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Part 3B. Unique existence of an invariant S -operator on
“arithmetic” algebraic function fields (including G,-fields)
over any field of characteristic zero.

Unique existence of invariant S-operator on ample (arithmetic) L/k.

§45.

[1]. In §41 (Part 3A), we considered the algebraic function fields L/C satisfying (L1),
(L2), and proved Theorem 9 for such fields. In particular, we proved that if L is am-~
ple, then there exists a unique Autc L-invariant S-operator on L. Our purpose here is to
generalize this result to the cases where the constant field & of L is an arbitrary field of
characteristic zero (instead of C). First, we must define the fields L/k. This is completely
parallel to the definition of L/C (§41); namely, our object will be the following field L/:

DeFINITION . £ is any field of characteristic 0, and L is any one-dimensional extension
of k not assumed to be finitely generated over &, but assumed to satisfy:
(LO); k is algebraically closed in L;
(L1); Let Lo be the set of all finitely generated extensions Ly/k contained in L such
that L/L, is normally algebraic. Then £, is non-empty;
(L2)g For each Ly € L, and a prime divisor Py of Ly/k, denote by eo(Py) the ramifica-
tion index of Py in L/Ly. Then eq(P,) = 1 for almost all Py, and the quantity

(128) V(Lo) = 290 — 2 + Z (1 - )degPo
Py

eo(Po)
is positive, where g is the genus of L /k.

Remark 1. Remark 1 of §41 is also valid here.

ReMark 2. If k = C, this coincides with the definition of L/C of §41.

[2]. The arguments of [2] [3] of §41 are also applicable to this general case; so, all
definitions and results of [2] [3] §41 are directly carried over to this case if we only replace
C by k. In particular, £, always contains a minimal element (with tespect to c), and L is
called simple if it is unique, and ample (or arithmetic) if it is not unique. Moreover, L is
ample if and only if Aut, L is non-compact. The definitions of D(L) andd : L — D(L)
are also exactly parallel to the case of k = C ([4] §41).

Remark 3. There is one point where we need a slight modification of our argument: In
[3] §41, we used the finiteness of Aut{Ly, ey} (to prove Proposition 14), and reduced this
finiteness proof to the well-known finiteness of N(A)/A, where A is the fuchsian group
corresponding to {Lo, ey}, and N(A) is its normalizer in Gg. For the general case, the
finiteness of Aut{L,, ey} is proved in the following way: First, if the genus go of L, is
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greater than one, then Aut; L, is finite; hence there is no problem. On the other hand, if

go = 1resp. 0, then, by V(L) > 0, we have ¥, p),; deg P > 1 resp. > 3. Butif go = 1
resp. 0, the group of automorphisms of L, that leave one (resp. three) prime d1v1sors fixed
is ﬁmte hence the finiteness of Aut{Ly, ey} follows.

[3] Now the group Aut, L acts on the set of all S- operators onLbyS — §7;§7 <§) =
S{&Y (o € Auty L). Our main purpose is to prove the following theorem:

THEOREM 10. Let L/k be as above, k being any field of characteristic 0. Suppose that
L is ample. Then there exists a unique Aut, L-invariant S -operator on L. More strongly, if
® is any closed non-compact subgroup of Aut, L, then there. exists a unique ®- invariant
S-operator on L.

CoroLLARY 1. Let L be a G,-field over any field k of characteristic 0. Then there is a
unique Gy-invariant S-operator on L, and it is moreover Aut, L-invariant.

- DerNtTioN . In the situation of Theorem 10, we shall call the unique Auty L-invariant
S -operator the invariant S-operator on L/k.

Remark 4. If L is simple, there are also Aut, L-invariant §-operators (in fact, S(£) =
&EH+C glve such operators, where { € D(Lw):, C € Dz(Loo) Lo bemg the minimal
element of L), but they are not at all unique.

Remark 5. Theorem 10 is equlvalent to the following assertion (}):

(#) Let L/k and ® be as in Theorem 10, and let { € D(L)*. Then there is a unique
element C € D*(L) such that

(129) | &.y=Cc-C°
forallo € ®. ‘

In fact, if we put S(§) = (&0 ) + C then S is o- mvarlant if and only if C satisfies
(129) Since o — (£, %) is a cocycle the existence of such C is a consequence of
H'(®, D*(L)) = 0. However, it turns out that the last cohomology group does not vanish
generally (even if we consider continuous cocycles only). So, this method cannot be
applied.

