
CHAPTER 1

Part 1. The group $\Gamma$ and its $\zeta$-function.

In Part 1 of this chapter, we shall define the $\zeta$-function

$\zeta_{\Gamma}(u)=\prod_{P}(1-u^{\deg P})^{-1}$

of $\Gamma$, and prove that

(20)
$\zeta_{\Gamma}(u)=\frac{\prod_{i=1}^{g}(1-\pi_{i}u)(1-\pi_{i}’u)}{(1-u)(1-q^{2}u)}\times(1-u)^{(q-1)(g-1)}$ ;

$q=N\mathfrak{p}, g\geq 2, \pi_{i}\pi_{i}’=q^{2}(1\leq i\leq g)$

holds, if $ G/\Gamma$ is compact and $\Gamma$ is torsion-free. We shall also prove the inequality; $|\pi_{i}|,$ $|t_{i}|\leq$

$q^{2},$
$\pi_{i},$ $\pi_{i}’\neq 1,$ $q^{2}$ , by applying Lemma 10 (M.Kuga), \S 21. These results, particularly the

existence of the factor $(1-u)^{(q-1)(g-1)}$ , give a starting point of our problems described in

the introduction. Our formula (20) is, modulo some group theory of $PL_{2}(k_{\mathfrak{p}})$ , a conse-

quence of Eichler-Selberg trace formula for the Hecke operators in the space of certain

automorphic foms of weight 2. However, the proof, starting at Eichler-Selberg formula

and ending at (20), is by no means simple, mainly because we do not have a simple proof

of Lemma 3 $($ \S 13 $)$ Finally, we point out that there is also a difference in the standpoint;

Eichler-Selberg’s left side of the formula comes to the right side of ours; (20). For us, the

subject is the set of“elliptic $\Gamma$-conjugacy classes”, and not the Hecke operator.

We shall begin with the definition of the group $\Gamma.$

Discrete subgroup $\Gamma.$

\S 1. Let

(1) $G=PSL_{2}(R)\times PSL_{2}(k_{\mathfrak{p}})$

be considered as a topological group, and for each subset $S$ of $G$ , we denote by $S_{R}$ resp.
$S_{\mathfrak{p}}$ the set-theoretical projections of $S$ to $R$-component (i.e. the first component) resp.

lWe can also prove (20) (for $\mathfrak{p}$

$\dagger$ 2) by using the spectral decomposition of $L^{2}(G/\Gamma)$ .
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$k_{\mathfrak{p}}$-component (i.e. the second component) of $G$ . In particular, we have

(2) $G_{R}=PSL_{2}(R) , G_{\mathfrak{p}}=PSL_{2}(k_{\mathfrak{p}})$ ,

and for any element $x$ of $G,$ $x_{R}$ resp. $x_{\mathfrak{p}}$ denote the $R$-component resp. the $k_{\mathfrak{p}}$-component
of $x$;

(3) $x=x_{R}\times x_{\mathfrak{p}}.$

\S 2. $n_{e}$ subject ofour study is a discrete subgroup $\Gamma$ of $G=G_{R}\times G_{\mathfrak{p}}$, for which $\Gamma_{R}$

and $\Gamma_{\mathfrak{p}}$ are dense in $G_{R}$ and $G_{\mathfrak{p}}$ respectively. So, throughout the following, $\Gamma$ will always
denote such a discrete subgroup of $G.$

EXAMPLE. Let $p$ be a prime number, and let $Z^{(p)}$ be the ring ofrational numbers whose
denominators are powers of $p$ ;

(4) $Z^{(p)}=\{a/p^{n}|a,n\in Z\}.$

Put

(5) $\Gamma=PSL_{2}(Z^{(p)})=SL_{2}(Z^{p)})/\pm I.$

Let $Q_{p}$ be the $p$-adic number field. Then, by the injections $Z^{Cp)}\rightarrow R,$ $\rightarrow Q_{p}$ , the group
$\Gamma$ can be regarded as a subgroup of $G=PSL_{2}(R)\times PSL_{2}(Q_{p})$ . It is discrete in $G$ , since
if $\gamma=\gamma_{R}\times\gamma_{p}\in\Gamma$, and if $\gamma_{p}$ is contained in $PSL_{2}(Z_{p})$ ($Z_{p}$ : the rin$g$ of $p$-adic integers),

which is a neighborhood of the identity of $PSL_{2}(Q_{p})$ , then $\gamma_{R}$ is contained in $PSL_{2}(Z)$ ,

which is discrete in $PSL_{2}(R)$ . It is a simple exercise, in arithmetic ofalgebraic groups, to
check that $\Gamma_{R},$ $\Gamma_{p}$ are dense in $G_{R},G_{p}$ respectively.

Now, for this particular $\Gamma$ , the projection maps $\Gamma\rightarrow\Gamma_{R},$ $\rightarrow\Gamma_{\mathfrak{p}}$ are injective, and the
quotient $ G/\Gamma$ has afinite invariant volume. The former is true in general, as the followming
proposition shows; as for the latter, we do not know whether it is true in general, but,

curious as it may look, we think that it is quite possible.

PROPOSITION 1. Let $\Gamma$ be a discrete subgroup of$G$, forwhich $\Gamma_{R},$ $\Gamma_{\mathfrak{p}}$ are dense in $G_{R},$ $G_{\mathfrak{p}}$

respectively. Then theprojection maps $\Gamma\rightarrow\Gamma_{R},$ $\rightarrow\Gamma_{\mathfrak{p}}$ are injective.

PROOF. Let $\Delta$ be the kemel of the projection $\Gamma\rightarrow\Gamma_{R}.$

(6) $\Delta=\{\gamma=\gamma_{R}\times\gamma_{\mathfrak{p}}\in\Gamma|\gamma_{R}=1\}.$

So $\Delta_{\mathfrak{p}}\cong\Delta$ is discrete in $G_{\mathfrak{p}}$ , and normal in $\Gamma_{\mathfrak{p}}$ ; hence nonnal in $G_{\mathfrak{p}}$ , the closure of $\Gamma_{\mathfrak{p}}$ . So,
$\Delta_{\mathfrak{p}}$ is a discrete normal subgroup of $G_{\mathfrak{p}}$ . On the other hand. it is well-known that if $K$ is
any infimite field, then the group $PSL_{2}(K)=SL_{2}(K)/\pm 1$ is simple (as an abstract group).
So, $G_{\mathfrak{p}}$ is simple, and hence $\Delta_{\mathfrak{p}}=\{\eta$ ; hence $\Delta=\{I\}$ . The injectivity of $\Gamma\rightarrow\Gamma_{\mathfrak{p}}$ follows
exactly in the same manner, by using the simplicity of $G_{R}.$ $\square $

So, we can identify the three canonically isomorphic groups:

$\Gamma_{R}\cong\Gamma\cong\Gamma_{\mathfrak{p}}.$
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PROPOSITION 2. Let $\Gamma$ be a subgroup of $G$ such that the projection maps $\Gamma\rightarrow\Gamma_{R},$ $\rightarrow\Gamma_{\mathfrak{p}}$

are injective, and that $\Gamma_{R},$ $\Gamma_{\mathfrak{p}}$, are dense in $G_{R},$ $G_{\mathfrak{p}}$ respectively. Let $U_{\mathfrak{p}}$ be an open compact

subgroup of $G_{\mathfrak{p}}$ , and let $\Gamma_{R}^{0}$ be theprojection to $R$-component of$\Gamma^{0}=\Gamma\cap(G_{R}\times U_{\mathfrak{p}})$ . Then,

(i) $\Gamma$ is discrete in $G$ ifand only if $\Gamma_{R}^{0}$ is discrete in $G_{R}$ . Moreover, if (i) is satisfied, then,

(ii) the quotient $ G/\Gamma$ is compact (resp. has afinite invariant volume) ifand only if $G_{R}/\Gamma_{R}^{0}$

is compact (resp. has afinite invariant volume).

PROOR The first assertion (i) is immediate. The $iF$
’ part is because $U_{\mathfrak{p}}$ is open, and

the “only if‘ part is because $U_{\mathfrak{p}}$ is compact. As for (ii), if $G_{R}/\Gamma_{R}^{0}$ is compact (resp. has a
finite invariant volume), then, there is a subspace $K_{R}$ of $G_{R}$ which is compact (resp. has a
finite invariant volume) such that $G_{R}=K_{R}\cdot\Gamma_{R}^{0}$ . Since we have $G_{\mathfrak{p}}=U_{\mathfrak{p}}\cdot\Gamma_{p}$ , it follows
immediately that $ G=(K_{R}\times U_{p})\cdot\Gamma$ ; which proves the only if’ part. Conversely, if $G_{R}/\Gamma_{R}^{0}$

is non-compact (resp. has an infinite volume), then there is an open subset $F_{R}$ of $G_{R}$ such
that the restriction to $F_{R}$ of the natural map $\varphi_{R}$ : $G_{R}\rightarrow G_{R}/\Gamma_{R}^{0}$ is injective, and that $F_{R}$

is non-compact (resp. has an arbitrarily large volume). Put $F=F_{R}\times U_{\mathfrak{p}}$ . Then, the
restriction to $F$ ofthe natural map $\varphi$ : $ G\rightarrow G/\Gamma$ is injective, and $F$ is non-compact (resp.
has an arbitrarily large volume); which proves the if’ part of (ii). $\square $

\S 3. Now, $G_{R}=PSL_{2}(R)$ acts on the complex upper halfplane $\mathfrak{H}=\{z\in C|{\rm Im} z>0\}$

as:

(7) $G_{R}\ni g_{R}=\left(\begin{array}{ll}a & b\\c & d\end{array}\right)$ : $\mathfrak{H}\ni Z\mapsto g_{R}\cdot z=\frac{az+b}{cz+d}\in \mathfrak{H}.$

As is well-known, $G_{R}$ acts transitively on $\mathfrak{H}$ , and is identffied with the group $Aut(\mathfrak{H})$

of all automorphisms of the complex Riemann surface $\mathfrak{H}$ . Since $\Gamma$ is identffied with its
projection $\Gamma_{R}\subset G_{R},$ $\Gamma$ also acts on $\mathfrak{H}$ . Two points $z,z’\in \mathfrak{H}$ will be called equivalent (or,

more precisely, $\Gamma$-equivalent), if there is an element $\gamma\in\Gamma$ such that $\gamma_{R}\cdot z=z’$ . We note
that, since $\Gamma_{R}$ is dense in $G_{R}$ , each equivalence class $\Gamma_{R}\cdot z$ is also dense on $\mathfrak{H}.$ $A$ point
$z\in \mathfrak{H}$ will be called a $\Gamma$-fixedpoint, if its stabilizer in $\Gamma$ is infinite. For each $z\in \mathfrak{H}$ , we put

(8) $\left\{\begin{array}{l}G_{z,R} = \{g_{R}\in G_{R}|g_{R}\cdot z=z\}\cong R/Z\\\Gamma_{z,R} =\Gamma_{R}\cap G_{z,R}=\{\gamma_{R}\in\Gamma_{R}|\gamma_{R}\cdot z=z\}.\end{array}\right.$

Let $\Gamma_{z},$ $\Gamma_{z,\mathfrak{p}}$ be the subgroup of $\Gamma,$ $\Gamma_{\mathfrak{p}}$ respectively which correspond to $\Gamma_{z,R}$ by the canonical
isomorphism: $\Gamma_{z,R}\cong\Gamma_{z}\cong\Gamma_{z,\mathfrak{p}}.$

(9) $\left\{\begin{array}{ll}\Gamma_{z} & = \{\gamma\in\Gamma|\gamma_{R}\cdot z=z\}\\\Gamma_{z,\mathfrak{p}} & = \{\gamma_{\mathfrak{p}}\in\Gamma_{\mathfrak{p}}|\gamma\in\Gamma_{z}\}=\{\gamma_{\mathfrak{p}}\in\Gamma_{\mathfrak{p}}|\gamma_{R}\cdot z=z\}.\end{array}\right.$

So, $z\in \mathfrak{H}$ is a $\Gamma$-fixed point if and only if $\Gamma_{z,R}\cong\Gamma_{z}\cong\Gamma_{z,\mathfrak{p}}$ are infinite. Let

(10) $\wp(\Gamma)$

be the set of all $\Gamma$-equivalence classes of all $\Gamma$-fixed points on $\mathfrak{H}$ . We shall see later, that
$\wp(\Gamma)$ is analogous, in various sense, to the set ofall prime divisors of an algebraic function
field of one variable over the finite field $F_{q^{2}}$ , where $q=N\mathfrak{p}.$

An element $g_{R}\in G_{R},$ $g_{R}\neq 1$ will be called elliptic if it has a fixed point on $\mathfrak{H}$ . So, $g_{R}$

is elliptic if and only if $g_{R}$ has imaginary eigenvalues, and hence if and only if $|trg_{R}|<2.$
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If $g_{R}$ is elliptic, then the fixed point $z\in \mathfrak{H}$ of $g_{R}$ (i.e. $z$ such that $g_{R}\cdot z=z$) is unique, and
the centralizer of $g_{R}$ in $G_{R}$ coincides with $G_{z,R}$ . We shall call an element $\gamma$ of $\Gamma$ elliptic,

if $\gamma_{R}$ is elliptic. Thus $\gamma\in\Gamma$ is elliptic if and only if $\gamma\neq 1$ , and $\gamma\in\Gamma_{z}$ for some (unique)
$z\in \mathfrak{H}$ . In this case, by the preceding remark, it is clear that the centralizer of $\gamma$ in $\Gamma$ is $\Gamma_{z}.$

To show that $\wp(\Gamma)$ is non-empty, we note the following. Let $g_{\mathfrak{p}}$ be any element of $G_{\mathfrak{p}}$

offinite order $n$ . Then the eigenvalues of $g_{\mathfrak{p}}$ are contained in some quadratic extension of
$k_{\mathfrak{p}}$ , and are primitive n-th or $2n$-th root of unity. Since there exist at most finitely many

quadratic extensions of $k_{\mathfrak{p}}$ , and since each such field contains at most finitely many roots

ofunity, we see that $n$ must be bounded. Since $\Gamma_{\mathfrak{p}}\cong\Gamma$ is a subgroup of $G_{\mathfrak{p}}$ , this shows that

there are only finitely many possibilities oforders $n$ of elements $\gamma$ of $\Gamma$ . Therefore, the set

$S=$ { $|$ tr $\gamma_{R}|;\gamma\in\Gamma,\gamma$ is of finite order $\neq 1$ }

is finite. Put $G’=\{g_{R}\in G_{R}|| trg_{R}|<2\}$ . Then $G’$ is open, and contains $S$ , which is finite;

and hence $G’-S$ is again an open subset of $G_{R}$ . Since $\Gamma_{R}$ is dense in $G_{R}$ , there exists an
element $\gamma_{R}\in\Gamma_{R}\cap(G’-S)$ . Then $\gamma_{R}$ has a fixed point $z\in \mathfrak{H}$ , and $\Gamma_{z,R}$ is infinite, since it

contains $\gamma_{R}$ . So, $\wp(\Gamma)$ is non-empty.

\S 4.

