CHAPTER 1

Part 1. The group I' and its {-function.

In Part 1 of this chapter, we shall define the {-function
a@ = Ja-ush?
P

of T, and prove that

g ’
fo(u) = ITL, (0 = ma)(1 — mu) x (1 - u)a-beD,
(20) (1 -u)1 - q*u)
qg=Np, g=>2, 7r,-7r;=q2(1 <i<g)

holds, if G/T" is compact and I" is torsion-free. We shall also prove the inequality; |, || <
¢, m, 7 # 1,47, by applying Lemma 10 (M.Kuga), §21. These results, patticularly the
existence of the factor (1 — #)4~@D, give a starting point of our problems described in
the introduction. Our formula (20) is, modulo some group theory of PLy(k;), a conse-
quence of Eichler-Selberg trace formula for the Hecke operators in the space of certain
automorphic forms of weight 2. However, the proof, starting at Eichler-Selberg formula
and ending at (20), is by no means simple, mainly because we do not have a simple proof
of Lemma 3 (§13). Finally, we point out that there is also a difference in the standpoint;
Eichler-Selberg’s left side of the formula comes to the right side of ours; (20). For us, the
subject is the set of “elliptic [-conjugacy classes”, and not the Hecke operator.
We shall begin with the definition of the group I'.

Discrete subgroup I'.

§1. Let
¢)) G = PSLy(R) X PS L,(k;)

be considered as a topological group, and for each subset S’ of G, we denote by Sg resp.
S, the set-theoretical projections of ' to R-component (i.e. the first component) resp.

I\We can also prove (20) (for p £ 2) by using the spectral decomposition of L*(G/T).
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k,-component (i.e. the second component) of G. In particular, we have
) Gr = PSL,(R), G, = PS Ly(k,),

and for any element x of G, xg resp. x, denote the R-component resp. the k,-component
of x;

(3) X = XR X Xp.

§2. The subject of our study is a discrete subgroup I of G = Gr X G,, for which I'r
and T, are dense in Gr and G, respectively. So, throughout the following, I" will always
denote such a discrete subgroup of G.

ExaMmpLE . Let p be a prime number, and let Z®) be the ring of rational numbers whose
denominators are powers of p;

0] ZP = (a/p" | a,n € 7).
Put
5) ['=PSL,(ZP)=SL,(Z?P)/ + 1.

Let Q, be the p-adic number field. Then, by the injections Z¥ — R, — Q,, the group
I' can be regarded as a subgroup of G = PSL,(R) x PSL,(Q,). It is discrete in G, since
if y = yr Xy, €T, and if y, is contained in PS Ly(Z,) (Z,: the ring of p-adic integers),
which is a neighborhood of the identity of PSL,(Q,), then yg is contained in PS L,(Z),
which is discrete in PS L,(R). It is a simple exercise, in arithmetic of algebraic groups, to
check that I'g, I, are dense in Gy, G, respectively.

Now, for this particular I', the projection maps I' — I'r, — I', are injective, and the
quotient G/T  has a finite invariant volume. The former is true in general, as the following
proposition shows; as for the latter, we do not know whether it is true in general, but,
curious as it may look, we think that it is quite possible.

ProrosrTioN 1. Let T be a discrete subgroup of G, for whichT'r, T, are dense in Gg, G,
respectively. Then the projection maps ' — I'r, — I'; are injective.

Proor. Let A be the kernel of the projection I' — I'g.

(6) A={y=wmXy, €T |wr=1}

So A, = A is discrete in Gy, and normal in T, ; hence normal in G,, the closure of T',. So,
A, is a discrete normal subgroup of G,. On the other hand. it is well-known that if X is
any infinite field, then the group PSL,(K) = S Ly(K)/ + 1 is simple (as an abstract group).
So, G, is simple, and hence A, = {I}; hence A = {I}. The injectivity of I' — T, follows
exactly in the same manner, by using the simplicity of Gg. m

So, we can identify the three canonically isomorphic groups:
IR=T =T,.
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ProposITION 2. Let I be a subgroup of G such that the projection maps I’ — I'r, — T,
are injective, and that 'y, T, are dense in Gr, G, respectively. Let U, be an open compact
subgroup of G, and let T be the projection to R-component of T® = T N (Gr X U,). Then,
(1) I is discrete in G if and only if 1"% is discrete in Gr. Moreover, if (i) is satisfied, then,
(ii) the quotient G /T is compact (resp. has a finite invariant volume) if and only if Gr /Ty
is compact (resp. has a finite invariant volume).

Proor. The first assertion (i) is immediate. The “if” part is because U, is open, and
the “only if” part is because U, is compact. As for (ii), if Gr/I} is compact (resp. has a
finite invariant volume), then, there is a subspace Kr of Gg which is compact (resp. has a
finite invariant volume) such that Gg = Ky - I'y. Since we have G, = U, - T, it follows
immediately that G = (Kg X U,)-T'; which proves the “only if” part. Conversely, if Gg /Ty
is non-compact (resp. has an infinite volume), then there is an open subset Fr of G such
that the restriction to F of the natural map ¢z : G — Ggr/ I"% is injective, and that Fr
is non-compact (resp. has an arbitrarily large volume). Put F = Fg X U,. Then, the
restriction to F of the natural map ¢ : G — G/T is injective, and F is non-compact (resp.
has an arbitrarily large volume) ; which proves the “if” part of (ii). O

§3. Now, Ggr = PSL,(R) acts on the complex upper half plane $ = {z € C|Im z > 0}
as:
az+b
cz+d

a b

@) GRBgR=(C d): D3z gr-z= €9.

As is well-known, Gg acts transitively on $, and is identified with the group Aut($)
of all automorphisms of the complex Riemann surface . Since I is identified with its
projection I'y € Gg, I also acts on . Two points z,z’ € § will be called equivalent (or,
more precisely, I'-equivalent), if there is an element y € I" such that yg - z = z’. We note
that, since I'g is dense in Gg, each equivalence class 'y - z is also dense on $. A point
z € 9 will be called a I'-fixed point, if its stabilizer in I' is infinite. For each z € $, we put

@®) {Gz,n = (gr€Grlgr-z=2)=R/Z

Ibk = IRNGr={yr€lrlywR z=12}
LetT,, I, , be the subgroup of T', I, respectively which correspond to I', g by the canonical
isomorphism: I',g =T, =T,,.
©) {Fz = {yel|lyr-z=2)
Ly = el lvel}={y, el |ywm-z=2}
So, z € 9 is a I'-fixed point if and only if I',g = I', = I',, are infinite. Let

(10) o)
be the set of all I'-equivalence classes of all I'-fixed points on . We shall see later, that
p(I) is analogous, in various sense, to the set of all prime divisors of an algebraic function
field of one variable over the finite field F,z, where g = Np.

An element gr € GR, gr # 1 will be called elliptic if it has a fixed point on . So, gr
is elliptic if and only if gg has imaginary eigenvalues, and hence if and only if | tr ggr| < 2.
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If gg is elliptic, then the fixed point z € $ of gr (i.e. z such that gy - z = z) is unique, and
the centralizer of gr in Gr coincides with G,gr. We shall call an element y of I elliptic,
if yr is elliptic. Thus y € I is elliptic if and only if y # 1, and y € I', for some (unique)
z € $. In this case, by the preceding remark, it is clear that the centralizer of y in T is I',.
To show that p(I') is non-empty, we note the following. Let g, be any element of G,
of finite order n. Then the eigenvalues of g, are contained in some quadratic extension of
k,, and are primitive n-th or 2n-th root of unity. Since there exist at most finitely many
quadratic extensions of k,, and since each such field contains at most finitely many roots
of unity, we see that » must be bounded. Since I', = I is a subgroup of G, this shows that
there are only finitely many possibilities of orders » of elements y of I. Therefore, the set

S ={ltryrl;y €T,y is of finite order # 1}

is finite. Put G’ = {gr € Gr| | trgr| < 2}. Then G’ is open, and contains S, which is finite;
and hence G’ - § is again an open subset of Gr. Since I'y is dense in G, there exists an
element ygr € 'k N (G’ — §). Then yg has a fixed point z € $, and I',x is infinite, since it
contains yr. So, p(I') is non-empty.