[4]: As in §41 the uniqueness proof for Theorem 10 is immediately reduced to the
following lemma:

LemMA 14;. Let © be any closed non-compact subgroup of Aut, L, and let h > 1. Then
the only ®-invariant element of D"(L) is 0.

In the followmg, we shall prove Lemma 14; and Theorem 10, by reducmg them to the
case of k = C.
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Proofs of Lemma 14, and Theorem 10.

§46. Let k be any field of characteristic 0, and let L/k be ample. Our purpose is to
prove Lemma 14; and Theorem 10 for such general L/k. These proofs are reduced to the
case of k = C (i.e., to Lemma 14 and Theorem 9 (§41)) by using the followmg Lemmas
16, 17: '

[1]. First, let K be any overfield of &, and let Ly be the quotient field of L ® K. Then

Ly /K also satisfies (LO)x, (L1)z, (L2); of §45 (where k is replaced by X)), and Auti L is
regarded as an open subgroup of Auty Ly in a natural manner. Therefore, if L/k is ample,
sois Lx/K.

LemMa 16. Let K be algebraically closed. Then if Lemma 14, and Theorem 10 are
both valid for L [K, they are also valid for L/k.

Prook. (i) Let @ be any closed non-compact subgroup of Aut L and let w € D*(L)
(h > 1) be ®-invariant. Consider w as an element of D"(Lx) and ® as a subgroup of
Autg Lx. Then since Aut; L is open in Autx Lg, ® is also closed (and non-compact) as a
subgroup of Autx Ly, and w is ®-invariant. Hence w = 0 by Lemma 14; for Lx/K. ’

(ii) Let ® be as in (i). Then by our assumption (Theorem 10 for Lx/K), there is a
unique ®-invariant S-operator on Lg; hence by Remark 5 (§45), there exists a unique
element C € D*(Lk) such that

(130) £.=C-C" (Voed),

where ¢ is any fixed element of D(Lx)*. Now take ¢ from D(L)*. Then we claim that
C € D?*(L), which, by virtue of Remark 5 (§45), would settle our lemma. To prove
C € D*(L), let p be any element of Aut; K, and let 5 be the unique element of Aut; Ly that
coincides with p on K. Then p commutes with all elements of ®. Moreover, the fixed field
of the group {5 | p € Aut, K} is L. This is checked exactly in the same manner as Lemma 2
(Part 2), by noting that the fixed field of Aut, X is k (since X is algebraically closed), and
that the fixed field of Aut; L is also k (since L/k is ample). Now apply p on both sides of
(130). Then since (£, {°) € D*(L) are p-invariant, we obtain (£, {7) = CP-C°? = CP-C?
(o € ®); hence by the uniqueness of C, we obtain C? = C for all p. Let £ € D(L)* and
put C = a¢*(a € Lx). Then @® = a for all p; hence a € L by our above remark. Hence
C € D*(L), which settles our lemma. o

CoroLLARY . Ifdimg k < N, then Lemma 14, and Theorem 10 are valid for L/k.

Proor. Since dimg k < N, we can embed k& into C; hence by Lemma 16, we can reduce
Lemma 14; and Theorem 10 to the case of k = C. ]

[2].

Lemma 17. Let k be algebraically closed. Then L contains an Auty L-invariant subfield
L’ such that L' k = L and that dimg k' < Ro, where k' = L' N k.

The proof of this lemma will be given in the next section (§47).
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ReMARK . In the situation of Lemma 17, we see easily that L’ and k are linearly disjoint
over k', and that L’ /k’ also satisfies the conditions (L), (L1), (L2) of §45. (Consult the
proof of Proposition 2 (Part 1).)

