CHAPTER XIII
ON INFINITE INTEGRALS

140. Convergence and divergence. The definite integral, and hence
for theoretical purposes the indefinite integral, has been defined,

(1@ re@= [

when the function f(x) is limited in the interval a to b, or a to a; the
proofs of various propositions have depended essentially on the fact
that the integrand remained finite over the finite interval of integration
(8§ 16-17, 28-30). Nevertheless problems which call for the determina-
tion of the area between a curve and its asymptote, say the area under
the witch or cissoid,

3
e 8 atdx x |** 2e xidy .
f Al 4a*tan™! 2al = 4 ma?, 2 — = 3mad?,
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have arisen and have been treated as a matter of course.* The inte-
grals of this sort require some special attention.

When the integrand of a definite integral becomes infinite within or
at the extremities of the interval of integration, or when one or both of
the limits of integration become infinite, the integral is called an infinite
integral and is defined, not as the limit of a sum, but as the limit of an
integral with a variable limit, that is, as the limit of a function. Thus

f S(@)dx = lim [F(x) = f I (x)da] , infinite upper limit,

f ’ S@)de = liili [F ()= f zf (x) dac] , integrand () = oo.

These definitions may be illustrated by figures which show the connec-
tion with the idea of area between a curve and its asymptote. Similar
definitions would be given if the lower limit were — oo or if the inte-
grand became infinite at « = . If the integrand were infinite at some
intermediate point of the interval, the interval would be subdivided
into two intervals and the definition would be applied to each part.

* Here and below the construction of tigures is left to the reader.
352
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Now the behavior of F(x) as x approaches a definite value or becomes
infinite may be of three distinct sorts; for F(x) may approach a definite
finite quantity, or it may become infinite, or it may oscillate without
approaching any finite quantity or becoming definitely infinite. *The
examples.

® 8aldx [ 7 8aPdx :
aldx . a’dx x .
- = lim S =4adtan" o—|=2ma? a limit,
b, P4 rew , ¥+4da 2a
* dx “dx NP _
— = hm — =1loga |, becomes infinite, no limit,
L% | S
f cos xdx = lim f cos xdx = sin a'], oscillates, no limit,
0 r=o 0

illustrate the three modes of behavior in the case of an infinite upper
limit. In the first case, where the limit exists, the infinite intedral is
said to converge; in the other two cases, where the limit does not exist,
the integral is said to diverge.

If the indefinite integral can be found as above, the question of the
convergence or divergence of an infinite integral may be determined
-and the value of the integral may be obtained in the case of convergence.
If the indefinite integral cannot be found, it is of prime importance to
know whether the definite infinite integral converges or diverges; for
there is little use trying to compute the value of the integral if it does
not converge. As the infinite limits or the points where the integrand
becomes infinite are the essentials in the discussion of infinite integrals,
the integrals will be written with only one limit, as

f }’(x) dx, f ’if(x) dx, ‘[’ S(x)dx.

To discuss a more complicated combination, one would write

el A AT R A
o \/Elogx \/_logw

and treat all four of the infinite integrals

e~ %dx L e~ *dx e~ *dx © e~ %dx
= — ———— E———————
, Varlogx Vatlogx | Vatlogx VaPlogx

Now by definition a function E(x) is called an E-function in the
neighborhood of the value x = « when the function is continuous in
the neighborhood of x = @ and approaches a limit which is neither zero
nor infinite (p. 62). The behavior of the infinite integrals of a function
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which does not change sign and of the product of that function by an
I-function are identical as far as convergence or divergence are concerned.
Consider the proof of this theorem in a special case, namely,

[rwas [ @@ 1)

where f(x) may be assumed to remain positive for large values of z
and E (x) approaches a positive limit as x becomes infinite. Then if K
be taken sufficiently large, both f(x) and E(x) have become and will

remain positive and finite. By the Theorem of the Mean (Ex. 5, p. 29)

mﬁxf(x)dx <fo(x)E(oc)dx<Mfl;zf(x)dx, z > K,

where m and M are the minimum and maximum values of E (x) Letween
K and . Now let = become infinite. As the integrands are positive,
the integrals must increase with . Hence (p. 35)

if f JS(x)dx converges, f S(x)E (x) dac < M| f(x)dx converges,
K K K
(if f S (x) E (x) dx converges,
K
f Sx)de < i f S (x) E (x)dx converges;
e i m K

and divergence may be treated in the same way. Hence the integrals
(1) converge or diverge together. The same treatment could be given
for the case the integrand became infinite and for all the variety of
hypotheses which could arise under the theorem.

This theorem is one of the most useful and most easily applied for determining
the convergence or divergence of an infinite integral with an integrand which
does not change sign. Thus consider the case

fw zdz _fw[ a2 ]%dac B[ = i odr 1
(@+ai 0 le+at] o _[ax+z2] S 2z
Here a simple rearrangement of the integrand throws it into the product of a func-
tion E (x), which approaches the limit 1 as  becomes infinite, and a function 1/z2,
the integration of which is possible. Hence by the theorem the original integral
converges. This could have been seen by integrating the original integral ; but
the integration is not altogether short. Another case, in which the integration is
not possible, is

©

fl dr _/‘1 1 dr
V1—at Vite2VitzVi—zg
1 1 “dx 1
E@=—————, B avTTa|.
ViteVite J 7= |
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Here E (1) = }. The integral is again coﬁvergent. A case of divergence would be

e A BT L P e T AR
C@r—a?)z YO (2—a)2 a2 2—ua):

141. The interpretation of a definite integral as an area will suggest
another form of test for convergence or divergence in case the inte-
grand does not change sign. Consider two functions f(x) and y(x)
both of which are, say, positive for large values of z or in the neigh-
borhood of a value of « for which they become infinite. If the curve
y = Y (x) remains above y = f(x), the integral of f(x) must converge if’
the integral of ¢ (x) converges, and the integral of  (x) must diverge if
the integral of f(x) diverges. This may be proved from the definition.
For f(z) < y (x) and

f;f(r)d.r <L’”¢,(x) dx or F(x) < ¥(x).

Now as « approaches & or «, the functions F(x) and ¥ (x) both increase.
If ¥ (x) approaches a limit, so must F(x); and if F(x) increases with-
out limit, so must ¥ (x).

As the relative behavior of f(x) and () is consequential only near
particular values of # or when z is very great, the conditions may be
expressed in terms of limits, namely : If y(x) does not change sign and
if the ratio f(x) [y (x) approaches a finite limit (or zero), the integral of
S (@) will converge if the integral of W (x) comverges; and if the ratio
S (@) /¢ (x) approaches a finite limit (not zero) or becomes infinite, the
integral of f(x) will diverge if the integral of ¢ (x) diverges. For in the
first case it is possible to take = so near its limit or so large, as the
case may be, that the ratio f(x)/y (x) shall be less than any assigned
number ¢ greater than its limit; then the functions f(x) and Gy (x)
satisfy the conditions established above, namely f < Gy, and the inte-
gral of f(x) converges if that of y (x) does. In like manner in the second
case it is possible to proceed so far that the ratio f(x)/y(x) shall have
become to remain greater than any asdigned number g less than its
limit; then f > gy, and the result above may be applied to show that
the integral of f(x) diverges if that of y (x) does.