§4.

ProrosITION 3. Let z € $, and let T, be infinite. Then, T,, is a discrete abelian sub-
group of G,. Moreover, if we put ' |

t, 0
n{(% &)
P

. -1
then there is an element x, € G, such that x; T;px, C T,

t, € k:} /{x1} C Gy,

Proor. We have I',g = I', = I';, canonically, and I,y is a subgroup of G.r = R/Z
which is compact abelian. Therefore, I'; is abelian. Since I', c T is discrete in G, and
since I', g is an infinite subgroup of a compact subgroup of Gr, we see immediately that
I'; , must be discrete in G,.

Now let y € T'; be of infinite order, and let +{A,, /1;‘} be the eigenvalues of y,.

We shall show that 2;! # 2, and that A, € k,. In fact, if A;' = A, then we can

assume that 27! = 2, = 1, and hence y, = x;! ((1) i)x, with some x, € GL,(k,). If p is

0 1
1, which contradicts the discreteness of I';;, in G,. Therefore, 1;', A, must be distinct.
Suppose now that ;' # A, but A, ¢ k,. Put K, = ky(4,) . Then, since ;1 4, are
conjugate of each other over k,, we have A, € K; = {x € K; | Ng,1,(x) = 1}. Since
K; is a subgroup of the group of units of X, K} is compact. Now if we ignore the sign
and consider y, as an element of S L,(k,) (choose either one of two), there is a unique
isomorphism ¢ over k, of K, into M,(k,) which sends 4, to y,. So, y, is contained in
a compact subgroup ¢(K}) of G,. Since y, is of infinite order by assumption, this also
contradicts the discreteness of I'; ; in G;. So we have shown that 2;! # A, and that 2, € k,.

the characteristic of the residue field O/p, then lim,_,,, (1 P ) = 1, hence lim,_,» Yg" =
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o vl = A 0 . . [1 0
Take %, € GLy(k,) such that %1y, %, = + ( Op /1;1)- By putting x, = %, (0 det i;l)’

Ay

we get x;ly,x, = £ ( 0 /1_1) with x, € G,. If v, is any element of I',,, it commutes
P

’

with vy, and hence x;'y,x, is of the form + (/1" 0 ) with some A, € k. So, we get

21
x,'Tpx, C T,, which proves our Proposition. o m]
CoroLLARY . Let T, be of infinite order. Then,
I, = (a finite cyclic group) X (infinite cyclic group).
Ify € T, is of infinite order, then the eigenvalues +{A,, /1;1} of y, are contained in k,, and
not contained in ‘U,, U, being the group of p-adic units of k,.
Proor. Take x, € G, such that x;'T,,x, ¢ T,. For each y € I, put x;'y,x, =

+ (t('; lg), and put ¢, = ¢(y,). Then ¢ gives an isomorphism of T, into k;/ + 1, and since
p

I, is discrete in Gy, ¢(I';) is discrete in &%/ + 1. So, ¢(I';) N U,/ + 1 must be finite, and
@(T’,) is the direct product of ¢(I';) N U,/ £ 1 and an infinite cyclic subgroup. m]

§5. LetP € p(I), and letz € $ be aI'-fixed point contained in the class P. By Propo-
sition 3, the set of eigenvalues :1:/1;-;1 of all elements y, of I';, forms a discrete subgroup
@(T;) of k¥/ + 1. Let ord, be the normalized additive valuation of k,, and put

(11) ord, ¢,(T';) = {ord,(12') | v, € [y,

Then, this is an infinite subgroup of Z, and hence is of the form a - Z with some positive
integer a. If z is replaced by a I'-equivalent point 2’ = y -z (y’ € I), thenI, = y"-I%-y’ -1
and hence we have ¢(I';;) = ¢(T’,). So, this positive integer a is determined uniquely by
P. We shall call this number a, the degree of P, and denote it by

(12) deg P.

It is clear that if y € T, is such that, together with some finite group, y generates I';, and if
+{4,, A;'} are the eigenvalues of y,, then

(13) deg P = | ord,(1,)\.

The { function of I'.

§6. We shall define the ¢ function {p(u) of T to be the following formal infinite
product;

(14) aw= [ ]a-un?,

Pep(I)
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or, equivalently,

Ny,
(15) frw) = exp ), "
m=1
with
(16) Np= ) degP  (m21).
s

That N,, are finite will be shown later.

§7. Example.? Let I' = PSL,(Z®) (see §2). Then, we can compute /r(x) di-
rectly, by using a full knowledge of complex multiplication theory. Thus, let J(z) =
123g4(2)%/ [gz(z)3 - 27g; (z)2] be the elliptic modular function, and let p be a divisor of p
in the algebraic closure Q of the field of rational numbers Q. We consider Q as a subfield
of the complex number field C, and we denote by O the ring of all algebraic integers of
Q. Moreover, we denote by F, the finite field with p elements, and by F,, its algebraic
closure. We fix an 1somorphlsm Ofp = F and identify them. Let S be the subset of F,,
formed of all j € F, such that the elhptlc curve with modulus j i has no points of order
D, or equivalently, the elliptic curve with modulus j j has Hasse invariant 0. Then, it is
well-known that S is finite, and that S is contained in F,.. The number of elements of §
is given by

_ p-1p+7 p+5 p+13
1p=23) H= 127 127 127 12

(p = 1,5,7, 11(mod12) respectively).

17)

We shall call two elements x,y € fp equivalent, and denote it by x ~ y, if x,y are
conjugate of each other over F,.. So, the number of distinct y with y ~ x (x: given) is
equal to the degree of x over F., which will be called the degree of the equivalence class.
Since S ¢ F,2, we can consider S’ also as a subset of F,,/~.

Now, for each P € p(I), let zp be a I'-fixed point contained in the class P, and let J(zp)
be the value of J at z = zp. Then, by using complex multiplication theory, we can check
that J(zp) € O, and that the map 7 of p(I) into F,/ ~ defined by

(18) J:9@) 3P Jizp) mod peF,/ ~

is well-defined (the congruence relation!), injective, and degree preserving. Moreover,
the image of 7 coincides with F,/~ — S. Thus, J gives a degree-preserving one-to-one
correspondence between p(I') and F,/~ — §. Since a straightforward computation shows
that

(1 - utos?y ! =
xeFp/~—§

x (1 - u)1+H,

u)(l p*u)

2See Chapter 5 for the proof.
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we get

(19) fr(u) =
where H is given by (17).

i .
T =g <40

§8. Now let us compute () for more general I. We shall restrict ourselves to the
case where I' is torsion-free (i.e. I' has no elements of finite order) and where the quotient
G/T is compact. Our purpose is to prove the following theorem.

TueoREM 1. Let T be a torsion-free discrete subgroup of G with compact quotient, and
with dense images of projections T'r, T, in Gr, G, respectively. Then we have;

LA = a1 = mju)
(20) fr(u) = DR

where g = Ny, and g is the genus of T3\, with° =T N (Gr X U,), U, = PSL,(0,). The
numbers n;, n; (1 < i < g) are algebraic integers satisfying mr, = ¢* (1 <i < g).

X (1 _ u)(q—l)(g-l),

Remark . Since I}, is a torsion-free discrete subgroup of G with compact quotient
(see §2, Proposition 2), we have g > 2. The formula (20) is equivalent to saying that N,
defined by (16) is finite and is given by:

g
(20) Na=g"+1=) @ +77)-(g-Dg-1) (m>1).
i=1

This formula for () is one of the starting point of our study of T.

Lemmas for the proof of Theorem 1.

§9. The proof of Theorem 1 is based on three basic lemmas; Lemmas 1, 2 and 3.
We shall begin by describing Lemma 1.

