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III. GENERAL PROPERTIES OF MODULES

23. Several arithmetical terms are used in connection with
modules suggesting an analogy between the properties of polynomials
and the properties of natural numbers. Two modules have a c.c.M.,
an L.C.M., & product, and a residual (integral quotient); but no sum
or difference. Also a prime module answers to a prime number and a
primary module to a power of a prime number. Such terms must not
be used for making deductions by analogy.

Definitions. Any member F of a module M is said to contain M.
Also the module (#') contains M. It is immaterial in this statement
as in many others whether we regard # as a polynomial or a module.
The term contains is used as an extension and generalisation of the
phrase is divisible by.

More generally a module M is said to contain another M’ if every
member of M contains M"; and this will be the case if every member
of the basis of M contains M. Thus (#,, F, ..., F}) contains
(£, Iy, ..., Fyyo), and a module becomes less by adding new members
to it.

If M contains M’ and M’ contains M we say that M, M’ are the
same module, or M= M".

If M contains M’ the spread of M contains the spread of M, but
the converse is not true in general.

If in a given finite or infinite set of modules there is one which is
contained in every other one, that one is called the least module of the
set ; or if there is one which contains every other one, that one is
called the greatest module of the set. Two modules cannot be com-
pared as to greater or less unless one contains the other.

There is a module which is contained in all modules, the wnit
module (1). Also (0) may be conceived of as a module which contains
all modules; but it seldom comes into consideration and will not be
mentioned again. These two modules are called non-proper modules,
and all others are proper modules. In general by a module a proper
module is to be understood.

The .c.M. of & given modules M, M,, ..., M}, is the greatest of all
modules M contained in M; and M,... and My, and is denoted by
(M, M,, ..., My). In order that M may be contained in each of
M,, M,, ..., My, or that each of M;, M,, ..., M}, may contain M, it is
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necessary and sufficient that all the members of the bases of M;, M.,
., M, should contain M ; hence the module whose basis consists of all

these members contains all the modules A, and is at the same time

one of the modules M. It is therefore the greatest of all the modules

M and the ¢.cm. of My, M,, ..., M. The notation (M,, M,, ..., My)

agrees with the notation (#}, /%, ..., F}), since the latter is the ¢.c.M. of
", Fy, ..., F regarded as modules.

The v.c.M. of My, M,, ..., M, is the least of all modules M contain-
ing M, and M, ... and M, and is denoted by [My, M,, ..., M;]. Its
members consist of all polynomials which contain 47, and M, ... and
M;; for the basis of any module M containing M, and M, ... and M,
must consist of a certain number of such polynomials, and the whole
aggregate of such polynomials constitutes a module 3/ which is the
least of all the modules M.

The product of My, M,, ..., M, is the module whose basis consists
of all products F\F,... F}, where F; is any member of the basis of
M;({=1,2,...,k). The product is denoted by MM,... M,, and is
evidently a definite module independent of what bases may be chosen
for My, M,, ..., M. The product MM, ... M, contains the L.c.M.
(M, M, ..., My).

The product of y modules each of which is the same module M
is denoted by M and is called a power of M. If P is the point
(#, s, --., @) the module (2,—a;, 2 —a,, ..., 2, —a,) is denoted by
P. If O is the origin the module O is (@, 2s, ...,2,), and O is a
module having for basis all power products of 2, @, ..., @, of degree y.
A polynomial #, or module M, which contains P” is said to have a
v-point at P.

The residual (L, p. 49) of a given module Al “1th respect to
another 27 is the least module whose product with 2" contains M and
is denoted by M/M’. Its members consist of every polynomial whose
product with each member separately of the basis of 2/’ is a member
of M ; for the basis of any module whose product with M" contains M
must consist of a certain number of such polynomials, and the whole
aggregate of such polynomials constitutes the least such module.

In the case of the natural numbers the residual of =’ with respect
to m is the least number whose product with ' contains m, and is the
quotient of m by the ¢.c.M. of m and m'. It is the same to some
extent with modules, viz. M/M'=M|(M, M"); for if M/M' =M" then
M" is the least module such that M'M" contains M, and is therefore
the least module such that (M, M") M" contains M, i.e. M" = M|(M, M").
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Nevertheless M/(M, M") is not called the quotient of M by (M, M)
because it is not true in general that the product of (M, M’) and
MM, M) is M.

1If M, M', M" are three modules such that M'M" contains M it is
clear that M’ contains MIM" and M" contains M/M'. Since MM’
contains M, M contains M/M'. The module /M’ is a module con-
tained in M having a special relation to M independently of what M’
may be (§ 26 (1)).

There is a least module which can be substituted for M’ without
changing M/M’, viz. M{(M]M’), §26 (ii). This module is contained
in (M, M"), for (M, M) can be substituted for A" without changing
M|M’, but is in general different from (M, M").

24. Comment on the definitions. The non-proper unit
module (1) has no spread. Conversely a module which has no spread
is the module (1), since the complete resolvent is 1 and is a member of
the module. The unit module is of importance from the fact that it
often comes at the end of a series of modules derived by some process
from a given module.

My, M, ..., My) and [y, M, ..., M;] obey the associative law
(M, My, M) =[[ M, M,), M3] = [ M., [M,, My]], and the commutative
law (M, My) = (M,, M,). Also (M, M,, ..., M) obeys the distributive
law M (M, M,) = (MM,, MM,); but [M,, M,, ..., M,] does not.

Ewample. As an example of the last statement we have

(@’1: @) [(2, 2%), (@ x,)]= (@1, @) (@1 @3y 2y 0°) = (21 02) (1, @)%,
while (@1, @s) (2% @), (@1, @) (21 0) ) = (21 @) (21, @3).

Given the bases of M, M,, ..., M,, M, M' we know at once a
basis for (M, M, ..., M;) and for M, M, ... M},; but it may be
extremely difficult to find a basis for [, M, ..., M) or for M/M'.
Hilbert (H, pp. 492-4, 517) has given a process for finding a basis of
(M, M, ..., M;]; and the same process can be applied for finding
a basis for M/M’. This process is chiefly of theoretical value in so
far as it has any value. .

We can have (i) MM' = MM",or M|M' = M/M", without M'=M";
(1) M| M = M" without M/M"=M"; (iii) M|M'= M" and M|M"= M’
without M =M M"; and (iv) M =M M" without M/M'=M" or
MM =M.

Eramples. (1) (), @) (@1, 22)° = (@1, 25) (2%, 22),

(@1, @) (21, @) = (@1, @)/ (1%, @) 5
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(1) (@1, 2o)’/(@ 25%) = (@, o), While (21, 2o)/(@y, @) = (@1, @) ;

(i) (@8 2D)/(@1, 2) = (@1, 2)* and (22, 2)/(21, @) = (21, @),
while (@, 2% * (@1, 20) (201, @)%

@iv) (@1, @) = (@, 2, ws, ) (2, 2 @, 2.°),
while (21, 2.)/(2 &% @5, 2,°) and (a2, ,)%/(2% @, 2%, ,°) are both
equal to (2, @)%

25. The product of the G.c.M. and L.c.M. of two modules contains
the product of the modules. »

Let M=(F\, 1, ..., Fy) and M'=(FY, Fy, ..., F';;) be the two
modules and let /', be any member of the basis of their T.c.m.  Then,
since Fr=0mod M, F/Fr,=0mod MM'; and since F7=0mod M,
F; Fr,=0mod MM'; i.e. the product of any member of the basis of
(M, M") with any member of the basis of [M, M'] contains MM, or
(M, M')[M, M'] contains MM".

When M, M’ have no point in common (M, M')=(1) and con-
sequently [M, M'] contains MM, ie. [M, M'|=MM'. This case is
proved by Konig (K, p. 356); although it is to be noticed that
(M, M) cannot be (1) in the case of modules of homogeneous poly-
nomials. Thus the r.c.M. of any finite number' of simple modules
(§ 33) is the same as their product (Mo).

26. The modules M|M' and M|(M|M") are mutually residual
with respect to M, i.e. each is the residual of the other with respect to M.

Let M/M'=M" and M|(M|/M')=M""; then we have M= M/M",
and we have to prove that M"=M/M". Let M/M" = M". Now
M'M" contains M ; therefore M’ contains M/M"” or M. Also
M"M'" contains M ; therefore M" contains M/M"™ or M™. Again,
since M’ contains M (proved) and M MY contains M, MMV
contains M, i.e. M contains M/M' or M". But M" contains MY
(proved). Hence M" = M"=M/M".

Two results follow from this:

(1) M|M' is a module contained in M of o particular type; for
MM’ and its residual with respect to M are mutually residual with
respect to M, and this is not true in general of any module contained
in M and the residual module (Ex. 1i, § 24).

(1) The least module which can be substituted for M' without
changing M/M' is M|(M/M"). Let MY be any module such that
M|M¥ = M/M'; then the product of M and M/M’ contains M, and
MW contains M|(M/M"). Also M|(M|M") is one of the modules M ;
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for if MJ(M]M")=M" then M|M" = M|M', by the theorem. Hence
M|(M]M’) is the least of the modules /" which can be substituted
for M" without changing M/ M’.

27. If M', M" are mutually residual with respect to any module
they are mutually residual with respect to M'M".

Suppose M’, M" are mutually residual with respect to /. Then
M'M" contains M ; and if M"M"|M' =M", M'M" contains M'M"
which contains M ; hence M contains M/M' or M". Also M"
contains M'M"|M or M'". Hence M"=M"=MM"|M'. Similarly
M =MM"'|M" (cf. statement iv, § 24).

