Chapter 1

Coin tossing process

Throughout this monograph, the coin tossing process'' plays a role of the model process
of random number and pseudorandom number. This may sound very restrictive for appli-
cations, but it is not. Indeed, from a coin tossing process, any practical random variables
and any stochastic processes can be constructed.

1.1 Borel’s model of coin tossing process

To describe m coin tosses, we use a probability space ({0, 1},2%!"" P,), where 0 and 1
stand for Tails and Heads respectively, and P,, stands for the uniform probability measure
on {0, 1}"";

m

#B
Pu(B) := —, Bc{0,1)" (B2,

om’
But each time m changes, we must take another probability space, which is not only boring
but also inconvenient when we consider limit theorems. It is a good idea to construct an
infinite many coin tosses all at once on a suitable probability space. Following Borel’s
idea, we construct them all on the Lebesgue probability space.

Definition 1.1

1. Let T! be a 1-dimensional torus, i.e., an additive group consisting of the unit interval
[0, 1) with addition (x +y) mod 1. Let B be a o-algebra on T! = [0, 1) consisting of
all the Borel measurable sets of it, P be the Lebesgue measure. The triplet (T", B,P)
is called the Lebesgue probability space.’? Let (T*, 8%, PX) denote the k-fold direct
product of (T!, B, P), which is called the k-dimensional Lebesgue probability space.

2. Let di(x) € {0, 1} denote the i-th digit of real x € T' in its dyadic expansion;

x = Zd,-(x)z—", xeTh, (1.1)

i=1

TIWe call the fair coin tossing process simply the coin tossing process.
T2We sometimes consider the completion of B by P, i.e., o-algebra of all the Lebesgue measurable sets.
But for numerical calculations, 8 will do.
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where

dl(x) = 1[1/2!1)()C), a',-(x) = d1(2i_1x), i€ N+, X € Tl.

3. For each m € N*, we define
D, = {2™]i=0,...,2" -1} cT. (1.2)

Let B,, be the algebra generated by the collection of sets 1, := {[a, b)la,b € D,,}.
Namely, each element of B, is a finite union of some elements of 7,,. Let P, be
the uniform probability measure on D,),.

4. For each m € N* and each x € T', we define

LI
[XTm

[2"x]/2" € Dy, (1.3)
[2"x1/2" € Dy, (1.4)

and | x]. = x.

Theorem 1.2 ([4]) The sequence of random variables {d;};°, defined on the Lebesgue
probability space is a coin tossing process.

Proof. Forany n € N*, any €, ... €, € {0, 1}, defining 7 := 3", 27'¢;, we see that
{xeT‘ |di(x) =€, i= 1n} = [tt+27™),
from which it follows that P(d; = ¢, i =1,...,n) = P([t,t+27")) = 27". |

The dyadic expansion mapping D,, 3 x = (di(x),...,d,(x)) € {0,1}" is a bijection,
and a mapping |e],, : T' — D,, (or [e],, : T' — D,,) induces a bijection between $B,, and
2Dn By these facts, the following three probability spaces are isomorphic to each other.

({O’ 1}m, 2{0,1}"”})’”) = (Dm’sz’P(m)) = (Tl»Bm’ ]P))

1.2 Construction of random variables from coin tossing
process

Theorem 1.3 (/7] (1.2)Theorem) Let S be a real valued random variable defined on
a probability space (Q,F , P). Then there exists a random variable f on the Lebesgue
probability space such that f and S are identically distributed.

Proof. Using the distribution function F(S;¢) := P(S < x), x € R, of S, put
f(x) = suplueR|F(S;u)<x}, O0<x<l. (1.5)

Then, f regarded as a random variable on the Lebesgue probability space is what we want.
To show this, it is enough to prove that

(0<x<l1|f)<t}={0<x<l|x<F(S:0))}, teR, (1.6)
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because calculating the Lebesgue measures of the both hand sides, we see P(f < f) =
F(S;1). Let us show (1.6). First, since x < F(S;¢) impliest ¢ {u € R|F(S;u) < x}, we
have f(x) < t. On the other hand, because F(S; ) is right continuous, x > F(S; f) implies
that there exists an £ > 0 such that x > F(S;¢ + &). Hence f(x) > t + € > t. From these
facts, (1.6) follows. ]

There are many f’s that satisfy the condition of Theorem 1.3, and the f defined by
(1.5) is merely one of them. The random variable f on the Lebesgue probability space
can always be considered as a functional 3 of the coin tossing process {d;}2, through the
following formula;

f = f (Z di(X)Z"'], xeT.
i=1
Theorem 1.3 therefore implies that for any random variable S, there exists a functional of
a coin tossing process which has the same distribution as S.