For an infinite upper limit a direct integration shows that

*de  —1 1
S-S @
Now if the test function ¢(x) be chosen as 1/x*¥ = x~* the ratio
J(@)/$(x) becomes a*f (x), and if the limit of the product x*f(x) exists

©

© converges if £ > 1,

or log x| , diverges if & = 1,
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and may be shown to be finite (or zero) as x becomes infinite for any
choice of k greater than 1, the integral of f(x) to infinity will converge ;
but if the product upproaches a finite limit (not zero) or becomes infinite
Jor any choice of k less thun or equal to 1, the integral diverges. This
may be stated as: The integral of f() to infinity will converge if f(x)
is an infinitesimal of order higher than the first relative to 1/ as x
becomes infinite, but will diverge if () is an infinitesimal of the first
or lower order. In like manner

b de 1 1
(h—w)t " he—1 (b—w)k1

and it may be stated that: The integral of f(x) to o will converge if
J(r) is an infinite of order less than the first relative to () —z)='as «
approaches &, but will diverge if f(a)) is an infinite of the first or higher
order. The proof is left as an exercise. See also Ex. 3 below.

h

or —log (b—) converges if <1,

diverges if k=1,

)

y -

@
As an example, let the integral f xne—zdxr be tested for convergence or diver-

gence. If n> 0, the integrand nev(e’:r becomes infinite, and the only integral to
examine is that to infinity ; but if n < 0 the integral from 0 has also to be consid-
ered. Now the function e~ for large values of x is an infinitesimal of infinite
order, that is, the limit of xk+ne—= is zero for any value of k and n. Hence the
integrand z"e— = is an infinitesimal of order higher than the first and the integral
to infinity converges under all circumstances. For z = 0, the function e—= is finite
and equal to 1; the order of the infinite z#e—= will therefore be precisely the order
n. Hence the integral from 0 converges when n > — 1 and diverges whenn = — 1.
Hence the function -
I‘(a):ﬁ rx—1le—xdy, a >0,

defined by the integral containing the parameter «, will be defined for all positive
values of the parameter, but not for negative values nor for 0.

Thus far tests have been established only for integrals in which the
integrand does not change sign. There is a general test, not particularly
useful for practical purposes, but highly useful in obtaining theoretical
results. It will be treated megely for the case of an infinite limit. Tet

F(x) =ﬁrf(r) de,  F(x")— F(z') =fI Sf@ydz, ' 2" > K. (4)

,

Now (Ex. 3, p. 44) the necessary and sufficient condition that F(x)
approach a limit as x becomes infinite is that F(r")— F(x') shall
approach the limit 0 when «' and ", regarded as independent varia-
bles, become infinite; by the definition, then, this is the necessary
and sufficient condition that the integral of f(x) to infinity shall
converge. Furthermore
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if f w[ JS@)|dx  converges, then f : S (x)dx ®)

must converge and is said to be absolutely concergent. The proof of this
important theorem is contained in the above and in

[ r@ae= [Clrola

To see whether an integral is absolutely convergent, the tests estab-
lished for the convergence of an integral with a positive integrand
may be applied to the integral of the absolute value, or some obvious .
direct method of comparison may be employed ; for example,

* cos zdx * 1ldzx .
3 = 5 Wwhich converges,
a4 & 4+ x

- and it therefore appears that the integral on the left converges abso-
lutely. When the convergence is not absolute, the question of con-
vergence may sometimes be settled by integration by parts. For
suppose that the integral may be written as

[ r@a==[ I¢<x>~p<w>dx=[¢<x> ne ,zm]’_ [ I¢'<x>f¢<w>dw2

by separating the integrand into two factors and integrating by parts.
Now if, when a becomes infinite, each of the right-hand terms approaches
a limit, then

[ r@as = im [w) f ¢<m)dw]“- tin [ [yt aots,

and the integral of f(x) to infinity converges.

. @ Z cos zdx @ g|cosx|dr
As an example consider the convergence of f Here f z|cosz|de

a? 2?2 a? + x2
does not appear to be convergent ; for, apart from the factor|cosx|which oscillates
between 0 and 1, the integrand is an infinitesimal of only the first order and the
integral of such an integrand does not converge; the original integral is therefore
apparently not absolutely convergent. Heowever, an integration by parts gives

zgcosxdr <xsinz|* z g2 — g2
= - cos xdzx,
a2 + m2 a2 + 32 (12 + a2)‘2
rsinz z g2 — g2 zdr
m =0, ———— coszdx <f —.
r=w a2 + x2 (2 + a?)? x?

Now the integral on the right is seen to be convergent and, in fact, absolutely
convergent as ¢ becomes infinite. The original integral therefore must approach
-a limit and be convergent as z becomes infinite.
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EXERCISES .
1. Establish the convergence or divergence of these infinite integrals:
® dx © x4z ©  z2dx
@ f Vit et ® f (@ + 2 ” f (a2 + )}

(9) j;x“—l(l — z)B-1dg (to have an infinite integral, a must be less than 1),

1 N a  dz > dz
(e)fw 1(1—z)B-ldz, (s“)f0 Vo — (ﬂ)ﬁ st

© dz 2 zdr 2za—l
@) A= Ol e TGN Nt
dz l—kz
k<t k=1,
™ [ \/(1 e (#) f =R g k<1,

2. Point out the peculiarities which make these integrals infinite integrals, and
test the integrals for convergence or divergence :

l 1
(a) j; (lOg%)”dx, conv. if n>—1,div.ifn=-1, (B) log:c d:l:,

™ fl(_ log z)dz, ) f;i log sin zdzx, (¢) j;":clogsin:odz,
dx " dx . 1 - 1\»
() f log(z+ >1+:B2 (n) _[; (sinz-l-—cosz)k’ ) j‘oz (log;) dz,
® e—xdx w 1 1 i
" pynrarRET z=dzx, A logz tan — dz,
“ o Vzlog(x + 1) (K)j; ()j; g 3
@ pa—1 to o za—-1dy
— 22, e
o e s
S 1log zdz = ~(=-2)
(p) ﬁ \/i_—ﬂ’ (o) j; e ,
xa-llooz log (1 + azzz) ©
™ f 14z dz, ) f 14 022 dx, (x) j; e cosh grdz.

3. Point out the similarities and differences of the method of E-functions and
of test functions. Compare also with the work of this section the remark that the
determination of the order of an infinitesimal or infinite is a problem in indeter- |
minate forms (p. 63). State also whether it is necessary that f(z)/y (x) or z*f(x)
should approach a limit, or whether it is sufficient that the quantity remain finite.
Distinguish **of order higher’’ (p. 8356) from *‘of higher order’’ (p. 63); see Ex.8, p. 66.

4. Discuss the convergence of these integrals and prove the convergence is
absolute in all cases where possible :

@ [" 2l ®) [ cosata, o [TV,

@ [ e_‘_‘"iiﬂdx, (0 [ e eospean, (@ [

+ a2
3 dz,
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® rsing ® »cosT
) f e—axcos bxde
QN ® J, , ()f
x : ® sin T cos ax
- @ —1p— xcos B i A ——dx,
(x)j; wele ‘cos(a:smﬁ)dx, ()f; . X

. - 2 ’ ® ginkyl
(p,)j; cosz?cos2 axdz,  (v) f sm( 2:::2)(11 (°)j; SI:mxdx

5. If f,(¢) and f,(x) are two limited functions integrable (in the sense of
§§ 28-30) over the integral a = x = b, show that their product f(z) = f,(z)f,()
is- integrable over the interval. Note that in any interval §;, the relations
myimg; = My = My = MiiMz; and MyiMa; — myime; = MiiMa; — Mygmg; +
Myimg; — myima; = My;02; + mg;01; hold. Show further that

[ r@n@a=1n3, @ nen
, - hmz fl(&)[ f i @) de — f:”‘ul{fg(&) —fg(t)d:c}],

or fa *f(@) de = lim 2 £1(&) fz . 1y @) de

—hmz £ [ f 7, (@) dz — f fz(:c)d:c]

i+1
o [r@a=fE) [ e+ in Y E - 5G] [ e de.