Any module M with respect to which M’, M” are mutually
residual contains [M’, M"] and is contained in M'M".

28. If M, M\, M, ..., M;, are any modules, then
MY(My, My, ..y M) = [ M/, MM, ..., MM,
and (M, My, ..., My)| M= [M,| M, My|M, ..., My|M].

For M|(M,, M,, ..., M,) contains M/M; and therefore contains
(MM, M| M,, ..., M|M,). Also M;[M/M,, ..., M/M,] contains
M, x M|M; which contains M; hence (M, ..., My) [M/M,, ..., M|M,]
contains M, and [M/M,, ..., M|M,] contains M/(M,, ..., M;). This
proves the first part.

Again [M,, ..., M;)/M contains M;/M and therefore contains
(MM, ..., My/M).  Also M[M/M, ..., My/M] contains M; and
therefore contains [, ..., M,]; hence [M)/M, ..., My/M] contains
[M,, ..., M]/M. 'This proves the second part.

29. Prime and Primary Modules. Definitions. A prime
. module is defined by the property that no product of two modules
contains it without one of them containing it.

A primary module is defined by the property that no product of
two modules contains it without one of them containing it or both
containing its spread. Hence if one does not contain the spread the
other contains the module.

Primary modules will be understood to include prime modules.

Lasker introduced and defined the term primary (L, p. 51), though
not in the same words as given here. The conception of a primary
module is a fundamental one in the theory of modular systems.

Any irreducible spread determines a prime module, viz. the module
whose members consist of all polynomials containing the spread. That
this module is prime follows from the fact that no product of two

M. 3
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polynomials can contain the spread without one of them containing
it (§ 22) and the module ; and the same is true if for polynomials we
write modules.

If M=(F,, F,, ..., Fy) is the prime module of rank » determined
by an irreducible spread of dimensions n—7, and if the origin be
moved to a general point of the spread, the constant terms of
P, F,, ..., F, will vanish, and the linear terms will be equivalent
to » independent linear polynomials, i.e. the sub-determinants of
order > 7 of the matrix

oF,  aF, oFy
W A i

will vanish, while those of order » will not vanish, at the origin. 'This
will be equally true for any general point of the spread without
moving the origin to it. Any point of the spread for which the
sub-determinants of order s of this matrix vanish is called a singular
point of the spread, and the aggregate of such points the singuler
spread contained in the given spread. The singular spread (if any
exists) is therefore the spread determined by £, F,, ..., F} and the
sub-determinants of order  of the above matrix.

If M=(f, Fy, ..., Ff}y) is the 1.c.M. of the prime modules deter-
mined by any finite number of irreducible spreads of the same
dimensions » — 7, the same definition holds concerning singularities
of the whole spread. In this case the singular spread consists of the
intersections of all pairs of the irreducible spreads, together with all
the singular spreads contained in the irreducible spreads considered
individually.

30. The spread of any prime or- primary module is irreducible.
For if not the complete w-resolvent has at least two factors corre-
sponding to two different irreducible spreads of the module neither of
which contains the other, and is the product of two polynomials
neither of which contains the whole spread of the module, 1.e. the
module is neither prime nor primary.

31. There is only one prime module with a given (irreducible)
spread, viz. the module whose members consist of all polynomials
containing the spread.



1] GENERAL PROPERTIES OF MODULES 35

Let M =(F,, F, ..., F};) be any prime module of rank ». It will
be sufficient to prove that every polynomial which contains the spread
of M contains the module 7. The first complete partial u-resolvent
of M other than 1 will be a power R,™ of an irreducible polynomial R,
in @&, @,y ..., &y Also the complete w-resolvent is a member of
(fis Joo -y J2), §18, which is prime ; and every factor except B,™ is
of too high rank to contain the spread of (A, /s, ---,.fx). Hence R,™,
and therefore R, itself, is a member of (A, /s, ..., /x). Hence
{Ry)omrrzyt..+unacn 15 & member of M, and also the whole coefficient of

any power product of g, s, ..., %y I (By)emuywt. tunen- W€ have
proved (§ 21) that
(B omugrt.trman= -+ WS (U Yy + eoe + Uy Ypy) + % b,

where Yy = 2,¢" — ¢y, oo, Y1 = 219~ $ry. Hence ¢, ..., ¢4, ¢ are
all members of M.

Let F be any polynomial which contains the spread of M. In /'
pub @y = ¢/, Xy =ps/P’, ..., py = Ppy/d’; then F becomes a rational
function of 2, y41, ..., @, of which the denominator is ¢", where 7 is
the degree of #. This rational function vanishes for all points of the
spread at which ¢’ does not vanish, and its numerator is therefore
divisible by ¢. We have then

¢1 ¢2 ¢r—1 _ﬁ
F($7 $””" Y y Lre1y oooy xn)'— ¢’l7
where X is a whole function of 2., 2,41, ..., @u3 le.
Uy X
F(«Z‘l —g‘}s Z‘z‘—;—i%, ceey Xpoq— T,l s Lpg1y ooey .:vn) = ;S—,?’

or S F (@y, @3y +vvy @y)=0mod (Y, ..., Yp_1, $)=0 mod M.
Hence F'=0mod M, which proves the theorem.

It follows that a module which is the L.c.M. of a finite number of
prime modules, whether of the same rank or not, is uniquely deter-
mined by its spread, and any polynomial containing the spread
contains the module.

32. If M is a primary module and M, the prime module deter-
mined by its spread some finite power of M, contains M.

This theorem, in conjunction with Lasker’s theorem (§ 89), is
equivalent to the Hilbert-Netto theorem (§ 46). The proofs of the
theorem by Lasker and Konig are both wrong. Lasker first assumes
the theorem (L, p. 51) and then proves it (L, p. 56); and Konig
makes an absurdly false assumption concerning divisibility (K, p. 399).

3—2



36 THE ALGEBRAIC THEORY OF MODULAR SYSTEMS [III

By the same reasoning as in the last theorem it follows that R,™
(but not R,) is a member of (A, /s, ..., fz), and
(B™)omu,wttunan = {ove + 05 (Wl + oo+ Uy ) + 0,2 )™= 0 mod M.
Picking out the coefficients of %,%™ and %,*™ ™ u,™, we have
¢™=0 mod M and ¢;"= X mod M; .. 1//{"2= Omod M ;

and similarly ¢,™ = m//;l ,=0mod M. Also if #'is any member of
M, then, by the last theorem,

¢ F=0mod (¢, .., Yy, b).
Hence the product of any rm? polynomials /' and ¢ is a member of
W™, W, ... ¢:Lil, ™) and of M, i.e. My™ contains M.

33. Definitions. If M is a primary module and M, the corre-
sponding prime module the least number y such that MY contains M
is called the characteristic number of M.

A simple module is a module containing one point only (Mo). For
example, O"= (@, &, ..., ,)? 1s a simple module with characteristic
number y.

A module of homogeneous polynomlals will be called an H-
module. A simple H-module has the origin for its spread; but a
simple module having the origin for spread is not in general an H-
module.

A simple module is primary. For if M is a simple module, and
M, M any two modules whose product contains M, of which /" does
not contain the spread of A7, then (M, M') contains no point and is the
module (1); but (M, M) 711” contains M, i.e. M" contains M ; hence
M is primary.

34. There is no kigher limit to the number of members that may be
required to constitute o basis of @ prime module. This is not in conflict
with Kronecker’s statement, proved by Konig (K, p. 234), that there
always exist 2z +1 polynomials containing a given algebraic spread
which have no point in common outside the spread.

Ezample. Consider $7(/—1) straight lines through the origin O
in 3-dimensional space, not lying on any cone of order /—2. Draw a
cone of order / and a surface (not a cone) of order / through the
1 1(1—1) lines so as to intersect again in an irreducible curve of order
L7(l+1) with $7(/—1) tangents at 0. Then no basis of the prime
module determined by this curve can have less than / members, where
{ is a number which can be chosen as high as we please.
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This can be proved by considering residuation on the cone. The
roriginal % /(/—1) generators have a residual on the cone of $/(/—1)
generators, which again have a residual of }7(/—1) generators, of
which /—1 can be chosen at will. This last set of generators is residual
to the irreducible curve and together they make the whole intersection
of the cone with a surface of order / having an (/- 1)-point at O.
Hence there are [ surfaces of order ! containing the irreducible curve
which have an (/—1)-point at O and in which the terms of degree /—1
are linearly independent, while there is no surface containing the curve
with less than an (/- 1)-point at O. The prime module determined
by the curve must therefore have at least / members in its basis. The
module has in fact a basis of /+ 1 members, the /+ 1 linearly inde-
pendent surfaces of order / containing it (including the cone); and
‘these can be reduced to / members.

In the case »=2 the curve is an ordinary space cubic determining
a prime module

(S, Jor Jo) = (o' — 0w, w' — w'u, wo' —w'v),
‘where u, v, w, o', v, w' are linear. The basis of three members can be

reduced to two f; —afy, /1i—bJ;s provided constants «, b, A, A and linear
functions a, 8 can be chosen so that

A=a(fi—afs)+B (/i bfy),
or (1-a—pB)fi+aaf,+bBfy =0,

or l-a-B=M+Nu, aa=M+Av, bB=Aw+\Nw;
and this can be done.