Let A be a torsion-free discrete subgroup of Gg = PSL,(R) with compact quotient,
and let A be a subgroup of Gg containing A such that, for any y € A, the subgroups
A, yAy™! of A are commensurable with each other. Let H(A, A) be the Hecke ring 3
defined with respect to A and A . For each double coset AyA € H(A, A), we put

(21) d(AyA) = (A : y'Ay N A) = |A\AyA|,

and define d(X) for arbitrary X € H(A, A) by (21) and by linearity. Thus H(A, A) > X —
d(X) gives a linear representation of the ring (A, A).

On the other hand, let It be the space of all holomorphic automorphic forms of weight
k(k =2,4,6,---) with respect to A. For each AyA € H(A, A), put AyA = Z;il Ay; (d =

3Defined with respect to the left A-cosets.
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d(AyA)), and let py(AyA) be the Hecke operator; i.e. the linear endomorphism of 2t
defined by:

a;z+ b;

d
22) PH(BYR): T > f@) > ) f (c-z )
i=1 !

)(Ciz +d)* e My,

i

where y; = + (Z’ cb;) (1 < i £ d). This is independent of the choice of representatives
Y1, - ,vq4. Define pi(X) for arbitrary X € H (A, A) by (22) and by linearity. Then, it is
also easy to check (and is well-known) that p; gives an representation of the ring (A, A)

in the ring of all linear endomorphisms of ;. Now, by Petersson,

(f.9) = s f@g@y* dxdy (z=x+iy)

gives a positive hermitian form on M, and the adjoint of px(AyA) with respect to this
hermitian form is px(Ay~'A). Therefore, if Ay"'A = AyA is satisfied for all y € A, then
the Hecke operators px(AyA) are all hermitian. Moreover, Ay™!A = AyA (Vy € A) implies
the commutativity of the ring H (5, A). Therefore, under this condition, py is a direct sum
of real linear representations of H(A, A).

Recall now that an element gr € G is called elliptic if it has a fixed point on §. It
is clear that if gg € AyA (y € A) is elliptic, and if § € A, then §'ggd is also elliptic and
contained in AyA. Let A(AyA) be the number of all elliptic A-conjugacy classes contained
in AyA. Then, if AyA # A, Eichler-Selberg’s trace formula for the Hecke operators asserts
that *:

(23) A(AyA) = d(Ayh) + d(Ay™ A) — tr pa(AyA) — tr pa(Ay ' A).
(cf. Eichler [12]). As a summary (for k = 2), we get:

LemMa 1. Let A, A be as in the beginning of §9, and assume that we have Ay~'A =
AyA for all y € A. Let p = p, be the representation (22) of H (A, A); the Hecke operators
in the space of automorphic forms of weight 2 with respect to A. Then, p is a direct sum
of g linear real representations x\,--- ,x, where g is the genus of A\9. Moreover, if
y € A,y ¢ A, then the number A(AyA) of elliptic A-conjugacy classes contained in AyA
is given by

(23) A(AyA) = 2(d(AyA) - tr p(AyA)),
where d(AyA) is defined by (21).

We remark that, in Eichler-Selberg, tr p(AyA) comes on the left side; whlle in our
point-view, A(AyA) is “wanted” and comes on the left side.

“This can also be proved by Lefschetz’ fixed point Theorem.
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§10. The second basic lemma is concerned with the Hecke ring H(G,, U,), where
G, = PSL,(k,) and

(24) U, = PSLy(0,) = SLy(0,)/ £ 1.

It is clear that H(G,, U,) is defined, since g,'U,g, and U, for any g, € Gy, are com-
mensurable with each other. Let p be a prime element of k, (i.e. pO, = p). Then, by
elementary divisor theory, it is well-known that

!
25) Y1=U,,(1(’) po_,)Up (1=0,1,2,--)
gives all distinct U, double cosets contained in G,, and that we have
(26) Y'=Y (=0,1,2,-); Yo=U,

Lemma 2. We have
@7 Yo\Yil =¢” +¢* (2 1),
and

= 1 —u)(1+qu)

2 Yo = (
- ;‘ MET-( —g+ Du+ g’

where the second formula implies the identity between two power series of u with coeffi-
cients in H(G,, U,).

The proof of Lemma 2 will be given later, in §17.
Now, let I be a discrete subgroup of G = Gg X G, such that I'r and I, are dense in
Gr and G, respectively. Foreach/=0,1,2,---, we put

(29) I'=(yel|y, e ¥}

In particular, I = T' N (Gr x U,) forms a subgroup of I';. and for any y € I,y Iy
and I'® are commensurable with each other. It is obvious that we have I? - TV . I? = I
for each / > 0, because Y,Y;Y, = ¥; (! > 0) holds; and moreover, each I consists of a

I
single T'-double-coset. In fact, let y,’ € I'. Then y,,v, € ¥, = U, (I())
there exist u,,uj, € Yo = U, such that y, = u,y,u,. Recall that I'; is dense in G,, and
take 6, € I') which is sufficiently near u,. Then &, = ¥, 16y, is sufficiently near u,” and
hence is contained in U,. On the other hand, 6, is in I';; hence we have 8pYs0'5 = v, with
6,6, € TO. Therefore, each I consists of a single [-double coset. Now, since we have
U, Ty = G and U, NT, = I, it is now clear that the projection I — I'; € G, induces a
canonical isomorphism of H(I",I"°) and H(G,, U,), which sends to I to ¥; (! > 0). So,
by Lemma 2, we get:

0
! U,; hence

LemMa 2'. We have

(30) I\ =g+ (21),
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and

g (L=w)(1+qu)
GD) ;F"I‘ 1 - — g+ Du+qu?’

where the second formula implies the identity between two power series of u with coeffi-
cients in H(T,T°). Moreover, eachT" is self-inverse (and hence H(T",T'®) is commutative).

§11. Before stating the third lemma, we need some alternative definition of {r(u),
which is simple in our case where I' is torsion-free. Now, I being assumed torsion-free,
each I'; # {1} is isomorphic to the infinite cyclic group. We recall that y € I is called
elliptic if yg is elliptic, and hence equivalently, if ¥ # 1 and y € T, for some z. Such z is
unique; hence we may write y = .. An elliptic element y € T will be called primitive, if
¥ = 7. generates I',. Thus it is clear that an elliptic element can be expressed uniquely as
a positive integral power of a primitive elliptic element of . If y = 1y, is elliptic, and if
6 €T, then 6y67! is elliptic, being contained in I's,.. If moreover y is primitive, then &y5™!
is also primitive, since it generates I's,; = 6I,67!. So, we shall call a I'-conjugacy class
{y}r elliptic, if vy is so, and primitive, if y is moreover primitive. Since I is torsion-free, it
is clear by Proposition 3 (§4) that, if y is elliptic, then the eigenvalues +{A,, A;'} of y, are
contained in k,, and are not in U/,

ProposiTioN 4. Let {y}r be an elliptic l"-cbnjugacy class. Then; Yir # {y Y.

Proor. It is enough to show that ;! and yg are not conjugate in Gg. Suppose, on the
contrary, that we had yz' = gr - yr - gg' With some gr € Gg. Let z be the fixed point of
YR, Yg - Then y3'(gr -2) = gr - YR - 2 = gr - 2; hence gg - z is also fixed by y5!. Therefore
we have gg - z = z; hence gr € G,gr. Since G,y is abelian, this implies gryrgg' = ¥r,
hence y];‘ = yr. But this is a contradiction, since yg # 1 and, by assumption, I" has no
elements of finite order. m]

ProrosrTioN 5. () is in one-to-one correspondence with the set of all mutually in-
verse pairs {y*'}r of primitive elliptic T-conjugacy classes.

Proor. This is immediate, if we recall the definitions of p(I') (§3) and of primitive
elliptic I'-conjugacy classes. The one-to-one correspondence is defined as follows. Take
any P € p(I') and a I'-fixed point z € $ contained in the I'-equivalence class P. Then T, is
the infinite cyclic group. Let y, y~! be its generators. Then P — {y*!} gives the desired
one-to-one correspondence. 0

§12. Let {y}r be any elliptic ['-conjugacy class, and let +{A,, A;'} be the eigenvalues
of 'y,. We know that 1,, 17! are in k, and not in U,. Put

(32) deg{y}r = |ord, 4,].

