CHAPTER XIV
SPECIAL FUNCTIONS DEFINED BY INTEGRALS
147. The Gamma and Beta functions. The two integrals

I'(n) = I “eledz,  B(m,m)= I lxm—1(1_x>r_»—1 & Q-

converge when n > 0 and m > 0, and hence define functions of the
parameters n or » and m for all positive values, zero not included.
Other forms may be obtained by changes of variable. Thus

‘ (=2 f Y levdy, by z=g} @
0
1 1n—1
T'(n) =f <log -—) dy, by e *=y, 3)
0 L/
1
B(m,n)=f gy =Bmm), by a=1-y,
y™dy Y
B b r = , (8
= Vorsiyy ©

B(m, n) = 2f sin?™~1¢ cos?"* ~1pd ¢, by =z =sin’¢. (6)
0

If the original form of I'(n) be integrated by parts, then

® 1 . 1" 1
—_ n—1,—x —_— — ppo— % P NHo— X, —
I‘(n)_‘\/o‘x e dx._nacé ]0+n‘[ x"e dw_nl‘(n+1).

The resulting relation T'(n + 1) = nI'(n) shows that the values of the
I-function for n 4+ 1 may be obtained from those for », and that con-
sequently the values of the function will all be determined if the values
over a unit interval are known. Furthermore

T(n+1)=nT(n)=n(n—1)I'(n —1) )
=nn—1)---(n — k)T (n —k)
is found by successive reduction, where % is any infeger less than =.
If in particular » is an integer and & = n — 1, then

Tra+1)=nn—-1)---2.1. I‘(l)——n'l"(l)—n' ®)
378
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since when n = 1 a direct integration shows that T'(1) = 1. Thus for inte-
gralvalues of' n the T-function is the fuctorial ; and for other than integral
values it may be regarded as a sort of generalization of the factorial.

Both the I'- and B-functions are continuous for all values of the
parameters greater than, but not including, zero. To prove this it is
sufficient to show that the convergence is uniform. Let » be any value
in the interval 0 < n, = n = N; then

© @
f e~y = f x"~le~ *dx, f 2" lem % dx = f x ¥ le==dz,
0 0

The two integrals converge and the general test for uniformity (§144)
therefore applies; the application at the lower limit is not necessary
except when n < 1. Similar tests apply to B(m, »). Integration with
respect to the parameter may therefore be carried under the sign. The

derivatives ©
‘ de‘ (n) . n—1,—x
k= [ x*~le~*(log x)*dux -9

may also be had by differentiating under the sign; for these derived
integrals may likewise be shown to converge uniformly.

. By multiplying two I-functions expressed as in (2), treating the
product as an iterated or double integral extended over a whole quad-
rant, and evaluating by transformation to polar codrdinates (all of
which is justifiable by § 146, since the integrands are positive and
the processes lead to a determinate result), the B-function may be
expressed in terms of the I'-function.

I‘(n)l‘(m)=4f x?"“e"””dxf y2""1e‘y°dy=4f a2 =1ypm=1g= 2~ gy,
' 0 0 0

= 4f 7'2”+2'”‘le'”2drf§sin‘~’""1¢ cos?"~1¢pd¢ = I'(n + m) B (m, n). ’
0 0

Hence B(m, n)= —I—‘((—fbn% B (n, m). 10)
The result is symmetric in m and », as must be the case inasmuch
as the B-function has been seen by (4) to be symmetric. ‘

That I‘(%):\/ 7 follows from (9) of § 143 after setting » = 4 in (2);
it may also be deduced from a relation of importance which is obtained
from (10) and (5), and from (8) of § 142, namely, if n < 1,

T()T(1—n) ™
ra=1 =B 1-mn) fl+J‘l sinnar’ .

or T()T(1—n)= 11

sin mr

-
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As it was seen that all values of I'(n) could be had from those in a
unit interval, say from 0 to 1, the relation (11) shows that the inter-
val may be further reduced to $ =n=1 and that the values for the
interval 0 < 1 — » < 4 may then be found.

148. By suitable changes of variable a great many integrals may
be reduced to B- and T-integrals and thus expressed in terms of
I-functions. Many of these types are given in the exercises below ;
a few of the most important ones will be taken up here. By y = ax,

a 1
f wm—l(w — w)”—ldx — am+n—1f ymﬂl(l — ?/)"_ld]/ — u"‘+"‘lB(m, n)
0 0
‘ L(m)T(n)
m—1 — =1 = gm+tn—1 , X 2
or j{; o — x) « T(m + n) a>0 12
Next let it be required to evaluate the triple integral

1 =fffx"1y""lz"‘ld.z'dydz,' c+y+2z=1,

over the volume bounded by the coordinate planes and » 4+ y +2z =1,
that is, over all positive values of z, y, 2 such that x + y +2=1. Then

__f f f wl 1 m— L,n ledyd(E
= —f f 2=yl — x — y) dyda.
n 0 0

1-= T'(m)T'(n 4+ 1) .

