

To verify (1), we may assume that |z| > |w|. Then & 4 1 > Z®

— [z[|w]
the left side is > 2 and the right side is < 2. Multlplymg by & 'Zl — 1, we obtain

because

22 s 2zw _ 2w 2z-w A_%_w ich i
P2 Z Tl " Tl Hence 1 — Tl T 1 < P2 e + 1, which is the
square of (7).

Using () and the definition and monotonicity of the function 1 that is defined
in the remarks with the theorem and that captures the smoothness of K, we have

K= =KW= |[KEED K& < v (|52 -5 < v Gansmn)-

. . 21y
Since |x — y| > % |x|, min{|x — y|, [x|} > 3|x|. Thus x//(m) < w(%),
and the computation

[K(x=y)=K )| v 2lyl/1xD _ y(/lz)
o dx< [ T dx= [ T dz
[x[>2[yl, [x[>2]yl, lz|>1,
[x|>1 [x|>1 lz|>1/2]y|

=Qni frﬁjx{l,l/zm v /rr tdr
— QN—I f’omin{l,zb'“ 1//(8)871 d5
< Qyoy fy w887 ds

shows that the second term of () is bounded independently of y. l

PROOF OF REMAINDER OF THEOREM 3.26. We can now argue in the same way
that the Hilbert transform was handled in Chapter IX of Basic. Since T} has been
shown to be bounded on L? and to be of weak-type (1, 1), the Marcinkiewicz
Interpolation Theorem given in Theorem 9.20 of Basic shows that ||T7 f||, <
Apllfll, forl < p < 2with A, independent of f. Lemma 9.22 of Basic extends
this conclusion to 1 < p < oo. The argument that proves Theorem 9.23a in
Basic applies here and shows that ||T; f|, < A ||f|| forl < p < oo with A,
independent of f and ¢. This proves Theorem 3 26a.

The same argument as in Lemma 9.24 of Basic shows that if f isa C! function
of compact support on R", then

lime o fiy)e W
exists uniformly and in L? for every p > 1. This proves (b) of Theorem 3.26 for
the dense set of C! functions f of compact support.
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To prove the norm convergence when we are given a general f in L? with
1 < p < oo, we choose a sequence f, in the dense set with f, — f in L”. Then

ITef = Te fll, < W Te(f = fll, + 1 Te fu = Te full, + 1T (f = DI,
< Apllfu = fll, + T fro = T full, + Apll fa — fl-

Choose n to make the first and third terms small on the right, and then choose ¢
and ¢’ sufficiently close to O so that the second term on the right is small. The
result is that 7, f is Cauchy in L? along any sequence {g,} tending to 0. This
proves Theorem 3.26b.

For any f in L? with 1 < p < oo, we have just seen that T, f — Tf in L?.
Then (a) gives | T, = lim,}o | T; f1l, < limsup, o Al f1l, = Al f]l. This
proves Theorem 3.26c¢. (|

6. Applications of the Calderén—-Zygmund Theorem

EXAMPLE 1. Riesz transforms. These are a more immediate N-dimensional
analog of the Hilbert transform than is the operator in the Calderén—Zygmund
Theorem. In R!, the Poisson kernel and conjugate Poisson kernel are given by

1 y 1 x

P(x,y) = Py(x) = and 0(x,y) = Qy(x) = gt

x4 y?

The conjugate Poisson kernel Q may be obtained starting from the Poisson kernel
P by applying the Cauchy—Riemann equations in the form

0P 90

00 9P
ax Ay

and =——
ax ay

and by requiring that Q vanish at infinity. The differential equations lead to the

solution
) gp
@%W=/ ——dy.
00 0x

The Hilbert transform kernel may be obtained by letting y decrease toOin Q(x, y).
The resulting formal convolution formula

Hﬂ@:%/wi%lﬁm

is to be interpreted in such a way as to represent passage from the boundary values
of Py * f to the boundary values of Q, * f. We know that a valid way of arriving
at this interpretation is to take the integral for |¢| > ¢ and let ¢ decrease to O.
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In N dimensions the Poisson kernel for RY ! is
Ccnlt

(Ix[? + 122N +D”

withey =7 —3(N+D (NTH) If we write x4 in place of ¢, the natural extension

of the Cauchy-Riemann equations is the system for the (N + 1)-component
function u = (uy, ..., uy41) given by

P(x,1) = Pi(x) = xeRY, >0,

divu =0 and curl u =0,
N+1
. 8u,~ 8ui auj . .
€., =0 and = when .
e ; 3)(,' axj 8x,- ! ;é /
A solution is (Q4, ..., Oy, P), where
Qi(x,1) = CNAj xeRY, t>0.