35. The L.c.M. of any number of primary modules with the same
spread is a primary module with the swme spread.

Let M, M,, ..., My be primary modules with the same spread, and
let M be their r.c.m. Then M has the same irreducible spread, since
the product, which contains the L.c.M., has the same spread. Also if
the product M'M" contains M, and M’ does not contain the spread,
then M" contains M, and M, ... and M, i.e. M" contains M. Hence
M is primary. The @.c.M. is not primary in general.

36. If M is primary and M’ is any module not contwining M
then M|M' is primary and has the same spread as M.

Let M]M'=M". 'Then since M'M" contains M, and M’ does not
contain M, M" contains the spread of M. Also M contains M"; hence
M"” has the same spread as M. Also if MM, contains M" then
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- M'M,M, contains M'M” which contains M ; and if 2, does not contain
the spread of M (that is of M) M'M, contains M, and M, contains
MM or M"; i.e. M" is primary.

37. Hilbert’s Theorem (H, p. 474). If F, F,, F;, ... is an
infinite series of homogeneous polynomials there exists a finite number
k such that F,=0 mod (I, F,, ..., F},) when h> k.

The following proof is substantially Konig’s (K, p. 362). It must
be clearly understood that £, Fy, F, ... are given in a definite order.
In the case of a single variable the series /%, F,, Fj, ... consists of
powers of the variable, and if #} is the least power then #}, =0 mod #}
when %4> % Hence the theorem is true in this case. We shall assume
it for » — 1 variables and prove it for » variables.

The series FY, Ky, Fy, ... 1is called a modified form of the series
VB, By, Af FY=F and F = F,mod (F\, F, ..., F;_)) fori>1.
Thus the modules (#, F., ..., #)) and (&Y, Fy, ..., F}) are the same.
The theorem will be proved if we show that the series /Y, FY, ... can
be so chosen that all its terms after a certain finite number become
zero. We assume that /7 is regular in @, and we choose the modified
series so that each of its terms F} after the first is of as low degree as
possible in #,, and therefore of lower degree in , than /). The terms
of the series F, Fy, ... of degree zero in , will be polynomials in
1, &3, -, &,_, and these can be modified so that all after a certain
finite number become zero, since the theorem is assumed true for » — 1
variables. Let £, F,, F",, ... be all the terms of FV, F), FY, ..
taken in order, which are of one and the same degree />0 in #,; and
let f, /", .- be the whole coefficients of 2’ in them. Then
Sy S s S gy -+ are polynomials in m—1 variables; and we cannot
have /", =0 mod (/"1 /iy s/ 7y_,) for any value of ¢; for if
Su=Af  Aofly o+ A fy then - AV Fy — - A B,
is of less degree than { in #,, which cannot be. Hence the number of
the polynomials f“, /", --., or the number of terms F",, £, ,...in
the series FV, Fy,...,1s finite. And the number of values of 7/ is
also finite, the greatest value of / being the value it has in F).
Hence the theorem is proved.

The theorem ean be extended at once to an infinite series #, /4, ...
of non-homogeneous polynomials since they can all be made homo-
geneous by introducing a variable , of homogeneity.

The following is an immediate consequence of the theorem :

"
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Any module of polynomials has a basis consisting of @ finite number
of members. '

To prove this it is only necessary to show that a complete linearly
independent set of members of any module can be arranged in a definite
order in an infinite series. If /is the lowest degree of any member we
_ can first take any complete linearly independent set of members of
degree /, then any complete set of members of degree / + 1 whose terms
of degree [+ 1 are linearly independent, then a similar set of members
of degree /+ 2, and so on. In this way a complete linearly independent
set of members is obtained in a definite order. It does not matter in
what order the members of a set are taken, nor is it necessary to know
how to find the members of a set. It is sufficient to know that there
is a definite finite number of members belonging to each set.

38. The f-module equivalent to a given module.
Consider a complete linearly independent set of members of a given
module M, not an H-module, arranged in a series in the order described
above ; and make all the members homogeneous by introducing a new
variable 2,. We then have a series of homogeneous polynomials
belonging to an H-module M, whose basis consists of a finite number
of members of the series. The module M, is called the H-module
equivalent to M, and a basis of M obtained from any basis of M, by
putting 2, =1 is called an H-basis of M. The distinctive property of an
H-basis (I, Fy, ..., Fy) of M is that any member # of M can be put
in the form A,/ + A, F,+ ... + ApFy where A, F; (i=1, 2, ..., k) s not
of greater degree than F. Every module has an H-basis, which may
necessarily consist of more members than would suffice for a basis in
general.

The following relations exist between M and its equivalent H-
module M,: (i) to any member &' of M corresponds a member F, of M,
of the same degree as F, and an infinity of members #”#, of higher
degree; (ii) to any member F, of M, corresponds one and only
one member of M, viz. (F),,=1; (iii) there is a one-one correspondence
between the members of M, of degree ! and the members of M of
degree </

If 2, F,=0 mod M,, then (F})y,-1=0 mod M, and F,=0 mod M,
by (i), i.e. there is no member @, /', of M, such that /) is not a member
of M,, and M,/(x,) =M,. Conversely an H-module M in n variables
Ty, Byy ooy X 18 equivalent to the module M, — if M[(xn)= M, and not
otherwise. :
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In any basis (&, ), ..., Fy) of an H-module in which no member
is irrelevant, i.e. no #;=0 mod (&, ..., Fi—y, Fi,y, -.., F}), the number
of members of each degree is fixed; as can be easily seen by arranging
F., F,, ..., Fiin order of degree. Hence in any H-basis of a module
in which no member is irrelevant the number of members of each degree
is fized. On account of this and the other properties of an H-basis
mentioned above an H-basis gives a simpler and clearer representation
of a module than a basis which is not an H-basis.

Ezample. Find an H-basis of the module (22 @, + 2,23).
Take the H-module (z.2, .2, + @@;) and solve the equation
2y Xo=0 mod (2%, 2,2, + 2, %3),
or 2o X=X, + (20 + 2 25) X

Putting 2, =0 we have
(2 X+ ;23 Xy)g =0 = 0,

ie. Xi=xX, Xy=—-2X, when 2,=0,
1e. Xi=w X+x,Y,, Xo=—m:; X+2,Y5.
Hence

2, Xy =22 (0, X + 2 Y1) + (oo + mas) (— 0, X + 20 Y3)
=2y (22 Yy — 2@ X + @0y + 2 23 Y),
ie. Xo=0 mod (22 @2, 22, + 2:,23).
Again, if we solve the equation
2o Yo =0 mod (&%, 2,2, @22y + 2123),
we find Yo=0 mod (2%, @125, @2 ¥y + 2:125) ;

and if we solve
202y =0 mod (.2, 2,25, &2, 222 + 21 25),
we find Zy=0mod (2,% 2,2, 2% a2, + 2,25).

Hence (22, @y2s, °, @@+, @;) is the H-module equivalent
to (% @+ o), and (2, oy, @, @+ ayas) is an H-basis of
(2% @, + 2y 25).

The extra members @25, @ might of course have been found
more quickly by multiplying «, + @5 first by #; and then by 2,. The
method given is a general one.

39. Lasker’s Theorem (L, p. 51). Any given module M is
the L.o.M. of a finite number of primary modules.

Let M be of rank ». Express its first complete partial u-resolvent
D,V in irreducible factors, viz.

Du(r_l) — lel R27112 . Eimj;'
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and let €, O, ..., C; denote the irreducible spreads, of dimensions
n —r, corresponding to R,, R., ..., R; respectively.

Consider the whole aggregate M; of polynomials F' for each of
which there exists a polynomial F”, not containing C;, such that
FF'=0mod M. We shall prove first that 2 is a primary module
whose spread is ¢; (i=1, 2, ..., j).

Let F}, F,be any two members of M;. Then since FF, =0 mod M,
and /, F, =0 mod M, where neither /) nor F} contains C;, we have
(4, F, + A, F,) FY Fy =0mod M, where FYF, does not contain ;.
Hence 4, F, + A, F, belongs to the aggregate M;, i.e. M; is a module.

Again, since F/F'=0mod M, F contains C;, and M; contains C;.
Now, if #, is the complete u-resolvent of M,

(lqt)x=u1ml+...+un;rn =0 mod Z‘/[,
while (£/%)y—u.e,+...tunza 18 the only factor of (F)z=wa+...4unwn
which contains ¢;. Hence (B)y=w,a,+...+unen= 0 mod M;. But the
polynomial (R,)w—uz,+...+unz, does not vanish identically (i.e. irre-
spective of u;, Uy, ..., u,) for any point outside C; (§21); hence M;
contains no point outside C;, i.e. C; is the spread of M.
Lastly M; is primary ; for if #” F'' =0 mod M;, then
F'F'F"=0mod M,

where £’ does not contain C;; hence, if 7' does not contain C;, F' F'”
does not, and """ =0 mod M;. Hence also if M M"” contains M;, and
M" does not contain C;, M" contains M;. Thus M; is a primary
module whose spread is C;. Also M contains M;, for every member of
M is a member of M.

The module M/M; does not contain C; ; forif M;=(F\, F,..., F})

and FY, Fy,..., F are polynomials not containing C; such that
FiF/=0mod M (I=1,2,...,k),

then PR F ... F/=0mod M (I=1,2,...,k).