By (12 f A —e —yydy =—p o s =

vz ) ( Y) Tm+ny L2
_I(mTr+1)
T al(m + n)
_T(m)T(n+4+1) TOT(m+mn) )
- al(m +n) T({+m+n41)
This result may be simplified by (7) and by cancellation. Then

= I—1,m—1yn—1 _ _T(Ormr(n) '
I—fff:c Yyl dxdydz—r<l+m+n+1)- 13)

There are simple modifications and generalizations of these results which are
sometimes useful. For instance if it were desired to evaluate I over the range
of positive values such that x/a + y/b + z/c = h, the change x = ah{, y = bhy,
z = ch{ gives

I= albmcnhl+m+nff g~ lnm—lg'n—ldsdndg-’ Edn+ =1,

T ()T (m)T'(n) T Y,z
I= al—1ym—1zn—1dedydz = alb™ n_______hl+m+n Z+Z242=h.
Sf[amm=e Y = T i mtnt D) atpte=

1
Then 211 — )™t rda
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The value of this integral extended over the lamina between two parallel planes
determined by the values & and & + dh for the constant ~ would be

a1 = atmer TOT VT W) gy,
T@+mtn

Hence if the integrand contained a function f(h), the reduction would be

ffle—lym—lzn—lf <§ +% +‘Z> dadydz

T ()T (m)T (n)
T+ m+mn)

if the integration be extended over all values z/a + y/b + z/c = H.
Another modification is to the case of the integral extended over a volume

— I—1ym—1yn—1 AN LAY (A
J_fffx ym—lzn=ldxdydz, <a>+ b + . =h,

which is the octant of the surface (x/a)? + (y/b)2 + (z/c)” = h. The reduction to

= albmen

H
‘/0' f(h)hl-#m#—n—ldh

a’b"’c"hl' (;

J= ff g dedndt,  Ebmde=1,

r 11_
is made by ¢h = <~) , th = <—> , $h= (—),d&): g’]I,l'fl’ l,
a, b ¢ P

m
TI+

i

L\ ., (m n
albmen (p) ! (q) ) (7> Ly
J:ffle—lym—lzn—ldxdydz: hP
pqr I m n
v T (—— + =4+ -+ 1)
p» q T

This integral is of importance because the bounding surface here occurring is of a
type tolerably familiar and frequently arising ; it includes the ellipsoid, the surface
ot + y% + 2F = a%, the surface =¥ + yg” + 28 =4t By taking l=m =n =1 the
volumes of the octants are expressed in terms of the I'-function ; by taking first
1=38,m=n=1, and then m = 3, l =n = 1, and adding the results, the moments
of inertia about the z-axis are found.

Although the case of a triple integral has been treated, the results for a double
integral or a quadruple integral or integral of higher multiplicity are made obvious.
For example,

! — -1 = albmpl MM E ?1 =
ffa: ym dzdy_th+ I‘(l+m+1)' a+b=h
@) e
ffxl 1ym~1dady _avm  \pJ \g/ arti <a;>p+

9
pe r<l+%n+1)

ff:cl—lym—lf [<’_°)p+ (g)q]dxdy _ oon M f”f(h)hz_]f“,?’;_ldh
a, b Y I‘(%—l—%n) o )

(=
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e )7 ()" ("—’) r()
ffffmk 1yl—1gm—1tn ~\dzdydedt = 2 p/ N\ \r] \s/
Gt
x\P v\? z\" t\s -
G+ G+ O+ @)=+
12 n—1
149. If the product (11) be formed for each of L
the results be multiplied and reduced by Ex. 19 below, then
n—1

e r(2)=Cm

The logarithms may be taken and the result be divided by =.

< 1 /1 1 1logn
210gr<n>'n_<2_2n>10g2'"._2 n

k=1

» and

Now if n be allowed to become infinite, the sum on the left is that
formed in computing an integral if de =1/n. Hence

1
lim $* log T (z,) A =f logT (r)dw =log VZm.  (15)
= 0

1
Then f log T (« 4 2)dz = a(loga — 1)+ log V27 15"
0

may be evaluated by differentiating under the sign (Ex. 12 (6), p. 288).
" Ry the use of differentiation and integration under the sign, the
expressions for the first and second logarithmic derivatives of I'(n)
and for log I'(n) itself may be found as definite integrals. By (9)
and the expression of Ex. 4 (@), p. 375, for log z,

@ © V wg—a — e
I'(n) =f " ~te=*log xdx =f " le” f — dad.
0 0 0

It the iterated integral be regarded as a double integral, the order of
the integrations may be inverted; for the integrand maintains a posi-
tive sign in the region 1 < x < w0, 0 < @ < w0, and a negative sign in
the region 0 < # <1, 0 < @ < o, and the integral from 0 to o in
may be considered as the sum of the integrals from O to 1 and from
1 to w0, —to each of which the inversion is applicable (§ 146) because
the integrand does not change sign and the results (to be obtained)
are definite. Then by Ex. l(a),

o= e [ )
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. I'm_d (e L\ ,
or T(n) ~ dn log ' (n) _[ <e a+ a)”) z (16)

This value may be simplified by subtracting from it the particular
value — y =T'(1)/T(1)=TI'(1) found for » =1. Then

I'(n) T'1) _T'(w) 4= °°< 1 1 )d_w )
T(n)y TA) T ' ), \I+a I+ «a
The change of 1 + « to 1/a or to e* gives

%-ﬂ fll—“" . w—f 1_6‘“" ” )

Differentiate : . @ \og T (n) f - (18)
To find log I'(n) integrate (16) from n =1 to n =n. Then
Ty e A+ D= A+ @) "] da
log I'(n) _fo [(n e Tog (L + ) pol 19)
since I'(1) =1 and log T(1) = 0. AsT(2)=1,

log I'(2) = f [ - l(();zic_?—a)]da
and 1ogr(n)_—.f°°[ n—1 (A+a)’—(01A+0a)" ] da

A + a)? @ log (1 4+ )
by subtracting from (19) the quantity (» — 1) log T'(2) = 0. Finally
¢ [emn— e= da o
logI‘(n)_j:m[em_1 —(n——l)e]; 19"

if 1 4+ « be changed to e~%. The details of the reductions and the justi-
fication of the differentiation and integration will be left as exercises.

An approximate expression or, better, an asymptotic expression,
that is, an. expression with small percentage error, may be found for
I'(n + 1) when n is lurge. Choose the form (2) and note that the inte-
grand »*"*1¢~ 7" rises from 0 to a maximum at the point y* = n + } and
falls away again to 0. Make the change of variable y = Va + w, where
@ =mn+ }, so as to bring the origin under the maximum. Then

F'(n+1)= 2[\/_( Ve + 7/f)2“e‘“‘2‘/;’”"”2(lw,
- Va

@ a i - '\/;A_l —-w2
or I‘(n —+ 1) =2 w“e—“f ‘62 Iog(1+ '\/;) 2 ¢ dw.