PROPOSITION 3. Let $z\in \mathfrak{H}$, and let $\Gamma_{z}$ be infinite. Then, $\Gamma_{z.\mathfrak{p}}$ is a discrete abelian sub-

group of $G_{\mathfrak{p}}$ . Moreover, ifweput

$T_{\mathfrak{p}}=\{\left(\begin{array}{ll}t_{\mathfrak{p}} & 0\\0 & t_{\mathfrak{p}}^{-1}\end{array}\right)|t_{\mathfrak{p}}\in k_{\mathfrak{p}}^{x}\}/\{\pm 1\}\subset G_{\mathfrak{p}},$

then there is an element $x_{\mathfrak{p}}\in G_{\mathfrak{p}}$ such that $x_{\mathfrak{p}}^{-1}\Gamma_{z,\mathfrak{p}}x_{\mathfrak{p}}\subset T_{\mathfrak{p}}.$

PROOF. We have $\Gamma_{z,R}\cong\Gamma_{z}\cong\Gamma_{z,\mathfrak{p}}$ canonically, and $\Gamma_{z,R}$ is a subgroup of $G_{z,R}\cong R/Z$

which is compact abelian. Therefore, $\Gamma_{z}$ is abelian. Since $\Gamma_{z}\subset\Gamma$ is discrete in $G$ , and

since $\Gamma_{z,R}$ is an infinite subgroup of a compact subgroup of $G_{R}$ , we see immediately that
$\Gamma_{z,\mathfrak{p}}$ must be discrete in $G_{\mathfrak{p}}.$

Now let $\gamma\in\Gamma_{z}$ be of infinite order, and let $\pm\{\lambda_{\mathfrak{p}}, \lambda_{p}^{-1}\}$ be the eigenvalues of $\gamma_{\mathfrak{p}}.$

We shall show that $\lambda_{\mathfrak{p}}^{-1}\neq\lambda_{\mathfrak{p}}$ and that $\lambda_{\mathfrak{p}}\in k_{\mathfrak{p}}$ . In fact, if $\lambda_{\mathfrak{p}}^{-1}=\lambda_{\mathfrak{p}}$ , then we can

assume that $\lambda_{\mathfrak{p}}^{-1}=\lambda_{\mathfrak{p}}=1$ , and hence $\gamma_{\mathfrak{p}}=x_{\mathfrak{p}}^{-1}\left(\begin{array}{ll}1 & 1\\0 & l\end{array}\right)x_{p}$ with some $x_{\mathfrak{p}}\in GL_{2}(k_{p})$ . If $p$ is

the characteristic of the residue field $0/\mathfrak{p}$ , then $\lim_{n\rightarrow\infty}\left(\begin{array}{ll}1 & p^{n}\\0 & 1\end{array}\right)=1$ ; hence $\lim_{n\rightarrow\infty}\gamma_{\mathfrak{p}}^{p^{n}}=$

$1$ , which contradicts the discreteness of $\Gamma_{z,\mathfrak{p}}$ in $G_{\mathfrak{p}}$ . Therefore, $\lambda_{\mathfrak{p}}^{-1},$ $\lambda_{\mathfrak{p}}$ must be distinct.

Suppose now that $\lambda_{\mathfrak{p}}^{-1}\neq\lambda_{p}$ , but $\lambda_{\mathfrak{p}}\not\in k_{\mathfrak{p}}$ . Put $K_{\mathfrak{p}}=k_{\mathfrak{p}}(\lambda_{\mathfrak{p}})$ . Then, since $\lambda_{\mathfrak{p}}^{-1},\lambda_{\mathfrak{p}}$ are
conjugate of each other over $k_{\mathfrak{p}}$ , we have $\lambda_{\mathfrak{p}}\in K_{\mathfrak{p}}^{1}=\{x\in K_{\mathfrak{p}}|N_{K_{\mathfrak{p}}/k_{\mathfrak{p}}}(x)=1\}$ . Since
$K_{\mathfrak{p}}^{1}$ is a subgroup of the group of units of $K_{\mathfrak{p}},$ $K_{\mathfrak{p}}^{1}$ is compact. Now ifwe ignore the sign

and consider $\gamma_{\mathfrak{p}}$ as an element of $SL_{2}(k_{\mathfrak{p}})$ (choose either one of two), there is a unique

isomorphism $\varphi$ over $k_{\mathfrak{p}}$ of $K_{\mathfrak{p}}$ into $M_{2}(k_{\mathfrak{p}})$ which sends $\lambda_{\mathfrak{p}}$ to $\gamma_{\mathfrak{p}}$ . So, $\gamma_{\mathfrak{p}}$ is contained in
a compact subgroup $\varphi(K_{\mathfrak{p}}^{1})$ of $G_{\mathfrak{p}}$ . Since $\gamma_{\mathfrak{p}}$ is of infinite order by assumption, this also

contradicts the discreteness of $\Gamma_{z,\mathfrak{p}}$ in $G_{\mathfrak{p}}$ . So we have shown that $\lambda_{\mathfrak{p}}^{-1}\neq\lambda_{\mathfrak{p}}$ and that $\lambda_{\mathfrak{p}}\in k_{\mathfrak{p}}.$
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Take $\tilde{x}_{\mathfrak{p}}\in GL_{2}(k_{\mathfrak{p}})$ such that $\tilde{x}_{\mathfrak{p}}^{-1}\gamma_{\mathfrak{p}}\tilde{x}_{\mathfrak{p}}=\pm\left(\begin{array}{ll}\lambda_{\mathfrak{p}} & 0\\0 & \lambda_{\mathfrak{p}}^{-1}\end{array}\right)$ . By putting $x_{\mathfrak{p}}=\tilde{x}_{\mathfrak{p}}(_{0}^{1}\det\tilde{x}_{\mathfrak{p}}^{-1\rangle}0,$

we get $x_{\mathfrak{p}}^{-1}\gamma_{\mathfrak{p}}x_{\mathfrak{p}}=\pm(_{0}^{\lambda_{\mathfrak{p}}}$ $\lambda^{\frac{0}{\mathfrak{p}}\iota\rangle}$ with $x_{\mathfrak{p}}\in G_{\mathfrak{p}}$ . If $\gamma_{\mathfrak{p}}’$ is any element of $\Gamma_{z,\mathfrak{p}}$ , it commutes

with $\gamma_{\mathfrak{p}}$ , and hence $x_{\mathfrak{p}}^{-I}\gamma_{\mathfrak{p}}’x_{\mathfrak{p}}$ is of the form $\pm\left(\begin{array}{ll}\lambda_{\mathfrak{p}}’ & 0\\0 & \lambda_{p}’-]\end{array}\right)$ with some $\lambda_{\mathfrak{p}}’\in k_{\mathfrak{p}}^{\times}$ . So, we get

$x_{\mathfrak{p}}^{-1}\Gamma_{\mathfrak{p}}x_{\mathfrak{p}}\subset T_{\mathfrak{p}}$ , which proves our Proposition. $\square $

COROLLARY. Let $\Gamma_{z}$ be ofinfinite order. Then,

$\Gamma_{z}\cong$ ($a$finite cyclic group) $\times$ (infinite cyclic group).

If $\gamma\in\Gamma_{z}$ is ofinfinite order, then the eigenvalues $\pm\{\lambda_{\mathfrak{p}}, \lambda_{\mathfrak{p}}^{-1}\}of\gamma_{\mathfrak{p}}$ are contained in $k_{\mathfrak{p}}$ , and

not contained in $\mathcal{U}_{\mathfrak{p}},$ $\mathcal{U}_{\mathfrak{p}}$ being the group of $\mathfrak{p}$-adic units of $k_{\mathfrak{p}}.$

PROOR Take $x_{\mathfrak{p}}\in G_{\mathfrak{p}}$ such that $x_{\mathfrak{p}}^{-1}\Gamma_{z,\mathfrak{p}}x_{\mathfrak{p}}\subset T_{\mathfrak{p}}$ . For each $\gamma\in\Gamma_{z}$ , put $x_{\mathfrak{p}}^{-1}\gamma_{\mathfrak{p}}x_{\mathfrak{p}}=$

$\pm\left(\begin{array}{ll}t_{\mathfrak{p}} & 0\\0 & t_{\mathfrak{p}}^{-l}\end{array}\right)$ , and put $t_{\mathfrak{p}}=\varphi(\gamma_{\mathfrak{p}})$ . Then $\varphi$ gives an isomorphism of $\Gamma_{z}$ into $k_{\mathfrak{p}}^{x}/\pm 1$ , and since

$\Gamma_{z,\mathfrak{p}}$ is discrete in $G_{\mathfrak{p}},$ $\varphi(\Gamma_{z})$ is discrete in $k_{\mathfrak{p}}^{x}/\pm 1$ . So, $\varphi(\Gamma_{z})\cap \mathcal{U}_{\mathfrak{p}}/\pm 1$ must be finite, and
$\varphi(\Gamma_{z})$ is the direct product of $\varphi(\Gamma_{z})\cap \mathcal{U}_{\mathfrak{p}}/\pm 1$ and an infinite cyclic subgroup. $\square $

\S 5. Let $P\in\wp(\Gamma)$ , and let $z\in \mathfrak{H}$ be a $\Gamma$-fixed point contained in the class $P$ . By Propo-

sition 3, the set of eigenvalues $\pm\lambda_{\mathfrak{p}}^{\pm 1}$ of all elements $\gamma_{\mathfrak{p}}$ of $\Gamma_{z,\mathfrak{p}}$ forms a discrete subgroup
$\varphi(\Gamma_{z})$ of $k_{\mathfrak{p}}^{\times}/\pm 1$ . Let $ord_{\mathfrak{p}}$ be the normalized additive valuation of $k_{\mathfrak{p}}$ , and put

(11) $ord_{\mathfrak{p}}\varphi_{\mathfrak{p}}(\Gamma_{z})=\{ord_{\mathfrak{p}}(\lambda_{\mathfrak{p}}^{\pm 1})|\gamma_{\mathfrak{p}}\in\Gamma_{z,\mathfrak{p}}\}.$

Then, this is an infinite subgroup of $Z$ , and hence is of the form $a\cdot Z$ with some positive

integer $a$ . If $z$ is replaced by a $\Gamma$-equivalent point $z’=\gamma_{R}’\cdot z(\gamma’\in\Gamma)$ , then $\Gamma_{t}=\gamma’\cdot\Gamma_{z}\cdot\gamma^{\prime-1},$

and hence we have $\varphi(\Gamma_{z’})=\varphi(\Gamma_{z})$ . So, this positive integer $a$ is determined uniquely by
$P$. We shall call this number $a$, the degree of $P$, and denote it by

(12) $\deg P$

It is clear that if $\gamma\in\Gamma_{z}$ is such that, together with some finite group, $\gamma$ generates $\Gamma_{z}$ , and if
$\pm\{\lambda_{p}, \lambda_{\mathfrak{p}}^{-1}\}$ are the eigenvalues of $\gamma_{p}$ , then

(13) $\deg P=|ord_{\mathfrak{p}}(\lambda_{\mathfrak{p}})|.$

The $\zeta$ function of $\Gamma.$

\S 6. We shall define the $\zeta$ function $\zeta_{\Gamma}(u)$ of $\Gamma$ to be the following formal infinite

product;

(14) $\zeta_{\Gamma}(u)=\prod_{P\in\rho(D}(1-u^{\deg P})^{-1},$
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or, equivalently,

(15) $\zeta_{\Gamma}(u)=\exp\sum_{m=1}^{\infty}\frac{N_{m}}{m}u^{m}$

with

(16)
$N_{m}=\sum_{P\epsilon p(\Gamma),degP|m}\deg P (m\geq 1)$

.

That $N_{m}$ are finite will be shown later.

\S 7. Example.2 Let $\Gamma=PSL_{2}(Z^{(p)})$ (see \S 2). Then, we can compute $\zeta_{\Gamma}(u)$ di-
rectly, by using a full knowledge of complex multiplication theory. Thus, let $J(z)=$

$12^{3}g_{2}(z)^{3}/[g_{2}(z)^{3}-27g_{3}\underline{(}z)^{2}]$ be the elliptic modular function, and let $\mathfrak{p}bea-$ divisor of $p$

in the algebraic closure $Q$ ofthe field of rational numbers $Q$ . We consider $Q$ as a subfield
of the complex number field $C$ , and we denote by $O$ the ring of all algebraic integers of
$\overline{Q}$ . Moreover, we denote by $F_{p}$ the finite field with $p$ elements, and by $F_{p}$ its algebraic
closure. We $fix$ an isomorphism $O/\mathfrak{p}\cong\overline{F}_{p}$ and identify them. Let $S$ be the subset of $\overline{F}_{p}$

formed of all $j\in\overline{F}_{p}$ such that the elliptic curve with modulus $\overline{j}$has no points of order
$p$ , or equivalently, the elliptic curve with modulus $\overline{j}$ has Hasse invariant $0$ . Then, it is
well-known that $S$ is finite, and that $S$ is contained in $F_{F}$ . The number of elements of $S$

is given by

(17)
$H=1(p=2,3) , H=\frac{p-1}{12},\frac{p+7}{12},\frac{p+5}{12},\frac{p+13}{12}$

$(p\equiv 1,5,7,11(mod12)$ respectively).

We shall call two elements $x,y\in\overline{F}_{p}$ equivalent, and denote it by $x\sim y$ , if $x,y$ are
conjugate of each other over $F_{p^{2}}$ . So, the number of distinct $y$ with $y\sim x$ ($x$ : given) is
equal to the degree of $x$ over $F_{p^{2}}$ , which will be $called\underline{t}he$ degree ofthe equivalence class.
Since $S\subset F_{p^{2}}$ , we can consider $S$ also as a subset of $F_{p}/\sim.$

Now, for each $P\in\wp(\Gamma),$ $1etz_{P}$ be a $\Gamma$-fixed point contained in the class $P$, and let $J(z_{P})$

be the value of $J$ at $z=z_{P}$ . Then, by using complex multiplication theory, we can check
that $J(z_{P})\in O$ , and that the map $\mathcal{J}$ of $\wp(\Gamma)$ into $F_{p}/\sim$ defined by

(18) $\mathcal{J}:\wp(\Gamma)\ni P\mapsto J(z_{P}) mod \mathfrak{p}\in\overline{F}_{p}/\sim$

is well-defined (the congruence relation!), injective, and degree preserving. Moreover,

the image of $\mathcal{J}$ coincides with $F_{p}/\sim-S$ . Thus, $\mathcal{J}$ gives a degree-preserving one-to-one
correspondence between $\wp(\Gamma)$ and $\overline{F}_{p}/\sim-S$ . Since a straightforward computation shows
that

$\prod_{\overline{x}\epsilon F_{p}/\sim-S}(1-u^{\deg 2})^{-1}=\frac{1}{(1-u)(1-p^{2}u)}\times(1-u)^{1+H},$

2See Chapter 5 for the proof.
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we get

(19) $\zeta_{\Gamma}(u)=\frac{1}{(1-u)(1-p^{2}u)}\times(1-u)^{1+H},$

where $H$ is given by (17).

\S 8. Now let us compute $\zeta_{\Gamma}(u)$ for more general $\Gamma$ . We shall restrict ourselves to the
case where $\Gamma$ is torsion-free (i.e. $\Gamma$ has no elements offinite order) and where the quotient
$ G/\Gamma$ is compact. Our purpose is to prove the following theorem.

THEOREM 1. Let $\Gamma$ be a torsion-free discrete subgroup $ofG$ with compact quotient, and
with dense images ofprojections $\Gamma_{R},$ $\Gamma_{\mathfrak{p}}$ in $G_{R},$ $G_{\mathfrak{p}}$ respectively. Then we have;

(20) $\zeta_{\Gamma}(u)=\frac{\Pi_{i--1}^{g}(1-\pi_{i}u)(1-\pi_{i}’u)}{(1-u)(1-q^{2}u)}\times(1-u)^{(q-1)(g-1)},$

where $q=N\mathfrak{p}$, and $g$ is the genus of $\Gamma_{R}^{0}\backslash \mathfrak{H}$, with $\Gamma^{0}=\Gamma\cap(G_{R}\times U_{\mathfrak{p}}),$ $U_{\mathfrak{p}}=PSL_{2}(O_{\mathfrak{p}})$ . The
numbers $\pi_{i},$ $\pi_{f}’(1\leq i\leq g)$ are algebraic integers satisffing $\pi_{i}\pi_{i}’=q^{2}(1\leq i\leq g)$ .