6. The Second Theorem of the Mean. If f(z) and ¢ () are two limited functions
integrable in the interval a =z =1, and if ¢ (z) is positive, nondecreasing, and
less than K, then

b b
[s@r@a=x[Fa)aw o=t=b
@ H

And, more generally, if ¢(x) satisfies — 0o <k =¢(x) = K < and is either
nondecreasing or nonincreasing throughout the interval, then

Lb¢(z)f(x)d:c=kfa$f(x)dz+Kj:f(a:)dz, a=t=h

In the first case the proof follows from Ex. 5 by noting that the integral of
¢ (x)f(x) may be regarded as the limit of the sum

2@ [ 1@+ 3,106 — 6 @G-0] [ F@de + K — 9 (6] [ F(@)da,

where the restrictions on ¢ (x) make the coefficients of the integrals all positive or
zero, and where the sum may consequently be written as

o) +oE)— @)+ + o) —dE-1) + E — ¢ ()] =pK
if u be a properly chosen mean value of the integrals which multiply these coeffi-
b
cients; as the integrals are of the form f Jf(x)dx where £ = a, z,, - - -, Tp, it follows
§
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that u must be of the same form where ¢ = £ = ). The second form of the theorem
follows by considering the function ¢ — k or k — ¢.

7. If ¢ (x) is a function .Varying always in the same sense and approaching a
finite limit as = becomes infinite, the integral f qcqb(a;) f(x)dr will converge if
f eof (x) dx converges. Consider

[Te@r@a=o@) 1@+ @) S “r @) de.

8. If ¢ (z) is a function varying always in the same sense and approaching 0 as
a limit when z = o, and if the integral F(x) of f(r) remains finite when & = co,

then the integral f w«ﬁ (x)f (x) dx is convergent. Consider

S " @@l = 6 @) [FO — F@)] + ¢") [F)— Q).

x
This test is very useful in practice ; for many integrals are of the form f ¢ () sin zdz

where ¢ (x) constantly decreases or increases toward the limit 0 When ¢ = w; all
these integrals converge.

142. The evaluation of infinite integrals. After an infinite integral
has been proved to converge, the problem of calculating its value still
remains. No general method is to be had, and for each integral some
special device has to be discovered which will lead to the desired
result. This may frequently be accomplished by choosing a function
F(z) of the complex variable z = x + iy and integrating the function
around some closed path in the z-plane. It is known that if the points
where F(z) = X(x, y) + i¥Y(x, y) ceases to have a derivative F'(z),
that is, where X (z, y) and Y (, y) cease to have continuous first par-

tial derivatives satisfying the relations X = ¥, and X, = —¥_, are cut
out of the plane, the integral of F(z) around _
any closed path which. does not include any of —4*+%8 A+B

. s . dz=+dzx
the excised points is zero (§124). It is some- ot

times possible to select such a function F(z) dz=+idy dz=idy
and such a path of integration that part of |
the integral of the complex function reduces — 5 ’8 dz=dg )
to the given infinite integral while the rest of

the integral of the complex function may be computed. Thus there
arises an equation which determines the value of the infinite integral.

Consider the integral f ST g2 which is known to converge. Now
oz

© gin ¢ fcn elr — g—ix © pix ® g—ix
o T o

2ix “Jo 2w Jo 2i
suggests at once that the function eiz/z be examined. This function has a definite
derivative at every point except z = 0, and the origin is therefore the only point
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which has to be cut out of the plane. The integral of ez/z around any path such
as that marked in the figure * is therefore zero. Then if « is small and 1 is large,

iz A pin B pid-- — A gir— B
0= —dz= f —dx + f ld/ + f ——dr
oz « & 0 il + A r+ib

0 g—id—y +a giz
—_——idy f —dz
+ B—-‘l-i-— v f

a gix — A pix A e—ixdy +a giz +a]
Butf —dx—— —dx:—f and —dz = +"d
—a £ a £z —a Rz —a z

the first by the ordinary rules of integration and the second by Maclaurin’s
Formula. Hence

iz A4 gix _ p—ix ta (z
0= f C = R f = + four other integrals.
x —a Z

a

It will now be shown that by taking the rectangle sufficiently large and the
semicircle about the origin sufficiently small each of the four integrals may be
made as small as desired. The method is to replace each integral by a larger one
which may be evaluated.

Bod-y B |¢i4|e-v y . B1 B
= dy < ey < —.
o A+iy ( f |4 + iy Iy foA =1

These changes involve the facts that the integral of the absolute value is as great
as the absolute value of the integral and that eid—v = eide~v, |eid| =1, | A + iy | > A4,
e-¥<1. For the relations |e'4| =1 and |4 4 iy|> A, the interpretation of the
quantities as vectors suffices (§§ 71-74) ; that the integral of the absolute value is
as great as the absolute value of the integral follows fromn the same fact for a sum
(p. 154). The absolute value of a fraction is enlarged if that of its numerator is
enlarged or that of its denominator diminished. In a similar manner

—A gix—B ! A e—B 0 p—id—y B
S ! —de =2 —1’ f id _.
U ¢+ iB II<£A B T ‘ e kel b
+ + a
Furthermore ‘ f ¢ nd ’< f ' []rlz f [n]
—a 17!

f+a_d—z—f0 yefpiidd,__m
-a 2 - ™ rebi -

Then 0= fe—udz—f 2zs—m—xdz—m+lx, |R|<2£+2e—3£+m,
a T A B

where e is the greatest value of |7| on the semicircle. Now let the rectangle be
so chosen that A4 = Bet % ; then |R|< 4 ¢~ 1% 4 me. By taking B sufficiently large
e 3B may be made as small as desired; and by taking the semicircle sufficiently

* It is also possible to integrate along a semicircle from A to — 4, or to come back
du-ect]y from 7B to the origin and separate real from imaginary parts. These variations
in method may be left as exercises.
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small, e may be made as small as desired. This amounts to saying that, for A suffi-

ciently large and for a sufficiently small, R is negligible. In other words, by taking

A large enough and a small enough f sinz may be made to differ from — by

as little as desired. As the integral from zero to infinity converges and may be
regarded as the limit of the integral from a to A (is so defined, in fact), the integral
from zero to infinity must also differ from } 7 by as little as desired. But if two
constants differ from each other by as little as desired, they must be equal. Hence

@sinx
—_— 6
f<; T 2 ©

As a second example consider what may be had by integrating ez/(22 + k2) over
an appropriate path. The denominator will vanish when z = 4 ik and there are
two points to exclude in the z-plane. Let the integral
be extended over the closed path as indicated. There is
no need of integrating back and forth along the double
line O a, because the function takes on the same values
and the integrals destroy each other. Along the large
semicircle z = Rei® and dz = Riei¢dgp. Moreover

0 eixdy —R eixdx R e—ixdy
—_— = — = —_— by elementary rules.
jl)t:«r:“’-}-k2 \/; 22 4 k2 jt; z2 4+ k2 Y vy s