—Va

Now 2a10g<1+i>—2\/2w§0, —Va<uw <o

Va
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The integrand is therefore always less than e~**, except when w =0
and the integrand becomes 1. Moreover, as w increases, the inte-
grand falls off very rapidly, and the chief part of the value of the
integral may be obtained by integrating between rather narrow
limits for w, say from — 3 to + 3. As « is large by hypothesis,
the value of log (1 + w/ \/;) may be obtained for small values of w
from Maclaurin’s Formula. Then

c

r(n + 1) — zaae—af 6_2w2(1_€)d‘w

is an approximate form for T'(n + 1), where the quantity e is about

gw/ V& and where the limits + ¢ of the integral are small relative to V.
But as the integrand falls off so rapidly, there will be little error made
in extending the limits to oo after dropping e. Hence approximately

T(n+1)= Za“e‘“f e~ 2" dw = V2mra%e 9,

or T(n4+1)= V2r(n+ §Hr+iet+DA 4 4), (20)
wheré 5 is a small quantity approaching 0 as n becomes infinite.

EXERCISES
1. Establish the following formulas by changes of variable.

- 7 1_/n 11
[3) I‘(n)=a"j(; gn—le—axdy, a>0, B) ‘/;2S1nnxdx=§B(—+—, —),

2 2 2
() B(w, n) = 21=27B(n, }) by (6), ©) f a1 = atp-1de =y BGm, ),
(e) flxm-l(l—z)"-ldzz B (m, n) - 1 I‘(m)I‘(n) take & =_g{_’
@+ aymtn ar(l+aym a1+ a)m I‘(m+n) z+a 1l4a
Lgm—1(1—g)»~lde _ T (m)T(n) _ by
(s“)f [a,x+b(1—a:)]m+"_amb"1‘(m+n)’mkew_ -y +oy

lgm—1(1— g)»~1dz _ B(m, n) 1 g2ndg \/_I‘(%n+ )
( )f (b + crym+n "bu(b+c)m’ (@ fo \/1_x2 2 I‘(%n+i)
(1) lzm(l—m")z’da: —B P+1 I () —ﬁ%
0 \/1— n I'(n=1+4)

2. FromT (1)=1and I'(}) = \/_ make a table of the values for every integer
and half integer from 0 to 5 and plot the curve y = T'(x) from them.

3. By the aid of (10) and Ex. 1 (y) prove the relations
VaT (2a) = 22¢-1T ()T (a + %), VaT(m)=22-T{En)T(En + }).

4. Given that T (1.75) = 0.9191, add to the table of Ex. 2 the values of T' (n) for
every quarter from 0 to 3 and add the points to the plot.
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5. With the aid of the I'-function prove these relations (see Ex. 1) :

™ ™
(a)fzSin"acda:=_/‘2COS"ocd:»;=——1'3'5“'(n_-l)z or 2“4 b (=1
o 0

2.-4.6---m 2 1.3.5.
. as n is even or odd.
®) Uatndg  1.8.5---@u-1) 7 ) Lg2ntlds  2.4.6...2n
v Nicz  2-4-6...2n 2 ) A=z 1-85...@nt1)
e 4 31ra
5 22 Va? — 22de = ¢ , 2(a2 — 22)odr =
( )f a? — 6 (¢) f x2(a ac)z T = %6
($) Find f to four decimals, (n) Find f

V1— gzt

Vi— gzt

6. Find the areas of the quadrants of these curves:
(@ =¥+t =ab, @B ad+d=al, @ e+st=1,
(8) 22/a% + y2/12 =1, () the evolute (az)f + (by)} = (a2 — 12)3.
7. Find centers of gravity and moments of inertia about the axes in Ex. 6.
8; Find volumes, centers of gravity, and moments of inertia of the octants of
(a) w%+y%+z%=a%, B) w%+y%+z%=a%, (v) z2+y2+z§=l.
9. (@) The sum of four proper fractions does not exceed unity ; find the average

value of their product. (8) The same if the sum of the squares does not exceed
unity. (y) What are the results in the case of & proper fractions ?

10. Average e~ @’ —b* under the supposition az? 4 by?2 = H.
11. Evaluate the definite integral (15") by differentiation under the sign.

12. Froni (18) and 1< i — <1+ a show that the magnitude of D?log I' (n)
is about 1/n for large values of n.

13. From Ex. 12, and Ex. 23, p. 76, show that the error in taking
1 n+1 1 1
logT =) f logI' (x)dx is about ——— —log T’ =).
og (n + 2) or j; og I (z) is abou 2n 4 12 og <n + 2)

14. Show that f " 10"I‘ (x)de = f log T'(n + x)de and hence compare (15%),
(20), and Ex. 13 to show that the small quantity 5 is about (24 n + 12)—1,

15. Use a four-place table to find the logarithms of 5! and 10!. Find the
logarithms of the approximate values by (20), and detérmine the percentage errors.

16. Assumen = 11 in (17) and evaluate the first integral. Take the logarithmic
derivative of (20) to find an approximate expression for I''(n)/T' (n), and in partic-
ular compute the value for n = 11. Combine the results to find ¥y = 0.578. By more
accurate methods it may be shown that Euler’s Constant y = 0.577,215,665 - - -.