Hence FYFy...F) is a member of M/M; not containing C;; and

therefore M/M; cannot contain C;.

Since M]M; does not contain C;, (M|M,, M|M.,, ..., M|M;) does
not contain any of the spreads €y, C,, ..., C;. We can now prove
that if ¢ is any single member of (M/M,, M|M,, ..., M|M;) which
does not contain any of the spreads €y, Cs, ..., C;, then

M=[M, M,, ..., M;, (M, $)].
Since M contains [M;, M,, ..., M;, (M, $)] it has only to be proved
that the latter contains A, or that
F=0mod [M,, M, ..., Mj, (M, $)] requires F =0 mod .
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We have  F=0 mod (M, ¢)=/¢ mod M=/¢ mod M ;
but #=0mod M;; therefore f¢=0mod M;, and, since ¢ does not

contain C;,
S=0mod M;=0 mod [M,, M,, ..., M}

Hence f¢ =0 mod [M,, M,, ..., M;] (M| M,, ..., M/ M;) = 0mod M (§ 28),
and F'=f¢ mod M=0 mod M. Hence M=[M,, M., ..., M;, (M, $)].

Now the spread of (M, ¢) is of dimensions < — 7, since ¢ does not
contain any spread of M of dimensions #»— 7. Hence the same process
can be applied to (M, ¢) as to M ; and we finally arrive at a module
(M, ¢, ¢,...) with no spread, which is the module (1). Hence

M=[Q, Q,, ..., Q] where @, Q,, ..., @, are all primary modules of
ranks <7

40. Comment on Lasker’s Theorem. The above is in all
essentials the remarkable proof given by Lasker of this fundamental
theorem, He considers H-modules only and makes use of homo-
geneous coordinates, in consequence of which his enunciation of the
theorem is not quite as simple as the one above.

Any module among @, @, ..., @, which is contained in the L.c.M.
of all the rest is érrelevant and may be omitted. It will be understood
in writing M=[@Q,, Q., ---, €] that all irrelevant modules have been
omitted. Those that remain will be called the relevant primary
modules into which M resolves, and their spreads will be called the
relevant spreads of M. A relevant spread which is not contained in
another of higher dimensions is called an ¢solated spread and the
corresponding module an isolated primary module of M. The other
relevant spreads and modules are called ¢mbedded spreads and modules
of M. All the relevant spreads of M whether isolated or imbedded
are unique. Also the isolated primary modules are unique, but the
imbedded primary modules are to some extent indeterminate.

A process by which @, @, ..., @ can be theoretically obtained,
without bringing in any irrelevant modules, is described in (M). The
1solated spreads are found from the irreducible factors of the complete
u-resolvent after rejecting all factors which give imbedded spreads. To
these correspond unique primary modules of M which can be found.
Let M be their n.c.m.  The isolated spreads of M/M®© are the relevant
spreads of M imbedded to the first degree. Mo these correspond
indeterminate imbedded primary modules of 3 which are chosen as
simply as possible. Although not uniquely determinate the r.c.m.
of each one and M® is unique, and the L.c.M. of them all and MO is
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a unique module M®. The isolated spreads of M/M® are the relevant
spreads of M imbedded to the second degree ; and the L.c.M. of the
corresponding (indeterminate) primary modules and M® is a unique
module M®. The process is continued until a module M is obtained
such that M/M®=(1), when there will be no more relevant primary
modules to find.

41. An unmized module is usually understood to be one whose
isolated irreducible spreads are all of the same dimensions; but it is
clear from the above that this cannot be regarded as a satisfactory
view.. It should be defined as follows :

Definition. An unmized module is one whose relevant spreads,
both isolated and imbedded, are all of the same dimensions; and a
mized module is one having at least two relevant spreads of different
dimensions.

An unmixed module cannot have any relevant imbedded spreads.

A primary module is an unmixed module whose spread is
irreducible. This cannot be taken as a definition because the meaning
of unmized depends on the meaning of primary.

Condition that a module may be unmized. In order that a module
M of rank » may be unmixed it is necessary and sufficient that it
should have no relevant spread of rank > 7. This condition may be
expressed by saying that ¢ #'=0 mod M requires F'= 0 mod M where
¢ is any polynomial involving @,,4, ..., @, only. For if M contains a
relevant primary module of rank > a ¢ can be chosen which contains
it, and an F which does not contain it but contains all the other
relevant primary modules of M, so that ¢ #'=0 mod M does not
require F=0mod M; while if M contains no relevant primary
module of rank > r there is no ¢ containing a relevant spread of M
and ¢ F'= 0 mod M requires F =0 mod M/(¢)=0mod M (§42).

A primary module @ has a certain multeplicity (§ 68). 'To a given
primary module @™ of multiplicity u corresponds a series of primary
modules Q®, @®, ..., Q™ of multiplicities 1, 2, ..., u all having the
same spread as @ and such that Q® contains Q®-Y and is contained
in Q). QW is the prime module determined by the spread of Q®
and is unique ; but the intermediate modules @®, @9, ..., Q) are
to a great extent indeterminate (M, p. 89). Thus Q®W, @® ..., QW
may be regarded as successive stages in constructing QW. Two
primary modules with the same spread and the same multzplzczty such
that one contains the other must be the same module.
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42. Deductions from Lasker’s Theorem. A module of
rank n resolves into simple (vrimary) modules of which it is the pro-
duct (§25). _

If M’ does not contain any relevant spread of M then M|M' = M.
Let M/M'=M". Then since M' M" contains M, and M’ does not
contain any relevant spread of M, M" contains all the relevant
primary modules into which M resolves, i.e. M =M.

It follows that if M/M’ + M, M’ must contain a relevant spread of /.
Thus if a polynomial I exists such that (w,—a)) F,(xs—as) F,...,(xy— @) I
are all members of M, while F' is not, M contains a relevant simple
module whose spread is the point P (ay, as, ..., &) ; for M|P+ M.

Example. The module M = (2, 2, x® + s 2, + ,2,2;) has a
relevant simple module at the origin; for x;2,%z* is a member of
M(i=1, 2, 8,4), but 22?2 is not. The simplest corresponding im-
bedded primary module, not contained in the T.c.M. of all the other
relevant primary modules of M, is (@ @, @, #,); cf. Ex. iii, § 17.
This example shows that 4z is possible for a mized module M to contain
o relevant primary module of higher rank than the number of members
in a basis of M. For the rank of (2, 2%, zs, 2,) is 4.

If M'is an H-module not having a relevant simple module at the
origin the variables can be subjected to such a linear homogeneous
substitution that , will not contain any relevant spread of M, and we
shall then have M/(z,)'= M, and M will be equivalent to Mq,-1 (3 38).
Thus the only condition (remaining permanent under a linear substitu-
tion) that an H-module M may be equivalent to the module Mg,y is
that M should not contain a relevant simple module.

A simple H-module M is not equivalent to My,=1; in fact My, =1
is in this case the module (1). '

If M’ contains any relevant spread of M then M|M +M. Let
M=[6, @, ...,q], and let M’ contain the spread of ;. Then
some power M of M’ contains @; (§32), and €;/M"¥=(1). Hence the
spread of €); is not a relevant spread of

MIM” =[Q/M", Q;)M”, ..., Q:/M"], §28;
and consequently M/ M += M. Hence also M/M’' + M ; for if M|M'=M
then M/M"™ = M.

It follows that if M/M'= M then M’ does not contain any relevant
spread of M. If M, is the H-module equivalent to M we know that
M,/(zy) =M, (§38); hence #, does not contain any relevant spread
of My, i.e. no module has a relevant spread at infinity.
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If M, M’ wre any two modules such that M resolves into isolated
primary modules only, viz. G, Qs, ..., Qs, and (M, M) into primary
modules @, Q.,..., Q/, of which @/, Q. ..., Q' have the same spreads
as @y, Qs, ..., Q respectively, then

MM =[Qi/Q), Qo/Qy, -, Qul @'

The spread of (M, M") is contained in the spread of M ; and it is
to be understood that if (M, M") does not contain the spread of @;, then
@/ =(1). The spreads of @41, ..., @/ are contained in those of
@1, @, ..., @1, but do not contain any of the latter. Now we have

MM =M|(M, M")=[Qy, Qs, ..., Q]/[&, &> ---, Q']
Hence the theorem follows, by the second part of § 28, provided
QillQY, @ ., @] = Qi Q.
This is true ; for ;/Q; contains @;/[Q., €, ..., @], since [@\, Q. ..., Q]

contains @;, and, for a similar reason, Q;/[Q), @, ..., @] contains

Qi/QQy...Q/ or Qi/Q).
43. If a module M of rank r is regarded as o module M® in s

variables @, @,, ..., Xy, while ., ..., 2, are regarded as parameters ;
and if F is a whole member of M®), that is, a whole function of the
parameters as well as of the variables, then F'®), regarded as a poly-
nomial in y, &y, ..., &y, contains all the relevant primary modules of M
of rank <s; and conversely, any polynomial which contains all these
primary modules is & member of M.  The most important case is that
in which s =r.

In other words, to treat a module M as a module in s variables has
the sole effect of eliminating all the primary modules of M of rank > s ;
and when s <7 it reduces M to the module (1).