REMARK. Since $\Gamma_{R}^{0}$ is a torsion-free discrete subgroup of $G_{R}$ with compact quotient
(see \S 2, Proposition 2), we have $g\geq 2$ . The formula (20) is equivalent to saying that $N_{m}$

defined by (16) is finite and is given by:

(20’) $N_{m}=q^{2m}+1-\sum_{i=1}^{g}(\pi_{i}^{m}+\pi_{i}^{Jm})-(q-1)(g-1) (m\geq 1)$ .

This formula for $\zeta_{\Gamma}(u)$ is one of the starting point of our study of $\Gamma.$

Lemmas for the proof of Theorem 1.

\S 9. The proof of Theorem 1 is based on three basic lemmas; Lemmas 1, 2 and 3.
We shall begin by describing Lemma 1.

Let $\Delta$ be a torsion-free discrete subgroup of $G_{R}=PSL_{2}(R)$ with compact quotient,
and let $\tilde{\Delta}$ be a subgroup of $G_{R}$ containing $\Delta$ such that, for any $\gamma\in\tilde{\Delta}$ , the subgroups
$\Delta,$ $\gamma\Delta\gamma^{-1}$ of A are commensurable with each other. Let $\mathcal{H}(\tilde{\Delta}, \Delta)$ be the Hecke ring 3

defined with respect to $\tilde{\Delta}$ and $\Delta$ . For each double coset $\Delta\gamma\Delta\in \mathcal{H}(\tilde{\Delta}, \Delta)$ , we put

(21) $d(\Delta\gamma\Delta)=(\Delta;\gamma^{-1}\Delta\gamma\cap\Delta)=|\Delta\backslash \Delta\gamma\Delta|,$

and define $d(X)$ for arbiffary $X\in \mathcal{H}(\tilde{\Delta}, \Delta)$ by (21) and by linearity. Thus $\mathcal{H}(\tilde{\Delta}, \Delta)\ni X\mapsto$

$d(X)$ gives a linear representation ofthe ring $\mathcal{H}(\tilde{\Delta}, \Delta)$ .
On the other hand, let $\mathfrak{M}_{k}$ be the space ofall holomorphic automorphic fonns ofweight

$k(k=2,4,6, \cdots)$ with respect to $\Delta$ . For each $\Delta\gamma\Delta\in \mathcal{H}(\tilde{\Delta}, \Delta)$ , put $\Delta\gamma\Delta=\Sigma_{i=1}^{d}\Delta\gamma_{i}(d=$

3Defined with respect to the left $\Delta$-cosets.
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$d(\Delta\gamma\Delta))$ , and let $\rho_{k}(\Delta\gamma\Delta)$ be the Hecke operator; i.e. the linear endomorphism of $\mathfrak{M}_{k}$

defined by:

(22) $\rho_{k}(\Delta\gamma\Delta):\mathfrak{M}_{k}\ni f(z)\mapsto\sum_{i=1}^{d}f(\frac{a_{i}z+b_{i}}{c_{i}z+d_{l}})(c_{i}z+d_{j})^{-k}\in \mathfrak{M}_{k},$

where $\gamma_{i}=\pm\left(\begin{array}{ll}a_{i} & b_{i}\\c_{i} & d_{i}\end{array}\right)(1\leq i\leq d)$ . This is independent of the choice of representatives

$\gamma_{1},$ $\cdots,\gamma_{d}$ . Define $\rho_{k}(X)$ for arbitrary $X\in \mathcal{H}(\tilde{\Delta}, \Delta)$ by (22) and by linearity. Then, it is
also easy to check (and is well-known) that $\rho_{k}$ gives an representation ofthe ring $\mathcal{H}(\tilde{\Delta}, \Delta)$

in the ring of all linear endomorphisms of $\mathfrak{M}_{k}$ . Now, by Petersson,

$(f,g)=\int_{\Delta\backslash \mathfrak{H}}f(z)\overline{g(z)}y^{k-2}dxdy (z=x+iy)$

gives a positive hermitian form on $\mathfrak{M}_{k}$ , and the adjoint of $\rho_{k}(\Delta\gamma\Delta)$ with respect to this
hermitian form is $\rho_{k}(\Delta\gamma^{-1}\Delta)$ . Therefore, if $\Delta\gamma^{-1}\Delta=\Delta\gamma\Delta$ is satisfied for all $\gamma\in\tilde{\Delta}$ , then
the Hecke operators $\rho_{k}(\Delta\gamma\Delta)$ are all hermiban. Moreover, $\Delta\gamma^{-1}\Delta=\Delta\gamma\Delta(\forall\gamma\in A)$ implies
the commutativity ofthe rin$g\mathcal{H}(\tilde{\Delta}, \Delta)$ . Therefore, under this condition, $\rho_{k}$ is a direct sum
of real linear representations of $\mathcal{H}(\tilde{\Delta}, \Delta)$ .

Recall now that an element $g_{R}\in G_{R}$ is called elliptic if it has a fixed point on $\mathfrak{H}$ . It

is clear that if $g_{R}\in\Delta\gamma\Delta(\gamma\in\tilde{\Delta})$ is elliptic, and if $\delta\in\Delta$ , then $\delta^{-1}g_{R}\delta$ is also elliptic and

contained in $\Delta\gamma\Delta$ . Let $A(\Delta\gamma\Delta)$ be the number ofall elliptic $\Delta$-conjugacy classes contained
in $\Delta\gamma\Delta$ . Then, if $\Delta\gamma\Delta\neq\Delta$ , Eichler-Selberg’s trace formula for the Hecke operators asserts

tha$t$ ;

(23’) $A(\Delta\gamma\Delta)=d(\Delta\gamma\Delta)+d(\Delta\gamma^{-1}\Delta)-tr\rho_{2}(\Delta\gamma\Delta)-ff\rho_{2}(\Delta\gamma^{-1}\Delta)$ .

(cf. Eichler [12]). As a summary $($for $k=2)$ , we get:

LEMMA 1. Let $\Delta,\tilde{\Delta}$ be as in the beginning of \S 9, and assume that we have $\Delta\gamma^{-1}\Delta=$

$\Delta\gamma\Delta$for all $\gamma\in\tilde{\Delta}.$ Let $\rho=\rho_{2}$ be the representation (22) of $\mathcal{H}(\tilde{\Delta}, \Delta)$ the Hecke operators

in the space ofautomorphicforms ofweight 2 with respect to $\Delta$ . Then, $\rho$ is a direct sum

of $g$ linear real representations $\chi_{1},$ $\cdots,\chi_{g}$, where $g$ is the genus of $\Delta\backslash \mathfrak{H}$. Moreover, if
$\gamma\in\tilde{\Delta},\gamma\not\in\Delta$, then the number $A(\Delta\gamma\Delta)$ ofelliptic $\Delta$-conjugacy classes contained in $\Delta\gamma\Delta$

is given by

(23) $A(\Delta\gamma\Delta)=2(d(\Delta\gamma\Delta)-tr\rho(\Delta\gamma\Delta))$ ,

where $d(\Delta\gamma\Delta)$ is defined by (21).

We remark that, in Eichler-Selberg, $tr\rho(\Delta\gamma\Delta)$ comes on the left side; while in our
point-view, $A(\Delta\gamma\Delta)$ is wanted” and comes on the left side.

4This can also be proved by Lefschetz’ fixed point Theorm.
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\S 10. The second basic lemma is concemed with the Hecke ring $\mathcal{H}(G_{\mathfrak{p}}, U_{\mathfrak{p}})$ , where
$G_{\mathfrak{p}}=PSL_{2}(k_{\mathfrak{p}})$ and

(24) $U_{\mathfrak{p}}=PSL_{2}(O_{\mathfrak{p}})=SL_{2}(O_{\mathfrak{p}})/\pm 1.$

It is clear that $\mathcal{H}(G_{\mathfrak{p}}, U_{\mathfrak{p}})$ is defined, since $g_{\mathfrak{p}}^{-1}U_{\mathfrak{p}}g_{\mathfrak{p}}$ and $U_{\mathfrak{p}}$ , for any $g_{\mathfrak{p}}\in G_{\mathfrak{p}}$ , are com-
mensurable with each other. Let $p$ be a prime element of $k_{\mathfrak{p}}$ $(i.e. pO_{\mathfrak{p}}=\mathfrak{p})$ . Then, by
elementary divisor theory, it is well-known that

(25) $Y_{l}=U_{\mathfrak{p}}(_{0}^{p^{l}}p^{-\iota\rangle U_{\mathfrak{p}}}0 (l=0,1,2, \cdots)$

gives all distinct $U_{\mathfrak{p}}$ double cosets contained in $G_{\mathfrak{p}}$ , and that we have

(26) $Y_{l}^{-1}=Y_{l} (l=0,1,2, \cdots);Y_{0}=U_{\mathfrak{p}}.$

LEMMA 2. We have

(27) $|Y_{0}\backslash Y_{l}|=q^{2l}+q^{2l-1}(l\geq 1)$ ,

and

(28) $\sum_{l=0}^{\infty}Y_{t}u^{l}=\frac{(1-u)(1+.qu)}{1-(Y_{1}-q+1)u+q^{2}u^{2}},$

where the secondformula implies the identity between two power series of $u$ with coeffi-
cients in $\mathcal{H}(G_{\mathfrak{p}}, U_{\mathfrak{p}})$ .

The proof of Lemma 2 will be given later, in \S 17.
Now, let $\Gamma$ be a discrete subgroup of $G=G_{R}\times G_{\mathfrak{p}}$ such that $\Gamma_{R}$ and $\Gamma_{\mathfrak{p}}$ are dense in

$G_{R}$ and $G_{\mathfrak{p}}$ respectively. For each $l=0,1,2,$ $\cdots$ , we put

(29) $\Gamma^{l}=\{\gamma\in\Gamma|\gamma_{\mathfrak{p}}\in Y_{l}\}.$

In particular, $\Gamma^{0}=\Gamma\cap(G_{R}\times U_{\mathfrak{p}})$ forms a subgroup of $\Gamma;$ . and for any $\gamma\in\Gamma,\gamma^{-1}\Gamma^{0}\gamma$

and $\Gamma^{0}$ are commensurable with each other. It is obvious that we have $\Gamma^{0}\cdot\Gamma^{l}\cdot\Gamma^{u}=\Gamma^{l}$

for each $l\geq 0$ , because $Y_{0}Y_{l}Y_{0}=Y_{l}(l\geq 0)$ holds; and moreover, each $\Gamma^{l}$ consists of a

single $\Gamma^{0}$-double-coset. In fact, let $\gamma,\gamma’\in\Gamma^{l}$ . Then $\gamma_{\mathfrak{p}},\gamma_{\mathfrak{p}}’\in Y_{l}=U_{\mathfrak{p}}(_{0}^{p^{l}}p^{-l\rangle U_{\mathfrak{p}};}0$ hence

there exist $u_{\mathfrak{p}},u_{\mathfrak{p}}’\in Y_{0}=U_{\mathfrak{p}}$ such that $\gamma_{\mathfrak{p}}’=u_{\mathfrak{p}}\gamma_{\mathfrak{p}}u_{\mathfrak{p}}’$ . Recall that $\Gamma_{\mathfrak{p}}$ is dense in $G_{\mathfrak{p}}$ , and

take $\delta_{\mathfrak{p}}\in\Gamma_{\mathfrak{p}}^{0}$ which is sufficiently near $u_{\mathfrak{p}}$ . Then $\delta_{\mathfrak{p}}’=\gamma_{\mathfrak{p}}^{\prime-1}\delta_{\mathfrak{p}}\gamma_{\mathfrak{p}}$ is sufficiently near $u_{\mathfrak{p}^{-1}}’$ and

hence is contained in $U_{\mathfrak{p}}$ . On the other hand, $\delta_{\mathfrak{p}}’$ is in $\Gamma_{\mathfrak{p}}$ ; hence we have $\delta_{\mathfrak{p}}\gamma_{p}\delta_{\mathfrak{p}}^{\prime-1}=\gamma_{\mathfrak{p}}’$ with
$\delta_{\mathfrak{p}},\delta_{\mathfrak{p}}’\in\Gamma_{\mathfrak{p}}^{0}$ . Therefore, each $\Gamma^{l}$ consists of a single $\Gamma^{0}$-double coset. Now, since we have
$U_{\mathfrak{p}}\Gamma_{\mathfrak{p}}=G_{\mathfrak{p}}$ and $U_{p}\cap\Gamma_{\mathfrak{p}}=\Gamma_{\mathfrak{p}}^{0}$ , it is now clear that the projection $\Gamma\rightarrow\Gamma_{\mathfrak{p}}\subset G_{\mathfrak{p}}$ induces a
canonical isomorphism of $\mathcal{H}(\Gamma,\Gamma^{0})$ and $\mathcal{H}(G_{\mathfrak{p}}, U_{\mathfrak{p}})$ , which sends to $\Gamma^{l}$ to $Y_{l}(l\geq 0)$ . So,

by Lemma 2, we get:

LEMMA 2’. We have

(30) $|\Gamma^{0}\backslash \Gamma^{l}|=q^{2l}+q^{2l-1} (l\geq 1)$ ,
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and

(31) $\sum_{l=0}^{\infty}\Gamma^{l}u^{l}=\frac{(1-u)(1+qu)}{1-(\Gamma^{1}-q+1)u+q^{2}u^{2}},$

where the secondformula implies the identity between two power series of $u$ with coeffi-
cients in $\mathcal{H}(\Gamma,\Gamma^{\triangleleft})$ . Moreover, each $\Gamma^{l}$ is self-inverse (andhence $\mathcal{H}(\Gamma,P)$ is commutative).