0 exdy R eixdy R giz 4 g—ix R cosz
H e = de =2 ———dx,
ene £3z2+k2+fc; 2 4 k2 fc; x2 4 k2 -/o‘ 22 + k2

ez R cosz L em°i¢Riei¢d¢ eizdz
dz=2 a )
i fo 21 +fo Ri2i 1 k2 +‘£a’az2+k2

Now | R | = | giRcos +ising) | = | e~ ReindgiRcos ¢ | = g~ Rsind,

and 0=

Moreover | R2e2% 4 k2| cannot possibly exceed B2 — k2 and can equal it only when
¢ =} m. Hence

= eRPRigivdg| _
o R%e2ib 4 k2|

g Re-Rsmd; -9 Re—RundJ
o RZT— K f

Now by Ex. 28, p. 11, sin ¢ > 2¢/mw. Hence the integral may be further increased.
29

- —-r=2
7z Re ~ ™ d¢ T
2 [2 = —R _1).
f; FEoe m_ge

f n giRe'® Rieivdg
o R2e%2i¢ 4 k2

ezdz eiz dz e—k dz
Moreover, f = = - -,
? aara 22 + k2 La’az-l-ik z— ik c/;a'a <2ki+n)z—ik

where 7 is uniformly infinitesimal with the radius of the small circle. But

J —k
[ 9 _ _ _9mi, and ez 2mek o
aara 2 — ik aa’a 22 + k2 2k

where || = 2 e if e is the largest value of |n|. Hence finally
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R cosx
0=2 de — T et -k 1).
foz2+k2 St @D

By taking the small circle small enough and the large circle large enough, the last
two terms may be made as near zero as desired. Hence

® CcoST ek i
de = —.
j:) x2 + k2 2k ™

eiz dz e~k
=— 27— isexact
2Kki

It may be noted that, by the work of § 126, f - —
aaa 2 + ki z — ki

and not merely approximate, and remains exact for any closed curve about)z = ki
which does not include z =— ki. That it is approximate in the small circle follows
immediately from the continuity of e/(z + ki) = e~*/2ki 4+ 5 and a direct inte-
gration about the circle.

As a third example of the method let f

will converge if 0 < a <1, because the 1nﬁmt.y at the origin is then of order less
than the first and the integrand is an infinitesi-
mal of order higher than the first for large values
of z. The function z¢—1/(1 + z) becomes infinite

at z=0and z =— 1, and these points must be
excluded. The path marked in the figure is a d e ‘é’\a 4
closed path which does not contain them. Now Lpde — a

here the integral back and forth along the line
ad cannot be neglected ; for the function has a
fractional or irrational power z¢—1 in the nu-
merator and is therefore not single valued. In
fact, when z is given, the function z2—1 is deter-
mined as far as its absolute value is concerned, but its angle may take on any
addition of the form 2wk (a — 1) with k integral. Whatever value of the function
is assumed at one point of the path, the values at the other points must be such
as to piece on continuously when the path is followed. Thus the values along the
line a4 outward will differ by 27 (a — 1) from those along Aa inward because
the turn has been made about the origin and the angle of z has increased by 2.
The double line bc and cb, however, may be disregarded because no turn about the

origin is made in describing cdc. Hence, remembering that e™ =—1,
1 —lgla—1)i A pa—1 2w Japadi
0= za— _frd e@—1oi (re‘bi):f re dr+f Aaex idg
ol+z 1 4 redi a 1471 0 14 Ae?

a pa—lg2m(a—1)i 3 za—l za—1
———— e2midy dz f dz.
+L 1+ rezm +~/.:b»a1+z + ede 1 + 2

A pa—1 a pa—le2mai A pa—1
T Y o= I—(1-—emar
Now -/; 14+7r +L 147 4 /‘: 1+r( )dr,
2w A apadi 2T A« R 2wAx
— o= eadi| dep = ,
£ 14 Adet ¢’ ‘[o' A4 -1 |¢ A4-1
lf z“*ldzl__ 0 w"e‘“h 2 wax
aval+z | n1+ae¢' T1-a
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za—1 dz . . : -
f dz :fz“-l =—27i(—1)*~1=— 27iem(@~Di = 2 griemai,
ede 1 + z . 1 + z .

ra—1 . : 2wA®  2max
dr + 2mwiemai 4+ ¢, < — .
+r + + 141 A—1 1—a

4
Hence 0=(1— e”‘"')f
a
If A be taken sufficiently large and a sufficiently small, { may be made as small
as desired. Then by the same reasoning as before it follows that

a1 ; . ©pa—1
=(1- '-’"‘"f ‘ d: 2mier®, or 0=—sinwa d:
0= —em) | 10+ 2mes ”£1+rr+”’
o gpa—1 T
dx = . . 8
and £ 1+ sin amr ®)

ES

143. One integral of particular importance is e “dx. The evalu-

0
ation may be made by a device which is rarely useful.- Write

4 4 4 3 4 pa 3
f e~ dx =[ f e~ dr f e‘”’dg/] = [ f f e"”z"fzd.uly] .
0 A 0 0 YO 0

The passage from the product of two integrals to the double integral
may be made because neither the limits nor the integrands of either
integral depend on the variable in the other. Now transform to polar
coordinates and integrate over a quadrant of radius 4.

4 nd T pd ' 1 :
e~ dxdy = f . f e "rdrd + R=>n(1—e )+ R,
0 0 N 0 0 4

where R denotes the integral over the area between the quadrant and
square, an area less than 4 42 over which e~ =¢~4’. Then

. Coad i
R< F A%, ;f f eV dady — L | < § A%
o Jo :

Now 4 may be taken so large that the double integral differs from.1
by as little as desired, and hence for sufficiently large values of .4 the
simple integral will differ from 4 V7 by as little as desired. Hence * -

jo‘ “o e = Y - ®

* It should be noticed that the proof just given does not require the theory of infinite
double integrals nor of change of variable; the whole proof consists merely in finding
‘a number 4 v/ from which the integral may be shown to differ by as little as .desired. )
This was also true of the proofs in § 142; no theory had to be developed and no limiting
processes were used. In fact the evaluations that have been performed show of them-
selves that the infinite integrals converge. For when it has been shown that an integral
with a large enough upper limit and a small enough lower limit can be made to differ-
from a certain constant by as little as desired, it has thereby been proved that that

integral from zero to infinity must converge to the value of that constant.
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‘When some infinite integrals have been evaluated, others may be
obtained from them by various operations, such as integration by parts
and change of variable. It should, however, be borne in mind that the
rules for operating with definite integrals were espablishéd only for
finite -integrals and must be reéstablished for infinite integrals. From
the direct application of the definition it follows that the integral of
a function times a constant is the product of the constant by the
integral of the function, and that the sum of the integrals of two
functions taken between the same limits is the integral of the sum
© of the functions. But it cannot be inferred conversely that an integral
may be resolved into a sum as

[+ s@in= (st [(sw

when one of the limits is infinite or one of the functions becomes
infinite in the interval. For, the fact that the integral.on the left
converges is no guarantee that either integral upon the right will
converge; all that can be stated is that if one of the integrals on the
right comverges, the other will, and the equation will be true. The
same remark applies to integration by parts,

[ 1@ @ = [f(w) ¢<¢>] — [r@s@as

If, in the process of taking the limit which is required in the defi-
nition of infinite integrals, two of the three terms in the equation
approach limits, the third will approach a limit, and the equation will
be true for the infinite integrals. -