It is clear that this is a well-defined positive integer, and that for any » € Z, we have
deg{y'}r = Irldeg{y}r. Moreover, if a pair {y*!}r of mutually inverse primitive elliptic
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conjugacy classes corresponds to P € p(I'), then, deg P = deg{y}r holds. (Recall the
definition of deg P for P € p(IN)).

(33) 9() 3 P & {y*!\r: primitive elliptic = degP = deg{y}r.
So, our { function {(u) can also be defined as
(34) &)= [ [ -utstriinyd,

y*hir

where {y*!}r runs over all pairs of mutually inverse primitive elliptic I'-conjugady classes. We
shall need the following alternative definition of deg{y)r;

ProposITioN 6. For eachy € TV, we put I(y) = I. Let {y)r be an elliptic T-conjugacy
class. Then we have:

(35) deg{ylr = Min,y,. I(x).

Proor. Since v is elliptic (and y is of infinite order, since I is assumed torsion-free),

by Proposition 3, there is an element g, € G, such that g;'y,g, = (':)p /191) with 2, € k;;
P

and we have deg{y}r = |ord,(1,)l. Putd = deg{ylr. Then, g;'y,g, = (/(l)" ;1,) €
. . p

d
U, (% p(z"’) U, = Y4; where U, = PSL(O,) and p is a prime element of k,. Let 5, € T,
be sufficiently near g,. Then 6,'y,6, € ¥;. So, if § € T corresponds to &,, we have
I(67'y6) = d; hence we have d > Min,,,- /(x). Now let y’ be any element of {y}r, and
a, b,
c

i dp) € Gy. Put ' = I(y’); hence y, € Y,. This implies that the entries of

puty, = i(

1’ a b . . . 4 I’ .
r (C‘D dp) are integers. Therefore, its eigenvalues +{p’ 1,, p" 17"}, must also be integers;
P P

which implies /' > | ord, 4, = d; hence we get d < Min,e(,;. /(x). a

§13. Now, the third lemma is on a relation between I'- and I'’-conjugacy classes. By
Proposition 6, if {y}r is elliptic, then {y}r NT" = ¢ for I < deg{y}r. We have:

Lemma 3. Let {y)r be a primitive elliptic F—éonjugacy class, put d = deg{vy}r, and let
r 2 1. Then, (i) {y"}r NI consists of exactly d distinct I'°-conjugacy classes. (i) Ifk > 1,
then {y}r N Tk consists of exactly dg*~'(q — 1) distinct T-conjugacy classes..

The proof, which requires some preliminary studies on the structure of PL,(k,), will
be given later, in §19.°

CoroLLARY . Let Ap(m 2 1) be the one-half of the number of elliptic T°-conjugacy
classes contained inT™, and let N,, (m > 1) be, as in §6 (16), the sum of all deg P for all

5An alternative and easier proof is given in Part 2, §30, in the proof of Corollary of Theorem 4.
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P € o(T) with deg P|m:
Am =%#{ elliptic T°-conjugacy classes in ™)

N, = E degP.
Pep(T),
deg Pym

Then, they are both finite, and we have:

m-1
(36) An=Np+(@-1)) ¢ Nor  (m21)
k=1
m-1
(37) No=dn=@q=1) Ani  (m21).
k=1

Proor. The finiteness of 4,, is a special case of Lemma 1, appliedto A = 'y, A = 3.
To show the finiteness of N, it is enough to show that there are at most finitely many
elliptic I'-conjugacy classes {y}r with a given degree d. But, by Proposition 6, such {y}r
intersects ' and the intersection {y}r N I'¥ is a union of (several) elliptic I'°-conjugacy
classes. Therefore, the finiteness of N,, follows immediately from that of 4, for dim.

Now, (36) is a direct consequence of Proposition 6 and Lemma 3. In fact, each elliptic
I-conjugacy class contained in I defines an elliptic '-conjugacy class, which can be
written as {y")r, where {y)r is primitive and » > 1. If we put d = deg{y)r, then, by
Proposition 6, we have rd < m. So, fix k (0 < k < m - 1), and for each dim - £,
consider all primitive elliptic I'-conjugacy classes {y}r of degree d. Put rd = m — k. Then,
(Y }rnI™ = {y}rNI"¥** consists of d (k = 0) or dg*(g—1) (k > 0) distinct I'*-conjugacy
classes (Lemma 3). Therefore, we have:

m-1

d --k=0
24, = #{{y)r; primitive, elliptic, degree d} x { ’

me1 1 ---k=0,
= Z Z deg(‘y}rx{q,,_l(q_ 1) ---k>0.

k=0 (yir; primitive elliptic
deg(ypim-k

So, by Proposition 5 and (33), we get
m-1
Am = Ny + (q - 1) Z fﬁle—k’
k=1
which settles (36). Now, (37) is a formal consequence of (36). In fact, it can be checked
directly, by substituting (36) on the right side of (37). : ‘a
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The proof of Theorem 1 assuming Lemmas 2, 3.

§14. We have
m-1
€1) Np=dn—(q-1) ) Ams.
k=1

Apply Lemma 1 for A =Ty, A = I3 Since we can identify H(T, I'’) with H(T'r, I}), we
consider d, p as representations of H(I",I'°). Since, by (30), we have d(I™) = [[°\I™| =
7" + ™1, we get

(38) An=g" +g" " —ttp@™)  (m21).
By substituting (38) in (37), we get

m—1

(39) No=q" +q-tpll"—(g-1) ) T,

k=1
Since tr p(I) = g, the genus of I}\$H, we get

(40) Nu=g"+1-(g-1)(g-1)-trpl™—(g-1) Y I"*}.
k=1
On the other hand, by (31) (Lemma 2’) we get
1—qu 1 - g% .
“1) eI T1-Ml—q+ Du+g

m=0
and by a simple computation, we see that the left side of (41) is equal to

=]

(42) > {r’” ~(@-1) i r'"-"} ™.
k=1

m=1
Put
43) 1-T' =g+ Du+g*? =1 —nu)(l —7'u)
formally, with 7n’ = n’mr = ¢*. Then,
1 S oy m
T = = Z(ﬂ’”+ﬂ"’ I 4+ ™
(44) m=0

1
(1 - ) - m'u)’

=1+ ) (" + "W + gl
m=1

hence we get

1 - q*u?
(1 = mu)(1 = 'u)
Therefore, by (41), we get

(45)

=1+ Z(;r"’ + ™M™,
m=1

(46) I‘"'—(q—l)i["”‘k=n'"+zr"" (m=>1).
k=1
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This is a formal computation, but this shows that if y is a linear representation of the
ring H(T, I'?), and if we put

- () - g+ Du+ g2 = (1 - mu)(1 - '),
then
(47) XT)=@-1) x@H=a"+2"  (m21)
k=1

holds. Now, by Lemma 1, p is a direct sum of g linear representations:
P=X10- Oy,

so, by putting

@) 1-(M-g+Wu+gdi? = -mu)l-7u) (<i<g,mn =g

we get

(49) W@ -@-D S T =ap e w? (A <i<g ms1)
k=1

So, by summing over i (1 <i < g), we obtain:

(50) trpl” - (g - 1) Z = }:(ﬂ’" +m");

and hence, by (40), we get ) _

D Nm=q2"'+1—(q—1)(g-1)-i(ﬂ§"+7f§"') (m 2 1);

and hence we get

_ LA - 7)1 — mju)

T (T-w)(1 - q%u)

Since (48) are the eigenvalues of 1 — (o(I'?) — g + 1)u + g*u?, we have

det{l — (o(T") — g + Du + g*u?}
(1 -u)(1 - q*u)

That m;, m; (1 < i < g) are algebraic integers follows immediately from (51) (for m =

1,---,2g). o
So, we have also shown: :

= N,
52 = Zym 1 — w)@- D1
(52)  dr(w)=exp m§=l', —u x (1 -u)

(53) r(u) = X (1 —u)@be-h,

A suppLEMENT TO THEOREM 1. The numerator of the main factor of {r(u) is given by:

(54) ﬁ(l — mai)(! - 7 = det{l — (o) - g + D + ).
i=1
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Proofs of Lemmas 2, 3.