(x[? 4 122D
Imitating the procedure summarized above for the Hilbert transform, we let ¢

decrease to 0 here and arrive at the kernel
CNXj
| x|N+1 :

Accordingly, we define the j® Riesz transform for 1 < j < N by

. Yj
R;f(x) =cylim fG&x—y)dy.
! el0 Jiyze [yIVH

The Calderén—Zygmund Theorem (Theorem 3.26) shows that R; is a bounded
operator on L”(RY) for 1 < p < co. The multiplier on the Fourier transform
side can be obtained routinely from the formula for the Fourier transform of
P, (x), namely P;(y) = e~2"IY by using the differential equations and letting ¢
decrease to 0. The result is

Rif(y) = —% )

A sample application of the Riesz transforms is to an inequality asserting
that the Laplacian controls all mixed second derivatives for smooth functions of
compact support:

H a 0

ga” < ApllAell, for 1 < p <oo and ¢ € C2° (RM).
3)6]‘ axk 14

com

The argument works as well for all Schwartz functions ¢: the partial derivatives
satisfy the identity % % ¢ = —R; R Ag because the equality
J
~ 1yj [Yk ~
4ty 0) = (= 5 (= ) AP e0)
shows that the Fourier transforms are equal.
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EXAMPLE 2. Beltrami equation. This will be an application in which the L?
theory of the Calderén—Zygmund Theorem is essential for some p # 2. We deal
with functions on R?. Define

d 1,0 .0 a 1,0 0
K A N R A (A
0z 2 \ox ay az  2\0x ay
We shall use the abbreviations f, = % and f; = % The Cauchy—Riemann
equations, testing whether a complex—valued function on R? is analytic, become
the single equation f; = 0.
We shall use weak derivatives on R? in the sense of Section 2. Let u be in
L>®(R?) with ||| « = k < 1. In the sense of weak derivatives, the Beltrami
equation is

fz=nfz.

This equation is fundamental in dealing with Riemann surfaces, since solutions
to it provide “quasiconformal mappings” with certain properties. For simplicity
we assume that o has compact support. We seek a solution f such that f(0) =0
and f, — 1 is in some L7 class.

The equation is solved by first putting it in another form. Let

Ph(§)=—l/( ! —l)h(z)dxdy.
T Jr2 \2—¢ Z

The factor in parentheses is in L9(R?) for I < ¢ < 2, and Holder’s inequality

shows that Ph is therefore well defined for 4 in L?(R?) if p > 2. In fact, one

can show that |Ph(&)) — Ph($)] < C||h||p|;1 — §2|17%, and therefore Ph is
continuous for such 2. Observe that PA(0) = O for all 4. Also, one can show
that

(Ph); = h in the sense of weak derivatives. ()

However, the definition of P falls apart for p = 2. Now define

1 h)
Th = lim —— dxdy.
© =1 n/k_m oY

The operator T is bounded on L” (R?) for 1 < p < oo by the Calderén—Zygmund
Theorem, and we shall be interested in / as above, thus interested in p > 2. One
can show that

(Ph), =Th in the sense of weak derivatives if & € L? with p > 2. (%)

Now we can transform the Beltrami equation. Suppose that f is a weak solution
of the Beltrami equation with f(0) = 0 and f, — 1 in L? for some p with p > 2.
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Since w is in L, uf, — p is in L?, and since u has compact support, i f; is in
L?. Then f; = uf, isin L?, and P(f;) is defined. The function f — P(f) is
analytic because () shows that (%( f— P(f?) = f: — fz = 0. One can easily
show that this analytic function has to be z, i.e., that

f=P(f)+z

Differentiating with respect to z and using (*%), we obtain f, = T(f;) + 1 =
T (uf;) + 1. The equation
fo=T(uf) +1 ()

is the transformed equation.