Let M=(F\, I, ..., Fy); then F© = A\ F + A1+ ... + Ay Fy,
where 4., 4,, ..., A; are whole functions of @y, @, ..., 45 and rational
functions of @1, --., @n, with a common denominator D®. Hence
DORF® =0mod M, and F® contains all the primary modules of M of
rank < s, since D® does not contain any of their spreads.

Conversely, if /¢ contains all the primary modules of M of rank <s,
and D¥, a whole function of @,4, ..., @, only, contains all the primary
modules of M of rank > s, then D@L =0 mod M, and £ =0 mod M,
since D® in respect to M does not involve the variables.

The module M™ resolves into simple modules, any primary module
of M of rank » and order d contributing d simple modules to M,
By finding these simple modules we are able to find the primary
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modules of M of rank r; and this completely resolves M if M is
unmixed.

44, If M is a module of rank r <n and no-one of the modules M,
(Z‘/[a Xy, — an)s (0[7 Xp—1— Ap—1, Tn — an), see (A/[; Lpyo = Wpgay vooy T — an) Ccon-
tains « relevant simple module (@4, ..., @y having non-special values)

then M is unmized. In the contrary case M is mized.

This theorem will be used later for proving that certain modules
are unmixed. We shall prove first that if M is mixed and does not
contain a relevant simple module then (4, z,—a,) is mixed. Let
M’ be the prime module determined by a relevant spread of M of
rank > and < n, since M is mixed and has no relevant spread of rank .
To prove that (M, @, — a,) is mixed it is sufficient to show that
(M, &, - a,) contains a relevant spread of (M, a, — a,).

Suppose this is not the case ; then (§ 42)

(M, z— an)|(M', 2, — an) = (M, 2, - ay,),
ie. (M; Ly — an)/ﬂf = (M Xy — an):

and therefore M/M’ contains (M, , —a,). Let F be any member of
M/M' and (#y, F,, ..., F}) a basis of M ; then
F=A4.F + ...+ 4, F, mod (2, — a,),

ie. Men=an = (AL + oo+ Al zn=ay
Here we may regard @, as a parameter replacing ,,. Hence #'is a
member of M regarded as a module in % —1 variables, and therefore
contains all the primary modules of M of rank <n—1 (§43); i.e.
F=0mod M. Hence M/M' contains M, which is not true. It follows
that (M, @, —a,) is mixed in general, i.e. if @, has a non-special value.
By the same reasoning, if (M, x,—a,) does not contain a relevant
simple module, (M, z,-, — @y—1, @, — @) 18 mixed, and so on. Finally if
(M, 2110 — @y, .-, @ — @) is mixed it must contain a relevant simple
module since it 1s of rank 2 —1. Hence if M is mixed one of the above
modules contains a relevant simple module. It follows that if no-one
of the modules contains a relevant simple module, then #/ is unmixed.

Conversely if one of the above modules contains a relevant simple
module (or more generally if one is mixed) then M is mixed. Suppose
for instance that (¥, @, — @,) is mixed. Then since (M, x,—a,) is of
rank  + 1 it has a relevant spread of rank >+ 2. Hence there is a
whole function ¢ of @,..1, ..., @,_, only containing this spread, and
a polynomial #'in @y, @,, ..., 2, such that

¢F =0 mod (M, #, — ,), while /0 mod (M, z, — ay,).
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Let (A, Fy, ..., F}) be a basis of M. Then
oH=AF,+ ...+ A F,mod (2, — a,),

where we may assume that #, ¢, A,, ..., 4; are whole functions of a,
as well as of @, @y, ... @,. Putting @, =a,,

(gbf”)a,n:an: (A B+ o+ A ) wp=an-
In this we can replace «, by «,, and we then have
(¢pF")ay=z, = 0 mod M.
But ¢4, =z, is a whole function of @4, ..., @, only, and #}, =4, += 0 mod M,
since F'+0 mod (M, x,—a,). Hence M is mixed. This completes
the proof of the theorem.
If M is unmixed all the modules are unmixed ; nevertheless ¢f

Qygzy .-, On hvve special values, some of the modules may be mized not-
withstanding that M is unmized.

Example. The module

M = (wgry — s, w,® —ulus, U — w2, ), — uous?)

.. . . . w w Uy U
is prime and of rank 2 <1ts spread being given by fg =X—i= )\_j = X;’)
while the module (M, c,u, + csty + cyus + cowy) 1s of rank 8 and mixed.
For the latter has w, /", w, F, u; ¥, u, I/’ as members, where

F'=cun® + cgugus + oyt + oyt + 0 mod (M, gty + cxuy + eyt + cotty).
Hence if uy, u,, us, uy are linear functions of 2y, 2, @5, 2, and (ay, s, as, a,)
their common point, the module (M, #,—a,) is mixed notwithstanding
that M is unmixed (cf. § 89, end).

45. If M contains a relevant simple module at the point (a,, ds, ..., ¢,)
then (M, x,, — a,,) contains a relevant simple module at the same point.

Let w, o/, «”,... be linear functions of #,, ,, ..., #, containing the
point (@,, @, ..., @,) and no other relevant spread of M. Suppose that
(M, z,~a,) does not contain a relevant simple module at (a,, @,..., @,);
then it may be assumed that (M, w), (M, '), (M, «""),... do not either.
Let F be a polynomial such that u#'=0mod M and £+ 0 mod M.

Then wl'=0mod (M, w),
therefore F=0mod (M, u')=uF" mod M,
therefore ww' K’ =0 mod M = 0 mod (M, u"),
therefore F'=0mod (M, w’) =u"F#"mod M,
and F=uv'F" mod M.

Similarly F=vwu’.. w9 mod M.
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Now [ can be chosen so great that «'w”...u® contains the relevant
simple module of M at (ay, as, ..., @,) ; and since /' contains all the
other relevant primary modules of A we have =0 mod M, which is
not true. Hence (M, #,—a,) does contain a relevant simple module
at the point (@i, as, ..., @,).

46. The Hilbert-Netto Theorem (H,, Ne). If' M’ is any
module containing the spread of a given module M some finite power of
M contains M.

For M’ contains all the relevant spreads of M and some finite
power of M’ contains all the relevant primary modules of M (§ 32) and
therefore contains /.

The theorem is proved in (Ne) for the case of two variables and in
(H,) for the general case.

47. Definition. A module of rank s having a basis consisting of
r members only is called a module of the principal class (Kr, p. 80).
Hence a module (#, F, ..., F,) of rank r is of the principal class.

It is possible for the resultant of a module of the principal class to
vanish identically. An example is given at the end of § 12.

The H-module equivalent to a given module of the principal class
is not necessarily of the principal class, e.g. the H-module equivalent
to (#1% @, + 4y @;) has four members in its basis (2,% @@, 2.2, 2.2 + 2, 25),
§ 38.

A proper module is of rank <» and > 1.

A proper module with a basis consisting of » members is of rank < #
(cf. ex. §42) ; for the module contains some point P in the finite region
and a spread of dimensions n —7 at least through any such point.
Nevertheless a module with a basis of two or more members may be
the non-proper module (1); e.g. (#, 1+ #)=(1).

The unit module is sometimes said to be of rank n+ 1; but it
is better to say that it is without rank, and that no module is of
rank > n. Inthe absolute theory a module can be of rank 7+ 1.

If (F,, F,, ..., F,)is of rank r it does not necessarily follow that
(Fy, Fy, ..., ) is of vank r— 1. Thus (f; A + /£, f2 +.ff) is the same
as (f, /1,/2), and can be of rank 3, while (£, + /#,./2 +.//s) contains (1 + /)
and is of rank 1. If however the series F), F,, ..., F, is suitably
modified beforehand (§ 37) then (Fyy, ..., #)) will be of rank »—s
if (), Ky, ..., F,) is of rank 7. It will be sufficient to prove that
(Fo+ ay By, Fy+ a3 1, ..., F, + . F) is of rank — 1 when a,, as, ..., @,
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are (at first) undetermined constants. If it is of rank s <r—1 then
the module (¢,, ¢y, ..., ¢) is of rank s, where
b=y (Mo + @ ) + Ay (Fs+a, F) + .o+ Ny (Bt a0, FY)
=M+ A o+ oo+ A B
M =Apts + Mgl + ...+ Ny, =1, 2, ..., 8),

and the Ay are all arbitrary constants. We may regard the s relations
Np=Npds+ ... + M@, as determining the s constants a,, as, ..., @y,
leaving at least a, (s + 1 <r—1) quite arbitrary, whatever the values of
the Aj are. Now some spread of (¢y, s, ..., @) of rank s is a spread
of (Fy+ a4, ..., F.+a,17\) and is contained in F, + a, F;, and therefore
in # (since @, is independent of the A;), and in each of £y, F, ..., F,.
This would make (#y, #,, ..., F,) of rank s, which is not the case.

Unmixed Modules

48. A useful test as to whether a given module is mixed or
unmixed is proved in § 44.

Theorem. A4 module of the principal class is unmized. Lasker
proves this for A-modnles (L, p. 58). The following is a general proof.

It is clear that any module of rank » is unmixed, since it resolves
into primary modules which are all of rank n. Also a module of the
principal class of rank 1 is unmixed. Hence the theorem is true for
two variables, since in this case the module can only be of rank 1 or 2.
We shall assume the theorem true for » — 1 variables and prove it for
n variables. We also assume that the members of the basis have been
modified if necessary so that, when (/, F,, ..., F,) is of rank #,
(Fy, Fy, ..., F,)is of rank 7—1 (§ 47). v

We prove first that a module M = (H, I, ..., F,) of rank
r<n cannot contain any relevant simple module by showing that
(%, —¢,) F'=0mod M requires F'=0mod M no matter what value,
special or otherwise, ¢, may have.