The formula for the change of variable is

) Il Tty an = [ remieoa,

x=¢(t)
where it is assumed that the derivative ¢'(#) is continuous and does
not vanish in the interval from ¢ to 7' (although either of these con-
" ditions may be violated at the extremities of the interval). - As these
two quantities are equal, they will approach equal limits, provided
they approach limits at all, when the limit

b=¢d(t) t
f fa)dz = f FLoO14 (1) dt

=ty

required in the definition of an infinite integral is taken, where one of

the four limits «, &, ¢, ¢, is infinite or one of the integrands becomes
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infinite at the extremity of the interval. The formula for the change
of variable is therefore applicable to infinite integrals. It should be
noted that the proof applies only to infinite limits and infinite values
of the integrand at the extremities of the interval of integration; in
case the integrand becomes infinite within the interval, the change of .
variable should be examined in each subinterval just as the question
of convergence was examined. '

. . ®sinx T
Asan example of the change of variable consider f —dr = 3 and takex = ax’.
o .
© sin ax’ az +® sin ax’ —= sin ax’ *’= gin ax’
f ar'= [ a or = [ Faw=— X &,
r= =0 & X/ =0 X /=0 X

according as « is positive or negative. Hence the results

fwsm"”‘dz=+’_’ if >0 and —Z if a<O. (10)
o 2 2

Sometimes changes of variable or integrations by parts will lead back to a given
integral in such a way that its value may be found. For instance take

™ ™
ul 0 l )
I=f210gsinwdm=—f logcosydy=f2logcosydy, y:z-—z.
0 fud 0 2
2

sin2z
og

™ m
Then 2I=f2(logsinx+ logcosz)dz=f21 dz
0 o

™
=%£wlogsinwdz—1—;log2 :ﬁzlogsinxdm—glogz

m
Hence I= f ®log sinzdz = — ’E' log2. (11)
0

Here the first change was ¥y = } w — . The new integral and the original one
were then added together (the variable indicated under the sign of a definite inte-
gral is immaterial, p. 26), and the sum led back to the original integral by virtue
of the substitution y = 2z and the fact that the curve y = log sin « is symmetrical
with respect to # = { w. This gave an equation which could be solved for I.

EXERCISES
zsinz ™

dr = — ek,
o+ i 2

1. Integrate z2 N as for the case of (7), to show f

2. By direct integration show that f e~ (a—bdzdz converges to (@ — bi)—1, when
a > 0 and the integral is extended along the line y = 0. Thus prove the relations

_*
a2+b2’

© _ ® _ b
‘/0’ e cos bxdxr = j{; e”smbxdac_m, a>0.

Along what lines issuing from the origin would the ;giveri integral converge ?
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® pa—1 — ‘
3. Show f (a; n :; lsm a)"- To integrate about z = — 1 use the binomial
am

expansion z¥-1=[—14142]¢"1=(=1)"1[14+(1—a)(1+2)+2(1+2)],
7 small.

4. Integrate e— =" around a circular sector with vertex at z = 0 and bounded by
the real axis and a line inclined to it at an angle of } w. Hence show

i ™ - © Vo
——e%’"f (coss? — isinr?) dr =f e~ode = ——,
o o

2
@ 2 @ 1 ;
s x2de = sinz?de = - \/—.
Jyeo o S 2 V2
5. Integrate e~ #° around a rectangle y =0, y = B, ¢ = + A4, and show
g g )

fwe—l”cos2aa',dac =1 Ve, fme—x’sin2aa:da:=0.
0 —®

6. Integrate z2—1le—%, 0 < a, along a sector of angle ¢ < } w to show
sec aq f “ ga—1g-wcosa cos (zsing)dz
0 :

@ @
= csc o:qf m"—le-“quin(zsinq)dm:f z% —le—zdg,
() o

7. Establish the following results by the proper change of variable :

cosax . _ me—ak © ga—1dy apa-—1
= , 0, = s 0,
()f x2+k2 2k >0 (ﬁ)j; B+ sin am £>0
' @ 1 ® 1
— a2y — b —aa:_da::
o [ 5=V ©) [ e .
b2
Ve ia vi
(e) e~ %’ cosbrde = ———— ,a>0, ) V',
f 2« f log:v
( )f‘v coszdx fwsmzdz / @ f log:cdz T log2
n \z’ =—glog2.
8. By integration by parts or other devices show the following :
" 1 = sin?x T
log sinxdex = — - 72 log 2 de = —,
(@) [ zlogsin 5™ log2, ® [ 5
() f“sﬂ:’s_—“"”dmzz if —l<a<l, or}ifa:il, or 0if |a|>1,
v - 3Vr
2902 —_ —a2x? —
(a)f ate-ede = =T, (e)f we iy = "

(§) T (a + 1) = aT (a) if r(a)=f0°°xa—le—wdx, (n)f" gsinade _mt

14 cos?2z 4
® 1

dz = w log 2, by virtue of z = tan y.
x
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9. Suppose f wf (x) d_::;, where a > 0, converges. Then if p >0,¢>0,
a

fowf(px)—f(qw)dx hm[f f(m)—f(qx)dl fpa IO g f ff)ds]

x
Show f ”I—(-wdx—llln f f(a:) = 7(0) log ?qf
0
Hence (@) [~ mm_—ﬂ_n_q@dx:o, ® fo.*e—”t_e‘_‘”dz:log%,
i
lzP 19— q * COST — COS ax
=log =, ) —_—dr =1 .
W [ T de=loer, @) f ~ oga

10. If f(x) and f’(x) are continuous, show by integration by parts that

hmff(az)smkxda: 0. Hence prove hmff()smkw =1—;f(0).

[Write foaf(x) S";k“dx =f(0)j;a¥dm +jo'“f(1)+f(°) sin kam]

Apply Ex. 6, p. 359, to prove these formulas under general hypotheses.

11. Show that hm f f(x )Smkzd:c = 0if b > a > 0. Hence note that
lim lim f(ac) S‘“'“dm # lim lim f @ )s‘n e 4z, unless £(0) = 0.
k=wa=0 a=0k=w

144. Functions defined by infinite integrals. If the integrand of an
integral contains a parameter (§ 118), the integral defines a function of
the parameter for every value of the parameter for which it converges.
The continuity and the differentiability and integrability of the func-
tion have to be treated. Consider first the case of an infinite limit

fwf(x, @)dx =fzf(ac, a)ydx 4+ R (x, @), R =fwf(x, @) dzx.

If this integral is to converge for a given value @ = a,, it is necessary that
the remainder R (x, @) can be made as small as desired by taking x large
enough, and shall remain so for all larger values of z. In like manner if
the integrand becomes infinite for the value x = 5, the condition that

j:bf(x, a)dx =j{:xf(:r, a)dx + R (x, ), R ___j;bf@’ @) da

converge is that R (x, ;) can be made as small as desired by taking »
near enough to &, and shall remain so for nearer values.