Assuming that f is a solution of the Beltrami equation and therefore of (),
we shall manipulate (7) a little and arrive at a formula for f. Multiply (1) by
and apply T to get T (uf,) = TuTuf, + T . Adding 1 and substituting from
(1) gives

fe=TpTpf;+Tp+1.

Iteration of this procedure yields
=W f,+1+Tpu+---+ (Tﬂ)n_l]-

We want to arrange that the first term on the right side tends to O in the limit
on n. The operations of P and T have together made sense only on L? for
p > 2. The linear operator g — pg on L? has norm |jull, =k < 1,and T
has norm A, say. It can be shown that T is unitary on L2, sothat A, = 1. The
Marcinkiewicz Interpolation Theorem does not reveal good limiting behavior for
the bounds of operators at the endpoints of an interval of p’s where it is applied,
but the Riesz Convexity Theorem'? does. Consequently we can conclude that
limsup, , A, = 1. Therefore the operator g — T' g, with norm < kA, on L”?
for p > 2, has norm < 1 if p is sufficiently close to 2 (but is greater than 2). Fix
such a p. Then we have

T £, < ITul" T wfll, — O,

and
fo=limll 4+ Tp+ -+ (T,

The function f, —1 = 1lim, [T ju+- - -+ (T )"~ ']is certainly in L”. As a solution
of the Beltrami equation, f has f: = uf, = u + wlim, [T +--- + (Tw)"'1.

13The Riesz Convexity Theorem uses complex analysis. It was stated in Chapter IX of Basic,
but the proof was omitted.
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We saw above that any solution f of the Beltrami equation with f(0) and with
f: — 1in L? has to satisfy f = P(f;) + z. Thus our formula for f is

f=P(u+plimTp -+ + (Tw"']) +2.

Finally we can turn things around and check that this process actually gives a
solution. Define g = u+pulim, [T+ - -+ (Tw)"~'1in L?, andput f = Pg+z.
Application of (x) and (xx) gives f; = g and f, = Tg + 1. Substitution of the
formula for g into these yields

fo=pAplimlTp 4+ (T = (U +HmTp+ -+ (T)" ')

= pu(+Timp+pTp+---+ w(Tw)" 1) = u(l + Tg) = ufs,

as required. The equality f, = T'g + 1 shows that f, — 1 is in L?, and the fact
that P (0) = O for all 4 shows that f(0) = (Pg + z)(0) = 0.

7. Multiple Fourier Series

Fourier series in several variables are a handy tool for local problems with linear
differential equations. One isolates a problem in a bounded subset of R" and
then reproduces it periodically in each variable, using a large period. Multiple
Fourier series for potentially rough functions is a complicated subject, but we have
no need for it. What is required is information about Fourier series of smooth
functions. The relevant theory is presented in this section, using 27 for the period
in each variable, and a relatively simple application is given in the next section.
A more decisive application appears in Chapter VII, where we establish local
solvability of linear partial differential equations with constant coefficients.

If f is alocally integrable function on RY that is periodic of period 27 in each
variable, its multiple Fourier series is given by

[~ e,
k
the sum being over all integer N-tuples and the coefficients c¢; being given by

= Qm)™N /ﬂ | fx)e ¥ dx.

- -7

Let us write Z" for the set of all integer N-tuples and [—, ]V for the region of
integration. Such series have the following properties.
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Proposition 3.30. If f is a locally integrable function on R¥ that is periodic
of period 27 in each variable, then
(@) lcxl < |l fIl, relative to L' ([—m, ]V, 7)™V dx),
(b) |cx| < Cprlk|™™ for every positive integer M if f is smooth,
(©) Y pegn cke™™ is smooth and periodic if |cx| < Cpylk|™™ for every
positive integer M,
(d) {e"**}czv is an orthonormal basis of L2([—m, 7]V, 2m)~" dx),
() f(x) =Y ey cke’®™ if f is smooth.
PROOF. Conclusion (a) is evident by inspection of the definition. For (b),
integration by parts shows that any C! periodic function f has the property that

(lkj) f[—]‘[,i‘[]N f(x)e_ik-x dx = f[—n,n]N Djf(x)e—ik.x dx.