§15. Put
(55) X = PLy(ky) = GLy(k,) /K.

Then, for any element x € X, we can take its representative (z z) mod k; such that

a, b, ¢,d are all contained in O,, but not all are in p. Put (ad — bc)O, = p*®. Then, I(x) is
a non-negative integer, well-defined by x. We shall call it the length of x. It is clear that
we have

(56) Ixixy - x,) < Ixy) + - + I(x,)
=l0x)+---+I(x,) (mod?2),

for any x;,--- ,x, € X. Put

(57) Xi={xeX|l(x)=1.
In particular,
(58 Xo = PLy(0y) = GL2(05)/ Uy

is an open compact subgroup of X; and it is well-known by elementary divisor theory, that
each X; consists of a single X;-double-coset; 7

(59) X =X, (”'

0 ?)Xo where p is any prime element of k.

Since Xj is open compact, for any x € X, the subgroups x~! Xpx and X; are commensurable
with each other; hence |X,\X]| for each / > 0 is finite, and the Hecke ring H(X, X,) can be
defined. Moreover, since /(x™') = I(x) for each x € X, each X; is self-inverse, and hence
H(X, Xo) is commutative. Now, the following lemma is a very well-known one:

Lemma 4. Let p be a prime element of k,, and let | > 1. Then the following set of
matrices mod k; forms a set of representatives of Xo\Xi;

m mn>0m+n=1
(60) (pO an); @ : representatives of O, (mod p")
' P Ifm,n are both > 0, then @ # 0 (mod p)

In particular, we have
(61) x=x[7 9. > X L e (dis'oint)'
1= 0 0 1 0 0 p J ’

hence we have |[Xp\X;] =1 +4.
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§16. Now we shall prove the following two equivalent lemmas; Lemmas 5, 5’.

LemMA 5. Put X, = 3.1 | Xon; (disjoint). Then,
(i) For eachi (0 < i < q), there exists a unique suffix j (0 < j < q) such that njn; € Xo.
We shall put j = p(i) (0 < i< q).
(ii) Any element x € X; (I > 0) can be expressed uniquely in the form:
(62) X = UMMy - My, Withu € Xy, iy # p(ina) (1 < VR < 1-1).

Conversely, an element x € X of the form (62) is contained in X,. In short, we have
(63) X = Z’Xom, S Tl
where the disjoint union Y." is over all {i\,- - - ,i;} such that i, # p(ins1) foralln(1 <n <
D.
We note that (i) is trivial, since j = p(i) is uniquely determined by Xor; = Xon;!. This
is merely for a better understanding of (ii).
LeMMA 5'. As elements of H(X, X;), we have
(64) X2 =X+ (q+ 1)X,
(65) XX = XX = X +qXin (122).
This Lemma 5’ is more or less well-known. We shall prove Lemma 5 (ii) and Lemma

5’ in the following order;
Lemma 5 (ii) for a particular m, - - - , 1, = Lemma 5" = Lemma 5 (ii) for any o, - - - , 7.

Proor. Let p be a prime element of k,, and let @y = 0, a3, - - - , @, be a set of represen-
tatives of O, mod p. Put
P 0 1 (4 1] .
= i = <1<£4g).
(66) b0} (0 1),7r, (0 p) (1<i<gq)

By (61), we have X; = ¥,7 ) Xom; (disjoint). Since

_ [P Pai - 1 a;

we have mom; € Xy for 1 < i < g, and hence p(i) = 0 (1 <i < g). Since

0\ (10
7r17r0=(€ p)’:‘(o 1) (mod KY),

we have m 7y € Xp; hence p(0) = 1. So, to show Lemma 5 (ii), it is enough to show that:
i

(67) X = Z Z Xomy, ---my,_ g (disjoint).
=0 b
But we have

= p"' ay ‘o pt+---+ ailpl-;-l
Ty =T _ g = 0 pl—s .
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Hence, (67) follows immediately from Lemma 4. So, Lemma 5 (ii) is proved for the
particular o, - - - , , given by (66). This also shows |Xo\Xj| = ¢' + ¢ (I > 1).

Now let us prove Lemma 5’. Let mp,--- ,7, be as in (66). Then we have X; =
Z,—o Xon,, hence X2 Z, Jj onr]n,, multlphclty being taken into account. Hence

= ) Xomm+ Y Xomm=Xp+ ZXO_XZ+(q+1)X0

Cij j#eli) ij j=p(® j=pli)
By Lemma 5 (ii) for these 7o, - - - , m,, Wwe have X; = ¥ 256...), va X7, -+ 703, So,
q ' B
XX = Z Z Xomimty, - - - 7y,
i=0 in#p(ine1)
= Z Xoﬂ'iﬂil"'ﬂ'i,"l' Z Xoﬂiﬂil"'ﬂil
in#p(ipg1) in#plipns1),
i%p(iy) i=p(iy)
= X'I+l + Z Xoﬂ-iz e ﬂi'
in#p(ipe1 )
1<ngi-1
=X'1+l + Z Z Xoﬂiz"'ﬂ'i,
- iy#p(i2) in*l’(’nﬂ)

2<nsl-1

= X1 +9X1 (2 2).
Since H(X, Xy) is commutatlve we have X.X; = X1.X; = Xj41 + qXj-1; hence Lemma 5" is -

proved.

Finally, let us prove Lemma 5 (ii) for an arbitrary set 7o, 7y, - - - , 7, of representatives
of Xo\X1; X1 = ,_0 Xorr;. By (65), we obtain
(68) Xi=Xi+cXia+cXig+-- (21),

where ¢, ¢/, - - - are non-negative integers. In fact, it is trivial for / = 1; so, assume that (68)
is true for some / > 1, and multiply X; on both sides. Then from (65) follows directly that
(68) is also true for / + 1. Now, the expression of X} by the formal sum of left X;-cosets,
multiplicities being taken into account, will be

(69) ZXO”ix ceemly = Z'onr,-l .- -1, + lower length terms ,

where the first formal sum Y, is over all 0 < if,---,i < ¢, and the second one, Y}, is
overall 0 < iy,---,§ < q, with i, # p(ins) forall n (1 < n < I - 1). On the other hand,
the number of terms under ¥’ in (69) is ¢’ + ¢!, which is equal to |X;\X;|. Thus, by
comparing (68) and (69), we see that all left X; cosets under Y’ in (69) must be mutually
distinct, elements of such left X cosets have length /, and that

X = Z’Xom, ...m, (disjoint);
which proves Lemma 5 (ii). , . O
CoroLLARY 1. We have E
(70) | Xo\Xi| = X1/ Xol =¢' +4" forlz1.
Remark . Since X;! = X;, we have [X;/Xo| = [Xo\Xl.
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COROLLARY 2. We have

u2
(1) S Xl = —

pr Xiu + qu?
as an identity between two formal power series of u with coefficients in H(X, X,).
Proor. That (1 — Xju + qu?) 3520 Xt = 1 — u? follows directly from Lemma 5’. O

§17. The proof of Lemma 2. Put
= {x € X | I(x) = 0 (mod 2)}

(72) _ UX X = PLy(k,)
2
1=0 2
Then, X’ forms a subgroup of X with in- _ X =G X,
dex 2. It is easy to see that if X 3 x PSLy(k,) = G, —
detx € k/k is the homomorphism of X

2. .
onto'k;‘/k;‘ induced from the determinant ____ Xy=PLy0,)
map: GLy(ky) > x — detx € k, thenwe  PSLy(0,) = U,
have