\S 11. Before stating the third lemma, we need some altemative definition of $\zeta_{\Gamma}(u)$ ,
which is simple in our case where $\Gamma$ is torsion-ffee. Now, $\Gamma$ being assumed torsion-free,
each $\Gamma_{z}\neq\{1\}$ is isomorphic to the infinite cyclic group. We recall that $\gamma\in\Gamma$ is called
elliptic if $\gamma_{R}$ is elliptic, and hence equivalently, if $\gamma\neq 1$ and $\gamma\in\Gamma_{z}$ for some $z$ . Such $z$ is
unique; hence we may write $\gamma=\gamma_{z}$ . An elliptic element $\gamma\in\Gamma$ will be calledprimitive, if
$\gamma=\gamma_{z}$ generates $\Gamma_{z}$ . Thus it is clear that an elliptic element can be expressed uniquely as
a positive integral power of a primitive elliptic element of $\Gamma$ . If $\gamma=\gamma_{z}$ is elliptic, and if
$\delta\in\Gamma$, then $\delta\gamma\delta^{-1}$ is elliptic, being contained in $\Gamma_{\delta_{R}z}$ . Ifmoreover $\gamma$ is prinitive, then $\delta\gamma\delta^{-1}$

is also primitive, since it generates $\Gamma_{\delta_{R}z}=\delta\Gamma_{z}\delta^{-1}$ . So, we shall call a $\Gamma$-conjugacy class
$\{\gamma\}_{\Gamma}$ elliptic, if $\gamma$ is so, andprimitive, if $\gamma$ is moreover primitive. Since $\Gamma$ is torsion-free, it
is clear by Proposition 3 (\S 4) that, if $\gamma$ is elliptic, then the eigenvalues $\pm\{\lambda_{\mathfrak{p}}, \lambda_{\mathfrak{p}}^{-1}\}$ of $\gamma_{\mathfrak{p}}$ are
contained in $k_{\mathfrak{p}}$ , and are not in $\mathcal{U}_{\mathfrak{p}}.$

PROPOSITION 4. Let $\{\gamma\}_{\Gamma}$ be an elliptic $\Gamma$-conjugacy class. Then, $\{\gamma\}_{\Gamma}\neq\{\gamma^{-1}\}_{\Gamma}.$

PROOR It is enoug to show that $\gamma_{R}^{-1}$ and $\gamma_{R}$ are not conjugate in $G_{R}$ . Suppose, $on$ the
contrary, that we had $\gamma_{R}^{-1}=g_{R}\cdot\gamma_{R}\cdot g_{R}^{-1}$ with some $g_{R}\in G_{R}$ . Let $z$ be the fixed point of
$\gamma_{R},$

$\gamma_{R}^{-1}$ . Then $\gamma_{R}^{-1}(g_{R}\cdot z)=g_{R}\cdot\gamma_{R}\cdot z=g_{R}\cdot z$; hence $g_{R}\cdot z$ is also fixed by $\gamma_{R}^{-1}$ . Therefore
we have $g_{R}\cdot z=z$; hence $g_{R}\in G_{z,R}$ . Since $G_{z,R}$ is abelian, this implies $g_{R}\gamma_{R}g_{R}^{-1}=\gamma_{R},$

hence $\gamma_{R}^{-1}=\gamma_{R}$ . But this is a contradiction, since $\gamma_{R}\neq 1$ and, by assumption, $\Gamma$ has no
elements offinite order. $\square $

PROPOSITION 5. $\wp(\Gamma)$ is in one-to-one correspondence with the set ofall mutually in-
versepairs $\{\gamma^{\pm 1}\}_{\Gamma}$ ofprimitive elliptic $\Gamma$-conjugacy classes.

PROOF. This is inmediate, if we recall the definitions of $\wp(\Gamma)$ (\S 3) and of primitive
elliptic $\Gamma$-conjugacy classes. The one-to-one correspondence is defined as follows. Take
any $P\in\wp(\Gamma)$ and a $\Gamma$-fixed point $z\in \mathfrak{H}$ contained in the $\Gamma$-equivalence class $P$. Then $\Gamma_{z}$ is
the infinite cyclic group. Let $\gamma,$

$\gamma^{-1}$ be its generators. Then $P\mapsto\{\gamma^{\pm 1}\}_{\Gamma}$ gives the desired
one-to-one correspondence. $\square $

\S 12. Let $\{\gamma\}_{\Gamma}$ be any elliptic $\Gamma$-conjugacy class, and let $\pm\{\lambda_{\mathfrak{p}},\lambda_{\mathfrak{p}}^{-1}\}$ be the eigenvalues
of $\gamma_{\mathfrak{p}}$ . We know that $\lambda_{\mathfrak{p}},\lambda_{p}^{-1}$ are in $k_{\mathfrak{p}}$ and not in $\mathcal{U}_{\mathfrak{p}}$ . Put

(32) $\deg\{\gamma\}_{\Gamma}=|ord_{\mathfrak{p}}\lambda_{\mathfrak{p}}|.$

It is clear that this is a well-defined positive integer, and that for any $r\in Z$, we have
$\deg\{\gamma^{r}\}_{\Gamma}=|r|\deg\{\gamma\}_{\Gamma}$ . Moreover, if a pair $\{\gamma^{\pm 1}\}_{\Gamma}$ of mutually inverse primitive ellipbc
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conjugacy classes corresponds to $P\in\wp(\Gamma)$ , then, $\deg P=\deg\{\gamma\}_{\Gamma}$ holds. (Recall the
definition of $\deg P$ for $P\in\wp(\Gamma)$).

(33) $\wp(\Gamma)\ni P\leftrightarrow\{\gamma^{\pm 1}\}_{r}$ ; primitive elliptic $\Rightarrow\deg P=\deg\{\gamma\}_{\Gamma}.$

So, our $\zeta$ function $\zeta_{\Gamma}(u)$ can also be defined as

(34)
$\zeta_{\Gamma}(u)=\prod_{\{\gamma^{\pm 1}\}_{\Gamma}}(1-u^{\deg\{\gamma^{*1}\}r})^{-1},$

where $\{\gamma^{\pm 1}\}_{\Gamma}$ mns over all pairs ofmutually inverse primitive elliptic $\Gamma$-conjugacy classes. We
shall need the following altemative definition of $\deg\{\gamma\}_{\Gamma}$ ;

PROPOSITION 6. For each $\gamma\in\Gamma^{l}$, we put $l(\gamma)=l$. Let $\{\gamma\}_{\Gamma}$ be an elliptic $\Gamma$-conjugacy
class. Then we have:

(35) $\deg\{\gamma\}_{\Gamma}={\rm Min}_{x\in\{\gamma\}_{\Gamma}}l(x)$ .

PROOR Since $\gamma$ is elliptic (and$ \gamma is of$ infinite order, since $\Gamma is$ assumed torsion-free),

by Proposition 3, there is an element $g_{\mathfrak{p}}\in G_{\mathfrak{p}}$ such that $g_{\mathfrak{p}}^{-1}\gamma_{p}g_{\mathfrak{p}}=(_{0}^{\lambda_{\mathfrak{p}}}$ $\lambda^{\frac{0}{\mathfrak{p}}\iota\rangle}$ with $\lambda_{\mathfrak{p}}\in k_{\mathfrak{p}}$ ;

and we have $\deg\{\gamma\}_{\Gamma}=|ord_{\mathfrak{p}}(\lambda_{\mathfrak{p}})|$ . Put $d=\deg\{\gamma\}_{\Gamma}$ . Then, $ g_{\mathfrak{p}}^{-1}\gamma_{\mathfrak{p}}g_{\mathfrak{p}}=\left(\begin{array}{ll}\lambda_{\mathfrak{p}} & 0\\0 & \lambda_{\mathfrak{p}}^{-l}\end{array}\right)\in$

$U_{\mathfrak{p}}\left(\begin{array}{ll}p^{d} & 0\\0 & p^{-d}\end{array}\right)U_{\mathfrak{p}}=Y_{d}$; where $U_{\mathfrak{p}}=PSL(O_{\mathfrak{p}})$ and $p$ is a prime element of $k_{\mathfrak{p}}$ . Let $\delta_{\mathfrak{p}}\in\Gamma_{\mathfrak{p}}$

be sufficiently near $g_{\mathfrak{p}}$ . Then $\delta_{\mathfrak{p}}^{-1}\gamma_{\mathfrak{p}}\delta_{\mathfrak{p}}\in Y_{d}$ . So, if $\delta\in\Gamma$ corresponds to $\delta_{\mathfrak{p}}$ , we have
$l(\delta^{-1}\gamma\delta)=d$; hence we have $d\geq{\rm Min}_{x\epsilon\{\gamma\}_{\Gamma}}l(x)$ . Now let $\gamma’$ be any element of $\{\gamma\}_{\Gamma}$ , and

put $\gamma_{\mathfrak{p}}’=\pm\left(\begin{array}{ll}a_{\mathfrak{p}} & b_{\mathfrak{p}}\\c_{\mathfrak{p}} & d_{\mathfrak{p}}\end{array}\right)\in G_{\mathfrak{p}}$ . Put $1’=l(\gamma’)$ ; hence $\gamma_{\mathfrak{p}}’\in Y_{l’}$ . This implies that the entries of

$p^{l’}\left(\begin{array}{ll}a_{\mathfrak{p}} & b_{\mathfrak{p}}\\c_{\mathfrak{p}} & d_{\mathfrak{p}}\end{array}\right)$ are integers. Therefore, its eigenvalues $\pm\{p^{l’}\lambda_{\mathfrak{p}},p^{l’}\lambda_{\mathfrak{p}}^{-1}\}$ , must also be integers;

which implies $l’\geq|ord_{\mathfrak{p}}\lambda_{\mathfrak{p}}|=d$; hence we get $d\leq{\rm Min}_{x\in\{\gamma\}_{\Gamma}}l(x)$ . $\square $

\S 13. Now, the third lemma is on a relation between $\Gamma-$ and $\Gamma^{0}$-conjugacy classes. By
Proposition 6, if $\{\gamma\}_{\Gamma}$ is elliptic, then $\{\gamma\}_{\Gamma}\cap\Gamma^{l}=\phi$ for $l<\deg\{\gamma\}_{\Gamma}$ . We have:

LEMMA 3. Let $\{\gamma\}_{\Gamma}$ be a primitive elliptic $\Gamma$-conjugacy class, put $d=\deg\{\gamma\}_{\Gamma}$, and let
$r\geq 1$ . Then, (i) $\{\gamma^{r}\}_{\Gamma}\cap\Gamma^{dr}$ consists ofexactly $d$ distinct $\Gamma^{o}$-conjugacy classes. (ii) $Ifk\geq 1,$

then $\{\gamma^{r}\}_{\Gamma}\cap\Gamma^{dr+k}$ consists ofexactly $dq^{k-1}(q-1)$ distinct $\Gamma^{0}$-conjugacy classes.

The proof, which requires some preliminary studies on the structure of $PL_{2}(k_{\mathfrak{p}})$ , will
be given later, in \S 19.5

COROLLARY. Let $A_{m}(m\geq 1)$ be the one-halfof the number of elliptic $\Gamma^{0}$-conjugacy
classes contained in $\Gamma^{m}$, and let $N_{m}(m\geq 1)$ be, as in \S 6 (16), the sum ofall $\deg P$for all

5An altemative and easier proof is given in Part 2, \S 30, in the proof ofCorollary ofTheorem 4.
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$P\in\wp(\Gamma)$ with $\deg P|m$ :

$ A_{m}=\frac{1}{2}\#$ {elliptic $\Gamma^{0}$-conjugacy classes in $\Gamma^{m}$ }

$N_{m}=\sum_{P\epsilon_{l}pT\lambda ,d\cdot\eta_{m}}\deg P$

Then, they are bothfinite, andwe have:

(36) $A_{m}=N_{m}+(q-1)\sum_{k=1}^{m-1}q^{k-1}N_{m-k} (m\geq 1)$

(37) $N_{m}=A_{m}-(q-1)\sum_{k=1}^{m-1}A_{m-k} (m\geq 1)$ .

PROOR The finiteness of $A_{m}$ is a special case ofLemma 1, applied to $\tilde{\Delta}=\Gamma_{R},$
$\Delta=\Gamma_{R}^{0}.$

To show the finiteness of $N_{m}$ , it is enough to show that there are at most finitely many
elliptic $\Gamma$-conjugacy classes $\{\gamma\}_{\Gamma}$ with a given degree $d$. But, by Proposition 6, such $\{\gamma\}_{\Gamma}$

intersects $\Gamma^{d}$ and the intersection $\{\gamma\}_{\Gamma}\cap\Gamma^{d}$ is a union of (several) elliptic $r^{\triangleleft}$-conjugacy

classes. Therefore, the finiteness of $N_{m}$ follows immediately from that of $A_{d}$ for $dm.$

Now, (36) is a direct consequence ofProposition 6 and Lemma 3. In fact, each elliptic
$\Gamma^{\triangleleft}$-conjugacy class contained in $\Gamma^{m}$ defines an elliptic $\Gamma$-conjugacy class, which can be

written as $\{\gamma^{r}\}_{\Gamma}$ , where $\{\gamma\}_{\Gamma}$ is primitive and $r\geq 1$ . If we put $d=\deg\{\gamma\}_{\Gamma}$ , then, by

Proposition 6, we have $rd\leq m$ . So, fix $k(0\leq k\leq m-1)$ , and for each $4m-k,$

consider all primitive elliptic $\Gamma$-conjugacy classes $\{\gamma\}_{\Gamma}$ of degree $d$. Put $rd=m-k$. Then,
$\{\gamma^{r}\}_{\Gamma}\cap\Gamma^{m}=tV\}_{\Gamma}\cap\Gamma^{rd+k}$ consists of$d(k=0)$ or $dq^{k-1}(q-1)(k>0)$ distinct $r^{\triangleleft}$-conjugacy
classes (Lemma 3). Therefore, we have:

$2A_{m}=\sum_{k=0}^{m-1}\sum_{d|m-k}\#\{\{\gamma\}_{\Gamma}$ ; primitive, elliptic, degree $d\}\times\left\{\begin{array}{ll}d & \cdots k=0,\\dq^{k-1}(q-1) & \cdots k>0.\end{array}\right.$

$=\sum_{vk=0}^{m-1}\sum_{|\gamma|_{\Gamma}\cdot primtie elliptic}\deg\{\gamma\}_{\Gamma}\times\left\{\begin{array}{ll}1 & \cdots k=0,\\q^{k-1}(q-1) & \cdots k>0.\end{array}\right.$

$br$

So, by Proposition 5 and (33), we get

$A_{m}=N_{m}+(q-1)\sum_{k=1}^{m-1}q^{k-1}N_{m-k},$

which settles (36). Now, (37) is a formal consequence of (36). In fact, it can be checked

directly, by substituting (36) on the right side of (37). $\square $
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The proof of Theorem 1 assuming Lemmas 2, 3.

\S 14. We have

(37) $N_{m}=A_{m}-(q-1)\sum_{k=\iota}^{m-1}A_{m-k}.$

Apply Lemma 1 for $\tilde{\Delta}=\Gamma_{R},\Delta=\Gamma_{R}^{0}$ . Since we can identify $\mathcal{H}(r,r^{0})$ with $\mathcal{H}(\Gamma_{R},\Gamma_{R}^{0})$ , we
consider $ d,\rho$ as representations of $\mathcal{H}(\Gamma,\Gamma^{\triangleleft})$ . Since, by (30), we have $d(\Gamma^{m})=|r^{\triangleleft}\backslash \Gamma^{m}|=$

$q^{2m}+q^{2m-1}$ , we get

(38) $A_{m}=q^{2m}+q^{2m-1}-tr\rho(\Gamma^{m})$ $(m\geqq 1)$ .