Apart from the factor of (277)~", the right side is a Fourier coefficient, and its
size is controlled by (a). Iterating this formula, we see, in the case that f is
smooth, that the Fourier coefficients c; of f have the property that { P (k)c }rezy
is bounded for every polynomial P. Then (b) follows.

Conclusion (c) is immediate from the standard theorem about interchanging
sums and derivatives. The result (d) is known in the 1-dimensional case, and the
N-dimensional case then follows from Proposition 12.9 of Basic. In (e), the series
converges to f in L? as a consequence of (d), and hence a subsequence converges
almost everywhere to f. On the other hand, the series converges uniformly to
something smooth by (c). The smooth limit must be almost everywhere equal to
f,and it must equal f since f is smooth. U

8. Application to Traces of Integral Operators

We return to the topic of traces of linear operators on Hilbert spaces, which was
introduced in Section II.5. That section defined trace-class operators as a subset
of the compact operators, and the trace of such an operator L is then given by
> ;(Lu;i, u;), where {u;} is an orthonormal basis. The defining condition for
trace class was hard to check, but Proposition 2.9 gave a sufficient condition: if
L : V — V is bounded and if Zi,j [(Lu;, vj)| < oo for some orthonormal bases
{u;} and {v;}, then L is of trace class.

In this section we use multiple Fourier series to show how traces can be
computed for simple integral operators in a Euclidean setting. The setting for
realistic applications is to be a compact smooth manifold. Such manifolds are
introduced in Chapter VIII, and the present result is to be regarded as the main
step toward a theorem about traces of integral operators on smooth manifolds.'*

14Traces of integral operators play a role in the representation theory of noncompact locally com-
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Proposition 3.31. Let K(-, -) be a complex-valued smooth function on
RN x R¥ that is periodic of period 27 in each of the 2N variables, and suppose
that the subset of [—7, 7]V x [—m, w]¥ where K is nonzero is contained in

ZZW T Z1N. Define a bounded linear operator L on the Hilbert space

AR L s A8

L*([—m, 7]V, 2m)~" dx) by
1
Lf(x)= @ f[_mﬂ]N K(x, y)f(y)dy.

Then L is of trace class, and its trace is given by

5 )
= K(x,x)dx.
(27T)N [—m,x N

PROOF. For each k in ZV, the effect of L on the function x > ¢/*** is

Tr L

L ) (x) = (Zn)N/[ . K (x,y)e" dy.

Taking the inner product in L2([—m, 71", 27)~N dx) with x > €/ gives

' ' 1 ikey —ilx
(L"), ") = 20N /f N K (x, y)e'*Ye " dy dx. (%)
[-7,7]

The right side is a multiple-Fourier-series coefficient of the function K, and it is
estimated by Proposition 3.30b. Proposition 3.30c shows that the corresponding
trigonometric series converges absolutely. The functions ¢/*** are an orthonormal
basis of L>([—m, m]V, 2m)~" dx) as a consequence of Proposition 3.30d, and
therefore the sufficient condition of Proposition 2.9 is met for L to be of trace
class.

To compute the trace, we start from (x) with k = [. We change variables,
letting u = y — x and v = y + x, and the right side of () becomes

—1 —N 1 1 ik-u
(2m)2N f/[—n T2V 2 K(E(U —u), ;v + u))e dudv

because of the small support of K. We sum on k in Z", moving the sum
under the integration with respect to v and recognizing the sum inside as the
sum of the multiple-Fourier-series coefficients in the u variable, i.e., the sum

pact groups and in index theory. Both these topics are beyond the scope of this book. Consequently
Chapter VIII does not carry out the easy argument to extend the Euclidean result to compact smooth
manifolds.
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of the series at the origin. Since the functions ¢/** are an orthonormal basis of
L*([—m, w1V, 2m)~" dx), the sum of the uniformly convergent multiple Fourier
series has to be the function itself. Thus we find that

Tr L K( v,%v)dv.

_ 1
(47[)N [—m,m]N 2

Replacing %v by v and again taking into account the small support of K, we
obtain the formula asserted. (]

9. Problems

1. Check that (1 4+ 472|y|>)~!g is in the Schwartz space S if g is in S, so that
(1 — A)u = fissolvablein Sif f isin S.

2. Show that the Schwartz space S is closed under pointwise product and convolu-
tion, and show that these operations are continuous from S x S into S.