17. Integrate (19') from n to n + 1 to find a definite integral for (15"). Subtract

0 —exd
the integrals and add 1]ogn :f "= e 2% Hence find

2 a

logI‘(n)—-n(loo'n—l)——lov\/_+—logn_f [__v__+~]ean;.
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18. Obtain Stirling’s approxzimation, T' (n + 1) = V2 mnnre=n, cither by compar-
ing it with the one already found or by applying the method of the text, with the
substitution £ = n + V2 ny, to the original form (1) of T' (n + 1).

k=n—1 —_

19. The relation ﬁ' sin kew = sin L sin T . sin (—Dm ="

k=1 n n n n 2n-1
_ 2kmi
obtained from the roots of unity (§ 72) ; forz» — 1= (x — 1) Tl'(x —e ),

may be

. ki wi
o —1 k=n—1( _M) k=n-1¢n P72 1
n = lim =TT l—e¢ n T =
z=1T—1 k=1 k=1 21 (291 2n-1

150. The error function. Suppose that measurements to determine
the magnitude of a certain object be made, and let m,, m,, ---, m, be a
set of n determinations each made independently of the other and each
worthy of the same weight. Then the quantities

q,=m, —m, gy =M, — m, e, P =M, — M,

which are the differences between the observed values and the assumed
value m, are the errors committed ; their sum is

¢+ + -+, =0m +m, 4+ +m,) — mn.

It will be taken as a fundamental axiom that on the average the errors
in excess, the positive errors, and the errors in defect, the negative
errors, are evenly balanced so that their sum is zero. In other words it
will be assumed that the mean value

nm =m, +m, +--- +m, Or m=%(m1+7”2+”'+m") 1)

is the most probable value for m as determined from m,, m,, ---, m,.
Note that the average value . is that which makes the sum of the
squares of the errors a minimum ; hence the term *least squares.”

Before any observations have been taken, the chance that any par-
ticular error ¢ should be made is 0, and the chance that an error lie
within infinitesimal limits, say between ¢ and ¢ + dq, is infinitesimal;
let the chance be assumed to be a function of the size of the error, and
write ¢ (¢)dq as the chance that an error lie between ¢ and ¢ + dg. It
may be seen that ¢ (7) may be expected to decrease as ¢ increases ; for,
under the reasonable hypothesis that an observer is not so likely to be
far wrong as to be somewhere near right, the chance of making an
error between 8.0 and 8.1 would be less than that of making an error
between 1.0 and 1.1. The function ¢(y) is called the error function.
It will be said that the chance of making an error ¢, is ¢(g,); to put it
more precisely, this means simply that ¢ (g,)dg is the chance of making
an error which lies between ¢; and ¢; + dg.
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It is a fundamental principle of the theory of chance that the
chance that several independent events take place is the product of
the chances for each sepa{'ate event. The probability, then, that the
€II0rS ¢, ¢,, -+, 7, be made is the product

(1) D) b (g.)=p(m, — m)yp(m, — m) - (m, —m). (22)

The fundamental axiom (21) is that this probability is a maximum
when m is the arithmetic mean of the measurements wm,, my, -, m,;
for the errors, measured from the mean value, are on the whole less
than if measured from some other value.* If the probability is a maxi-
mum, so is its logarithm; and the derivative of the logarithm of (22)
with respect to m is

o' (my —m)  ¢'(my—m) ¢ (m, — )

¢(m, —m)  P(m,—m) ¢(m — m)
when ¢, + 9,4+ -+ g, =(m, —m) + (my—m)+--- + (m, —m) =10
It remains to determine ¢ from these relations.

For brevity let F(q) be the function F = ¢'/¢ which is the ratio
of ¢'(¢) to ¢(g). Then the conditions become

F(g)+ F(g) + -+ F(g.)=0 when g, +¢,+ - +¢,=0.
In particular if there are only two observations, then
F(g)+ F(g)=0 and ¢, +¢,=0 or ¢,=—g9q,
Then F(g)+F(—q)=0 or F(—gq)=—F(q)-
Next if there are three observations, the results are
F(q) +F(g) + F(g9)=0 and ¢, +¢,+¢,=0.
Hence F(g)+ F(q,) =— F(g) = F(— ) = F(q, + 25)-

Now from F@)+ Fly)=F(x+y)
the function F may be determined (Ex. 9, p. 45) as F(x) = Cx. Then
¢"(’1) . N 1 2 -
F=2"T=¢ logd(q)==Cq* + K
D=4 =" 8¢ (1) =35Cr + K,
and ¢(q)=eF @K = gt ¥,

This determination of ¢ contains two arbitrary constants which may
be further determined. In the first place, note that C is negative, for
¢ (¢) decreases as ¢ increases. Let § C =— k% In the second place, the

* The derivation of the expression for ¢ is physical rather than logical in its argu-

ment. The real justification or proof of the validity of the expression obtained is & pos-
teriori and depends on the experience that in practice errors do follow the law (24).
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error ¢ must lie within the interval — o0 < ¢ < 4 oo which comprises
all possible values. Hence ’

+»

$(1)dg =1, ﬁf6%%=1 (23)

©

+»

For the chance that an error lie between ¢ and ¢ + dg is ¢dy, and if
an interval ¢ = ¢ =0 be given, the chance of an error in it is

b b b
qu(g)dg or, better, 1im2¢(g)dq = f é(9)dq,

and finally the chance that — oo << ¢ < + oo represents a certainty and
is denoted by 1. The integral (23) may be evaluated (§143). Then
G Vw/l=1and G = k/Vm. Hence*

k 2,2
$(@) == (24)

The remaining constant % is essential; it measures the accuracy of
the observer. If % is large, the function ¢ (¢) falls very rapidly from
the large value %/ 7 for ¢ =0 to very small values, and it appears
that the observer is far more likely to make a small error than a large
one; but if £ is small, the function ¢ falls very slowly from its value
k/~m for ¢ =0 and denotes that the observer is almost as likely to
make reasonably large errors as small ones.

151. If only the numerical value be considered, the probability that
the error lie numerically between ¢ and ¢ + dy is

2%k B d 2k [t .