Now for different values of a, the least values of & which will make
| R (x, @)| = ¢, when e is assigned, will probably differ. The infinite inte-
grals are said to converge uniformly for a range of values of a such as
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w,=a=«, when it is possible to take « so large (or # so near ) that
| R (x, )| < e holds (and continues to hold for all larger values, or values
nearer b) simultaneously for all values of @ in the range ¢, =a=a,
The most useful test for uniform convergence is contained in the
theorem : If a positive function ¢ (x) can be found such that

f w¢(w) dx  converges and ¢ (x) = f(x, @)

Jor all large values of x and for all values of a in the interval o) = a = a,,
the integral of f(x, @) to infinity converges uniformly (and absolutely)
Jor the range of values tn «. The proof is contained in the relation

ﬁxf(ac, a) da gfxm¢(x)dx<c,

which holds for all values of @ in the range. There is clearly a similar
theorem for the case of an infinite integrand. See also Ex. 18 below.

Fundamental theorems are:* Over any interval @) = @ = a, where
an infinite integral converges uniformly the integral defines a con-
tinuous function of a. This function may be integrated over any finite
interval where the convergence is uniform by integrating with respect
to @ under the sign of integration with respect tox. The function may
be differentiated at any point a; of the interval ¢, =a = «, by differ-
entiating with respect to @ under the sign of integration with respect
to « provided the in*egral obtained by this differentiation converges
uniformly for values of @ in the neighborhood of @;. Proofs of these
theorems are given immediately below.

To prove that the function is continuous if the convergence is uniform let
¥ (@) :f”f(x, a)de =fxf(z, Qdz + R@, @), ay=a=a,
a a
¥ (a + Aa) =f"f(x, a + A)dz + R(z, a + Aa),
a

|A¢|§!fz[f(a), a+ Ax) — f(x, a)]de|+ |R(z, a + Aa) | + | B (x, @)|.

* It is of course assumed that £ (z, ) is continuous in (x, @) for all values of x and a
under consideration, and in the theorem on differentiation it is further assumed that
i@, @) is continuous.

t It should be noticed, however, that although the conditions which have been
imposed are sufficient to establish the theorems, they are not necessary; that is, it may
happen that the function will be continuous and that its derivative and integral may be
obtained by operating under the sign although the convergence is not uniform. In this
case a special investigation would have to be undertaken ; and if no process for justifying
the continuity, integration, or differentiation conld be devised, it might be necessary in
the case of an integral occurring in some application to assume that the formal work led
to the right result if the result looked reasonable from the point of view of the problem
under discussion, — the chance of getting an erroneous result would be tolerably small.
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Now let ¢ be taken so large that |R|<e for all a’s and for all larger values of z
— the condition of uniformity. Then the finite integral (§ 118)

x
f f(z, a)dx is continuous in a and hence
a

fa (@ a + Aa) - f(z, a)]dz

can be made less than e by taking Aa small enough. Hence | Ay|<3e; that is, by
taking A small enough the quantity | Ay | may be made less than any assigned
number 8e. The continuity is therefore proved.

To prove the integrability under the sign a like use is made of the condition of
uniformity and of the earlier proof for a finite integral (§ 120).

dl a'l x a, x dl
f ¢(a)da=f ff(a:, a)dxda+f Rdz:f f 'f(z, @)dadz + §.
do ao a (lo a lZo
Now let ¢ become infinite. The quantity ¢ can approach no other limit than 0;

for by taking x large enough R <e and |{ | <e(a; — a,) independently of . Hence
as ¢ becomes infinite, the integral converges to the constant expression on the

left and a L
fao ¢(a)da_j; f% 'f (2, @) dadz.

Moreover if the integration be to a variable limit for «, then

W(a)=£“.p(a)da=fa°°£“f(z, a)dadz:L”F(x, @)dz.

j:"F(z, a)dz‘:!‘f;wf;af(x, a)dade fa"f:f(z,Z)dmda

Hence it appears that the remainder for the new i;ltegral is less than e(a; — a,)
for all values of a; the convergence is therefore uniform and a second integration
may be performed if desired. Thus if an infinite integral converges uniformly, it may
be integrated as many times as desired under the sign. It should be noticed that the
proof fails to cover the case of integration to an infinite upper limit for a.

For the case of differentiation it is necessary to show that

Also

<e(a— ay).

j,: f/(@, ap)dz = ¢'(ap).  Consider jﬂ' 1@, a)do = w(a).

As the infinite integral is assumed to converge uniformly by the statement of the
theorem, it is possible to integrate with respect to a under the sign. Then
a @ a @©

j;sw(a)da = _[1 fagf; @, a)dads = fa [F(z, @) —F(z, a)]dz = ¢ (@) — ¢ (xp)-
The integral on the left may be differentiated with respect to @, and hence
¢ (@) must be differentiable. The differentiation gives w(a)= ¢’(a) and hence
w(ag) = ¢’(ag). The theorem is therefore proved. This theorem and the two
above could be proved in analogous ways in the case of an infinite integral due
to the fact that the integrand f(z, a) became infinite at the ends of (or within)
the interval of integration with respect to «; the proofs need not be given here.

145. The method of integrating or differentiating under the sign of
integration may be applied to evaluate infinite integrals when the condi-
tions of uniformity are properly satisfied, in precisely the same manner as
the method was previously applied to the case of finite integrals where
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the question of the uniformity ot convergence did not arise (§§ 119-120).
The examples given below will serve to illustrate how the method works
and in particular to show how readily the test for uniformity may be
applied in some cases. Some of the examples are purposely chosen iden-
tical with some which have previously been treated by other methods.

Consider first an integral which may be found by direct integration, namely,

1

a @©
Compare f e—axdy — .
0

aZ + b2
The integrand e—9* is a positive quantity greater than or equal to e—axcosbx
for all values of b. Hence, by the general test, the first integral regarded as a
function of b converges uniformly for all values of b, defines a continuous func-
tion, and may be integrated between any limits, say from. 0 to b. Then

‘/;bj;we—ucosbzdzdb=fwfbe—“cosba:dbdr

f mnbx b adb b
= = tan—1-.
o a4 b2

j‘;me-azcosba:da:: a

© b i © —_
Integrate again. f f e—ax S0 be dbdx = f e~ 1= coshe dx
. . Jo Jo z 0 x?

b a
=btan—1- — —log(a? + b?).
2 glos(ar+ )
Compare j;me—“xl_i%bmdz and ‘f;mt:—:gisb—mdx.

Now as the second integral has a positive integrand which is never less than the inte-
grand of the first for any positive value of a, the first integral conyerges uniformly
for all positive values of a including 0, is a continuous function of a, and the value
of the integral for & = 0 may be found by setting a equal to 0 in the integrand. Then

f‘”l___cosﬂdz llm[btan 1———log(at2+b*)]=lbl7—r
0 x2 a=0 a 2

The change of the variable to #’ = } « and an integration by parts give respectively

smb:c © sin be T T
da:——b de = + — -, b>0 or b<O.
/0' |b], ﬁ . +2 or 3 as <

This last result might be obtained formally by taking the limit

. )
lim e—ax
a=0J0 T

sinba:dz =f°° sinb.odx =tan—1£"= " -

z 0 2
after the first integration; but such a process would be unjustifiable without first
showing that the integral was a continuous function of a for small positive values of a
and for 0. In thiscase|z—1e—sin bx|=|x—1sin x|, but as the integral of -1 sin bx|
does not converge, the test for uniformity fails to apply. Hence the limit would not
be justified without special investigation. Here the limit does give the right result,
but a simple case where the integral of the limit is not the limit of the integral is

© sin b sin bx
li de = li 1i dx —-dzr=0.
i e (25) =2 S i e
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0 a\2 .
As a second example consider the evaluation of f e ("_;) dx. Differentiate.
0 .