3. If Qis the open disk in R? with x> + y? < 1, prove the following:
(a) The function (x, y) > log ((x*> + y?)™!) isin L (Q) for 1 < p < 2 butis
not in L}().

(b) The unbounded function (x, y) — loglog ((x2 + y2)_1) is in L%(Q).

4. Let Q2 be a nonempty bounded open set in R", and suppose that there exists a
real-valued C' function i on R” such that & is positive on Q, 4 is negative on
()¢, and the first partial derivatives of & do not simultaneously vanish at any

point of the boundary Q¢! — Q. Prove that  satisfies the cone condition of
Section 2.

Problems 5—7 compute explicitly the Fourier transforms of the members of a family
of tempered distributions.

5. Show that the function |x| =™~ on R¥ is a tempered distributionif 0 < oo < N.
For what values of « is it the sum of an L' function and an L? function?

6. Verify theidentity f;~ th=le=mxPt gy — I t=B=le=mkP/t gy =T (B) (| x|?) ~P.

7. Let ¢ be in S(RY). Taking the formula F(e~ ™) = t=N/2¢=7 ¥/t a5 known
and applying the multiplication formula, obtain the identity

Jrv e TIPS (x) dx = +N/2 Sy e (x) dx.

Multiply both sides by 12 (N=)=1 apd integrate in . Dropping dx from the
notation for tempered distributions that are given by functions, conclude from
the resulting formula that
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a NN - @)
I(a)

Fx™) = e~

as tempered distributions if 0 < @ < N.

Problems 8—12 introduce a family H* = H*(R") of Hilbert spaces for s real that
are known as spaces of Bessel potentials. Because of Problem 8 below, these spaces
are sometimes called “Sobolev spaces.” The space H*® consists of all tempered dis-
tributions 7' € S’(RY) whose Fourier transforms F(7') are locally square integrable
functions such that [y |7(T)[*(1 + |£|*)* d& is finite, the norm [T ,;, being the
square root of this expression. The spaces H* get larger as s decreases.

8. Lets > 0 be an integer, and let 7 be a tempered distribution.

(a) Prove that if 7 is in H*, then all distributions DT with |a| < s are L2
functions. In this situation, if 7' is the L> function f, conclude that f is in
L2(RM).

(b) Prove conversely that if D*T is given by an L? function whenever || < s,
then 7T is in H*.

(c) Asaconsequence of (a) and (b), H*® can be identified with L%(RN )ifs >0
is an integer. Prove that the respective norms are bounded above and below
by constant multiples of each other.

9. (a) Prove for each s that the operator As(T) = f‘l((l + |E|2)‘Y/2.7-"(T)) is a
linear isometry of H® onto H° = L2, and conclude that the inner-product
space H*® is a Hilbert space.

(b) Prove that AS_1 carries the subspace S(RNY of Schwartz functions, i.e.,
tempered distributions of the form T, with ¢ € S(RN), onto itself.

(c) Prove that S(RV) is dense in H* for all s.

10. Suppose that T is in H~* and ¢ is in S(RY) € H®. Prove that |(T, ¢)| <
IT N s Nl s -

11. Conversely suppose that s is real and that 7 is a tempered distribution such that
KT, p)| < Cllgllys forallp € S(RY). Show that F(T') defines a bounded linear
functional on the Hilbert space L>(RY, (1 + |£]?)° d&), and deduce that T is in
H™ with |T|_, <C.

12. Lets > N/2.

(a) Prove that if the tempered distribution 7' given by the function ¢ € S(RV)
is regarded as a member T, of H?, then [lo|l,, < IF(@);, < CllTyll s,

sup —
where C is the constant ( [y (1 + [£%)7* a’é)l/2 independent of ¢.

(b) (Sobolev’s Theorem) Deduce from (a) that any member T of H® with
s > N /2 is given by a bounded continuous function.