[3]. Completing the proofs of Lemma 14; and Theorem 10, assuming Lemma
17. To prove Lemma 14; and Theorem 10 for L/k, we may assume that k is algebraically
closed (by Lemma 16). So, L contains an Aut; L-invariant subfield L’ such that L'k = L
and that dim kK’ < 8o, where ¥’ = L’ Nk (by Lemma 17). Let @ be any closed non-compact
subgroup of Aut; L, and let w € D*(L) (h > 1) be ®-invariant. Take a finitely generated
extension k” of k¥’ such that w € D"*(L""), where L” = L’.k”. Since L’ is Aut; L-invariant,
L"” is also Aut; L-invariant, and since L” .k = L, Aut; L acts effectively on L”. On the other
hand, Aut;. L” can be regarded as a subgroup of Aut, L in a natural manner. Therefore,
Auty» L” = Auty L; hence @z~ is a closed non-compact subgroup of Aut;» L”. But since
dimg £’ < Ny < N, Lemma 14; is valid for L” /k” (by the Corollary of Lemma 16); hence
w = 0. This proves Lemma 14, for L/k.

Now we shall prove Theorem 10 for L/k. In the same manner as above, we shall
identify: Auty L’ = Auty L. Since dimgk’ < Ny, Theorem 10 is valid for L’/k’; hence
there exists a unique element C in D*(L’) such that (£,{”) = C — C” holds for all o € ®,
where ¢ is any fixed element of D(L’)* (by Remark 5, §45). Moreover, C is unique in
D*(L) by Lemma 14, for L/k. But then, by Remark 5 (§45) again, Theorem 10 is valid
for L/k. ‘ 0

§47. In this section, we shall give a proof of Lemma 17. For this proof, we need
several preliminary considerations.

[1]. Let k be any field of characteristic 0, and let L/k be ample. Put G = Aut; L, and
let B be the set of all open compact subgroups of G. Then L, and 9B are in a natural
one-to-one correspondence:

Lo>Ly A Vel
(131) : :
the fixed field of V' Auty, L.

Since £, is inductive with respect to D, B is also inductive with respect to C ; hence each
element of B is contained in a maximal element of V.

Dermrion . We denote by Gy the subgroup of G generated by all open compact sub-
groups V of G.
It is clear that G, is an open non-compact normal subgroup of G.

ProposITION 22. Let V € B and let N(V) be its normalizer in G. Then N(V) € B.

Proor. Let Ly be the fixed field of ¥, and let o € N(V). Then L is the fixed field
of 07 'Vo = V; hence L = Ly. Therefore, o induces an automorphism o of {Ly, ey}
(ey(P) is the ramification index of P in L/Ly, where P is any prime divisor of Ly). But
the group of automorphisms of {Ly, ey} is finite (Remark 3, §45). Hence the kernel of the
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homomorphism N(V) — Aut{Ly, ey} induced by o — & is of finite index in N(¥). But
this kernel is clearly V. Hence (N(V) : V) < oo; hence N(¥) € B. : ]

CoroLLARY 1. Every compact subgroup of G is contained in some open compact sub-
group of G.

PRoof. Let X be any compact subgroup of G, and let ¥ be any element of 8. Put
Vo = Miex (k"' Vk). Then since (K : ¥ N K) < oo, ¥V, is open; hence ¥, € B. Moreover, K
normalizes Vy; hence K c N(¥;). But N(¥;) € B by Proposition 22. w]

COROLLARY 2. Let 3 be the centralizer of Gy in G. Then 3 is compact, and is contained
in Go.

Proor. Let ¥ € B. Then 3 centralizes V; hence 3 c N(¥). But 3 is closed, and N(V)
is compact by Proposition 22. Therefore, 3 is compact. Since N(¥) € B, N(V) c Gy;
hence 3 c G,. o

Now we shall prove the following proposition by applying the above Corollary 2.

PROPOSITION 23. Assume that k is algebraically closed, and let k' be a given alge-
braically closed subfield of k. Suppose that L contains a Gy-invariant subfield L’ with
L'k=LandL' Nk=Kk. Thensuch L' is unique, and is moreover G-invariant.

ProoF. Let 3 be the centralizer of Gy in G. Then by Corollary 2 of Proposition 22, 3 is
contained in Go; hence L’ is 3-invariant. Moreover, by the same corollary, 3 is compact.
Hence if L denotes the fixed field of 3|;. in L', then L’/L}, is algebraic (in fact, normally
algebraic with the Galois group 3|1.).