= {x € X| det x € KU, /K
(73) ={x € X| ord,(det x) =0 (mod 2)}
= PLy(0,) - PSLy(k,) = Xo - G
On the other hand, (71) gives rise to
ZZA’ZluZI = Zx'lul_l_ ZX'I(_u)I = 2(1 _u2)(l +qu2)

=0 =0 =0 (1 +qu?)? — Xju?’

hence we get

g (L=u)(1 +qu)
(74) DK = - —q+ Du+ g

I=0
So, to prove Lemma 2, it is enough to show that H(G,, U,) and H(X", X,) are canonically
isomorphic, i.e. there is an isomorphism which maps ¥; on X3; (! > 1). To see this,
we remark that, in general, if G; D G,, H, are three groups such that G; = G,H;;
x"1G,x ~ G; (~: commensurability, Vx € G,), x ' Hyx ~ H, (Yx € Hy; H, = H)NG>), and
that Gzhl Gz N ‘Hl = H2h1H2 (Vh] € Hl), then the two Hecke rings 7‘{(G1, Gz), q'{(Hl, Hz)
defined with respect to (say) left coset decompositions are canonically isomorphic; i.e.,
HymH, € H(H,, H,) corresponds to G2h G, € H(G,,G,). This follows immediately
from the definition of the Hecke rings. Thus, to show that H(G,, U,) and H(X, Xo) are
isomorphic by ¥; — Xy, (I > 0), it is enough to check X;; N G, = ¥; (I > 0), since we

I
know that Y; is a single U, double coset. But ¥; = U, (}(’)
g» € G, = PSLy(k,) with elementary divisors p~, p’; i.e., all elements g,, € G,N Xu,
hence the Lemma 2 is proved. , ‘ : 0

(i ) U, consists of all elements
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§18. For the proof of Lemma 3, we need some more lemmas, which are direct con-
sequences of Lemma 5°
Letx,,---,x, € X = PL,y(k,). We shall say that the product x; - - -- - X, is free, if

(75) Ixy - --- Xp) = Ux1) + -+ 1(xy)
holds.

LEMMA 6. Let x,y,z € X,y & Xo. If the two products x -y, y - z are free, then the product
X -y-zis also free.

Proor. Letmy, -, 1, beasin Lemma 5, and factorizez = umy, - - - 7y, yu = wny - my,,
xu' =u'n, ---m,, where u,w’,u’ € Xo,l = I(z),m = l(y) > 0,n = I(x) (see Lemma 5).
By assumption, y - z, x - y are free products; hence 7, 7,, € Xo, 7,7, € Xo. Therefore, by
Lemma 5, xyz = w'n,, - - - m,, 7, - -+ 7, 7wy, - - - 70y, has length [+ m + n. i

LemMa 7. Let x - y be a free product, and let xy = unm;, - - - m; be the factorization (62)
of xy. Then, x = um; -- -7r,-mu"1, y=u'n,, - m, withsomeu' € Xy, and withm = I(x).

Proor. Lety = w'nm;,,, - -zij, be the factorization (62) for y. Since the factorization of
xy can be obtained by factorizations of x and y, and then by carrying the elements of X,
to the left (no inﬂuence to y-side!), we see directly by the uniqueness of factorization (62)
for xy that j,.1 = imsy, -+, jy = i,and hencey = w'n; ., --- n;, for some v’ € X,. O
Lemma 8. Let x,y € X, and put I(xy) = I(x) + ly) — 2d. Thend £ I(x),(y); and if
x=x"-x',y =y -y" are free products withd < I(x’), I(y’), then I(x'y’) = I(x") + I(y’) — 2d.
Proor. The first assertion is clear’ Let
X=umy---my, Y=um;---m,

be the factorizations (62) for x, y. By Lemma 7,

X=u'n--my, y —fur,, cmu”
with u”, u"” € Xo, I(x)=1-s+12>d, I(y') =t > d. It is enough to prove that
Iy, - mpd'my - om))=(—s+1)+1-2d.

This can be seen easily from the process of obtaining the factorization (62) for xy from
that of x and y given above. , m]

"Lemma 9. Let X1, ,Xp, be any élemehts of X and put
Ktixins) = 106) + Kotin) — 26 (1S < n—1),
Ifl(xix1) > dy + dhuy holds ® for all i (1 < i < n~2), then
) Max) =) e+ 1) = 2d; 4o+ dry).

SThey are given in Y. Thara [16].
TSince x = xy - y~!, we have I(x) < I(xy) + I(y); thus we get [(xy) > [I(x) - I(y)l
8Where we putd, =0.
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— 7 % 7
— 77 2
= 01 ¢
di—l di-l dl dz di+l
[ —— N o’ N pr—
Xi-1 X; Xi+1

Proor. Factorize each x; into free product x; = a;b;c; with I(a;) = di-1, I(b;) = I(x;) —
d; — di-y > 0,1(c;) = d; (here we understand @, = ¢, = 1). Lemma 8 shows that c;a;,; €
Xo (1 < i < n-1), and that I(bc;a;1bi+1) = I(b;) + I(bis1), and hence the products
(biciais1) - bis1, and hence also the product (bici@ir1) - (bis1Cis1ais2) are free. Now our
lemma follows directly from Lemma 6. o

COROLLARY . Let x1,--- ,x, € X with I(x3),-+- ,l(x,1) > 0. Then, if the products
X| - X3, -+ , Xu_1 - X, are all free, the product x; - - - x,, is also free.

§19. The proof of Lemma 3. Recall the definitions;
I
r'= {yerlw €% = Up(’(’, pO.I)Up} (20,

where U, = PSL;(0,), and p is a prime clement of k,. When y € T belongs to I, we
put / = I(y). To avoid unnecessary suffices, we shall not make distinction between I and
I',; and consider I as a (dense) subgroup of G,. Also, we consider G, = PSL,(k,) as
a subgroup of X = PL,(k,). We note here, that the definitions of the functions /(x) are
different on G, and on X; in fact, we have ¥; = G, N X3;. We shall use the symbol /(x)
exclusively in the sense that /(x) = / for x € ¥;. We shall further put L(x) = [ for x € X;.
Thus, we have

) Ix)=2L(x) forxeG,.

The product y1y2 - - - ¥ Of y1, - -, ¥ € [ is called free, if I(y1 - - - yn) = ly1)+- - -+1(7n)
holds. We shall show that any element y € T with I(y) = I (I = 1,2, --) is a free product
of elements of I'';

(78) y=ny2-¥s Yoy €TL

In fact, it is trivial for / = 1. Assume that it is true for I(y) < /-1, and prove it for I(y) = L.
By Lemma 5, we can put y = x1xz---xy With xj,--- ,x3 € X;. Since PLy(Op)[, =
PLy(0,) - G, = X', there is an element y; € T contained in PLy(Oy)x2-1xy. Then we
have I(y;) = 1, I(yy/!) = I - 1, and hence by the induction assumption, we have yy,™! =
Y1+ ¥i1 Withyy, -+, vy €T'; hence we gety = y172--- .

Now let {y)r be a primitive elliptic I'-conjugacy class of degree d. By Proposition
6, we can assume, without loss of generality, that I(y) = d. Puty = y; ---yq with y;,
.-+, va € T'. Then the products y; - y2, - -+, ¥a-1 - Ya are free; but moreover, the product
ya - v1 must also be free. In fact, if not, then I(y; " yy)) = Uy, ---yav1) < d, whichis a
contradiction, since by Lemma 6, we have d = Min,c,), /(x). Therefore, the products y-y,
y-y-v,--- etc. are also free, and we have I(y") = |rll(y) = |rld for any r € Z. Another
remark is that, if yl“ = uy MMy, Ya = UM Ny are the factorizations (62) of y;‘, Y4, then,
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since y, - 1 is a free product, we have m, # my. On the other hand, if x = um;; ---m; is
the factorization for x € T, then the product x - y; is free if and only if 7, # m3; y4 - x7!
is free if and only if m;, # 7;. In particular, it shows that at least one of the two products
X -1, Y4 - X! must be free. Since v; - y;41 is a free product for any i, where the index is
considered mod d, we see that the above remark is also valid, if we replace y,, v, by v;,
Yi+1 respectively. '

Now the proof of Lemma 3 requires a separate treatment for the cases k: even or k:
odd.