By substituting (38) in (37), we get

(39) $N_{m}=q^{2m}+q-tr\rho\{\Gamma^{m}-(q-1)\sum_{k=1}^{m-1}\Gamma^{m-k}\}.$

Since tr $\rho(I)=g$ , the genus of $r_{R}^{0}\backslash \mathfrak{H}$ , we get

(40) $N_{m}=q^{2m}+1-(q-1)(g-1)-tr\rho\{\Gamma^{m}-(q-1)\sum_{k=1}^{m}\Gamma^{m-k}\}.$

On the other hand, by (31) (Lemma 2’) we get

(41) $\frac{1-qu}{1-u}\sum_{m=0}^{\infty}\Gamma^{m}u^{m}=\frac{1-q^{2}u^{2}}{1-(\Gamma^{1}-q+1)u+q^{2}u^{2}}$ ;

and by a simple computation, we see that the left side of (41) is equal to

(42) $\sum_{m=1}^{\infty}\{\Gamma^{m}-(q-1)\sum_{k=1}^{m}\Gamma^{m-k}\}u^{m}.$

Put

(43) $1-(\Gamma^{1}-q+1)u+q^{2}u^{2}=(1-\pi u)(1-\pi’u)$

formally, with $\pi/=t\pi=q^{2}$ . Then,

$\frac{1}{(1-\pi u)(1-\pi’u)}=\sum_{m=0}^{\infty}(\pi^{m}+\pi^{m-1}\pi’+\cdots+\pi^{\prime m})u^{m}$

(44)

$=1+\sum_{m=1}^{\infty}(\pi^{m}+\pi^{\prime m})u^{m}+q^{2}u^{2}\frac{1}{(1-\pi u)(1-\pi’u)}$ ;

hence we get

(45) $\frac{1-q^{2}u^{2}}{(1-\pi u)(1-\pi’u)}=1+\sum_{m=1}^{\infty}(\pi^{m}+\pi^{\prime m})u^{m}.$

Therefore, by (41), we get

(46) $\Gamma^{m}-(q-1)\sum_{k=1}^{m}\Gamma^{m-k}=\pi^{m}+\pi^{\prime m} (m\geq 1)$ .
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This is a formal computation, but this shows that if $\chi$ is a linear representation of the
ring $\mathcal{H}(\Gamma,\Gamma^{0})$, and ifwe put

$1-\alpha(\Gamma^{1})-q+1)u+q^{2}u^{2}=(1-\pi u)(1-\pi’u)$,

then

(47) $\chi(\Gamma^{m})-(q-1)\sum_{k=1}^{m}\chi(\Gamma^{m-k})=\pi^{m}+\pi^{\prime m} (m\geq 1)$

holds. Now, by Lemma 1, $\rho$ is a direct sum of $g$ linear representations:

$\rho=\chi_{1}\oplus\cdots\oplus\chi_{g}$ ;

so, by putting

(48) $1-(\chi_{i}(\Gamma^{1})-q+1)u+q^{2}u^{2}=(1-\pi_{l}u)(1-\pi_{i}’u) (1\leq i\leq g,\pi_{i}\pi_{i}’=q^{2})$

we get

(49) $\chi_{i}(\Gamma^{m})-(q-1)\sum_{k=1}^{m}\chi_{i}(\Gamma^{m-k})=\pi_{i}^{m}+\pi_{i}^{\prime m} (1\leq i\leq g, m\geq 1)$ .

So, by summing over $i(1\leq i\leq g)$ , we obtain:

(50) $tr\rho\{\Gamma^{m}-(q-1)\sum_{k=1}^{m}\Gamma^{m-k}\}=\sum_{i=1}^{g}(\theta_{i}+\pi_{i}^{\prime m});$

and hence, by (40), we get

(51) $N_{m}=q^{2m}+1-(q-1)(g-1)-\sum_{i=1}^{g}(\pi_{i}^{m}+\pi_{i}^{\prime m}) (m\geq 1)$ ;

and hence we get

(52) $\zeta_{\Gamma}(u)=\exp\sum_{m=1}^{\infty}\frac{N_{m}}{m}u^{m}=\frac{\prod_{i=1}^{g}(1-\pi_{i}u)(1-t_{i}u)}{(1-u)(1-q^{2}u)}\times(1-u)^{(q-1Xg-1)}.$

Since (48) are the eigenvalues of $1-\phi(\Gamma^{1})-q+1)u+q^{2}u^{2}$ , we have

(53) $\zeta_{\Gamma}(u)=\frac{\det\{1-\phi(\Gamma^{1})-q+1)u+q^{2}u^{2}\}}{(1-u)(1-q^{2}u)}\times(1-u)^{(q-1)(g-1)}.$

That $\pi_{i},\#_{i}(1\leq i\leq g)$ are algebraic integers follows immediately from (51) (for $m=$
$1,$ $\cdots,2g)$ . $\square $

So, we have also shown:

ASUPPLEMENT TO THEOREM 1. The numerator ofthe mainfactor of $\zeta_{\Gamma}(u)$ is given by:

(54) $\prod_{i=1}^{g}(1-\pi_{l}u)(l-\pi_{i}’u)=\det\{1-(\rho(\Gamma^{1})-q+1)u+q^{2}u^{2}\}.$



CHAPTER 1. 1. THE GROUP $\Gamma$ AND ITS $\zeta$-FUNCTION. 15

Proofs of Lemmas 2, 3.

\S 15. Put

(55) $X=PL_{2}(k_{\mathfrak{p}})=GL_{2}(k_{\mathfrak{p}})/k_{\mathfrak{p}}^{x}.$

Then, for any element $x\in X$, we can take its representative $\left(\begin{array}{ll}a & b\\c & d\end{array}\right)mod k_{\mathfrak{p}}^{\times}$ such that

$a,$ $b,c,d$ are all contained in $O_{\mathfrak{p}}$ , but not all are in $\mathfrak{p}$ . Put $(ad-bc)O_{\mathfrak{p}}=\mathfrak{p}^{l(x)}$ . Then, $l(x)$ is
a non-negative integer, well-defined by $x$ . We shall call it the length of $x$ . It is clear that
we have

(56) $l(x_{1}x_{2}\cdots x_{n})\leq l(x_{1})+\cdots+l(x_{n})$

$\equiv l(x_{1})+\cdots+l(x_{n}) (mod 2)$ ,

for any $x_{1},$ $\cdots,x_{n}\in X$ Put

(57) $X_{l}=\{x\in X|l(x)=l\}.$

In particular,

(58) $X_{0}=PL_{2}(O_{\mathfrak{p}})=GL_{2}(O_{\mathfrak{p}})/\mathcal{U}_{\mathfrak{p}}$

is an open compact subgroup of $X^{s}$, and it is well-known by elementary divisor theory, that
each $X_{l}$ consists of a single $X_{0}$-double-coset;

(59) $X_{l}=X_{0}(_{0}^{p^{l}}01\rangle X_{0}$ , where $p$ is any prime element of $k_{\mathfrak{p}}.$

Since $X_{0}$ is open compact, for any $x\in X$, the subgroups $x^{-1}X_{0}x$ and $X_{0}$ are commensurable
with each other; hence $|X_{0}\backslash X_{l}|$ for each $l\geq 0$ is finite, and the Hecke ring $\mathcal{H}(X,X_{0})$ can be
defined. Moreover, since $l(x^{-1})=l(x)$ for each $x\in X$, each $X_{l}$ is self-inverse, and hence
$\mathcal{H}(X,X_{0})$ is commutative. Now, the following lemma is a very well-known one:

LEMMA 4. Let $p$ be a prime element of $k_{\mathfrak{p}}$, and let $l\geq 1$ . Then the following set of
matrices mod kd foms a set ofrepresentatives $ofX_{0}\backslash X_{l\prime}.$

(60) $\{\left(\begin{array}{ll}p^{m} & \alpha\\ 0 & p^{n}\end{array}\right);$

$m,n\geq 0,m+n=l$

$\alpha.$ representatives of $O_{\mathfrak{p}}(mod \mathfrak{p}^{n})$

If$m,n$ are both $>0,$ the

$n\alpha\not\equiv 0(mod \mathfrak{p})\}.$

In particular, we have

(61) $X_{1}=X_{0}\left(\begin{array}{ll}p & 0\\0 & 1\end{array}\right)+\sum_{\alpha mod \mathfrak{p}}X_{0}(_{0}^{1}p\alpha)$ (disjoint);

hence we have $|X_{0}\backslash X_{1}|=1+q.$
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\S 16. Now we shall prove the following two equivalent lemmas; Lemmas 5, 5’.

LEMMA 5. Put $X_{1}=\sum_{i=0}^{q}X_{0}\pi_{i}$ (disjoint). then,

(i) For each $i(0\leq i\leq q)$, there exists a unique $suffi\kappa j(0\leq j\leq q)$ such that $\pi_{j}\pi_{i}\in X_{0}.$

We shallput $j=\rho(\iota)(0\leq i\leq q)$ .
(ii) Any element $x\in X_{l}(l\geq 0)$ can be expressed uniquely in theform:

(62) $x=u\pi_{i_{1}}\pi_{i_{2}}\cdots\pi_{i_{l}}$ , with $u\in X_{0},$ $i_{n}\neq\rho(i_{n+1})(1\leq\forall n\leq l-1)$ .

Conversely, an element $x\in X$ofthe$fom(62)$ is contained in $X_{l}$. In short, we have

(63) $X_{l}=\sum’X_{0}\pi_{i_{1}}\cdots\pi_{i_{l}},$

where the disjoint union $\sum’$ is over all $\{i_{1}, \cdots, i_{l}\}$ such that $i_{n}\neq\rho(i_{n+1})$for all $ n(1\leq n\leq$

$l)$.

We note that (i) is trivial, since $j=\rho(i)$ is uniquely determined by $X_{0}\pi_{j}=X_{0}\pi_{i}^{-1}$ . This
is merely for a better understanding of (ii).

LEMMA 5’. As elements of$\mathcal{H}(X,X_{0})$, we have

(64) $X_{1}^{2}=X_{2}+(q+1)X_{0},$

(65) $X_{1}X_{l}=X_{l}X_{1}=X_{l+1}+qX_{l-1} (l\geq 2)$ .

This Lemma 5’ is more or less well-known. We shall prove Lemma 5 (ii) and Lemma

5’ in the followming order;

Lemma 5 (ii) for a particular $\pi_{0},$ $\cdots,\pi_{q}\Rightarrow$ Lemma $ 5’\Rightarrow$ Lemma 5(ii) for any $\pi_{0},$ $\cdots$ , $\pi_{q}.$

PROOR Let $p$ be a prime element of $k_{\mathfrak{p}}$ , and let $\alpha_{1}=0,\alpha_{2},$ $\cdots$ , $\alpha_{q}$ be a set ofrepresen-

tatives of $O_{\mathfrak{p}}mod \mathfrak{p}$ . Put

(66) $\pi_{0}=(_{0}^{p}01\rangle,\pi_{i}=(_{0}^{1}\alpha_{i\rangle}p (1\leq i\leq q)$ .

By (61), we have $X_{1}=\Sigma_{i=0}^{q}X_{0}\pi_{i}$ (disjoint). Since

$\pi_{0}\pi_{i}=\left(\begin{array}{ll}p & p\alpha_{i}\\0 & p\end{array}\right)\equiv\left(\begin{array}{ll}1 & \alpha_{i}\\0 & l\end{array}\right) (mod k_{p}^{\times})$ ,

we have $\pi_{0}\pi_{i}\in X_{0}$ for $1\leq i\leq q$ , and hence $\rho(\iota)=0(1\leq i\leq q)$ . Since

$\pi_{1}\pi_{0}=\left(\begin{array}{ll}p & 0\\0 & p\end{array}\right)\equiv(_{0}^{1}01\rangle (mod k_{\mathfrak{p}}^{\times})$ ,

we have $\pi_{1}\pi_{0}\epsilon X_{0}$ ; hence $\rho(0)=1$ . So, to show Lemma 5 (ii), it is enough to show that:

(67) $X_{l}=\sum_{s=0}^{l}\sum_{i_{1}\cdot\cdots.i_{l-s}\geq 1t_{l-s^{>1ifs>0}}}X_{0}\pi_{i_{1}}\cdots\pi_{i_{l-s}}\pi_{0}^{s}$
(disjoint).

But we have
$\pi_{i_{1}}\cdots\pi_{i_{l-s}}\pi_{0}^{s}=\left(\begin{array}{llll}p^{s} & \alpha_{t_{l-s}}+\alpha_{i_{l-\prime-1}}p+ & \cdots & +\alpha_{i_{1}}p^{l-s-l}\\0 & p^{l-s} & & \end{array}\right).$
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Hence, (67) follows immediately from Lemma 4. So, Lemma 5 (ii) is proved for the
particular $\pi_{0},$ $\cdots,\pi_{q}$ given by (66). This also shows $|X_{0}\backslash X_{l}|=q^{l}+q^{l-1}(l\geq 1)$ .

Now let us prove Lemma 5’. Let $\pi_{0},$ $\cdots,\pi_{q}$ be as in (66). Then we have $X_{1}=$

$\sum_{i=0}^{q}X_{0}\pi_{i}$ ; hence $X_{1}^{2}=\sum_{i,j}X_{0}\pi_{j}\pi_{i}$ , multiplicity being taken into account. Hence

$X_{1}^{2}=\sum_{i,j j\neq\rho(\iota)}X_{0}\pi_{j}\pi_{i}+\sum_{i,j j=\rho(\iota)}X_{0}\pi_{j}\pi_{i}=X_{2}+\sum_{j=\rho(\iota)}X_{0}=X_{2}+(q+1)X_{0}.$

By Lemma 5 (ii) for these $\pi_{0},$ $\cdots,\pi_{q}$ , we have $X_{l}=\sum_{i_{n}\neq\rho(i_{n+1}),\forall n}X_{0}\pi_{i_{1}}\cdots\pi_{i_{l}}$ . So,

$X_{1}X_{l}=\sum_{i=0}^{q}\sum_{i_{n}\neq\rho(i_{n+1})}X_{0}\pi_{i}\pi_{i_{1}}\cdots\pi_{i_{l}}$

$=\sum_{n_{1}+1}X_{0}\pi_{i}\pi_{i_{1}}\cdots\pi_{i_{l}}+\sum_{)t_{n}\neq\rho(i),i_{n}\neq\rho(i_{n_{1}+1} ,i\neq\rho(i)j=\rho(i)}.X_{0}\pi_{i}\pi_{i_{1}}\cdots\pi_{i_{l}}$

$=X_{l+1}+\sum_{nn\rho_{\hslash}+1 ,1\leq\leq l-1}X_{0}\pi_{i_{2}}\cdots\pi_{i_{l}}i\neq(i).$

$=X_{l+1}+\sum_{i_{1\neq\rho(i_{2})}}\sum_{t_{n}\neq\rho(i_{n+1}),2\leq n\leq l-1}X_{0}\pi_{i_{2}}\cdots\pi_{i_{l}}$

$=X_{l+1}+qX_{l-1} (\geq 2)$ .

Since $\mathcal{H}(X,X_{0})$ is commutative, we have $X_{l}X_{1}=X_{1}X_{l}=X_{l+1}+qX_{l-1}$ ; hence Lemma 5’ is
proved.

Finally, let us prove Lemma 5 (ii) for an arbitrary set $\pi_{0},\pi_{1},$ $\cdots,\pi_{q}$ of representatives
of $X_{0}\backslash X_{1};X_{1}=\sum_{i=0}^{q}X_{0}\pi_{i}$ . By (65), we obtain

(68) $X_{1}^{l}=X_{l}+cX_{l-2}+c’X_{l-4}+\cdots (l\geq 1)$ ,

where $c,c’,$ $\cdots$ are non-negative integers. In fact, it is trivial for $l=1$ ; so, assume that (68)

is true for some $l\geq 1$ , and multiply $X_{1}$ on both sides. Then ffom (65) follows directly ffiat
(68) is also true for $l+1$ . Now, the expression of $X_{1}$ by the formal sum of $1eftX_{0}$-cosets,

multiplicities being taken into account, will be

(69) $\sum X_{0}\pi_{i_{1}}\cdots\pi_{i_{l}}=\sum’X_{0}\pi_{i_{1}}\cdots\pi_{i_{l}}+$ lower length terms,

where the first formal $s\iota m\sum$ is over all $0\leq i_{1},$
$\cdots,$ $i_{l}\leq q$ , and the second one, $\sum’$ , is

over all $0\leq i_{1},$ $\cdots,i_{l}\leq q$, with $i_{n}\neq\rho(i_{n+1})$ for all $n(1\leq n\leq l-1)$ . On the other hand,
the number of terms under $\sum’$ in (69) is $q^{l}+q^{l-1}$ , which is equal to $|X_{0}\backslash X_{l}|$ . Thus, by

comparing (68) and (69), we see that all left $X_{0}$ cosets under $\sum’$ in (69) must be mutually
distinct, elements of such left $X_{0}$ cosets have length $l$, and that

$X_{l}=\sum’X_{0}\pi_{i_{1}}\cdots\pi_{i_{l}}$ (disjoint);

which proves Lemma 5 (ii). $\square $

COROLLARy 1. We have

(70) $|X_{0}\backslash X_{l}|=|X_{l}/X_{0}|=q^{l}+q^{l-1}$ for $l\geq 1.$

REMARK. Since $X_{t}^{-1}=X_{t}$ , we have $|X_{l}/X_{0}|=|X_{0}\backslash X_{l}|.$
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COROLLARY 2. We have

(71) $\sum_{l\overline{-}0}^{\infty}X_{l}u^{l}=\frac{1-u^{2}}{1-X_{1}u+qu^{2}},$

as an identity between twofomalpower series of$u$ with coefficients in $\mathcal{H}(X,X_{0})$.