p— L

algebraic ‘
(132) L}

e ¢

We shall show that L is independent of the choice of L’. First, note that since
Aut;, L = id; ® Auty k, and since the fixed field of Auty k is k&’ (by the algebraic closed-
ness of k), we see that the fixed field of Aut, L is L’. Therefore, if we denote by 3’ the
subgroup of Aut;- L generated by 3 and Aut;. L, then L7 is nothing but the fixed field of 3
in L. We shall show that 3’ coincides with the centralizer of Gy in Auty L, which would
prove the independence of L; on L’. Let 3 denote the centralizer of G, in Autp L. Then
it is clear that 3, Aut;, L  3; hence 3’ c 3. On the other hand, let o € 3. Then since k°
is the fixed field of ~'Gyo- = Gy, we have k° = k (from this follows that 3 is normal in
3). Let p be the unique element of Aut;, L that coincides with o on k. Then o - ple3;
hence 3 ¢ 3 - Auty, L = 3. Hence 3’ = 3. Therefore, the field L;, is independent of the
choice of L'. o S :
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Now let £’ be the set of all L’ satisfying the conditions of Proposition 23 (for the given
k). Then since Gy is normal in G, L’ € £’ implies L'? € L’ for any g € G. Therefore, the
composite L* of all L’ € £’ is G-invariant. Moreover, since Lé is common forall L’ € L,
and since L’/Lj are algebraic, we conclude that L*/L} is algebraic. Now put L* Nk = k.
Then the elements of k* are algebraic over L7 and hence over L’. But L’ and k are linearly
disjoint over k' (this can be proved exactly in the same manner as Proposition 2 of Part 1,
since the fixed field of Gy is k). Therefore, the elements of k* are algebraic over &'. But
since k' is algebraically closed by assumption, we conclude k&* = ¥’; hence L* Nk = k.
But then L* and k are linearly disjoint over &'

[ ——— L=k
r— L

linearly L'nk=L*Nnk=%k.

(133) disjoint;
k
kl .
Therefore, L* = L’; hence L’ is unique, and is G-invariant. a

[2]. We shall also need the following proposition:
ProrosrTION 24. The cardinality of the set Ly is countable.

To prove this, we need the following Lemma 18:—. Let L, be any finitely generated
algebraic function field of dimension one over k, and let ¢y = eg(Py) be a {1,2,...;00}-
valued function defined on the set of all prime divisors Py of Loy/k, such that ey(Pg) = 1
for almost all Py and that V{L,, eo} = 2g0 -2+ 35, ( - (PO)) deg Py > 0, g, being the
genus of Ly. Then a finite extension L’ of L, is called an admissible extension with respect
to {Lg, e} if for each P, and its factor P in L;, the ramification index of P;/P, divides
eo(Po). (In this case, if we define €}(P}) as the quotient of eg(Po) by the ramiﬁcation index
of P} /Py, then {L;, ey} may be called an admissible extension of {Lg, ep} .) On the other
hand, a subfield L; of Ly with [Lo : Lj] < oo is called an admissible subfield with respect
to {Lo, o} if for each prime divisor P; of L; and its prime factor Py in L, the product of
eo(Po) and the ramification index of Py/P; depends only on P;. (In this case, if we define
e;(P;) to be this product, we may call {L;, e;} an admissible subfield of {Lo, eo}. Thus
the former is an admissible subfield of the latter if and only if the latter is an admissible
extension of the former.) .

Remark . The notations being as above, we have

(134) {V{L',eg,} = V{Lo, o} X [L} : Lo.¥']

V{Lo, eo} = V{Lg, €5} x [Lo : Lg]

by Hurwitz formula where k&’ denotes the algebralc closure of k in Lj,.
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Lemma 18. Let {Ly, eo} be given, and suppose that k is algebraically closed. Then (i)
there exist only finitely many admissible subfields of L, with respect to {Ly, ey}, (ii) for
given n, there exist only finitely many admissible extensions of L, of degree n with respect
fo {Lo, €9 }