—= e~ ¥q and ——= [ e-%d

2L s o \/E[, 7

is the chance that an error be numerically less than £ Now
kg

ok [t 2 9
|I,($) = wa e—kq (Zq = ﬁ e—2*lx (25)
0 0

is a function defined by an integral with a variable upper limit, and the

problem of computing the value of the function for any given value of ¢

reduces to the problem of computing the integral. The integrand may

be expanded by Maclaurin’s Formula

8 28 -6z

TR TR
w7 9 11

z x®  xb x
foe =gt mtae B E<1ime

6_1‘2=1_m2+2£-,— ) 0<0<1,

(26)

* The reader may now verify the fact that, with ¢ as in (24), the product (22) is a
maximum if the sum of the squares of the errors is a minimum as demanded by (21).
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For small values of x this series is satisfactory; for x = } it will be
accurate to five decimals.

The probable error is the technical term used to denote that error &
which makes (§) = }; that is, the error such that the chance of a
smaller error is 1 and the chance of a larger error is also }. This is
found by solving for x the equation

vV 1 ' x°
7—:044311—[ e~=dx = x — §+E 42+§I6
The first term alone indicates that the root is near z = .45, and a trial
with the first three terms in the series indicates the root as between
x = .47 and z = .48. With such a close approximation it is easy to fix
the root to four places as

@ =ké=04769 or £=0.4769%. (@)

That the probable error should depend on % is obvious.

For large values of x = k¢ the method of expansion by Maclaurin’s
Formula is a very poor one for calculating y(£); too many terms are
required. It is therefore important to obtain an expansion according
to descending powers of x. Now

ety = e—*"dx — = dr = ‘1 v f e=="dx
0 0 x 2 x
* 1 e==|* 1 [®e=dx
a d — 2y = —ge—*dr = — — _—— _—
n L‘ e—2*dx L . xe—=*dx [ P :L > I g

The limits may be substituted in the first term and the method of in-
tegration by parts may be applied again. Thus

e _6_12 1 1.3 [~ e dx

‘[mﬂ lh‘—2x<1_2w2>+—§"_\£ xt
e 1 1.3 1.3.5 [ e dx
=Gt mrm) [ S

and so on indefinitely. It should be noticed, however, that the term

1.3.5.--(2n—1) e *
2mge?n 2z
In fact although the denominator is multiplied by 2 ? at each step, the
numerator is multiplied by 22 — 1, and hence after the integrations by
parts have been applied so many times that » > x* the terms in the
parenthesis begin to increase. It is worse than useless to carry the
integrations further. The integral which remains is (Ex. 5, p. 29)

T =

diverges as n = o .



390 INTEGRAL CALCULUS

1.3.5.-@n+1) ("ede _1:3.5.-2n—1)

2n+1 $2n+2 2n+1‘7,2ﬂ +1
x

<T.

Thus the integral is less than the last term of the parenthesis, and it
is possible to write the asymptotic series

x ,— a2 . . 3.
fe-uf‘am:%\/;—" <1 1,13 1.3 5+--.> (28)
A 2

22\ 2227 2%t 2328

with the assurance that the value obtained by using the series will differ
Jrom the true value by less than the last term which is used in the series.
This kind of series is of frequent occurrence.

In addition to the probable error, the average numerical error and the
mean square error, that is, the average of the square of the error, are
important. Infinding the averages the probakility ¢ (¢)dg may be taken
as the weight; in fact the probability is in a certain sense the simplest
weight because the sum of the weights, that is, the sum of the prob-
abilities, is 1 if an average over the whole range of possible values is
desired. For the average numerical error and mean square error

—_ 2k f go-vidg — L _ 05643
0

1=z kN k '(29)
— 2k © 1 = 0.7071

2 2,— k%? 2 .

1 *\/;fo 7O = gy Vi = P

It is seen that the average error is greater than the probable error, and
that the square root of the mean square error is still larger. In the
case of a given set of n observations the averages may actually be
computed as

o VAR VA E I a A N U 1

= k=—
7l n kvVw Iq]\/;,
a_ft@toted 1 Pt .
T 27 Vs
Moreover, T Ig_j2 =242

It cannot be expected that the two values of % thus found will be pre-
cisely equal or that the last relation will be exactly fulfilled; but so
well does the theory of errors represent what actually arises in prac-
tice that unless the two values of % are nearly equal and the relation
nearly satisfied there are fair reasons for suspecting that the observa-
tions are not bona fide.

152. Consider the question of the application of these theories to
the errors made in rifle practice on a target. Here there are two
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errors, one due to the fact that the shots may fall to the right or left
of the central vertical, the other to their falling above or below the
central horizontal. In other words, each of the coordinates (x, y) of
the position of a shot will be regarded as subject to the law of errors
independently of the other. Then
A A YAl
\/L; e~ M dr, VL—; e~ ¥ dy, % e B =k daedy

will be the probabilities that a shot fall in the vertical strip between
z and z + dz, in the horizontal strip between y and y + dy, or in the
small rectangle common to the two strips. Moreover it will be assumed
that the accuracy is the same with respect to horizontal and vertical
deviations, so that & = k'.

These assumptions may appear too special to be reasonable. In particular it
might seem as though the accuracies in the two directions would be very different,
owing to the possibility that the marksman’s aim should tremble more to the right
and left than up and down, or vice versa, so that k # &’. In this case the shots would
not tend to lie at equal distances in all directions from the center of the target,
but would dispose themselves in an elliptical fashion. Moreover as the shooting is
done from the right shoulder it might seem as though there would be some inclinea
line through the center of the target along which the accuracy would be least, and
a line perpendicular to it along which the accuracy would be greatest, so that the
disposition of the shots would not only be elliptical but inclined. To cover this
general assumption the probability would be taken as

. +
Qe ¥zt~ 200~ K% qpdy, with G f ” f e~k — 2aay — K% ady = 1
— @
as the condition that the shots lie somewhere. See the exercises below.