Let (=) F= Xo P+ XoFy+ ... + X, Py
then (X;E + Xéﬁ72 + ..+ 4‘:‘1111')3517,:&; = 0’
and (X1 F)gy=c, = 0mod (Fy, £y, ) Bz, =c,

But (F%, £, ..., F)g,=c, is & module of rank 7 —1 in » — 1 variables,
so that (by the assumption) all its relevant spreads are of rank » —1,
and (#)y,=c, does not contain any of them. Hence

(Ayl)rn:en = 0 mOd (FZ’ T3? teey -Fr)xn=ma
1.e. X=X+ Xy Fy+ ..+ X0 o+ (2, — ) Vi

M. 4
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Substituting this value for X in the equation
(X B+ XoFot oo+ X F )gymn =0,
we have {(X,+ X, F) Fo+ ... + (X, + X0 ) Fllep=c, = 0.
Hence, by the same reasoning as before,
X+ X Fi= Xy Fs+ ... + Xop B+ (@03,— €4) Yoy
X+ X+ Xy o= Xy Fi+ oo + X B + (@, — €)Yy

er + —Arnﬁwl + XQ;'I{WZ +o+ ‘(Y;'ﬂ,rlﬂr—l = ('Z'n - Cn) )71

5

Multiplying these equations by £y, F, ..., F, and adding we have
AXVIZWI + ‘sz ] 12 +ot Xqﬂ = (wn - cn) (YIE + Yz FZ +ooo+ Y1ﬁ11>,
all the terms 3X; F; F; (i <j) cancelling from both sides. It follows

that
F=Y F+Y,F,+ ..+ Y, F,=0mod M,
and that (/, £, ..., F,) does not contain any relevant simple module.
Now if (#, F,, ..., F,) were mixed then for some value of s>7+2
the module (#), ..., F,, &~ as, ..., 2, — a,) would contain a relevant
simple module (§ 44); but it does not, because it is of the principal
class. Hence (£}, F,, ..., F,) is unmixed.

49. Deductions from the theorem. A basis (I, Fs, ..., F,)
of a module M of the principal class of rank r is an H-basis of M or
not, and an H-basis of M or not, according as the H-module determined
by the terms of highest degree in F, Fy, ..., F,is of rank r or not.

Let M, be the H-module in @, @,, ..., @, 2, corresponding to the basis
(Fyy Fyy ...y ), so that (M,)g,=0 is the H-module mentioned in the
enunciation. Let (M,)s,=0 be of rank . Then it follows by the same
reasoning as in the theorem that 2, #, = 0 mod M, requires #,=0 mod M,.
Hence M, is equivalent to M (§ 38), i.e. (#, Fy, ..., F,) is an H-basis
of M. It is also an H-basis of M, This follows in the same way by
considering the H-module M) in @y, @, ..., @, @, corresponding to
(Fy, F, ..., F,) regarded as a basis of /. The module (M")q,=o is
a simple H-module not involving @41, «.v\ @n.

If on the contrary (#,)q,=0 is not of rank # it is of rank <7, and «,
contains a relevant spread of A7, of rank <, so that My/(=,) + M, and M,
is not equivalent to M (§38). Hence (#, F%, ..., F,) is not an H-basis
of M or of M®.

If (Fy, Fy, ..., Fy)is an H-basis of a module of rank » the A-module
determined by the terms of highest degree in #,, F, ..., Fyis of rank .
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But the converse is not true in general when 4> r; ie. if the module
determined by the terms of highest degree in F}, Fy, ..., I} is of the
same rank r as the module (#, Fy, ..., F}) the basis (#y, F, ..., F}) is
not in general an H-basis when %> .

50. Any power of a module of the principal class is unmized.

Let the module be M=(F}, Fy, ..., F,) of rank 7. The spread of
M7 is the same as the spread of /. Hence it will be sufficient to show

that 4 #=0mod M" requires F'=0mod M" provided A does not
contain any relevant spread of 2. When y=2 we have

AF=0mod M?; hence F’=0mod M=A,Fi+ ...+ A, F,,
and A (A4, Fi+...+ A F)=0mod M*= F, FOmod (Fy, ..., F,.)?,
where FU=0mod M.
Hence (AA;,— FO) Fi=0mod (F, ..., F,),
AA,— FO=0mod (F,, ..., F,),
AA,=0mod M, and A,=0mod J.
Similarly 4;=0mod M, and F=A4, F,+...+ A, F,.=0mod M
Next suppose y=38. Then since
AF=0mod M3,
F=0mod M?=F, 'V + ¢®),
where FWO=A,F+...+ A4, F,, and ¢®=0mod (F, ..., )2
Now A(FFY+¢®)=0mod M?=F,F®mod (Fy, ..., ),
where F®=0mod M?;
hence (AFW - F®) Fy=0mod (F, ..., F,.),
AFW~ F®=0mod (Fy, ..., ),
FW=0mod M=
Thus every coefficient A; in F'® (= A, Fy+ ... + 4, F,) is a member of
M (as proved when y =2), ie. every coefficient of the terms of
F=FF®+¢® furnished by F1F® is a member of M ; and the same
must therefore be true of the terms of # furnished by ¢®. Hence
F=0mod >
Similarly, if A #'=0mod M?, and the theorem is assumed true for
M- we have F=0mod M= F, F¥2+ ¢"-1 and can prove that
every coefficient in /7= and ¢~V is a member of /. Hence
F=0mod M".
4—-2
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51. If M is a module of the principal class which resolves into
prime modules the module whose members consist of all polynomials
having « y-point at every point of M is the module M.

The theorem is true when y=1. We shall prove it for J/” assuming
it for M1, Let M=(F,, F,, ..., F,) be of rank » and let /'™ be any
polynomial with a y-point at eveny point of M.

Then FM=0mod M,

ie. FO=34, , . FPF”. . F where py+p,+ ...+ p,=y~1.
Take &,&, ..., &, for the variables instead of i, @, ..., #,, and move
the origin to any point (#, @, ..., @,) of M. Then /7 becomes
, oF oM ”F
ﬁwl<$1+'7"l"";gn+xn 251‘0—‘1:14'“"*‘ p" ‘1551 2

1 " ue n

and the terms of lowest degree in Y are
S o <gla‘” et Y (O O

s cxl ' oz,
where A, p, ..., p, have their original values as functions of @, 4, ..., @,.
This last expression is of degree y—1in &, &, ..., &, and must vanish
identically, since F'“ has a y-point at every point of M. Now the

I

e. . O .
r quantities & Oi + o+ &y 95 (i=1,2,...,r) are either capable of
“1 n

taking any » values (&, ..., & being undetermined quantities and
xy,..., &, fixed quantities) or they are not. If they are, every A, p,..... o0
vanishes. If they are not, every determinant of the matrix

| OF OB OF, |

| vy vay T ooay,

I 0F, 0F, OF.

I ox, Oxs O, _

vanishes, L.e. (), @, -.., @,) 1s & singular point of M (§29). Hence
every Ap,, p,, .., p» vanishes for every non-singular point of A/ and is

therefore a member of M (§ 22).  Hence #'%=0mod 2/, which proves
the theorem.

52. Definition. 'The module whose basis consists of all the
determinants of the matrix

Uy Uay oeny Up
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where the elements #, v, ... are polynomials, will be denoted by

Uy, Ugy ey U

Vg, Vg eeey Vg
This is only an extension of the uotation (F}, £, ..., F},) for a
module M.

If M, is a prime module of rank », and #, 7, ..., F,. any »
members of A7, such that M= (F, Fy, ..., F,) resolves into M, and a
second prime module M, of rank 7, then it may happen that M’ must
have a certain fixed spread in common with A, irrespective of the
choice of H, F,, ..., F,. Such a spread (if any exists) must be
a singular spread of A/ ; but it does not necessarily follow from A/,
having a singular spread that 47, must contain the spread ; it depends
on the nature of the singularity. If M, does not cut M, in o fized
spread then My is unmized, and is the module whose members consist of
all polynomials having a y-point at every point of M. Inthe contrary
case some power MY of M, will be mized and will have the fized spread
in which My cuts it as a relevant imbedded spread, while polynomials
FO having a y-point at every point of M., but not members of MY, will
exist.

Example 1. The square of the prime module A7, determined by an
irreducible curve in space of three dimensions having a triple* point,
the tangents at which do not lie in one plane, is mixed ; and there is
consequently a surface having a 2-point at every point of the curve
which is not a member of A7

Thus if

M, = (2: L’Tr:i z:2> = (»’1“133:: —as, Xy — o, ' - 19312'2’2>,
the surface (zo@; — 27°)* — (@ — 223) (2° — 21°@,), after removal of the
factor @, will have a 2-point at every point of M;, but is not a
member of M;?; for the surface has only a 3-point at the origin,
whereas every member of A7* has a 4-point.
Wy, Uy Us, U,
Example ii. If My={ v, v, v, v \=(", Fy, Fy, F),
Wy, Wy, Wy, W,

# A triple point is not a 3-point. The general member of M; has only a
2-point at the triple point of the curve.

It is evident that the module whose members consist of all polynomials having
a vy-point at every point of a given irreducible spread is primary and unmixed.
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where each w, v, w is a homogeneous linear function of @y, @y, @3, 24,
M, being a prime module of rank 2, we have

I+ u By + u Fy + uy Fy =0,

and two other similar identities. From these we can find the continued
ratio @ :as:a5: 2, as the ratio of four members of M;® by expressing
each u, », win full. The common factor of these four members is a
polynomial of degree 8 having a 3-point at every point of M, but not
a member of M. In this example M® is mixed while 2/;* is unmixed.