Proor or LEmma 18. First we note that this is a well-known fact when k& = C. In fact, if
A is the fuchsian group corresponding to {Lo, e,} (see §40), then the admissible extensions
of degree n with respect to {Lo, e;} correspond to the subgroups of A with index », and the
admissible subfields with respect to {Lo, ey} correspond to the fuchsian groups containing
A. But as is well-known, they are finite in number. Hence the case k = C is settled. The
general case is easily reduced to the k = C case. In fact, suppose that there are infinitely
many admissible subfields with respect to {Lo, e;}. Take any countable subset from the
set of all such subfields, and call them L; (i = 1,2,...). Let X; (i > 0) be any complete
non-singular model of L;, and let f; be the rational map f; : Xy — X; defined by the
inclusion L; c L,. For each i, let k; C k be a finitely generated extension of Q over which
Xo, X; and f; are defined, and over which all ramifying prime divisors of X, (w.r.t. f;) and
all prime divisors P, of X with eo(P,) > 1 are rational. Let &’ be the composite of k; for
alli > 1, so that dimg ¥’ < N,. Then by embedding k" into C, we can immediately reduce
our assertion (i) to the case of k = C. A similar reduction is also valid for the assertion
(ii). o

Proor oF ProposITION 24. It is enough to prove this proposition when £ is algebraically
closed. Let Ly be any element of Ly, and let ey be as in the condition (L2); (§45). Then
all finite extensions of L, contained in L are admissible extensions with respect to {Lo, e};
hence by Lemma 18, they are countable. Call them {L;, e;} (i = 0). Let L; be any other
element of £,. Then Lj.Ly = L; for some i, and L; is an admissible subfield of L; with
respect to {L;, e;}; but by Lemma 18, each {L;, ¢;} contains only finitely many admissible
subfields. Therefore, £, is countable. o

[3]. Proof of Lemma 17. Now having Propositions 23, 24 on hand, we can prove
Lemma 17 easily. Since £, is countable, we may denote the elements of Ly as L; (i =
1,2,3,...). For each i, let X; be a complete non-singular model of L;/k, and for each i, j
with L; c L;, let f;; : X; — X; be the induced rational map. Since £, is countable, there
exists a subfield &’ of k such that dimg £’ < N, and that all X;, all f;;, and all covering
groups of f;; (whenever f;; is a Galois covering) are defined over k’. We may assume
further that ¥’ is algebraically closed. Let L} be the field of k’-rational functions on X;,
so that L) ¢ L; naturally whenever L; C L;, and let L}/L’ is a Galois extension whenever
L;/L; is so. Let L’ be the union of all L] (with respect to these inclusions). Then it is clear
that L’ is a Gy-invariant subfield of L such that L’ .k = L and that L’ Nk = k’. Therefore, by
Proposition 23, L’ is moreover G-invariant. This proves Lemma 17, and hence completes
the proofs of Lemma 14, and Theorem 10 for the general L/k.
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Some corollaries and applications of Theorem 10.

§48.
[1]. The following corollary is an immediate consequence of Theorem 10.

CoRroLLARY 2.32 Let L/k be ample, and let ® be an open non-compact subgroup of
Auty L. Let L’ be a ®-invariant subfield of L satisfying L'k = L and put K’ = L’ Nk, so that
L' |k is also ample. Let S resp. S’ be the invariant S -operators on L|k resp. L' [k'. Then

(135) S(&) =SE)+(£.£)
holds for all £ € D(LY* and &' € D(L')*.

Proor. Fix any & € D(L')*, and put S (&) = S'(&')+(£, &), so that S is an S'-operator
onL. Leto € . Then ST(E) = {SE N +(E,£7) = SUETV+(E,E7) = S/EV+E7, £+
(£,E7)Y = SU(E) + (£,&) = §51(€). Therefore, S is ®-invariant. Therefore, by Theorem
10, S| must be the unique Auty L-invariant S-operator on L/k. m]

ExampLE . Let L be a G,-field over C, and let S be the canonical (hence the invariant)
S -operator on L/C. By Theorem 4 (Part 2), L contains a full G,-subfield L; over an
algebraic number field k of finite degree. Therefore, S(&) = S'(&’) + (£,€') (¢ € D(L)*,
& € D(Ly)), where S’ is the invariant S-operator on L;/k. Therefore, in a sense, S is
“defined over an algebraic number field.”

[2]- Now consider any field k (of characteristic 0) and a pair {Lo, eo}/k, where Lo is
a finitely generated algebraic function field of dimension one over k, and ey = ey(Py) is
a{l,2,...;o0}-valued function defined on the set of all prime divisors of Ly/k such that
eo(Po) = 1 for almost all P, and that V{L,,e,} > 0 (see [2] of §47). For each overfield
K of k, we denote by {L.K, ep}/K the constant field extension of {Ly, eo}/k. We shall say
that {Ly, o} /k is “ample” if there exists a normally algebraic extension L of Ly such that

(a) kis algebraically closed in L;
(b) for each Py, eq(P,) coincides with the ramification index of Py in L/Lo;
(c) L/k is ample (in the sense of §45 [2]).