Theorem 1.4 ([35]) Define a sequence of random variables {Z,} | on the Lebesgue
probability space by

Zy = %d1+%d3+%d6+%dlo+---
Z, = %d2+%d5+%d9+m

Z; = %d4 + %dg +

Z, = %d7 +

Then, {Z,}, is a sequence of i.i.d. Y random variables, each Z, being uniformly dis-

tributed on T".

The proof of Theorem 1.4 is easy and hence it is omitted here.

Theorem 1.3 and Theorem 1.4 imply that any sequence of independent random vari-
ables of arbitrary distribution can be constructed from a coin tossing process. For in-
stance, we can construct an i.i.d. sequence {£,} -, of N'(0, 1)-variables from a coin tossing
process. Using this sequence, Wiener constructed a Brownian motion process {B;}o<;<x by

t 2 < sinnt
B, = — & + — —¢, 0<tr<nm.
! ﬁfo \/;Z n ¢ d

n=1
For details see [11] p.21. Applying the procedure of Theorem 1.4 again, it is readily seen
that we can even construct countably many independent Brownian motion processes from
the coin tossing process {d;};?, defined on the Lebesgue probability space. As a matter
of fact, except special cases (e.g., construction of uncountably many independent random
variables), almost all random objects can be constructed from a coin tossing process. For
details, see [30] Chapter 1.

T3 A function of infinitely many variables is called a functional. Here, f(x) can be regarded as a function

of the infinitely many values of d;(x),i = 1,2,....
4i.i.d. stands for independently identically distributed.
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1.3 Simulatable random variable

Theorem 1.3 does not say that any random variable S can always be constructed in prac-
tice from a coin tossing process. Indeed, the distribution function of S is usually hard to
get explicitly, and hence we can seldom compute f of (1.5) in practice. Moreover, sam-
ples of coin tosses are not provided at once in Monte Carlo methods, but they are provided
one by one successively from the first term. Consequently, S should be computed by a
finite number of samples of coin tosses with probability 1.

When a functional f of the coin tossing process can be realized in practice, it is said to
be simulatable. In this section, we consider a precise condition for f to be simulatable.’

1.3.1 Stopping time and simulatable random variable

A random variable defined on the Lebesgue probability space which is $,,-measurable
for some m € N* is obviously simulatable.t® On the other hand, there exist functions
which are not 8,,-measurable for any m € N* but are simulatable in practice. Look at the
following example.

Example 1.5 (Hitting time) Consider a random variable
o(x) := inf{n e N"|d,(x) + do(x) + - - - + d(x) =5}, xeT,

defined on the Lebesgue probability space. o is the first time when the total number of
Heads becomes 5 in successive coin tosses. (Here we define inf ) = co0.) Obviously, it is
not B,,-measurable for any m € N*, but nevertheless when the 5-th Heads comes up, we
can stop tossing the coin, and get the value of o. Thus we can compute o(x) from finite
coin tosses with probability 1.

Let us specify a general class of simulatable random variables that includes o of Ex-
ample 1.5.

Definition 1.6 A random variable 7 : T! — N* U {co} is called a {B,,},,-stopping time
(cf. [1]) or simply a stopping time if it satisfies

VYmeN*, {r<m):={xeT|1(x)<m} € B,.
For a stopping time 7, we define a sub-o-algebra
B, ={AeB|VYmeN", An{r<m}eB,}.

For simplicity, we use the term “r-measurable” to mean “$B,-measurable”, and L”(5;) to
mean L/(T', B,,P).

T5The contents of § 1.3 will not be necessary until § 5.3, so the reader may skip this section at the first
reading.

T0f course, if m is an astronomical number, it would be impossible to deal with $B,,-measurable functions
in practice. The simulatability here should be understood in a theoretical sense. More precisely, f is
simulatable if there exists a Turing machine (cf. [6]) which computes f.
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A constant time 7(x) = m € N* is a stopping time and B, = B,,.
A function f : T' — R U {+o0} is B,-measurable, if and only if f(x) = f(lx],).
x € T!. As a generalization of this, we have the following.

Lemma 1.7 Let 7 be a stopping time. A function f : T' — R U {+oo} is T-measurable,
if and only if
f@) = f(x)ew),  x€T. (1.7)

Proof. Necessity: Suppose that f is T-measurable. Then, for each m € N* and each f € R,
we have {r < m} N {f < #} € B,,. This means that 7(x) < m implies f(x) = f(|x]n).
Consequently,

f(x) Z OOz () + f ()=o) (X)

meN+

= Z f(l.me) 1{‘r=m}(x) + f(l.xJOO) 1{‘r=<>0}(x)

meN+

= Z f (Lxleo) Lie=my(X) + f (LxJei) Lir=oo)(X)

meN+

= f(lxlw) Z L=y (%) + f (Lx)e) Lir=oo) () = f (Lx)ew) -

meN+

Sufficiency : Suppose that f satisfies (1.7). Then for each m € N* and each t € R, we
have

{f<tin{r<m} = {f(le)ww) <t}N{r <m} = {f(lo)) <t} N {r <m} € B,.