53. Theorem. 7The module with abasis of r rows and k columns
Uyy Ugy «ovy U
ﬂ[= Viy Vay ooy Up
Wyy Way «-oy Wy
isof rank <k—r+1(0<k—-r+1<n), and if of rank k —r + 1 is unmized.
Also if Dy, p,...,pr denotes the determinant formed by the p™,
P ey 2,7 columns of the basis, the general solution of the equation

EDpl,pz,mmrXpl,m,--~,pr= 0 (P, Por s Pr=1,2, ..., k)
. »=k =k
s X psesvr= = Upppoooypryp Up + 21 V b1y Boseess e Up + -
p=

where Up,,...pr ps Vpryesppps -+ are arbitrary polynomials subject with
the unknowns Xy, p, ..., p, to the same law of signs as the determinants
Dy, poecsprs Viz. €6k Xp, ... 00y Up, oo prsps -+ ChOMges in sign (but not
in magnitude) for each interchange of any pair of suffizes py, ..., Pry P.

These two theorems will be proved together by a double process of
induction. Assuming both theorems for » —1 rows and £— 1 columns,
and also for 7 rows and £ — 1 columns, we prove both theorems for  rows
and £ columns. Both theorems have been proved for r=1 in §48.

It is understood that M is a proper module, i.e. the determinants
of its basis all vanish for some point whose coordinates are finite, but
do not all vanish identically. After proving that M is of rank
Sk—r+1 we assume that if M is of rank £—# + 1 the module

Us + Aolly,  Us+ Wslhyy ooy Up+ Aplly

Vot V1, U3+ 301y ..., Vpt+ Q0
b
where a@,, @, ..., @ are suitably chosen constants or polynomials, is of
rank £ —7. This can be proved in a similar way to the corresponding
property in § 47. We shall also suppose the matrix to have been so
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modified beforehand that if the first s < £ —» columns are removed the
rank diminishes by s. It can be shown that the second part of the
theorem is true before modification if it is true after. The same is
true of the first part of the theorem, since the modification of the basis
does not alter the module.

The general proof will be sufficiently indicated if we suppose M to
have 8 rows and 5 columns. 'Then

Uy Uy Us Uy Us
M= v, v, vs v, vs
@Ul 1,4,'2 W3 w,|, 'l05

and we assume both parts of the theorem for the module

Uy Uy Wy Uy
M= v, v, v, s
Wy W Wy W;

Uy Uy Uy Us
and also for ﬂl{z( o Uy Uy a>‘
Ty Vg U, Vs

If 4, B, C are the determinants of the matrix formed by the last
two columns of the basis of M, we have

Aui + B’L'Z + O’lvi = Di45 (Z‘ = 1, 2, 3, 4, 5).
Giving to ¢ the values py, p,, p; and solving for €' (or D,;) we have
D5 Dp,p,p, = Dyp,p, Dp,ss + Dipp, Dpyss + Dypyp, Dy,

Up, Up,

. Up,
every determinant Dy ,,p, when multiplied by Dy is of the form
XiDyys+ XoDsys + Xy Dsys.  Hence if there is a point of the module
M for which D,; does not vanish the module must have a spread of
rank <3 (or £—7 + 1) through that point. If however D, contains the
whole of the spread of M we move the origin to a point of the spread
and modify the last row of the basis by the other rows so as to make
the constant terms in the elements of the last row all zero. After
doing this we change u,, s, vy, v; in the first two rows only to u, + «,
us+ b, v, + ¢, vs + d, where a, b, ¢, d are constants. We thus get a new
module containing the origin such that the new D,; does not contain
the origin. This new module has a spread of rank <3 through the
origin ; and since this is true for general values of @, b, ¢, d, it is still
true when we put ¢ =b=c¢=d=0; for no diminution in the dimensions
of the spread through the origin, i.e. no increase in the rank, could be
produced by giving special values to @, b, ¢, d. Hence M is of rank < 3;
and we have to prove that M is unmixed if its rank is 3.

where D, ,, denotes the determinant This shows that
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Consider the equation =Dy, 5,5, Xp,pop, =0 in which we suppose
D1 <P, < s, 50 that each term occurs once and once only. Multiplying
by D, we have

2 (Dypyp, Dy,s5 + Dyyp, Dpyss + Dp,p, Dypyss) X p.p, = 0-

In this the terms containing D, are obtained by putting p; =1 and
giving p,, p, the values (2, 3), (2, 4), (2,5), (8,4), (8, 5), (4, 5),
viz. Dy (D X5+ Doy X1o+ Doy X195+ Dy X134+ Dis X5 + Dy Xiss),
and this is a member of (D, D;s4s) and therefore of M,. But 1, is
unmixed and of rank 2, and D4 does not contain any of its relevant
spreads; for if, after modification of the last two columns of A, by the
first two, D,y contains a relevant spread of A7, then every Dy,
contains the same spread, and consequently M/ contains the spread
and is of rank 2, which is contrary to the data. Hence

3Dp,p, Xip,p,=0mod M,
= Doy Wass+ Dogs Wass + Doss Wais + Dyss Wiy
= (Ds«th + Dypws+ 0231()4) Wips+ ...
=Dy (w«iW,zs; + Ws VV’235) + ..
=32 Dypyp, (W' p,p20s + Wpyp sty + W sty + Wp,p5005) 5
or 3 Dp,p, Xpop, =0 (p2<ps=2,3,4,5),

where Xpop = Xipep, = EWpowwp (p=2,8,4,5).
P

The equation 2 Dp,,, Xp,p, =0 stands in the same relation to M
as 2Dy, p,p, Xp,pop, = 0 to M, and the general solution is

Xpp, =20 pppttp + 3V pppow  (p=2,38,4,5)
. » ?
which gives
Xipp, =30 pp,ptp + 2V pupp0p + ZW'pppwy,  (p=2,3,4,5).
? » »

Substituting these values for X ,,p, in the equation
-
3 Dp.p.py Xpipp, =0
it becomes, after simplifying,
Disy (Xopg + Ulggytry + Viggyvr + Wiogown) + ... =0,
an equation in reference to M, of which the solution is
Kogg=— Ulpgay = Viggy v = Wiy + S Usppup +..+.. (p=2,8,4,5)
P
and similar expressions for X, Xows, Xiw. If in these and the
expressions found for X7,,,, we put

_ 1 _ S 4l . , _ i 1A
U PaDaP — 1'771977:&291’ J PoepPsp ™ szpapli w D2D3D —I/]fpzpﬁph
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we have, for all values of p,, pa, ps=1,2, 8, 4, 5,

X0 = 22Uy, pypp Up + 2V ppuyp ¥p + EWppppwy (p=1,2,38,4,5),
) P P

which proves the second part of the theorem for A7

To prove the first part, that A7 is unmixed, it has to be shown that
neither M nor (M, z,— a, ..., &, — a,) can contain a relevant simple
module, where s is any number >%—7+3 (§ 44). Let

(2, — ) F=0mod (M, z,— as, ..., v, — )
=32Dy pyespr Xpr ey MOA (25— sy oovy Ty — ).
T >
Phen (EDPDP';:-“’ Dr Ai)x:])-z;"-, Pr)e =g —ds= . =T~ ap=0 = 0.

In putting 2,-e,=2s—ay=...=2,~a@,=0 in M the number of
variables is diminished but the rank remains equal to #—7» +1. Hence

Xy pypdri—er==0 = S Upyycpryp Up + - Dz =e,=.0=0;
P
therefore

‘Xv?)l:PQJ---,Pr

=3Up,prptp* -+ (@=0) Yooy mOd (2=, -y @0 = @),
and
(@1 =) B'= (21~ ) 2Dy, peccspr Yoy e MO (B = Gy oo, 20— ).

Hence, since (2, —ay,..., 2, —a,) is a module of the principal class, and
#,— ¢, does not contain its spread,

F—=3Dy, pysvr Ypipsypr = 0mod (2 — sy -.., @ — ay),
and F=0mod (M z;,—a,, ..., xy— ay).

Hence (M, #,—a, ..., @, — a,) cannot contain any relevant simple
module, which proves the theorem.
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Solution of Homogeneous Linear Equations

54. Homogeneous linear equotions with constants jfor coefficients.
In a system of » independent equations with constant coefficients for %
unknowns X;, X, ..., X} there are +' independent solutions, where
r+7" =k, and the general solution is expressible in terms of the ¢’
solutions. The array of the coefficients of the » equations and the
array of the » solutions together form a square array

Ay o ee. Qg

by byrz oo by

and the general solution is X;= by + uoby; + ... + by (1=1,2,..., k),
where u, g, ..., p are arbitrary quantities.