PROOF. That $(1-X_{1}u+qu^{2})\sum_{l-0}^{\infty}-X_{l}u^{l}=1-u^{2}$ follows directly from Lemma 5’. $\square $

\S 17. The proof of Lemma 2. Put

$\chi=\{x\in X|l(x)\equiv 0(mod 2)\}$

(72)
$=\bigcup_{l=0}^{\infty}X_{2l}. $

Then, forms a subgroup of $X$ with in-
dex2. It is easy to see that if $ X\ni x\mapsto$

onto $k_{\mathfrak{p}}^{x}/k_{\mathfrak{p}}^{\times 2}$ induced from the determinant

$\det x\in k_{\mathfrak{p}}^{x}/k_{\mathfrak{p}}^{\times 2}$ is ffie homomorphism of $X$

map: $GL_{2}(k_{\mathfrak{p}})\ni x\mapsto\det x\in k_{\mathfrak{p}}^{x}$ , then we
have

$X=\{x\in X|\det x\in\epsilon^{2}\mathcal{U}_{\mathfrak{p}}/k_{p}^{x2}\}$

(73) $=\{x\in X|ord_{\mathfrak{p}}(\det x)\equiv 0 (mod 2)\}$

$=PL_{2}(O_{\mathfrak{p}})\cdot PSL_{2}(k_{\mathfrak{p}})=X_{0}\cdot G_{\mathfrak{p}}.$

On the other hand, (71) gives rise to

$2 \sum_{l=0}^{\infty}X_{2l}u^{2l}=\sum_{l\overline{-}0}^{\infty}X_{l}u^{l}+\sum_{l=0}^{\infty}X_{l}(-u)^{l}=\frac{2(1-u^{2})(1+qu^{2})}{(1+qu^{2})^{2}-X_{1}^{2}u^{2}}$ ;

hence we get

(74) $\sum_{l=0}^{\infty}X_{2l}u^{l}=\frac{(1-u)(1+qu)}{1-(X_{2}-q+1)u+q^{2}u^{2}}.$

So, to prove Lemma 2, it is enough to show that $\mathcal{H}(G_{\mathfrak{p}}, U_{\mathfrak{p}})$ and $\mathcal{H}(X,X_{0})$ are canonically
isomorphic, i.e. there is an isomorphism which maps $Y_{l}$ on $X_{2l}(l\geq 1)$ . To see this,
we remark that, in general, if $G_{1}\supset G_{2},$ $H_{1}$ are three groups such that $G_{1}=G_{2}H_{1}$ ;
$x^{-1}G_{2}x\sim G_{2}$ $(\sim:$ commensurability, $\forall x\in G_{1})$, $x^{-1}H_{2}x\sim H_{2}(\forall x\in H_{1};H_{2}=H_{1}\cap G_{2})$, and
that $G_{2}h_{1}G_{2}\cap H_{1}=H_{2}h_{1}H_{2}(\forall h_{1}\in H_{1})$, then the two Hecke rings $\mathcal{H}(G_{1},G_{2}),$ $\mathcal{H}(H{}_{1}H_{2})$

defined with respect to (say) left coset decompositions are canonically isomorphic; i.e.,
$H_{2}h_{1}H_{2}\in \mathcal{H}(H_{1},H_{2})$ corresponds to $G_{2}h_{1}G_{2}\in \mathcal{H}(G_{1},G_{2})$ . This follows immediately
from the definition of the Hecke rings. Thus, to show that $\mathcal{H}(G_{\mathfrak{p}}, U_{\mathfrak{p}})$ and $\mathcal{H}(X,X_{0})$ are
isomorphic by $Y_{l}\mapsto X_{2l}(l\geq 0)$, it is enoug to check $X_{2l}\cap G_{\mathfrak{p}}=Y_{l}(l\geq 0)$, since we

know that $Y_{l}$ is a single $U_{\mathfrak{p}}$ double coset. But $Y_{l}=U_{\mathfrak{p}}(_{0}^{p^{l}}p^{-l\rangle U_{\mathfrak{p}}}0$ consists ofall elements

$g_{\mathfrak{p}}\in G_{\mathfrak{p}}=PSL_{2}(k_{\mathfrak{p}})$ with elementary divisors $p^{-l},p^{l}$ ; i.e., all elements $g_{\mathfrak{p}}\in G_{\mathfrak{p}}\cap X_{2l}$;
hence the Lemma 2 is proved. $\square $
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\S 18. For the proof of Lemma 3, we need some more lemmas, which are direct con-
sequences ofLemma $5^{6}$

Let $x_{1},$ $\cdots$ , $x_{n}\in X=PL_{2}(k_{\mathfrak{p}})$ . We shall say that the product $x_{1}\cdots\cdot\cdot x_{n}$ isfree, if

(75) $l(x_{1}\cdots\cdot\cdot x_{n})=l(x_{1})+\cdots+l(x_{n})$

holds.

LEMMA 6. Let $x,$ $y,z\in X,$ $y\not\in X_{0}$ . Ifthe twopmducts $x\cdot y,$ $y\cdot z$ arefree, then thepmduct
$x\cdot y\cdot z$ is alsofree.

PROOR Let $\pi_{0},$ $\cdots,\pi_{q}$ be as in Lemma 5, and factorize $z=u\pi_{\lambda_{1}}\cdots\pi_{\lambda_{l}},$ $yu=u’\pi_{\mu_{1}}\cdots\pi_{\mu_{m}},$

$xu’=u’’\pi_{v\iota}\cdots\pi_{v_{n}}$ , where $u,$ $u’,$ $u’’\in X_{0},$ $l=l(z),$ $m=l(y)>0,n=l(x)$ (see Lemma 5).
By assumption, $y\cdot z,x\cdot y$ are free products; hence $\pi_{\mu_{m}}\pi_{\lambda_{1}}\not\in X_{0},$ $\pi_{v_{n}}\pi_{\mu 1}\not\in X_{0}$ . Therefore, by
Lemma 5, $xyz=u’’\pi_{v}\cdots\pi_{v_{n}}\pi_{\mu\iota}\cdots\pi_{\mu_{m}}\pi_{\lambda_{1}}\cdots\pi_{\lambda_{l}}1$ has length $l+m+n.$ $\square $

LEMMA 7. Let $x\cdot y$ be affeeproduct, and let $xy=u\pi_{i_{1}}\cdots\pi_{i_{l}}$ be thefactorization (62)

of$xy$. Then, $x=u\pi_{i_{1}}\cdots\pi_{i_{m}}u^{\prime-1},$ $y=u’\pi_{i_{m+1}}\cdots\pi_{i_{l}}$ with some $u’\in X_{0}$, and with $m=l(x)$ .

PROOR Let $y=u’\pi_{j_{m+1}}\cdots\pi_{j_{l}}$ be the factorization (62) for $y$ . Since the factorization of
$xy$ can be obtained by factorizations of $x$ and $y$, and then by carrying the elements of $X_{0}$

to the left (no influence to $y$-side!), we see directly by the uniqueness offactorization (62)

for $xy$ that $j_{m+1}=i_{m+1},$ $\cdots$ , $j_{l}=i_{l}$ , nd hence $y=u’\pi_{i_{m+1}}\cdots\pi_{i_{l}}$ for some $u’\in X_{0}.$ $\square $

LEMMA 8. Let $x,y\in X$, andput $l(xy)=l(x)+l(y)-2d$ Then $d\leqq l(x),$ $l(y)$; and if
$x=x’’\cdot x’,$ $y=y’\cdot y’’$ arefreeproducts with $d\leqq l(x’),$ $l(y’)$, then $l(x’y’)=l(x’)+l(y’)-2d$

PROOF. The first assertion is clear.7 Let

$x=u\pi_{i_{1}}\cdots\pi_{i_{l}}, y=u’\pi_{j_{1}}\cdots\pi_{j_{m}}$

be the factorizations (62) for $x,$ $y$ . By Lemma 7,

$x’=u’’\pi_{i_{s}}\cdots\pi_{i_{l}}, y’=u’\pi_{j\iota}\cdots\pi_{j_{l}}u’’’$

with $u’’,$ $u’’’\in X_{0},$ $l(x’)=l-s+1\geq d,$ $l(y’)=t\geq d$. It is enough to prove that

$l(\pi_{i_{s}}\cdots\pi_{i_{l}}u’\pi_{j_{1}}\cdots\pi_{j_{t}})=(l-s+1)+t-2d.$

This can be seen easily from the process of obtaining the factorization (62) for $xy$ from
that of $x$ and $y$ given above. $\square $

LEMMA 9. Let $x_{1},$ $\cdots,$ $x_{n}$ be any elements $ofX$ andput

$l(x_{i}x_{i+1})=l(x_{i})+l(x_{i+1})-2d_{i} (1\leq i\leq n-1)$ .

If$l(x_{i+1})>d_{i}+d_{i+1}$ holds 8for all $i(1\leq i\leq n-2)$, then

(76) $l(x_{1}\cdots x_{n})=l(x_{1})+\cdots+l(x_{n})-2(d_{1}+\cdots+d_{n-1})$ .

6They are given in Y. Ihara [16].
7Since $x=xy\cdot y^{-1}$ , we have $l(x)\leq l(xy)+l(y)$ ; thus we get $1(xy)\geq|l(x)-l(y)|.$

8Where we put $d_{n}=0.$
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PROOF. Factorize each $x_{i}$ into free product $x_{i}=a_{i}b_{i}c_{i}$ with $l(a_{i})=d_{i-1},l(b_{i})=l(x_{i})-$

$d_{i}-d_{i-1}>0,l(c_{i})=d_{i}$ (here we understand $a_{1}=c_{n}=1$ ). Lemma 8 shows that $ c_{i}a_{i+1}\in$

$X_{0}(1\leq i\leq n-1)$ , and that $l(b_{i}c_{i}a_{i+1}b_{i+1})=l(b_{i})+l(b_{i+1})$ , and hence the products
$(b_{j}c_{i}a_{i+1})\cdot b_{i+1}$ , and hence also ffie product $(b_{i}c_{i}a_{i+1})\cdot(b_{i+1}c_{i+1}a_{i+2})$ are free. Now our
lemma follows directly from Lemma 6. $\square $

COROUARY. Let $x_{1},$ $\cdots$ , $x_{n}\in X$ with $l(x_{2}),$ $\cdots$ , $l(x_{n-1})>0$ . Then, if the products
$x_{1}\cdot x_{2},$ $\cdots,$ $x_{n-1}\cdot x_{n}$ are allfree, the product $x_{1}\cdots x_{n}$ is alsofiee.

\S 19. The proof of Lemma 3. Recall the definitions;

$\Gamma^{l}=\{\gamma\in\Gamma|\gamma_{\mathfrak{p}}\in Y_{l}=U_{\mathfrak{p}}\left(\begin{array}{ll}p^{l} & 0\\0 & p^{-l}\end{array}\right)U_{\mathfrak{p}}\} (l\geqq 0)$ ,

where $U_{\mathfrak{p}}=PSL_{2}(O_{\mathfrak{p}})$ , and $p$ is a prime element of $k_{\mathfrak{p}}$ . When $\gamma\in\Gamma$ belongs to $\Gamma^{l}$ , we
put $l=l(\gamma)$ . To avoid unnecessary suffices, we shall not make distinction between $\Gamma$ and
$\Gamma_{\mathfrak{p}}$ ; and consider $\Gamma$ as $a$ (dense) subgroup of $G_{\mathfrak{p}}$ . Also, we consider $G_{\mathfrak{p}}=PSL_{2}(k_{\mathfrak{p}})$ as
a subgroup of $X=PL_{2}(k_{\mathfrak{p}})$ . We note here, that the definitions of the fimctions $l(x)$ are
different on $G_{\mathfrak{p}}$ and on $X$; in fact, we have $Y_{l}=G_{\mathfrak{p}}\cap X_{2l}$ . We shall use the symbol $l(x)$

exclusively in the sense that $l(x)=l$ for $x\in Y_{l}$ . We shall further put $L(x)=l$ for $x\in X_{l}.$

Thus, we have

(77) $l(x)=2L(x)$ for $x\in G_{\mathfrak{p}}.$

The product $\gamma_{1}\gamma_{2}\cdots\gamma_{n}$ of $\gamma_{1},$ $\cdots,$
$\gamma_{n}\in\Gamma$ is $called\ell ee$, if $l(\gamma_{1}\cdots\gamma_{n})=l(\gamma_{1})+\cdots+l(\gamma_{n})$

holds. We shall show that any element $\gamma\in\Gamma$ with $l(\gamma)=l(l=1,2, \cdots)$ is a free product

of elements of $\Gamma^{1}$ ;

(78) $\gamma=\gamma_{1}\gamma_{2}\cdots\gamma_{l}$ ; $\gamma_{1},$

$\cdots,\gamma_{l}\in\Gamma^{1}.$

In fact, it is trivial for $l=1$ . Assume that it is true for $l(\gamma)\leqq l-1$ , and prove it for $l(\gamma)=l.$

By Lemma 5, we can put $\gamma=x_{1}x_{2}\cdots x_{2l}$ with $x_{1},$ $\cdots,x_{2l}\in X_{1}$ . Since $PL_{2}(O_{p})\Gamma_{\mathfrak{p}}=$

$PL_{2}(O_{\mathfrak{p}})\cdot G_{\mathfrak{p}}=X$ , there is an element $\gamma_{l}\in\Gamma$ contained in $PL_{2}(O_{\mathfrak{p}})x_{2l-1}x_{2l}$ . Then we
have $l(\gamma_{l})=1,$ $l(\gamma\gamma_{l}^{-1})=l-1$ , and hence by the induction assumption, we have $\gamma\gamma_{l}^{-1}=$

$\gamma_{1}\cdots\gamma_{l-1}$ wifh $\gamma_{1},$ $\cdots,$
$\gamma_{l-1}\in\Gamma^{1}$ ; hence we get $\gamma=\gamma_{1}\gamma_{2}\cdots\gamma_{l}.$

Now let $\{\gamma\}_{\Gamma}$ be a primitive elliptic $\Gamma$-conjugacy class of degree $d$. By Proposition
6, we can assume, without loss of generality, that $l(\gamma)=d$. Put $\gamma=\gamma_{1}\cdots\gamma_{d}$ wifh $\gamma_{1},$