£ .‘-_'_1 2 o _(x=" 2 )
¢'(a)=;—a£ e ( 1) d;r,:2f0 e ( -") (I—g)idr
a

= 2/0"6'("5)2 (1 - %) da.

To justify the differentiation this last integral must be shown to converge uni-
formly. In the first place note that the integrand does not become infinite at the
origin, although one of its factors does. Hence the integral is infinite only by vir-
tue of its infinite limit. Suppose ¢ = 0; then for large values of z

- (z_ ‘_')2 a N E3 .
e x <1 - —2> =e2e-2 and f e—2dxr converges (§ 143).
x

Hence the convergence is uniform when a = 0, and the differentiation is justified.

But, by the change of variable ¢’ = — a/x, when a >0,
a\2? o a , 2 _E 2
f‘”e—(z—;) @:f e—(—;’+1) dx’:fme—(x 1) dzx.
0 x? 0 0

Hence the derivative above found is zero ; ¢’ (a) = 0 and
w oo (1 — g)2 o —
¢(a)=f e - dac:const.:f e=v'de = 3 Vr;
0 0

for the integral converges uniformly when a = 0 and its constant value, may be
obtained by setting a = 0. As the convergence is uniform for any range of values
of a, the function is everywhere continuous and equal to } V.

As a third example calculate the integral ¢ (b) = f “e-a%* cosbadz. Now
0
b

. 1 . © 0
— ze— @™’ sin beder = — [e-— % gin b:v] - f e= %" cos badz.
2a? o 2a%Jo

dp =

db ~ Jo
The second step is obtained by integration by parts. The previous differentiation
is justified by the fact that the integral of xe— <™’ which is greater than the inte-
grand of the derived integral, converges. The differential equation may be solved.

de b _e © Vo
T T o e = Ce 4o’ = — a2y — .
db ae®  PTLE s ¢(0) f; e~ a2y v
b2
_b_z o — 5 2
Hence #0) = 6O 36 = [ "om e costus = YT 12,
0 a

In determining the constant C, the function ¢ (b) is assumed continuous, as the
integral for ¢ (b) obviously converges uniformly for all values of b.

146. The question of the integration under the sign is naturally
connected with the question of infinite double integrals. The double

integral f f(x, y)dA over an area A is said to be an infinite integral

if that area extends out indefinitely in any direction or if the function
S (x, y) becomes infinite at any point of the area. The definition of
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convergence is analogous to that given before in the case of infinite
simple integrals. If the area A is infinite, it is replaced by a finite
area A' which is allowed to expand so as to cover more and more of
the area 4. If the function f'(x, ») becomes infinite at a point or along
a line in the area 4, the area A is replaced by an area A' from which the
singularities of (i, ) are excluded, and again the area 4'is allowed to
expand and approach coincidence with A. If then the double integral
extended over A' approaches a definite limit which is independent of
how A’ approaches 4, the double integral is said to converge. As

f f £, ) dady = f f } <,, ) (%, ) dud,

where x = ¢ (v, v), y = ¢ (u, v), is the rule for the change of variable
and is applicable to A, it is clear that if either side of the equality
approaches a limit which is independent of how A'approaches 4, the
other side must approach the same limit.

The theory of infinite double integrals presents numerous difficulties,
the solution of which is beyond the scope of this work. It will be suffi-
cient to point out in a simple case the questions that arise, and then
state Without proof a theorem which covers the cases which arise in
practice. Suppose the region of integration is a complete quadrant so
that the limits for  and v are 0 and «. The first question is, If the
double integral converges, may it be evaluated by successive integra-
tion as

JECTZE f G ydyin= [ Gy iy
x=0 y=0 x=0

And conversely, if one of the iterated integrals converges so that it may
be evaluated, does the other one, and does the double integral, converge
to the same value ? A part of this question also arises in the case of a
function defined by an infinite integral. For let

s@)= [ Sty wd [ ot f " fa, y)dyda,

y=0 r=
it being assumed that ¢ (i) converges except possﬂ)ly for certain values
of x, and that the integral of ¢ (x) from 0 to oo converges. The question
arises, May the integral of ¢ (x) be evaluated by integration under the
sign ? The proofs given in § 144 for uniformly convergent integrals inte-
grated over a finite region do not apply to this case of an infinite inte-
gral. In any particular given integral special methods may possibly be
devised to justify for that case the desired transformations. But most
cases are covered by a theorem due to de la Vallée-Poussin: [f the
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JSuncetion f(x, y) does not change sign and is continuous except over a finite
number of lines parallel to the axes of x and vy, then the three integrals

[ranaa, [* y:of(w, y) dyda, f [ s pydan, a2

cannot lead to different determinate results ; that is, if any two of them
lead to definite results, those results are equal.* The chief use of the
theorem is to establish the equality of the two iterated integrals when
each is known to converge; the application requires no test for uni-
formity and is very simple.

As an example of the use of the theorem consider the evaluation of
I =fme-12d:n =fmae—“212d.z.
0 0
Multiply by e—<* and integrate from 0 to o« with respect to a.
£ @ kel n
Ie-<* =f ae—a*(1+2)dg, If e—da =12 =f f ae— a1+ dxda.
0 0 0o Jo

Now the integrand of the iterated integral is positive and the integral, being equal
to J2, has a definite value. If the order of integrations is changed, the integral

® o © 1 a1 -
—a*(1+2%) dadx = —  “=tan—loo = —
fo f[: @ « fo 1+ar2 20 %71

is seen also to lead to a definite value. Hence the values 12 and } « are equal.

EXERCISES

1. Note that the two integrands are continuous functions of (z, ) in the whole
region 0 = a < o, 0 = = < and that for each value of a the integrals converge.
Establish the forms given to the remainders and from them show that it is not pos-
sible to take z so large that for all values of a the relation |R (z, @)| < e is satisfied,
but may be satisfied for all a’s such that 0 < @y = a. Hence infer that the conver-
gence is nonuniform about a = 0, but uniform elsewhere. Note that the functions
defined are not continuous at @ = 0, but are continuous for all other values.

(@) j;wae-udz, R(zx, a)=j;wae-¢1dz=e-¢r—l,

© sin ax @ sin ar © sin z
dx, R = dx = ——dz.
(B) ft; z » B, a) ja; x j;x z

2. Repeat in detail the proofs relative to continuity, integration, and differ-
entiation in case the integral is infinite owing to an infinite integrand at = b.