The two arrays are called conjugate arrays; but we shall find it
more convenient to call them inverse arrays. Their principal properties
are :—(i) the sum of the products of the elements in any row of one
array with the elements in any row of the other array is zero ; (ii) the
determinants of one array are proportional to the complementary deter-
minants of the other array with a rule as regards sign; (iii) the
determinant of the combined arrays is not zero if the elements are
real. We shall not have occasion to use either (ii) or (iii) explicitly.

Homogeneous linear equations with polynomials as coefficients
(H, p. 483). Let there be » independent equations, viz.

X+ U X+ oo+, X3 =0,
v X1+ Xo+ ... +9, X3, =0, ete.

Then there is an array of solutions

oy Sror wees i
! fﬁ’l’ ‘f22) A ‘f?k

i ﬁl; ﬁ?a ey JIE



1] GENERAL PROPERTIES OF MODULES 59

whose elements are polynomials, such that the general solution is
Xi=A fu+ Asfoi+ oo+ A (6=1,2,..,k)

where A,, d,, ..., A; are arbitrary polynomials. The rows of this
array are not independent.

The general case of 7 equations can be reduced to that of solving
a single equation. Consider first the single equation

X+ F, X+ ...+ F,.X,.=0.

The conditions imposed by this equation on X, are merely that it must
be a member of the module (#,, Fy, ..., Fi)/(F). Let (fu, fa, - S11)
be a basis of this module. Then the general solution for X; is

Xi=A,fun+Asfu+...+ Avfn.

To each separate solution X, =f; there corresponds a solution
Siny Jizs <ony S for Xoy X,y ooy X, giving a row S, Sp, -, S Of the
array of solutions. The remaining solutions are those for which
X:=0, when the equation reduces to
X+ + X Fy =

'lo each solution for X,=/;, (J'= l' +1,0'+2,...,1") there corresponds
a row 0, fi, fis, -,/ of the array of solutlons in which the first
element is zero. Similarly there are rows in which the first two
elements are zero, and so on. The method may give more rows
altogether than are necessary. Any row of the array which can be
modified by the other rows so as to become a row of zeros should be
omitted.

In the case of » equations we eliminate X, X,, ..., X,
obtaining Dy, ., X+ Dyy . porippy Xppa+ oo+ Dy ooy X3=0, and
find the complete solution of this equation by the method just described.
To each solution there is a unique set of values for X3, X, ..., X,
which are in general polynomials. In an exceptional case the unknowns
X1, X, ..., X may be subjected to a linear substitution beforehand.

The principal case. The principal case is that in which the module

is of rank £-7+1. In this case it is seen from the equation in
Xy Xota, ..., X5 above that X is a member of the module

Uy U ... Upy
Vy Vg eer Vp_q
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by § 53, and similarly for each unknown. 'The complete array of
solutions is therefore obtained by putting any £-7-1 of the unknowns
equal to zero and solving for the ratios of the remaining 7 + 1 unknowns.

k
The # i i is wav are :
P F =1 solutions found in this way are of the type
X])l = ‘Dﬁ-szpr_,_l? ng = Dplvpzls'-~5p1v+17 v ‘YP;-+1 = <_ 1)1 Dpu PoyeesPpr
‘Ypr+2 T Arpk = O’
where p1, py, ..., pi, is any permutation of 1, 2, ..., 4.

Noether’s Theorem

- 55. Noether’s “fundamental theorem in algebraic functions” (N)
furnishes a remarkably direct method of testing whether a given
polynomial is a member of a given module or not; but it only attains
complete success in its application to a module of rank #. A variation
of the method, depending on the same principle, can be applied
successfully to any module known to be primary, when the equations
to its spread in the form of § 21 have been found (M, p. 88).

Noether proved that if f, ¢ were any two given polynomials in
two variables a,, @,, without common factor, then the independent
linear equations satisfied identically by the coefficients of the power
products of @, ., in Af+ B'¢, where A’, B’ are ordinary power
series with undetermined coefficients, were finite and determinate ;
and that any polynomial # whose coefficients satisfied all these
identical equations, when the origin was taken successively at each
point of (f; ¢), was a member of (f, ¢). Thus the conditions which
F has to satisfy in order to be a member of (f; ¢) can be collected
locally, so to speak, by going to each point of (f, ¢) to find them.
On going to a point not in (f; ¢) we get no conditicns, for at such
a point every polynomial is of the form A'f+ B'¢. That the con-
ditions are necessary is evident; for if F'=0mod(/, ¢) then F is
of the form A'f+ B'¢ wherever the origin is taken.

Konig (K, p. 385) proved the theorem for the case of a module
(Sfis for -y Ju) of Tank n in n variables; and Lasker generalized the
theorem in the Lasker-Noether theorem given below.

That the theorem is true for any module of rank » (not merely
for a module of the principal class of rank », the case proved by
Konig) follows from the Hilbert-Netto and Lasker theorems. For,
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by Lasker’s theorem, the module is the r.c.M. of a finite number
of simple modules @;, @, ..., € ; and if y is the characteristic number

of €;=(/f1, /oy ---» /) and the origin is taken at the point of Q;, we
have

F=P.fi+P.fo+..+ P.f, (where Pl, Py, ..., P, are power series)
=X\ fi+ Xofot oo+ X fumod O' =0 mod ;. '
Thus F contains [@, Qs, ..., Gi].

56. The Lasker-Noether Theorem (L, p. 95). If
M=, 1y, ..., 1) and F=P F +P,Fy+ ...+ P Fy,
where Py, Py, ..., Py, are ordinary power series, there ewists a poly-

nomial ¢ not containing the origin such that F¢ = 0 mod M.
Let @, Q., .., @ be the relevant primary modules into which
M resolves, and let @y, €, ..., @ be those which contain the origin,

and Qy.a, ..., @ those which do not. Then, assuming the theorem
to be true, it follows that

F=0mod[@, @, ..., @],
since ¢ cannot contain the spread of any of the modules @, @, ...,
Q. Conversely if #'=0mod [, Qs, .-, @] and ¢ =0mod @, ..., @],
where ¢ does not contain the origin, then #¢ =0 mod M. Hence the
aggregate of all polynomials #" which are of the form
P+ P, Fo+ . .+ Py B,
constitutes the module [@;, @, ..., Q]

Definition. A module which resolves into primary modules all of
which contain the origin, such as the module (@, @, ..., @] above,
will be called a Noetherian module.

Thus a Noetherian module, like an H-module, ceases to be such
in general when the origin is changed. Moreover an H-module is
a particular kind of Noetherian module ; for all the primary modules
into which an H-module resolves are H-modules and contain the
origin.

In order that a polynomial # may be a member of a Noetherian
module (F, F,, ..., F7,) it is sufficient that # should be of the form
P FE +P,Fy+..+PF,.

Proof of the theorem. It is evident that the theorem is true for
a module of rank % or dimensions 0 (§ 55). We shall prove the theorem
for a module of dimensions % -+ assuming it true for a module of
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dimensions 7 -7~ 1. It will be sufficient to prove the theorem for
a primary module ¢ which contains the origin ; for it is clear that it
will then be true in general.

Let Qz(fly./;) “"‘f;b)’ and f:Pl,f]"'P?f:_),"‘ ee +Ph_/;“

where P, P, ..., Py, ave power series. Let Qo= (A, /s, ...,/ w) be
the module whose members consist of all polynomials of the form
of f, and @p the like module obtained by moving the origin to P
(and then back to O). Choose a point P so near to O as to come
within the range of convergency of all the power series Py, P, ..., P,
for each member /i of the basis of Qo when expressed in the form of /.
Then we have f; =0 mod Qp, i.e. Qo contains @p. But it does not
follow that @p contains Qo however near £ may be to O ; for O might
be a special point of the spread of @. We assume for the present
that O is not a special point of the spread ; and we choose P to be
another point of the spread so near to O that §p contains ¢o. ~ Then
Qo =Qr.

Let » be a fixed arbitrarily chosen linear homogeneous polynomial,
and 7 any member of @o. Then

F/=0mod Qo =0mod (@, u)o.
But (@, ) is of »—7—1 dimensions; hence, assuming the general
theorem as regards (€, u), there exists a polynomial ¢ not containing O
such that
F'é=0mod (@, u) = pumod @,
where p is a polynomial. Hence, since fi,.f;, ..., /'w are members
of Qo,
fidi=pumod @ (¢=1,2, ..., k);

hence piw=0mod Qo =0mod Qp;

. 1 .
but « does not contain P, and 5 0 be expanded as a power series

when P is taken as origin ; hence
p:=0mod @p=0mod Qo
=paSi + Pufs + oo + P 0
Hence
fidi=(pafi +pufe+ o +paf ) umod @ (i=1,2, .., k).
Solving these %' equations for /1, £y, ..., /% we have

Dfi =0mod @,
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where

D= t Pu¥—b,  Pp¥ .. Pyl |= (= 1)" ¢, ¢s ... ¢y mod u.
| Path  Puu—¢s ... Pyl

{

Pt Puwstt oo Pt — Py

Now u» contains the origin, but ¢,, ¢s, ..., ¢ and consequently D do
not ; i.e. D does not contain the spread of . Hence /;'=0mod Q.
Hence Qo contains @, i.e., Qo= Q.

This has been proved for a non-special point O of Q. If O is a
special point, choose P a non-special point of € so near to O that Qo
contains @p. Then since @p = @ we have again Qp = Q.

The above proof only differs from the proof given by Lasker in the
part relating to Qo =@Qp. In this part Lasker’s proof seems to be
faulty.