(c) Extend the above argument to show for each integer m > 0 that any member
T of H® with s > N /2 + m is given by a function of class C"™.
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Problems 13-20 concern the Hardy spaces H” (R?) for the upper half plane R% =

{z € C | Imz > 0}. These problems use complex analysis in one variable, and some

familiarity with the Poisson and conjugate Poisson kernels as in Chapters VIII and IX

of Basic will be helpful. The space H” (Ri) is defined to be the vector subspace of

analytic functions in the space H” (R%r). Let f* be the Hardy-Littlewood maximal
function of f on R'. Take as known the result from Basic that the Poisson integral

Py x f satisfies | Py * f(x)| < Cf*(x) with C independent of f and y.

13. Suppose that p satisfies 1 < p < oo, and let H : L?(R') — LP(R') be the
Hilbert transform.

(a) Prove that if ug(x) is in L?(R'), then the Poisson integral of the function
uo(x) + i (Hug)(x) is in H? (R").

(b) Conversely suppose that f(x +iy) isin H? (Rﬂr). Applying Theorem 3.25,
let f(x + iy) be the Poisson integral of the member fy(x) of L? (RL). If
Re fo = ug, prove that Im fy = Huy.

14. Prove that the functions f in LZ(R') whose Poisson integrals are in the subspace
H 2(R£) of Hz(Rﬁ) are exactly the functions for which Ff(x) = 0 a.e. for
x <0.

15. Let F = (f1, ..., fu) be an n-tuple of analytic functions on an open subset of
C, and let (-, -) be the usual inner product on C”. For a function on an open set
in C, define f, = 3(fy —ify) and fz = 3(fx + ify), so that the condition for
analyticity is f; = 0 and so that Af = 4 f,z. Suppose that F is nowhere 0 on an
open set. Prove for all g > 0 that

A(F|%) = g*|F19*(F, F))|* + 2q|F|"*( = |(F, F)|* + |F*|F'|?)
> ¢*|F177%(F, F))[* > 0.

16. Suppose that u is a smooth real-valued function on an open set in R containing
the ball B(r; xo)°' such that Au > 0 on B(r; xo) and u < 0 on dB(r; xo). By
considering u +c(|x — xo|2 —r?) for a suitable ¢, prove thatu < O on B(r; x0)°L.

17. Let f be in H'(R?), and define F, : {Imz > 0} — C? fore > 0 by Fy(z) =
(f(z+ie), e(z+i)72). Define g, (x) = |F.(x)|'/? for x € R.

(a) Prove that lg. 13 < Il /11,0 + ellx + )21,

(b) Let g.(z) be the Poisson integral of g, (x). Show that |F(z)|'/? and g, (z)
both tend to O as |x| or y tends to infinity in R%r.

(c) By applying the previous two problems to | F(z)|
in Rﬁ_, prove that |Fe(2)|"? < ge(z) on ]R%_.

172 — g.(z) on large disks

18. By Alaoglu’s Theorem let g(x) be a weak-star limit in L2(RY) of a sequence
8s, (x) with g, | 0, and let g(z) be the Poisson integral of g(x).
(a) Prove that | f(z)|'/? < g(z) < Cg*(x), with g*(x) being the Hardy—
Littlewood maximal function of g(x).
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(b) Conclude that | f(x + iy)| is dominated by the fixed integrable function
gr(x)*asy | 0.

19. Let X be a locally compact separable metric space, let i be a finite Borel
measure on X, and suppose that {g,} is a sequence of Borel functions on X
with |g,| < 1 such that the sequence {g,(x) du(x)} of complex Borel measures
converges weak-star against Ccom(X) to a complex Borel measure v. Prove that
v is absolutely continuous with respect to .

20. (F. and M. Riesz Theorem) Deduce from the above facts that each member
of H' (Ri) is the Poisson integral of an L' function on R!.