With the special assumptions, it is best to transform to polar cobr-
dinates. The important quantities to determine are the average distance
of the shots from the center, the mean square distance, the probable
distance, and the most probable distance. It is necessary to distinguish
carefully between the probable distance, which is by definition the dis-
tance such that half the shots fall nearer the center and half fall farther
" away, and the most probable distance, which by definition is that dis-
tance which occurs most frequently, that is, the distance of the ring
between r and » + dr in which most shots fall.

The probability that the shot lies in the element rdrdé is

2
l;cr_ e=®¥rrdrdp, and 2 kPe—*rrdr,

obtained by integrating with respect to ¢, is the probability that the
shot lies in the ring from » to » + dr. The most probable distance r, is
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that which makes this a maximum, that is,

d 1 0.7071
— (p— k%) — u = — = . .
7 (e=*¥")y =0 or mn, Tor i (30)
The mean distance and the mean square distance are respectively
r= f 2 ke ¥rtpidp = ﬁ, 5= 08862
o 2k k (307
F:f 2lc2—k2f”dr——1;, \/'2—10000
o k k
The probable distance 7; is found by solving the equation
" V 32
1_[ 2R2e—krpdr =1 — e=4%F oy = Vlogz _ 0.8326, (30
2 ), k k
Hence r, <1 <1< \/7‘2

The chief importance of these considerations lies in the fact that,
owing to Maxwell’s assumption, analogous considerations may be applied
to the velocities of the molecules of a gas. Let «, v, «w be the compo-
nent velocities of a molecule in three perpendicular directions so that
V=(u?+v*+ wz)% is the actual velocity. The assumption is made that
the individual components u, v, w obey the law of errors. The proba-
bility that the components lie between the respective limits « and « + du,
v and v + dv, w and w + dw is
K e~ B =1 — P dydvdw, and i
N TN

e~V 25in 0d Vd0d$

is the corresponding expression in polar coordinates. There will then
be a most probable, a probable, a mean, and a mean square velocity.
Of these, the last corresponds to the mean kinetic energy and is subject
to measurement. '

EXERCISES
1. If £ = 0.04475, find to three places the probability of an error £ < 12.
2. Compute fze— #*dx to three places for (a) z = 0.2, (8) ¢ = 0.8.
0

3. State how many terms of (28) should be taken to obtain the best value for
the integral to £ = 2 and obtain that value.

4
4. How accurately will (28) determine f e~2dz — } Vo ? Compute.
0

5. Obtain these asymptotic expansions and extend them to find the general law.
Show that the error introduced by omitting the integral is less than the last term
retained in the series. Show further that the general term diverges when n be-
comes infinite,
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2z 2213

z 1 /; cosx? sinz?2 1.8 pe . dr
2 — = o | 98 LT ST 2 &0
®) j; smzda:_2\_2 2z 223 + 22 ./; sme zt’

sinx z (sin )2
(v )f —da; z large, (6)‘/; <T> dz, x large.

6. (a) Find the value of the average of any odd power 2n + 1 of the error;
(B) also for the average of any even power; (v) also for any power.

x 1 [r sinz? cosz? 1.3 p= dr
a cosx2dr = = 4 /= - —f cosx? =,
@ f; aVz ™t T . ot

7. The observations 195, 225%, 190, 210, 205, 180%, 170%, 190, 200, 210, 210, 220%,
175%, 192 were obtained for deflections of a galvanometer. Compute & from the
mean error and mean square error and compare the results. Suppose the observa-
tions marked *, which show great deviations, were discarded ; compute k by the
two methods and note whether the agreement is so good.

8. Find the average value of the product g¢’ of two errors selected at random
and the average of the product |g|-|¢’| of numerical values.

9. Show that the various velocmes for a gas are V, = 71‘, Ve= 1'0275,
_ 4 1 2247
e _ Ligs4 128 VT Y3
\/;k k

10. For oxygen (at 0°C. and 76 cm. Hg.) the square root of the mean square
velocity is 462.2 meters per second. Find k£ and show that only about 13 or 14
molecules to the thousand are moving as slow as 100 m./sec. What speed is most
probable ?

11. Under the general assumption of ellipticity and inclination in the distri-
bution of the shots show that the area of the ellipse k2x% + 2\xy + k"~’y2 His
wH (k2k'2 — N\2)~ 3, and the probability may be written Ge~ Zxr (k22 — N2~ YaH.

12. From Ex. 11 establish the relations (a) @ = Ve = A2,
T

O 2 =gy OV S see oy O sy

13. Find H,, H; = 0.693, H, H? in the above problem.

14. Take 20 measurements of some object. Determine k by the two methods
and compare the results. Test other points of the theory.

153. Bessel functions. The use of a definite integral to define func-
tions which satisfy a given differential equation may be illustrated by
the treatment of xy" 4+ (27 + 1)y’ 4 xy = 0, which at the same time
will afford a new investigation of some functions which have pre-
viously been briefly discussed (§§107-108). To obtain a solution of
this equation, or of any equation, in the form of a definite integral, some
special type of integrand is assumed in part and the remainder of the
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integrand and the limits for the integral are then determined so that
the equation is satisfied. In this case try the form

y(x) = f et Tdt, y' = f ite™ T'dt, y'= f — e Tdt,

where 7" is a function of #, and the derivatives are found by differen-
tiating under the sign. Integrate y and %" by parts and substitute in
the equation. Then

a-# fwt] —few[:r'a — &) — (2n — 1)¢T]dt =0,

where the bracket after the first term means that the difference of the
values for the upper and lower limit of the integral are to be taken;
these limits and the form of 7" remain to be determined so that the
expression shall really be zero.