Now let k be a subfield of C and consider any {L,, e}/, so that {L,C, e;}/C satisfies the
conditions of §40. Let S be the canonical S-operator attached to {LC, e} (see §40). We
shall say that S is k-rational if S (D(Lo)*) ¢ D*(Lo). Then the following is a criterion for
the k-rationality of S':

CRITERION . § is k-rational if there exists a family {K,}, of intermediate fields of C/k
such that N, K, = k and that {LK), o}/ K are ample for all .

325 is seen in the proof, the condition L’.k = L may be replaced by a weaker condition L’ ¢ k.
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Proor. Let £ € D(Lo)* and put S(¢) = a£? (a € LoC). It is enough to prove a € L.
For each A, let L, be an extension of Lok, showing the amplitude of {LoK, ey}/K;.
L e LAC
A l ‘

(136) 1, —— Lok l

K/—C
k____,_._—-—,\

By the definition of the canonical S -operator on the ample field (§41), the restriction
of the canonical S-operator of L,C/C to LyC is nothing but S. Moreover, by applying
Corollary 2 (of Theorem 10) to the “parallellogram”

I N
Ly

(137) ‘
C

K —

we conclude that a € L,; hence a € Ly.K;;. But since (N, K; = k by assumption, we have
M. LoK,; = Ly; hence a € L. u]

[3]. Now we shall conclude Part 3B by an application to the canonical S -operators on
Shimura curves.

Let F be a totally real algebraic number field, considered as a subfield of R. Put [F :
Q] = n, and let py,,- - , Py be the infinite prime divisors of F, and let p,,; correspond
to the given inclusion F c R. Let ¢ be any integral ideal of F, and let C(F, ¢) denote the
strahl-classfield of F modulo ¢ [T}, p«;. Let B be a quaternion algebra over F in which
Poo1 is unramified and all other p.; (2 < i < n) are ramified. Let o be a maximal order of
B, and let A = A(c) be the group of units in o which is congruent 1 modulo ¢o and whose
reduced norm over F is totally positive. Then by the isomorphism B ®¢ R =~ M;(R), A is
considered as a fuchsian group. Let {Lc, e} = {L{., e} be the pair corresponding to A (see
§40), so that Lc may be regarded as the field of automorphic functions with respect to A.
Now by Shimura [32], L¢ has a nice model V over k = C(F, ¢) (which is characterized
arithmetically up to biregular isomorphisms over k). Let L = L* be the field of k-rational
functions on ¥ (so that L¢ = L.C). Then it is easy to check that e = ° is actually a function
of the prime divisors of L/K. We shall check, by using the results of [32], that {L, e}/k
satisfies the above criterion for the k-rationality of the canonical S -operator attached to
{Lc, e}.

For this purpose, let p be any finite prime divisor of F such that p { ¢cD(B/F), where
D(B/F) is the discriminant of B/F. Put k* = U2 C(F, cp™) and L? = U2 L. Here,
for each n > 0, we identify L*" with a subfield of L*"" in a natural manner. Let F, be
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the p-adic completion of F and put G, = PSL,(F;). Then by the results of [32], it can
be easily checked that £°/% is a G,-field (hence ample), and that L°/L°.%® is normally
algebraic. Moreover, we can check easily (by using Supplement §6) that the extension
L?/Lc B satisfies the above conditions (b) of [2].** Hence {L‘.k®, e‘}/k® is ample. But in
C(F, cp™)/C(F, ), all prime factors of p in C(F, ) are totally ramified and all other finite
prime divisors of C(F, ¢) are unramified; hence N, k¥ = k. But this implies that {L, e}/k
satisfies the assumptions of our criterion. Hence we may summarize this result as:

CoroLLARY 3. The canonical S -operator attached to the Shimura’s model V/C(F, ¢) of
automorphic function field of A(c) is rational over C(F, ¢).

Here, we treated only the principal congruence subgroups A(c). Results for other con--
gruence subgroups can be obtained easily from this by using Proposition 10 (and [32]).

33That it satisfies the condition (a) of [2] is clear.
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