Thus f is T-measurable. O

The random variable o in Example 1.5 is a stopping time, and of course it is o-
measurable.

A function f which is 7-measurable for some stopping time 7 that is finite with prob-
ability 1 is simulatable. Indeed, suppose that samples of the coin tosses {d;(x)};, are
provided one by one successively from the first term. Then the following algorithm com-

putes f.
1. Setm :=1.
2. Sett:= Y7, 27 d(x) (= [ x]n).
3. If 7(¢) = m, then output f(¢) and end.
4. If 7(¢) > m, then set m := m + 1 and go to 2.

Since 7 is finite with probability 1, this algorithm ends in finite time with output f(x) with
probability 1.

Conversely, if f is simulatable, it must be computed by a finite number of coin tosses
with probability 1. Namely, for P-a.e. x € T!, there exists an m € N* such that f(x) =
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f(Lx),m). Here m may depend on x and we write it as 7(x). Thus the function 7 : T! —
N* U {oo} satisfies P(t < oo) = 1. Suppose that 7 is not a stopping time. Then it may
happen that a sample sequence of the coin tossing process should be provided forever to
compute f(x), which means that f cannot be simulatable. Thus that 7 is a stopping time
is indispensable for f to be simulatable.

With these reasons, we define that f is simulatable if it is T-measurable for some
stopping time T that is finite with probability 1.

Example 1.8 (Last exit time) A random variable

7/(x) := sup ({n e N*

dl(x)+a'2(x)+~--+a’n(x)—g<O}U{1}), xeT,

is finite with probability 1 by the strong law of large numbers, but it is not a stopping
time. Indeed, the value of 7/(x) can never be computed from a finite number of terms of
{di(x)}2,. 7'(x) is not simulatable.

1.3.2 T!-valued uniform i.i.d. sequence as random source

In Monte Carlo methods, we usually take a T'-valued uniform i.i.d. sequence as the ran-
dom source of simulations. In this context, the simulatability, or equivalently, the mea-
surability with respect to stopping time is stated as follows.

Assumption 1.9 77 Suppose that f is a functional of a T'-valued uniform i.i.d. sequence
{Z}}}2,, and that it requires only a finite number of Z,, ..., Zr to be computed with prob-
ability 1. Here T is a random variable with the following property; for each [ € N*,
whether the event {T < [} occurs or not can be judged by the values of Z, ..., Z; without

any knowledge about Z,,, ' > [ + 1.

Example 1.10 In case f can always be computed from a constant number of Z;’s, i.e.,
T is a constant, it satisfies Assumption 1.9.

As is seen in the following example, we need not be aware of the stopping time 7 so
explicitly in most of practical computations.

Example 1.11 (von Neumann’s rejection method [28]) Let p(x), x € [a, b], be a bounded
probability density function. We consider an algorithm to generate a random variable f
whose probability density function is p. Let M > 0 be an upper bound of the function p,
and (¢,7n) be a random point which is uniformly distributed in [a, b] X [0, M]. Then we
have

d
Pr(fe[c,d]lp(f)Zn)=/p(x)dx, a<c<d<b.

With this knowledge, we consider the following algorithm, which uses a T'-valued uni-
form i.i.d. sequence {Z;};°, as the random source.

1. Setl:=1.

7 A more precise formulation will be given in § 5.4.5.
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2. Set(§,n) = ((b - a)Zy-1 + a, MZy).
3. If p(&) > n, then output f := £ and stop.
4. If p(¢) <n,thenset!:=1+ 1 and go to 2.

The output f of this algorithm, which obviously satisfies Assumption 1.9, is what we wish
to get.

Example 1.12 (cf. Example 1.5) Define {Y,},”, by

_ [0 (Z,€[0,1/2))
= {1 (Z, €[1/2,1)) 1,2,....

{Y,}>2, is a coin tossing process. Then
fi=inflneN" Y +Y,+---+Y,=5}

satisfies Assumption 1.9. f is the first time when the total number of Heads becomes 5 in
successive coin tosses.

In practical computations, real numbers are treated in finite precision, say 2. Ac-
cordingly, instead of {Z;}}°,, we use a Dk-valued uniform i.i.d. random variables {Z,(K)};’j 15

which is, for example, defined on (T!, B, P) by

K
79 = Y 2dg g, neN, (1.8)
i=1
i.e.,
1 1 1
ZEK) = zdl +?d2+"'+2—[(d1(
(K) 1 1 1
Z,’ = EdK+1 + idmz +oot 2—Kd21<
75 = et g+ d
3 - ) 2K+1 22 2K+2 2K 3K

If f satisfies Assumption 1.9, regarding it as a functional of {Z;K)};‘zl, set
7(x) := inf{IK € IN"| f(x) is computed from Z(x), ..., Z" (x)}.

Then 7 becomes a {B,,},,-stopping time, and f is T-measurable.