The integral may be made to vanish by so choosing 7' that the
bracket vanishes; this calls for the integration of a simple differential
equation. The result then is

T=1-2"1  (1- tﬁ"**f&ﬂ]: 0.

The integral vanishes, and the integrated term will vanish provided
t=+41or ¢ =0. If x be assumed to be real and positive, the expo-
nential will approach 0 when ¢ =1 + ¢K and K becomes infinite. Hence
+1 Lt i
y(x) = f dt(1 — #)" "3t and 2(x) = dt(1 — )"~ ids (31)
-1 ' +1

are solutions of the differential equation. In the first the integral is an
infinite integral when » < + } and fails to converge when n = — }.
The solution is therefore defined only when n > — 1. The second in-
tegral is always an infinite integral because one limit is infinite. The
examination of the integrals for uniformity is found below.

+1
Consider f eizt(1 — )"~ 3dt with n < } so that the integral is infinite.
1

+1 1 +1 1 +1 1
f eot(l — 2yt = f 1 — )"~ cosatdt + 1 f 1 — &3~ Ysinatdt,
-1 -1 -1 .
From considerations of symmetry the second integral vanishes. Then

+1 +1 +1
@t(] — 2"—% = —_ 2"_% = -3}
lf_lew(l 2y 3 f_l(l t2) cosmtdt_f_l(l 12—kt

" This last integral with a positive integrand converges when n > — }, and hence the
given integral converges uniformly for all values of z and defines a continuous
function. The successive differentiations under the sign give the results
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+1 +1
-fl (1 — 12y~ ¢ sin atdt, —f (1 — 12"~ 342 cos atdt.
— -1

These integrals also converge uniformly, and hence the differentiations were justi-
fiable. The second integrq,l (31) may be written with ¢ =1 4 4u, as

ifw ex+in(1 =T+ )"~ tdu
u=0

= fwe-“’”(éiu2 +ut)iniqu.
0

This integral converges for all'values of >0 and n> — 1. Hence the given inte-

gral converges uniformly for all values of z = x, > 0, and defines a continuous
function ; when z = 0 it is readily seen that the integral diverges and could not
define a continuous function. It is easy to justify the differentiations as before.

The first form of the solution may be expanded in series.

y(@)= f o1 — 2y g = f (1 — " ¥ cos atds
=2 f A= % cos atdt (32)
4
_2f(1__t2) %<1_—— 4?—%?—!—0 >dt 0<|< 1.

The expansion may be carried to as many terms as desired. Each of
the terms separately may be integrated by B- or I-functions.

k2% 2k 3
f(l—tz) %wZLt' = P(2z+1>fzsin2"¢cos2"¢d¢

e*T(n—PT*k+3) _  a*T(n+ ) Vm
TTEE+)I(n+k+1) 2#T(h+DT(n+k+1)’

" " 7/(1'2 ( 1)kxn+2k
ad L) = Tt ) §W+2‘P(k+1)r(n+lc+1) (33)

is then taken as the definition of the special function J,(x), where the
expansion may be carried as far as desired, with the coeflicient 6 for
the last term. If » is an integer, the I-functions may be written as
factorials.

154. The second solution of the differential equation, namely

1+i0
2(x) =y, (%) + ty,(x) = f —2e(1 — tQ)"‘%dt, (319
. 1

where the coefficient — 2 has been inserted for convenience, is for some
purposes more useful than the first. It is complex, and, as the equation
is real and « is taken as real, it affords two solutions, namely its real part
and its pure imaginary part, each of which must satisfy the equation. As
y(x) converges for x =0 and z(x) diverges for =0, so that y,(x) or
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Y,(x) diverges, it follows that y (x) and y,(x) or y(z) and y,(x) must be
independent ; and as the equation can have but two independent solu-
tions, one of the pairs of solutions must constitute a com-
plete solution. It will now be shown that y,(x) = y(x)
and that Ay(x) + By,(x) is therefore the complete solu-
tion of zy" + 2n+1) y' + xy = 0.
Consider the line integral around the contour 0, 1 — ¢,
1+ e, 14+ 0i, i, 0, or OPQRS. As the integrand has a
- continuous derivative at every point on or within the
contour, the integral is zero (§ 124). The integrals along
the little quadrant PQ and the unit line RS at infinity may be made as
small as desired by taking the quadrant small enough and the line far
enough away. The integral along SO is pure imaginary, namely, with
t=1u,

R

o P

s
f —2e"(1 — t’)"_%dt =2 L'f e~ ™1+ ug)""%du.
S0 0

The integral along OP is complex, namely

f — 261 — )" 3qy
op » »
____2f (1 — & teosatdt — 21 (1 — & Y sin atds.
o (4]

Hence O=—2f 1- t’)"_E cosxtdt——‘Hf 1-— t’)"_fslnxtdt—i—{

+f 261 — tz)"_%dt +¢,+2 Lf el 4 102)”_%(lu,

where ¢, and £, are small. Equate real and imaginary parts to zero
separately after taking the limit.

f 1—&" ¥ cos xtdt = y(r) = /Lf — 21 — t“)"'%dt= y,(x),

f a-#" ~% sin wedt — ‘)f e~ (1 + uﬁ)”'%du
° ’ 1+iw )
= «/f — 2e™(1 — )" 72t = y,(x).
1

The signs A and f are used to denote respectively real and imaginary
parts. The identity of y(x) and y,(x) is established and the new solu-
tion y,(x) is found as a difference of two integrals.
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It is now possible to obtain the important expansion of the solutions
¥ (x) and y,(x) in descending powers of x. For

1+ i o o
f —2ew(1_t2)"—%dt=f —2ie—w(u?— 24u)" " bdu, t=1+iu.
1 0
Since z # 0, the transformation ux = v is permissible and gives
2 (— i)”%.e“x""_%f‘ ot %<1 + > “ry
=ortignh [ ~(++3)3 ]f e