$\cdots$ , $\gamma_{d}\in\Gamma^{1}$ . Then the products $7\iota.\gamma_{2},$ $\cdots,$ $\gamma_{d-1}\cdot\gamma_{d}$ are free; but moreover, the product
$\gamma_{d}\cdot\gamma_{1}$ must also be hee. In fact, if not, then $l(\gamma\iota^{-1}\gamma\gamma_{1})=l(\gamma_{2}\cdots\gamma_{d}\gamma_{1})<d$, which is a
contradiction, since by Lemma 6, we have $d={\rm Min}_{x\epsilon\{\gamma\}r}1(x)$ . Therefore, the products $\gamma\cdot\gamma,$

$\gamma\cdot\gamma\cdot\gamma,$
$\cdots$ etc. are also ffee, and we have $l(\gamma^{r})=|r|l(\gamma)=|r|d$ for any $ r\in$ Z. Another

remark is that, if $\gamma_{1}^{-1}=u_{1}\pi_{a}\pi_{b},$ $\gamma_{d}=u_{2}\pi_{e}\pi_{f}$ are the factorizations (62) of $\gamma_{1}^{-1},$
$\gamma_{d}$, then,
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since $\gamma_{d}\cdot\gamma_{1}$ is a free product, we have $\pi_{b}\neq\pi_{f}$ . On the other hand, ifx $=u\pi_{i_{1}}\cdots\pi_{i_{l}}$ is
the factorization for $ x\in\Gamma$, then the product $x\cdot\gamma_{1}$ is ffee if and only if $\pi_{i_{l}}\neq\pi_{b};\gamma_{d}\cdot x^{-1}$

is free if and only if $\pi_{i_{l}}\neq\pi_{f}$ . In particular, it shows that at least one of the two products
$x\cdot\gamma_{1},$

$\gamma_{d}\cdot x^{-1}$ must be free. Since $\gamma_{i}\cdot\gamma_{i+1}$ is a free product for any $i$, where the index is

considered $mod d$, we see that the above remark is also valid, ifwe replace $\gamma_{d},$ $\gamma_{1}$ by $\gamma_{i},$

$\gamma_{i+1}$ respectively.
Now the proof of Lemma 3 requires a separate treatment for the cases $k$: even or $k$:

odd.
The case $k$ is even. Let $S$ be a set of representatives of $\Gamma^{0}\backslash \Gamma^{k/2}$ . If $k=0$ , then we

simply put $S=\{I\}$ . If $k>0$ , then we have $|S|=q^{k-1}(q+1)$ . In this case, for each $i$

$(mod d)$ , let $S_{i}$ be a subset of $S$ formed of all $x\in S$ such that $x\cdot\gamma_{i}$ and $\gamma_{i-1}\cdot x^{-1}$ are ffee
products. Then, by the previous remark, $S_{i}$ consists of $q^{k-1}(q-1)$ elements (see Lemma

5 $)$ . If $k=0$ , we simply put $S_{i}=S=\{I\}(1\leq i\leq d)$ . We shall prove that the following
set of $dq^{k-1}(q-1)(k>0)$ or $d(k=0)$ elements of $\Gamma$ forms a set of representatives of all
$\Gamma^{0}$-conjugacy classes contained in $\{\gamma^{r}\}_{\Gamma}\cap\Gamma^{dr+k}$;

(79) $\left\{\begin{array}{ll}y_{1}(\gamma_{1}\gamma_{2}\cdots\gamma_{d})^{r}y_{1}^{-1}; & y_{1}\in S_{1}\\y_{2}(\gamma_{2}\gamma_{3}\cdots\gamma_{1})^{r}y_{2}^{-1}; & y_{2}\in S_{2}\\: & \end{array}\right.$

:

$y_{d}(\gamma_{d}\gamma_{1}\cdots\gamma_{d-1})^{r}y_{d}^{-1}$ ; $y_{d}\in S_{d}.$

Since the products $y_{i}\cdot\gamma_{i},$
$\gamma_{i-1}\cdot y_{i}^{-1}$ are free, the product $y_{i}(\gamma_{i}\cdots\gamma_{i-1})^{r}y_{i}^{-1}=y_{i}\cdot\gamma_{i}\cdots\cdot\cdot\gamma_{i-1}\cdot y_{i}^{-1}$

is free (corollary ofLemma 9); hence they are contained in $\Gamma^{dr+k}$ . On the other hand, since

$(\gamma_{i}\gamma_{i+1}\cdots\gamma\vdash 1)^{r}=(\gamma_{1}\cdots\gamma_{i-1})^{-1}\gamma^{r}(\gamma_{1}\cdots\gamma\leftarrow 1)$ ,

they are contained in $\{\gamma^{r}\}_{\Gamma}.$

First, let us prove that the distinct members of (79) are not $\Gamma^{0}$ -conjugate with each

other. Suppose that

$y_{i}(\gamma_{i}\cdots\gamma_{i-1})^{r}y_{i}^{-1}=uy_{j}’(\gamma_{j}\cdots\gamma_{j-1})^{r}y_{J^{-1}}’u^{-1}$

holds with $u\in\Gamma^{0},1\leq j\leq i\leq d$, and $y_{i}\in S_{i},$ $y_{j}’\in S_{j}$ . Then, this implies that
$y_{i}^{-1}uy_{j}’(\gamma_{J}\gamma_{j+1}\cdots\gamma_{i-1})$ commutes with $(\gamma_{i}\cdots\gamma_{i-1})^{r}$ . Since $\gamma_{i}\cdots\gamma_{i-1}$ is primitive (it is $\Gamma-$

conjugate to $\gamma$), its centralizer in $\Gamma$ is the free cyclic group generated by itself. Hence, we
get

$y_{i}^{-1}uy_{j’}(\gamma_{\dot{j}}\gamma_{j+1}\cdots\gamma_{i-1})=(\gamma_{i}\cdots\gamma_{i-1})^{s}$

with some $s\in Z$ ; hence we get

(80) $uy_{j’}(\gamma_{j}\gamma_{j+1}\cdots\gamma_{i-1})=y_{i}(\gamma_{\iota}\gamma_{i+1}\cdots\gamma_{i-1})^{S} (s\in Z)$ .

But the products $y_{j’}\cdot\gamma_{j},$ $y_{i}\cdot\gamma_{i},$
$y_{i}\cdot\gamma_{i-1}^{-1}$ $($appears, $ifs<0)$ are all free; hence by taking $l()$

of both sides, we get $\frac{k}{2}+i-j=\frac{k}{2}+|s|\cdot d$; hence $i-j=|s|d$; hence $i=j,$ $s=0$ . So, by
(80), we get $uy_{i}’=y_{i}$ ; hence, by the definition of $S$ , we get $y_{j}’=y_{i}’=y_{i},$ $u=1.$
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Now, we shall show that any element of $\{\gamma^{r}\}_{\Gamma}\cap\Gamma^{dr+k}$ is $\Gamma^{\triangleleft}$-conjugate to a member of
(79). Take any $z\in\{\gamma^{r}\}_{\Gamma}\cap r^{\phi+k}$ , and put

(81) $z=x(\gamma\gamma_{i+1}\cdots\gamma_{i-1})^{r}x^{-1}, x\in\Gamma, (1\leq i\leq d)$ .

We can assume, without loss of generality, that, among all expressions of the fom (81)

(where $i$ can vary), we have chosen our particular (81) so that $l(x)$ is taken as small as
possible. Now, by the previous remark, at least one of the two products $x\cdot\gamma_{i},$

$\gamma_{i-1}\cdot x^{-1}$

must be free. We shall show that the both must be free. In fact, ifnot, and say $x\cdot\gamma_{i}$ is free
but $\gamma_{i-1}\cdot x^{-1}$ is not, then we have either $L(\gamma_{i-1}\cdot x^{-1})=L(x)$ or $=L(x)-2$ (by (56) and
Lemma 8). But if $L(\gamma_{i-1}\cdot x^{-1})=L(x)$, then, by Lemma 9 applied to the product

$\{x(\gamma_{i}\cdots\gamma\vdash 1)^{r-1}\gamma_{i}\cdots\gamma_{i-2}\}\cdot\gamma_{i-1}\cdot x^{-1},$

we get $L(z)=2dr+2L(x)-2$ ; hence $k=L(x)-1=2l(x)-1$ , which is a contradiction,

since $k$ is even. On the other hand, if $L(\gamma_{i-1}\cdot x^{-1})=L(x)-2$ , then ifwe put $y=x\cdot\gamma_{i-1}^{-1},$

then $l(y)=l(x\cdot\gamma_{i-1}^{-1})=l(x)-1<l(x)$ , and

$z=z(\gamma_{i}\cdots\gamma_{i-1})^{r}x^{-1}=y(\gamma_{i-1}\gamma_{i}\cdots\gamma_{i-2})y^{-1}$

with $l(y)<l(x)$ ; which is a contradiction to our assumption on the expression (81) of $z.$

Exactly in the same manner, we can show that an assumption that $x\cdot\gamma_{i}$ is not free leads
to a contradiction.

Therefore, the both ofthe products $x\cdot\gamma_{i},$
$\gamma_{i-1}\cdot x^{-1}$ must be ffee. So, by the corollary of

Lemma 9, the product $z=x\cdot\gamma_{i}\cdot\cdots\cdot\gamma_{i-1}\cdot x^{-1}$ is ffee, hence $dr+k=l(z)=2l(x)+rl(\gamma)=$

$2l(x)+rd$; hence $2l(x)=k$, hence $x\in\Gamma^{k/2}$ . Since the products $x\cdot\gamma_{i},$
$\gamma_{i-1}\cdot x^{-1}$ are both

free, we have $x=uy_{i}$ with $u\in\Gamma^{0},$ $y_{i}\in S_{j}$ ; hence $z=uy_{i}(\gamma_{i}\cdots\gamma_{i-1})^{r}y_{i}^{-1}u^{-1}$ , and hence $z$ is
$\Gamma^{0}$-conjugate to $y_{i}(\gamma_{i}\cdots\gamma_{i-1})^{r}y_{i}^{-1},$ $y_{i}\in S_{i}.$

The case $k$ is odd. Let $S’$ be a set of representatives of $\Gamma^{0}\backslash \Gamma^{(k+1)/2}$ , and let $ S_{i}’(1\leq$

$i\leq d)$ be a subset of $S’$ formed of all $x\in S’$ such that $l(x\cdot\gamma_{i})=l(x)$ . If $\gamma_{i}^{-1}=u_{i}\pi_{a}\pi_{b}$

is ffie factorization (62) of $\gamma_{i}^{-1}$ , and $x=u\pi_{i_{1}}\cdots\pi_{i_{k+1}}$ is that of $x$, then, ffie condition
$l(x\cdot\gamma_{i})=l(x)$ is equivalent to $\pi_{i_{k+1}}=\pi_{b},$ $\pi_{i_{k}}\neq\pi_{a}$ . So, by consulting Lemma 5, we see
directly that the cardinality of $S’$ is $(q-1)q^{k-1}$ . Now, we shall show that the following
set of $dq^{k-1}(q-1)$ elements of $\Gamma$ fonns a set ofrepresentatives of all $\Gamma^{\triangleleft}$-conjugacy classes
contained in $\{\gamma^{r}\}_{\Gamma}\cap\Gamma^{dr+k}$ ;

(82) $\left\{\begin{array}{ll}y_{1}(\gamma_{1}\cdots\gamma_{d})^{r}y_{1}^{-1} & y_{1}\in S_{1}’\\: & :\\y_{d}(\gamma_{d}\cdots\gamma_{d-1})^{r}y_{d}^{-1} & y_{d}\epsilon S_{d}’.\end{array}\right.$

Since $l(y_{\iota}\gamma_{t})=l(y_{i})$ , and since $\gamma_{i-1}\cdot y_{i}^{-1}$ is free (recall that at least one of $y_{i}\cdot\gamma_{i},$
$\gamma_{i-1}\cdot y_{i}^{-1}$

must be free), Lemma 9 shows that

$l(y_{i}(\gamma_{i}\cdots\gamma_{i-1})^{r}y_{i}^{-1})=2l(y_{i})+dr-1=dr+k,$

hence $y_{i}(\gamma_{t}\cdots\gamma_{t-1})^{r}y_{i}^{-1}\in\Gamma^{dr+k}\cap\{\gamma^{r}\}_{\Gamma}.$

Let us show that the distinct members of (82) are not $\Gamma^{0}$-conjugate with each other. If

$y_{i}(\gamma_{i}\cdots\gamma_{t-1})^{r}y_{i}^{-1}=uy_{j}’(\gamma_{j}\cdots\gamma_{j-1})^{r}y_{J^{-1}}’u^{-1}$
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with $u\in\Gamma^{0},1\leq j\leq i\leq d,$ $y_{j}\in S_{i}’,$ $y_{j}’\in S_{j}’$ , then, by the same argument as in $k$: even
case, we get

(83) $uy_{j}’(\gamma_{j}\gamma_{j+}l\ldots\gamma_{i-1})=y_{i}(\gamma_{i}\gamma_{i+1}\cdots\gamma_{i-1})^{s} (s\in Z)$ .

We shall show that $j=i$ . Suppose on the contrary that we had $j<i$ . Then, we have
$l(uy_{j}’(\gamma_{j}\gamma_{j+1}\cdots\gamma_{i-1}))=l(y_{\dot{j}}’)+(i-j)-1$ (by Lemma 9). So, we get, by (83),

(84) $\frac{k+1}{2}+i-j-1=\left\{\begin{array}{ll}\frac{k+1}{2}+sd-1 & if s>0\\\frac{}{}\frac{k+1}{k+12,2}+|s|\cdot d & ifs=ifs<00.( .\cdot y_{i}\cdot\gamma_{i-1}^{-1} is Ree)\end{array}\right.$

If $s\neq 0,$ (84) implies $i-j\geq d$, which is a contradiction. If $s=0$ , then we get $i=j+1$ , and
hence by (83), we get $uy_{j}’\gamma_{j}=y_{i}$ ; hence $uy_{j}’\gamma_{j}\gamma_{j+1}=y_{i}\gamma_{i}$ . But we have $l(y_{i}\gamma_{i})=l(y_{i})=\frac{k+1}{2},$

while
$l(uy_{j}’\gamma_{j}\gamma_{j+1})=l(y_{j}’)+l(\gamma_{j})+l(\gamma_{j+1})-1=\frac{k+1}{2}+1,$

since $l(y_{j}’\gamma_{j})=l(y_{j}’)$ and since the product $\gamma_{j}\cdot\gamma_{j+1}$ is free (use Lemma 9). So, we get a
contradiction $l(uy_{j}’\gamma_{j}\gamma_{j+1})\neq l(y_{i}\gamma_{i})$ . Therefore we get $j=i$ . So, by (83), we get

(85) $uy_{j}’=y_{i}(\gamma_{i}\cdots\gamma_{i-1})^{s}$ ; $j=i,$

hence

$\frac{k+1}{2}=\left\{\begin{array}{ll}\frac{k+1}{2}+sd-1 & (if s>0) ,\\\frac{k+1}{2}+|s|d & (ifs<0) .\end{array}\right.$

But these are obviously contradictions; hence we get $s=0$ . Therefore $uy_{j}’=y_{i}\in S_{i}’=S_{j}’.$

Therefore $u=1,$ $y_{i}=y_{j}’.$

Finally, to show that any element $z\in\{\gamma^{r}\}_{\Gamma}\cap\Gamma^{dr+k}$ is $\Gamma^{0}$ -conjugate to a member of (82),
put

(86) $z=x(\gamma_{i}\gamma_{i+1}\cdots\gamma\leftarrow\iota)^{r}x^{-1}, x\in\Gamma, (1\leq i\leq d)$ .