The case k is even. Let S be a set of representatives of I''\I'*/2, If k = 0, then we
simply put S = {I}. If k£ > 0, then we have |S| = ¢*!(g + 1). In this case, for each i
(mod d), let S; be a subset of S formed of all x € S such that x - y; and y, - x™! are free
products. Then, by the previous remark, S; consists of g*"!(q — 1) elements (see Lemma
5). If k = 0, we simply put §; = § = {I} (1 < i < d). We shall prove that the following
set of dg*"'(q — 1) (k > 0) or d (k = 0) elements of I" forms a set of representatives of all
I'°-conjugacy classes contained in {y”}r N T9+¥;

yiny2- v uils y1 €8
e r _1; € S
(79) yz(’)’z?’s Y1) Y, .yz 2

\yaCyays -+ - va-1)y3" Ya € Sa.

Since the products y;y;, i-1-y;" are free, the product yi(yi - - - ¥i-1)'y;' = yiyis -+ Vi1 Y;
is free (corollary of Lemma 9); hence they are contained in I'*"**. On the other hand, since

ViYis1 - Yie)) = 1Y) Y (e Ve

they are contained in {y"}r.
First, let us prove that the distinct members of (79) are not I'’-conjugate with each
other. Suppose that

— ’ -1 -
yilyi- i)yt = wyi(yy vy W

holds withu e T°, 1 < j <i<d,andy; € S, y; € S;. Then, this implies that
y,-“uy;.(y,-'yj” .-+ y;.1) commutes with (y;---y,_1)". Since y;---vy;_; is primitive (it is I'-
conjugate to y), its centralizer in I is the free cyclic group generated by itself. Hence, we
get

Yy (Y Yie) = i Vi)

with some s € Z; hence we get

(80) uyj'(‘}’j’}’jn < ¥ie) = YilyYie oY1) (s € Z).

But the products y; - v}, yi - ¥i» Yi - Y5, (appears, if s < 0) are all ﬁée; hence by taking /()
of both sides, we get £ +i— j = £ + |s| - d; hence i — j = |s|d; hence i = j, s = 0. So, by
(80), we get uy; = y;; hence, by the definition of S, we gety; = y; =y, u = 1.
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Now, we shall show that any element of {y"}r N I'*"** is I°-conjugate to a member of
(79). Take any z € {y"}r N T¥**, and put

(81) z2=x(Yiyisr - vi)x, xel, (1<i<a).

We can assume, without loss of generality, that, among all expressions of the form (81)
(where i can vary), we have chosen our particular (81) so that /(x) is taken as small as
possible. Now, by the previous remark, at least one of the two products x - v;, ¥i-; - x!
must be free. We shall show that the both must be free. In fact, if not, and say x - y; is free
but y;_; - x~! is not, then we have either L(y;_; - x™!) = L(x) or = L(x) — 2 (by (56) and
Lemma 8). But if L(y;_; - x™!) = L(x), then, by Lemma 9 applied to the product

Xy i Vi) i X
we get L(z) = 2dr + 2L(x) — 2; hence k = L(x) — 1 = 2/(x) — 1, which is a contradiction,
since k is even. On the other hand, if L(y;-; - x™') = L(x) — 2, then if we puty = x - y; !},
then I(y) = I(x - vy 1) = I(x) - 1 < I(x), and

z=2(yiYia) X = yyieryio - vicy

with I(y) < I(x); which is a contradiction to our assumption on the expression (81) of z.
Exactly in the same manner, we can show that an assumption that x - y; is not free leads
to a contradiction.

Therefore, the both of the products x - y;, y;-1 - x~! must be free. So, by the corollary of
Lemma 9, the productz = x-y;- --- -y, -x~! is free, hence dr + k = I(z) = 2I(x) +ri(y) =
2I(x) + rd; hence 2I(x) = k; hence x € T'*2, Since the products x - y;, y;-; - x! are both
free, we have x = uy; with u € I'°, y; € S;; hence z = uyi(y; - - - ¥i-1)y; 'u™", and hence z is
IP-conjugate to yi(y;- - vie1Yy;', yi € S..

The case k is odd. Let S’ be a set of representatives of I°\I'**)/2, and let S} (1 <
i < d) be a subset of S’ formed of all x € S’ such that I(x - y;) = I(x). If y;! = um,m,
is the factorization (62) of y;!, and x = wum;, ---m,,, is that of x, then, the condition
I(x - v;) = I(x) is equivalent to 7;,,, = mp, m;, # M. So, by consulting Lemma 5, we see
directly that the cardinality of S’ is (g — 1)g*"!. Now, we shall show that the following
set of dg*~1(g — 1) elements of T forms a set of representatives of all ['*-conjugacy classes
contained in {y"} N I¥+%;

nn - va)yp! y1 €8]
(82) : :
Ya(ya- - Va-1)y7' Yya €S

Since I(y1y:) = I(y;), and since y;_; - y;"! is free (recall that at least one of y; - y;, i1 - y;‘
must be free), Lemma 9 shows that

Iyi(yi vy ) = 2Uy)) + dr — 1 = dr + k;

hence yi(vi- - 1) y;' € T7* N (¥} |
Let us show that the distinct members of (82) are not I'’-conjugate with each other. If

Yilyi vy = wyye vy w
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withu € I°,1 < j<i<d,y €S}y, €S, then, by the same argument as in k: even
case, we get

(83) uy}(7j7j+1 Y1) = YilYivier - Yim)' (S EZ).

We shall show that j = i. Suppose on the contrary that we had j < i. Then, we have
Wuy (yvjsr -+ vi-1)) = I(y)) + (i = j) — 1 (by Lemma 9). So, we get, by (83),

el Blisd—1 ifs>0
+
(84) ——+i-j-1={8l 4 |q.4 if s <0(.y -y is free)

2 k+1 ifs=0
= IIs=0u.

If s # 0, (84) implies i— j > d, which is a contradiction. If s = 0, then we geti = j+1, and
hence by (83), we get wyy; = Yi; hence uy vy = yiyi. Butwehave l(yiy;) = l(y;) = "—;—1,

while
k+1

Wuyyyiyis) =1y + y) + yjm) = 1 = ——+L

since [(y;y;) = l(y) and since the product y; - ;41 is free (use Lemma 9). So, we get a
contradiction /(uy/y,y;+1) # I(y,-y,-). Therefore we get j = i. So, by (83), we get

(85) ' uy; =yi(yi---vi)'s =4

hence ' )

k+1 "+1+sd—1 (if s > 0),
2 {’“1 +lsld  (if s <0).

But these are obviously contradictions; hence we get s = 0. Therefore uy;=y; €5, =5,
Therefore u = 1, y; = y. :

Finally, to show that any element z € {y"}r N\I"¥** is I'’-conjugate to a member of (82),
put
(86) z=x(yiYur - yia) X, xel, (1<i<a).
As in the k: even case, we assume that among all expressions of the form (86) (where i
can vary), we have chosen our particular expression (86) so that /(x) is taken as small as
possible. Now, at least one of the two products x-;, y;—; -x~! must be free. We see that, in
this case, both cannot be free. In fact, if it were so, we would have dr+k = I(z) = 2I(x)+dr,
hence 2/(x) = k; which is a contradiction, since k is odd. So, one of the two products x - y;,
yi-1 - x"! is free and the other is not. If y,_; - x™! is free and x - y; is not, then either
I(x-y) = Il(x)or=1I(x)— 1. Butif l(x-7y;) = I(x) -1, then, if we puty = x -y,
then /(y) = I(x) — 1 and we have z = y(y;,1---y:)y"'; which is a contradiction to our
assumption. Therefore, I(x - v;) = I(x); hence, by Lemma 9, I(z) = 2I(x) + dr — 1;
hence /(x) = &1, Since I(x - y;) = I(x), we have x = uy; with u € 1"° yi € S}; hence
z=uyy;-- v 1)’y, -1, If, on the other hand, x - y; is free but y;_; - x™! is not, again we
get Iy - x71) = lx7") = I(x). Puty] , = x-¥;. Then, z = y_,(yi-r¥i- - ¥i2) Yj, s
and we have I(y,_,) = I(x) = &L, I(y;_,¥i-1) = I(x) = l(y}_,); hence we have y}_; = uy;_
withu € T, y;; € §)_; and we have z = uy;_y(Yi-1yi - - yi-2) y;,u~!; which proves our
Lemma 3 completely. a
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Regular cycles on I'}\$.