(145 OSHED ),

The expansion by the binomial theorem may be carried as far as de-
sired; but as the integration is subsequently to be performed, the
values of v must be allowed a range from 0 to o and the use of
Taylor’s Formula with a remainder is required — the series would not
converge. The result of the integration is

@y =2 it 0 ) p ey, ey

, o3 @ -HE—HE -2
where Qx) = o 312y .,

Vo1 = DEE—D) (0= D (0 — 2 (00— 3p)
P =1="gear T+ 41(2a) -

Take real and imaginary parts and divide by 2"2=*~#T (n + }). Then

N SN R )
st Efron o ()3 e (47

are two independent Bessel functions which satisfy the equation (35)
of §107. If » + } is an integer, P and Q terminate and the solutions
are expressed in terms of elementary functions (§108); but if n 4+ }
is not an integer, P and Q are merely asymptotic expressions which do
not terminate of themselves, but must be cut short with a remainder
term because of their tendency to diverge after a certain point; for
tolerably large values of x and small values of n the values of J,(x)
and K,(r) may, however, be computed with great accuracy by using
the first few terms of P and Q.
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The integration to find P and @ offers no particular difficulty.

0

[Tt it =Tt 4 =t k= Dot k— D @k DT+,

The factors previous to I' (n + }) combine with n — }, n — §,---, n — k + 4, which
occur in the kth term of the binomial expansion and give the numerators of the
terms in P and Q. The remainder term must, however, be discussed. The integral
form (p. 57) will be used.

(k f(k)(v — t)dt,

e

Let it be supposed that the expansion has been carried so far that n — k= } <0.

Then (1 + vi/2 a:)"'k‘ tis numerically greatest when v = 0 and is then equal to 1.
Hence

V‘l |(n—%) =kt Y|y V=) (n—k+)
RN Gt T @y

e ks Y

k1 (2x)k

and

f we— v %Rydv <
o

It therefore appears that when k > n — } the error made in neglecting the remain-
der is less than the last term kept, and for the maximum accuracy the series for
P + iQ should be broken off between the least term and the term just following.
EXERCISES
1. Solve zy” + (2n + 1)y’ — 2y = 0 by trying Te* as integrand.

+1 _ -1 _
Af_l (1—tz)" %eﬂ+B£m(t2—l)" fetat, >0, n>—}.
2. Expand the first solution in Ex. 1 into series; compare with y (ix) above.
3. Try Tl—teymonz(l—a)y’ + [y —(a+ B+ 1)z]y’ — aBy =0
. .
One solution is j‘; t8-1(1 — t)Y—B-1(1 — tx)— adt, B>0, ¥ > B, |z} <1.

4. Expand the solution in Ex. 8 into the series, called hypergeometric,

a(a +1 +1
R L
a(@+1)(@+2)BB+1)(B+2) Bt ]
1-2.3v(v+1)(v+ 2
5. Establish these results for Bessel’s J-functions :

+

zn m
(@) Ju(@)= ————— sin2” ¢ cos (¢ sin ¢) dg, n>—1,
2"\/171‘(n+%)f; ( !
8) J,,(a:):lxinfﬂsin%gbcos(zsin(ﬁ)d(p n=0,1,23..
w38.5...2n—1) o ’ HE
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1 pm .
6. Show — f cos (ng — z sin ¢) d¢ satisfies
wJo

y ( n2> sinmr(l n2)
’7 I 1— = — Z ).
y +x+ x? y T & z

1
7. Find the equation of the second order satisfied by f (1=2t3)"~ % sin ztdt.
0

z4 v x8 10
@) Gy arE eyl

9. Compute Jy(1) = 0.7652 ; J,(2) = 0.2239 ; J,(2.405) = 0.0000.

8. Show Jy(2z) =1 — a2 +

10. Prove, from the integrals, J; () = — J;(%) and [z—1J,]" = — z— %/, 41.

11. Show that four terms in the asymptotic expansion of P + iQ when'n =0
give the best result when z = 2 and that the error may be about 0.002.

12. From the asymptotic expansions compute J,(8) as accurately as may be.

13. Show that for large values of « the solutions of J,(z) = 0 are nearly cf the '
form kmw — } 7 and the solutions of K,(x) = 0 of the form k= + } .

14. Sketch the graphs of y = J(z) and y = J,(x) by using the series of ascend-
ing powers for small values and the asymptotic expressions for large values of z.
1
Va2 4 b2

1 ™ ©
. = — d h — A, =
15. From J(x) - ‘/; cos (z cos¢) dep »s ow j; e o(bx) dx
16. Show f Te-ar o(x) dz converges uniformly when a = 0.
0
17. Evaluate the following integrals : (@) f; coJo(lxz:) de =b-1,
(8) j;wsinazJo(bw)(i—xz gor sin—lg asa>b>0o0rb>a>0,

v) j;msin axd y(bx) de = v;:——_—_l_)a or 0 as a? > b% or b? > a?,

1

(a)fo cosaz Jy (ba) do =

or 0 as b2 > a2 or a2 > b2,

2 2 _ -
18. If u = VaJ,(az), show % + <a2 _n p %>u =0. If v = VaJ,(bz),

du a1
[v T d—z]o_ ®? —a )j; 2 n(02) Jn(b) dz.
19. With the aid of Ex. 18 establish the relations:
1
(@) bIn(a)Ju+1(b) — adu(B)n +1(a) = (B2 — a?) j; zdn(az)J(bz) dz,
2 (! ' e (z)d
B) ahy(@) = a? [ wlyaryde = [zl de,

(1) Ta() T 11(0) + A LTa( T, 4a(@) = T@) T )] = 2 [ 2 [Tn(a2) P

2 > sinxtdt 2 > cosxtdt
20. Show J,(z) = = , K, (z) == .
o(®@) w=h E_1 o) r-/; -1