As in the $k$ : even case, we assume that among all expressions of the form (86) (where $i$

can vary), we have chosen our particular expression (86) so that $l(x)$ is taken as small as
possible. Now, at least one ofthe two products $x\cdot\gamma_{i},$

$\gamma_{i-1}\cdot x^{-1}$ must be free. We see that, in
this case, both cannot be free. In fact, ifit were so, we would have $dr+k=l(z)=2l(x)+dr,$
hence $2l(x)=k$; which is a contradiction, since $k$ is odd. So, one ofthe two products $x\cdot\gamma_{i},$

$\gamma_{i-1}\cdot x^{-1}$ is free and the other is not. If $\gamma_{i-1}\cdot x^{-1}$ is free and $x\cdot\gamma_{i}$ is not, then either
$l(x\cdot\gamma_{i})=l(x)$ or $=l(x)-1$ . But if $l(x\cdot\gamma_{i})=l(x)-1$ , then, if we put $y=x\cdot\gamma_{i},$

then $1(y)=l(x)-1$ and we have $z=y(\gamma_{i+1}\cdots\gamma_{i})^{r}y^{-1}$ ; which is a contradiction to our
assumption. Therefore, $l(x\cdot\gamma_{i})=l(x)$ ; hence, by Lemma 9, $l(z)=2l(x)+dr-1$ ;
hence $1(x)=\frac{k+1}{2}$ . Since $l(x\cdot\gamma_{i})=1(x)$ , we have $x=uy_{i}$ with $u\in\Gamma^{0},$ $y_{i}\in S_{i}’$ ; hence
$z=uy_{i}(\gamma_{i}\cdots\gamma_{i-1})^{r}y_{i}^{-1}u^{-1}$ . If, on the other hand, $x\cdot\gamma_{i}$ is free but $\gamma_{i-1}\cdot x^{-1}$ is not, again we
get $l(\gamma\vdash\iota\cdot x^{-1})=l(x^{-1})=l(x)$ . Put $y_{i-1}’=x\cdot\gamma_{i-1}^{-1}$ . Then, $z=y_{t-1}’(\gamma_{i-1}\gamma_{j}\cdots\gamma_{i-2})^{r}y_{i-1^{-1}}’,$

and we have $l(y_{i-1}’)=l(x)=\frac{k+1}{2},$ $l(y_{i-1}’\gamma_{i-1})=l(x)=l(y_{t-1}’)$ ; hence we have $y_{i-1}’=uy_{i-1}$

with $u\in\Gamma^{0},$ $y_{i-1}\in S_{i-1}’$ ; and we have $z=uy_{i-1}(\gamma_{i-1}\gamma_{i}\cdots\gamma_{i-2})^{r}y_{i-1}^{-1}u^{-1}$ ; which proves our
Lemma 3 completely. $\square $
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Regular cycles on $\Gamma_{R}^{0}\backslash \mathfrak{H}.$

\S 20. The situations being as in Theorem 1, let $ P\in\wp\sigma$), $\deg P=d$; and let $\{\gamma^{\pm 1}\}_{\Gamma}$

be the pair ofmutually inverse primitive elliptic $\Gamma$-conjugacy class that corresponds to $P.$

By Lemma 3, $\{\gamma\}_{\Gamma}\cap\Gamma^{d}$ consists of $d$ distinct $\Gamma^{0}$-conjugacy classes. Put

(87) $\{\gamma\}_{\Gamma}nP=\{\gamma_{1}\}_{I}u\cup\cdots\cup\{\gamma_{d}\}_{r}\triangleleft$ ;

and let $z_{1},$
$\cdots,z_{d}\in \mathfrak{H}$ be the fixed points of $(\gamma_{1})_{R},$

$\cdots,$
$(\gamma_{d})_{R}$ respectively. Then, as a set

ofpoints on $\Gamma_{R}^{0}\backslash \mathfrak{H},$

$z_{1},$ $\cdots,z_{d}$ are well-defined, and are distinct. So, to each $P\in\wp(\Gamma)$ with
$\deg P=d$, we can correspond a set $\tilde{z}_{1},$ $\cdots,\tilde{z}_{d}$ of $d$ distinct points on $\Gamma_{R}^{0}\backslash \mathfrak{H}$ . We call this
$\{\tilde{z}_{1}, \cdots,\tilde{z}_{d}\}$ the regular cycle on $\Gamma_{R}^{0}\backslash \mathfrak{H}$ which corresponds to $P\in\wp(\Gamma)$ .

Estimation of the roots of $\zeta_{\Gamma}(u)$ .

\S 21. Now we are going to give some estimation of the absolute values of the roots

$\pi_{i},t_{i}(1\leq i\leq g)$ of $\zeta_{\Gamma}(u)$ . It is a direct consequence ofthe following lemma by M. Kuga.

LEMMA 10 (Kuga9) . Let $\Delta$ be a discrete subgroup of $G_{R}=PSL_{2}(R)$ with compact

quotient, and let $\gamma\in G_{R}$ be such that $\Delta,\gamma^{-1}\Delta\gamma$ are commensurable with each other, that
$\Delta\gamma^{-1}\Delta=\Delta\gamma\Delta$, and that $\Delta$ and $\gamma$ generate a dense subgvoup of $G_{R}$ . Put

$\Delta\gamma\Delta=\sum_{i=1}^{d}\Delta\gamma_{i} (d=(\Delta:\Delta\cap\gamma^{-1}\Delta\gamma))$ ,

and let $f(z)\not\equiv O$ be a holomorphic automorphicform ofweight $k(k=2,4,6, \cdots)$ with

respect to $\Delta$, which is an eigenfunction ofthefollowingHecke operator with an eigenvalue
$\lambda,\cdot$

(88) $\sum_{j--1}^{d}f(\gamma_{i}z)j(\gamma_{i},z)=\lambda\cdot f(z)$ ,

where, in general, weput $j(g,z)=(c_{R}z+d_{R})^{-k}$for $g=\pm(_{c_{R}}^{a_{R}}Ab_{R\rangle}\in G_{R}$ . Then, we have

(89) $|\lambda|<d.$

PROOF. Let $F$ be the continuous function on $G_{R}$ defined by

(90) $F(g)=f(g\sqrt{-1}\cdot\sqrt{-1}))j(g, (g\in G_{R})$ .

Since $f(z)$ is an automorphic form ofweight $k$ with respect to $\Delta$ , we have

$F(\delta\cdot g)=f(\delta g^{\sqrt{-1})j(\delta g}, \sqrt{-1})=f(g\sqrt{-1})j(\delta,g\sqrt{-1})^{-1}j(\delta g, \sqrt{-1})$

$=f(g\sqrt{-1})j(g, \sqrt{-1})=F(g)$

9Cf. M.Kuga [21]. The fomulation and the method for proof are not exactly the same.
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for any $\delta\in\Delta$ . So, $F$ is $\Delta$-invariant from the left. Therefore, $|F|$ , being a continuous

function on the compact quotient $\Delta\backslash G_{R}$ , achieves the maximum value $M$

(91) $M={\rm Max}_{g\in G_{R}}|F(g)|.$

Let $D$ be the set of all elements $g\in G_{R}$ such that $|F(g)|=M$. Then, obviously, $D$ is
$\Delta$-invariant from the left; $D=\Delta\cdot D$ . Now, (88) implies

(92) $\sum_{i=1}^{d}F(\gamma_{i}g)=\lambda\cdot F(g) (g\in G_{R})$ .

So, if $g\in D$ , we get $|\lambda|\cdot M\leq\sum_{i=1}^{d}|F(\gamma_{i}g)|\leq Md$; hence we get $|\lambda|\leq d$. Now, let us show
that $|\lambda|\neq d$. Suppose, on the contrary, that we had $|\lambda|=d$. Then, in the above inequality,

we must have $|F(\gamma_{i}g)|=M$ for all $i(1\leq i\leq d)$ . So, we have $|F(\xi g)|=M$ for any $g\in D$

and $\xi\in\bigcup_{i=1}^{d}\Delta\gamma_{i}=\Delta\gamma\Delta$ . By $\Delta\gamma^{-1}\Delta=\Delta\gamma\Delta$ , we also have $|F(\xi^{-1}g)|=M$. So, if we
denote by $\Delta’$ , the subgroup of $G_{R}$ formed of all elements $g\in G_{R}$ such that $gD=D$, then
$\Delta’$ contains $\Delta$ and $\gamma$ . So, by our assumption, $\Delta’$ is dense in $G_{R}$ ; which implies that $D$ is

dense in $G_{R}$ . But since $F$ is continuous, $D$ is closed. Therefore $D=G_{R}$ ; and hence we
get

(93) $|F(g)|\equiv M$ for $g\in G_{R}.$

Now let us show that (93) is impossible. If $g=\left(\begin{array}{ll}\sqrt{a} & \sqrt{a}^{-[b}\\0 & \sqrt{a}^{-1}\end{array}\right)$ , with $a,$ $b\in R,$ $a>0,$

ffien $F(g)=f(a\Gamma-1+b)a^{k/2}$ . Therefore, by (93), we get

(94) $|f(z)|=M({\rm Im} z)^{-k/2}$ on $\mathfrak{H}.$

Thus, ${\rm Re}(\log f(z))$ depends only on the imaginary part of $z$, and hence the derivative

of $\sqrt{-l}log f(z)$ is always real; hence $\frac{d}{dz}\log f(z)$ must be a constant, and we get $f(z)=$

$Ae^{Bz}$ with some constants $A,B$ . But then (94) would be impossible. So, $|\lambda|=d$ is a
contradiction; and we get $|\lambda|<d.$

$\square $

\S 22. To make it possible to apply Lemma 10 to our group, we need verify the fol-

lowing simple lemma.

LEMMA 11. The subgmup $U_{\mathfrak{p}}=PSL_{2}(O_{\mathfrak{p}})$ is maximal in $G_{\mathfrak{p}}=PSL_{2}(k_{\mathfrak{p}})$ .

PROOR Let $H$ be a subgroup of $G_{\mathfrak{p}}$ with $H\supsetneq U_{\mathfrak{p}}$ . Let $x\in H,$ $\not\in U_{\mathfrak{p}}$ . Then

$H\supset U_{\mathfrak{p}}xU_{\mathfrak{p}}=U_{\mathfrak{p}}(_{0}^{p^{l}}p^{-l\rangle U_{\mathfrak{p}}}0=Y_{l} (l>0)$ ,

$p$ being a prime element of $k_{\mathfrak{p}}$ . Since $(_{0}^{p^{l}}p^{-\iota\rangle}0,$ $\left(\begin{array}{ll}p^{l} & p^{l-1}\\0 & p^{-l}\end{array}\right)\in Y_{l}\subset H$, we get

$\left(\begin{array}{ll}1 & p^{-1}\\0 & 1\end{array}\right)=(_{0}^{p^{-l}}po_{l\rangle(_{0}^{p^{l}}}p^{l-1}p^{-l\rangle\in H}.$
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Hence, $H\supset U_{\mathfrak{p}}(_{0}^{1}p^{-1}1\rangle U_{p}\ni(_{0}^{p}p^{-1\rangle}0$ . Hence, $H$ contains $(_{0}^{p}p^{-1\rangle^{l}}0$ for all $l\geq 0$ ; hence

all $U_{\mathfrak{p}}(_{0}^{p^{l}}p^{-l\rangle U_{\mathfrak{p}};}0$ hence $G_{\mathfrak{p}}$ . Hence we get $H=G_{\mathfrak{p}}.$ $\square $

COROLLARY. The subgroup $r^{\eta}$ is maximal in $\Gamma.$ If$\gamma\in\Gamma,$
$\not\in\Gamma^{\triangleleft}$, then $I_{R}^{\triangleleft}$ and $\gamma_{R}$ generate

a dense subgroup of$G_{R}.$

PROOR In fact, $\Gamma_{R}^{0}$ and $\gamma_{R}$ generate $\Gamma_{R}.$ $\square $

\S 23. Now we shall prove:

THEOREM 2. The notations being as in Theorem 1, we have

(95) $|\pi_{i}|, |\pi_{i}’|\leq q^{2},$

and

(96) $\pi_{i}, \pi_{f}’\neq 1, q^{2}.$

PROOR Recall that we have $\rho=\chi_{1}\oplus\cdots\oplus\chi_{g}$ and

(49) $\chi_{i}(\Gamma^{m})-(q-1)\sum_{\succ-1}^{m}\chi_{i}(\Gamma^{m-k})=fp_{i}+\pi_{i}^{\prime m} (1\leq i\leq g, m\geq 1)$,

where $\rho$ is as defined in \S 9 for $\Delta=\Gamma_{R}^{0},\tilde{\Delta}=\Gamma_{R}$ (see also \S 14). By the corollary ofLemma
11, we can apply Lemma 10 for $\Delta=\Gamma_{R}^{0}$ and for any $\gamma_{R}\in\Gamma_{R},$ $\not\in\Gamma_{R}^{0}$ , and we get

(97) $|\gamma_{i}(\Gamma^{m})|<q^{2m}+q^{2m-1} (1\leq i\leq g, m\geq 1)$ .

First, let us prove (95). Suppose that we had $|\pi_{i}|=q^{a},a>2$ . Then, by $\pi_{i}\#_{i}=q^{2}$ , we
get $|\#_{i}|<1$ . By (49), we get

$|\pi_{i}^{m}+\pi_{i}^{\prime m}|\leq q^{2m}+q^{2m-1}+(q-1)\{q^{2m-2}+q^{2m-3}+\cdots+1\}$

$=q^{2m}+2q^{2m-1}-1=O(q^{2m})$ .

But this is impossible for $|\pi_{i}|=q^{a}(a>2)$ and $|\#_{i}|<1$ . Hence, we get $|\pi_{i}|\leq q^{2}$ . In the
same manner, we get $|\#_{i}|\leq q^{2}.$

To prove (96), suppose, on the contrary, that we had $\pi_{i},t_{t}=1,q^{2}$ . Then, by (49), we
get

(98) $\sigma_{m}-q\sigma_{m-1}=q^{2m}+1$ ; $\sigma_{m}=\sum_{l\overline{-}0}^{m}\chi_{i}(\Gamma^{l})$ $(m\geq 1)$ .

But this implies $\sigma_{m}=q^{2m}+q^{2m-1}+\cdots+1(m\geq 1)$ ; hence $\sigma_{m}-\sigma_{m-1}=q^{2m}+q^{2m-1}$

$(m\geq 1)$ . But this implies $\chi_{i}(\Gamma)=q^{2m}+q^{2m-1}$ , which is a contradiction to (97). So, we
cannot have $\pi_{i},$ $\#_{i}=1,q^{2}.$ $\square $

So far, Theorem 2, (95) (96) are the only estimation for the absolute values of $\pi_{i},$ $\#_{l}$

which we could prove. Some application ofTheorem 2 will be given later.
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Concluding remarks on Chapter 1, Part 1.

\S 24.

REMARK 1. All our results in this Chapter (Part 1) are valid also in the case where $k_{\mathfrak{p}}$ is
the field ofpower series over a finite field $F_{q}$ . However, we do not know whether $\Gamma$ exists
at all in such a case.

REMARK 2. In the computation of $\zeta_{\Gamma}(u)$ , we assumed that $\Gamma$ is torsion-free and $ G/\Gamma$ is
compact. Among them, the former can be dropped easily, and we get a similar result. We
plan to give its description in Part 2 of Chapter 1. Also, we are planning to give there
a computation of $L$-fimctions” attached to $\Gamma$, which has an interesting application to an
analogue of“Tschebotarev’s density Theorem” for the law of decomposition of elements
of $\wp(\Gamma)$ in $\wp(\Gamma’)$ , where $\Gamma’$ is a subgroup offinite index in $\Gamma.$
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