Problems 21-24 show that the limit 7 f = lim, o 7 f defining a Calderén—Zygmund
operator T exists almost everywhere for f € L? and 1 < p < oo, as well as in
LP. Let notation be as in the statement of Theorem 3.26 and Lemma 3.29: K (x)
is a C! function on RY — {0} homogeneous of degree 0 with mean value O over the
unit sphere, k(x) is K (x)/|x|" for |x| > 1 and is O for |x| < 1. For any function
@ on RV, define ¢, (x) = e Np(s~'x). The operator T, f is k. * f. Let f* be the
Hardy-Littlewood maximal function of f. Take as known from Basic that if ¥ > 0
is an integrable function on R" of the form W (x) = Wy(|x|) with ¥, nonincreasing
and finite at 0, then sup,_ o (W, * f)(x) < Cy f*(x) for some finite constant Cyy. Let
fbein L? with 1 < p < oo.
21. Let ¢ be as in Proposition 3.5e. Define ® = T (¢) — k.
(a) Taking into account the fact that ¢ is in cggm(RN ), prove that T (¢) is in
C®(RM), and conclude that ® is locally bounded.
(b) By taking into account the compact support of ¢, prove that |®(x)| is
bounded by a multiple of |x| =¥~ for large |x|.
(c) Deduce that |®(x)| is dominated for all x by an integrable function W (x) on
RV of the form W(x) = Wy(|x|) with ¥y nonincreasing and finite at 0.

22. Let ¢ and @ be as in the previous problem.
(a) Prove that (T¢), = T ;.
(b) Prove the associativity formula T ¢, x f = ¢, x (T f).
(¢) Deduce that ¢ * (Tf) — k. * f = D x f.

23. Conclude from the previous problem that there are constants C; and C» indepen-
dent of f such that sup,.¢ |7z f(x)| < Ci f*(x) + C2(T f)*(x).

24. Why does it follow that lim, o T¢ f (x) exists almost everywhere?

Problems 25-34 introduce Sobolev spaces in the context of multiple Fourier series. In
this set of problems, periodic functions are understood to be defined on RY and to be
periodic of period 27 in each variable. Write T for the circle R/27Z, and let C*°(T)
be the complex vector space of all smooth periodic functions. Let L2(TV) be the
space of all periodic functions (modulo functions that are 0 almost everywhere) that
are in L>([—m, 7]1V). If @ = (@1, ..., ay) is a multi-index, a member f of L>(T")
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is said to have a weak o™ derivative in L2(7T") if there exists a function D*f in
L*(T"N) with

f[*ﬂsﬂ]"’ (D*fledx = (Dl f[fn,n] fD%pdx

for all ¢ in C®°(TV). Define the Sobolev space L,%(TN ) for each integer k > 0 to
consist of all members of L2(T") having o™ derivative in L>(T") for all a with
| < k. The norm on LZ(T™) is given by

25.
26.
27.

28.

29.

30.

31.

32.

112y = Zk Qm)™N [ IDYf1P dx.
| <

Prove that L}(T'") is complete.
Prove that C*°(T") is dense in LZ(TV) for all k > 0.

Prove for each multi-index o and each k > 0 that there exists a constant Cy
such that

o
”D f”LZ(TN) S Ca’k”fHLiHm\(TN)

for all f in C®°(TV).
Prove for each k > 0 that there is a constant A; such that every member f of
L2(TV) has
1y < A6 2 sup Do)
le|<k xe[—m,mN]

Prove for each integer k > 0O that there exist positive constants By and Cj such
that By Y 12 <1+ IHf < S 122,

le|<k ler| <k
Prove that if f is periodic and locally integrable on R with multiple Fourier
series f(x) ~ ZlezN ce''* then fisin L,%(TN) if and only if

> lalPd +1IP)F < oo.
leZN

With notation as in the previous problem, prove for each k > 0 that there exist
positive constants By and Cy independent of f such that

Bl fl22ry = 3 1P+ 1P = Cll FIT )
leZN k

forall fin LX(TN).

(Sobolev’s Theorem) Suppose that K is an integer with K > N /2. Prove that

v (1 + 111>~ < o0, and deduce that any f in L% (TV) can be adjusted
€7 y K ]
on a set of measure 0 so as to be continuous.
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33.

34.
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Prove for each multi-index « that there exist some integer m («) and constant Cy
such that

sup  ID*F(OI < CallFll o
x€[—m,m] m(e)

for all f in C®°(TV).

Prove that the separating family of seminorms || - || 27y On C>(TV), indexed
k

by k, is equivalent to the family of seminorms sup, .;_, v [D*(-)(x)|, indexed

by «. Here “is equivalent to” is to mean that the identity map is uniformly

continuous from the one metric space to the other.