820. The situations being as in Theorem 1, let P € p(T), deg P = d; and let {y*)r
be the pair of mutually inverse primitive elliptic I'-conjugacy class that corresponds to P.
By Lemma 3, {y}r N T¥ consists of d distinct I'’-conjugacy classes. Put

(87) eI = {nip U= U {yale;

and let z, - - - ,zy € 9 be the fixed points of (y)r, - - -, (Ya)r respectively. Then, as a set
of points on T{\$, zi, - - -, z4 are well-defined, and are distinct. So, to each P € p(I') with
degP d, we can correspond a set Zj, - - -, Z; of d distinct points on re R\D. We call this
(1, ,24) the regular cycle on T3\ 9 whlch corresponds to P € p(I').

Estimation of the roots of {r-().

§21. Now we are going to give some estimation of the absolute values of the roots
m, m, (1 < i < g) of {r(u). It is a direct consequence of the following lemma by M. Kuga.

Lemma 10 (Kuga®). Let A be a discrete subgroup of Gr = PSL,(R) with compact
quotient, and let y € Gr be such that A, v~ Ay are commensurable with each other, that
Ay~ 'A = AyA, and that A and y generate a dense subgroup of Gr. Put

d
AyA=) Ay (d=(A:ANYAY),

i=1

and let f(z) # 0 be a holomorphic automorphic form of weight k (k = 2,4,6,---) with
respect to A, which is an eigenfunction of the following Hecke operator with an eigenvalue
A;

d
(88) > fyDiyn?) = 2- @),
i=1

where, in general, we put j(g,z) = (crz + dp)* forg =+ (ZR z:) € Gr. Then, we have
R

(89 12l <d.
Proor. Let F be the continuous function on G defined by
(90) Fg) = fgV-1)-jg. V-1) (9 Gw).

Since f(z) is an automorphic form of weight k with respect to A, we have
F(6-g) = f(69 V=1)j(69, V-1) = fg V-1)j(6,9 V-1)""j(6g, V-1
= flgV-Djg, V-1 = F(9) |

cf. M.Kuga [21]. The formulation and the method for proof are not exactly the same.
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for any 6 € A. So, F is A-invariant from the left. Therefore, |F|, being a continuous
function on the compact quotient A\Gg, achieves the maximum value M

91) M = Maxyecg [F(9)I-

Let D be the set of all elements g € Gy such that |F(g)l = M. Then, obviously, D is
A-invariant from the left; D = A - D. Now, (88) implies

d
92) Y. Fyg)=21-Flg) (g€ Gr.
i=1

So,ifge D,weget|d]- M < Z;":l |F(y:g9)| £ Md; hence we get |A| < d. Now, let us show
that | 1| # d. Suppose, on the contrary, that we had |A| = d. Then, in the above inequality,
we must have |F(y;g)l = M for all i (1 < i < d). So, we have |F(£g)| = M forany g € D
and £ € UZ, Ay; = AyA. By Ay 'A = AyA, we also have |[F(£!g)l = M. So, if we
denote by A’, the subgroup of Gg formed of all elements g € Gr such that gD = D, then
A’ contains A and y. So, by our assumption, A’ is dense in Ggr; which implies that D is
dense in Gg. But since F is continuous, D is closed. Therefore D = Gg; and hence we
get

93) |F(g)l= M for g € Gr.
. _ ~17\ _
Now let us show that (93) is impossible. If g = (‘(/)E @_lb ), witha,b € R,a > 0,
then F(g) = f(a Y-1 + b)a*’. Therefore, by (93), we get

%94) /@l = MIm z)™? on$.

Thus , Re (log f(z)) depends only on the imaginary part of z, and hence the derivative
of V—11log f(z) is always real; hence 5—2- log f(z) must be a constant, and we get f(z) =
Ae®* with some constants 4, B. But then (94) would be impossible. So, |1| = d is a
contradiction; and we get |1| < d. m|

§22. To make it possible to apply Lemma 10 to our group, we need verify the fol-
lowing simple lemma.

LemMa 11. The subgroup U, = PS L,(0,) is maximal in G, = PS Ly (k).

Proor. Let H be a subgroup of G, with H 2 U,. Let x € H, ¢ U,. Then

P 0

H> UpxU, = U"(O p") U,=Y, (>0),

‘ I 1 -1 , ‘
p being a prime element of k,. Since (1(7) po_,) , (1()) }; _,) € Y, Cc H, we get

1 p\ _(p? 0\[p pl—l ‘
(0 1)‘(0 o pt)<H
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_1 1
Hence, H > U, ((1) p i ) U, > (g p?,) . Hence, H contains (g p(z‘) for all / > 0; hence

'

all U, (p

0 pql) U,; hence G,. Hence we get H = G,. 0

CoroLLARY . The subgroup I'® is maximal inT. Ify € T, ¢ I'®, then TS and yg generate
a dense subgroup of Gg.

Proor. In fact, I} and yg generate I'g. o

§23. Now we shall prove:

THEOREM 2. The notations being as in Theorem 1, we have

(95) I, ) < ¢,
and
(96) m, m#1, g

Proor. Recall that we have p = x1 ® --- ® x, and
(49) X@=@-DY @ =rr+a" (1<isg m21),
k=1

where p is as defined in §9 for A = %, A =Ty (see also §14). By the corollary of Lemma
11, we can apply Lemma 10 for A = I' and for any yg € I'y, ¢ I'}, and we get

o7 @™ < g™+ (1<i<g m21)

First, let us prove (95). Suppose that we had |r;| = g%, a@ > 2. Then, by m;7, = ¢%, we
get|mj| < 1. By (49), we get ‘

I+ aT <@+ 4 (g - DI+ 4 1)
=g +24" - 1= 0(g").
But this is impossible for |r;| = ¢° (@ > 2) and || < 1. Hence, we get || < ¢. In the
same manner, we get |7}| < ¢°.
To prove (96), suppose, on the contrary, that we had m;, 7} = 1, g2. Then, by (49), we
get

(98) Om—q0m-1 =q2m+1; Om = iXi(rI) (m 2 1)
=0

But this implies 0, = ¢*" + ¢** ' +---+ 1 (m > 1); hence 0, — Ot = ¢*" + ¢*"!
(m > 1). But this implies y,(I) = ¢*" + ¢*!, which is a contradiction to (97). So, we
cannot have m;, 7, = 1, 4. | o

So far, Theorem 2, (95) (96) are the only estimation for the absolute values of ;, ;
which we could prove. Some application of Theorem 2 will be given later.
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Concluding remarks on Chapter 1, Part 1.

§24.

Remark 1. All our results in this Chapter (Part 1) are valid also in the case where £, is
the field of power series over a finite field F,. However, we do not know whether I exists
at all in such a case.

ReMark 2. In the computation of {r(u), we assumed that I' is torsion-free and G/T is
compact. Among them, the former can be dropped easily, and we get a similar result. We
plan to give its description in Part 2 of Chapter 1. Also, we are planning to give there
a computation of “L-functions” attached to I, which has an interesting application to an
analogue of “Tschebotarev’s density Theorem” for the law of decomposition of elements
of (') in p(I""), where I'” is a subgroup of finite index in T..
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