* The theorem may be generalized by allowing f(x, ) to be discontinuous over a
finite number of curves each of which is cut in only a finite limited number of points
by lines parallel to the axis. Moreover, the function may clearly be allowed to change
sign to a certain extent, as in the case where f >0 when 2 > a, and f <0 when 0<z<a,
etc., where the integral over the whole region may be resolved into the sum of a finite
number of integrals. Finally, if the integrals are absolutely convergent and the integrals
of | f(x, ¥)| lead to definite results, so will the integrals of 1 (x, ¥).
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3. Show that differentiation under the sign is allowable in the following cases,
and hence derive the results that are given :

= - * r1-3... —
(C() f c““’zda;:l Z, ((>0’ f 1;2ne—ara'3dz:ﬁ] 3 (2n 1)’
0 2V 0 2 2ngn+i

i 1 » 2 1-2...n
(8) f re-a’dr = —, a >0, f x2ntle—a’dy = - - "
0 2a 0

2 (Z”‘H’ ’

» dr w1 © de _wl1.3...2n—1)
=— —= k 0 - ’
™ fo 2+k 2k =% fo @+ ket 2 Z"n!knw“i

1 1 1 m!
(3) fzﬂdz: s> —1, fx"(—logx)mdxz———,
0 n+1 0 (n 4 1)m+1
a-—l = pga—1]oo 2 co
(e) © x .1r L 0<a<, x 0ge , _ meesam
0 l+z T sinar 0 14+ cos? amr — 1

4. Establish the right to integrate and hence evaluate these :

@© * p—ax _ e—bx b :
(a) f e-azdx, 0<a0§a,‘/; ————d.n:log(;y b, a = a,,
0

x
loga — gb a+1
ad, —1 f z = log b A= a
(8) f.’c S X< log z °b+1 0
®© © p—ax — g—bx b2+m2
—ax cos made, 0 = f ———— €08 ma;dac— —_
o) j:) ¢ P IS HED z 2 a? + m2’
@ © g—ar __ g—bx | 1)) a
(9) f e~ azgin mxdz, 0<a0§a,f . —————sinmzdr = tan-1— — tan-1—,
0 0 T m m

a? b2

(¢) L“e—ﬂﬁm=£,0<a0§a,£ e @ —e 2tdz=(b— a)V.

5. Evaluate : (a) f 2 S0 ﬁac cot-l B

@© 1— cos ax sin 2 ax
® [ e—w—‘;idulog\/uaﬂ, o [Tt

2 —
i —(x’+"— vV log (14 a%?)
a2 = — e—2a =
(6)];6 dz 2e , a=0 ()f T dx

6. If 0 <a <b, obtain fromfme— reidy = 5 \/; and justify the relations:
0

b b © o b

f Sj/”dr j f f e~ =’sin rd(z:dr:-2—~ f f e~r'sin rdrdz

a r ] 0

© p— ax2p2, © —ba,
=l_ sinaf € o*de —sind ¢
\/‘n' 0 14z BETTe 1+T/4
© p—a. dI *e—blzdm]
z b )
+cosaj; Tz cos /(: 1+ zt

r sinr m 2 0 p— rxzx2dm ® o— ,«Izdz
f ——dr = ————[smrf —4—+cosrf 4].
o Vi 2 Vv o 14z o 14=z

ko




376 INTEGRAL CALCULUS
- T CcosT r 2 = g—ra¥p2dy . © e—ratdy
Similarly, . W dr = \/5 - [cos rj; Ty sin rj; m]
©sinr ~_ recosr  (mw RPN PYSURY hd w _l'
Also R —\/;dr—f; ———\/; dr_\g, j; 511121'dr_f0 coszrzalr._2

7. Given that =2 f ae— @ +2%da, show that
o

14 a2

© 14 cosmx T © COS ML T
——dr=—(1 —m) and dr = —e—m 0.
j; 1+ 22 g+em an jo‘ Tt e m>

8. Express R (x, a) =fw ZTSl_g%t
x

tuting «’ for azx, in such a form that the uniform convergence for a such that
0 < @y = a is shown. Hence from Ex. 7 prove

dr, by integration by parts and also by substi-

@ sin ax T
der = —e—« a>0 by differentiation).
[ s =g (by on)

Show that this integral does not satisfy the test for uniformity given in the text;
also that for @ = 0 the convergence is not uniform and that the integral is also
discontinuous.

9. If f(z, a, B) is continuous in (x, a, B) for 0 = x < « and for all points («, )

of a region in the apB-plane, and if the integral ¢ (a, B) = f N f(, a, B)dx con-
()

verges uniformly for said values of («, g8), show that ¢ («, B) is continuous in (a, 8).
Show further that if f, (z, a, g) and fg (=, @, B) are continuous and their integrals
converge uniformly for said values of (a, 8), then

® ’ 7 ® 4 ’
[ riw wpaz=9; [ fi@ B =g,
o o
and ¢, ¢g are continuous in (@, B). The proof in the text holds almost verbatim.

10. If f(z,v)=f(x, « +iB) is a function of z and the complex variable
¥ = a + if which is continuous in (z, a, 8), that is, in (z, ¥) over a region of the
v-plane, etc., as in Ex. 9, and if f; (z, v) satisfies the same conditions, show that

o(v) = jo‘ wf (x, v) dx defines an analytic function of + in said region.

@
11. Show that f e~ vdr, vy = a + if, a = a,> 0, defines an analytic func-
0
tion of vy over the whole y-plane to the right of the vertical @ = «,. Hence infer

@ 1 = 1 T
= —szd:cz—\/:=—\/ ) = 0.
#) foe 5Ny 2VNatp =%

VvV a2 2
Prove fwe—— ax? Ccos ﬁx?dx = 1 7_l' a_-i-_ﬂ ,
0 2 N2 a?+4p?

fwe—nzsinﬁx‘ﬂ’d;t :1 E M.
0 2 J2 a? 4+ g2
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12. Integrate f 1e—‘mxcos Br2dr of Ex. 11 by parts with z cosgx2dzr = du

to show that the convergence is uniform at « = 0. Hence find f cos Br2dzx.

+ + o + o
13. From f cosx2dx = f cos (¢ + a)2dx = \/g = f sin (z + a)2dzx, with

the results f
—®

sinz is an odd function, establish the relations

+ @ + w0
cos 22 sin 2 axdr = f sin 22 sin 2 axdr = 0 due to the fact that

fwcusx'lcos,‘z axdr = ﬁ cos <E - a“’) , fmsin x2 cos 2 axdr = i;;sin (E - a“’) .
0 2 4 0 2 4
14. Calculate : (@) f e~ a2 cosh brdz, ®) f “ze-az cos bedz,
)
® 2 a? 72
and (together) ) j; cos (—2- + 2—932) dz, (%) f sin ( 2x2) dz.

15. In continuation of Exs. 10-11, p. 368, prove at least formally the relations:

in [ 1@ I =T, gl [ Zf(x)Sir;kmdx=f(0),

sin k:c

f f 7 (@) cos kadedk = f f (@) cos kzdkdz = f f @

sin kx

_fff(:c)coskmdmdk—llm ff() dz = f(0),

1 © © 1 © ©

—_ = _— k -1 k= t.

= j; f_ S coskededk = 7(0), = fo f_ _J(@)cosk(@— ) dadk = £ (0
The last form is known as Fourier’s Integral ; it represents a function f(f) as a '
double infinite integral containing a parameter. Wherever possible, justify the

steps after placing sufficient restrictions on f (z).

16. Fromfwe— «y dy =£ provef
0 ()

@ @
f zn—le—=dx f zm—le=xdy
0 0

o™

o Gl
=2f r2n+2m—2e-r2drr2fzsin2n—l¢cos2m—l¢d¢.

0 0

—az _ g—h
”e_;‘i_e_’” da;:logg- Prove also
a

17. Treat the integrals (12) by polar cosrdinates and show that

ff(z, Z/)dA=£g£wf(rcos¢,rsin¢)MM¢

will converge if | f| < r—2—% asr becomes infinite. If f(x,y) becomes infinite at the
origin, but |f| < r—2+¥, the integral converges as r approaches zero. Generalize
these results to triple integrals and polar codrdinates in space ; the only difference
is that 2 becomes 3.

18. Asin Exs. 1, 8, 12, uniformity of convergence may often be tested directly,
without the test of page 869 ; treat the integrand «—1e—#*sin bx of page 371, where
that test failed.



