
CHAPTER 8

Inductive complements

8.1. Examples

Roughly speaking the main idea of this chapter is to discuss the following
inductive statement:

if a two-dimensional pair $(X/Z, D)$ is lc but not klt $and-(K_{X}+D)$

is nef over $Z$ , then $K_{X}+D$ is 1, 2, 3, 4 or 6-complementary.

It is known that this assertion is true when $-(K_{X}+D)$ is big over $Z$ (see Propo-
sition 5.3.1) and in the local case. Unfortunately examples 8.1.1 and 8.1.2 below
shows that in general, this is false and some additional assumptions are needed.
The main result is the Inductive Theorem 8.3.1 which is a generalization of 5.3.1.

EXAMPLE 8.1.1 ([Sh3]). Let $\mathcal{E}$ be a indecomposable vector bundle of rank two
and degree $0$ over an elliptic curve $Z$ . Then $\mathcal{E}$ is a nontrivial extension

$0\rightarrow \mathcal{O}_{Z}\rightarrow \mathcal{E}\rightarrow \mathcal{O}_{Z}\rightarrow 0$

(see e.g., [Ha]). Consider the ruled surface $X$ $:=\mathbb{P}_{Z}(\mathcal{E})$ . Let $f:X\rightarrow Z$ be the
projection and $C$ a section corresponding to the above exact sequence. Then for
the normal bundle of $C$ in $X$ we have $\mathcal{N}_{C/X}=\mathcal{O}_{C}$ , hence $C|c=0$ . In this situation
we also have $-K_{X}\sim 2C$ (see [Ha]) and $(K_{X}+C)|c=0$ . This yields $K_{X}|c=0$ .

Since $\rho(X)=2$ , the Mori cone $\overline{NE}(X)$ is generated by two rays $R_{1}=R_{+}[F]$ ,
where $F$ is fiber of $X$ and another ray, say $R$ . Since $C^{2}=0,$ $C$ is nef and $C$

generates $R$ . In particular, both $-K_{X}$ and $-(K_{X}+C)$ are nef and numerically
proportional to $C$ .

We claim that $K_{X}+C$ is not n-complementary for any $n$ . Indeed, otherwise
we have $L\in|-m(K_{X}+C)|$ such that $C$ is not a component of $L$ . Then $L\cdot C=0$

and $L\equiv mC$ . The divisor $L-mC$ is trivial on fibers, hence $L-mC=f^{*}N$ for
some $N\in Pic(Z)$ . Further, $ C\cap L=\emptyset$ . From this $(mC-L)|c\sim 0$ (because
$C|c\sim 0)$ . Since $f|c:C\rightarrow Z$ is an isomorphism, $f|_{C}^{*}N=(mC-L)|c=0$ gives
$N\sim 0$ , i.e., $L\sim mC$ . Then the linear system $|L|$ determines on $X$ a structure of
an elliptic fibration $g:X\rightarrow \mathbb{P}^{1}$ with multiple fiber $C$ . Hence $C|c$ is an m-torsion
element in $Pic(C)$ , a contradiction with $C|c=0$ .

EXAMPLE 8.1.2. Let $X=\mathbb{P}^{1}\times \mathbb{P}^{1}$ . We fix a projection $f:X\rightarrow \mathbb{P}^{1}$ . Let $C$ ,
$H_{1},$ $H_{2}$ be different sections of $f$ and $F_{1},$ $F_{2},$ $F_{3}$ different fibers. Consider the $\log$
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74 8. INDUCTIVE COMPLEMENTS

divisor $K_{X}+D$ , where

$D$ $:=C+\frac{1}{7}H_{1}+\frac{6}{7}H_{2}+\frac{1}{2}F_{1}+\frac{2}{3}F_{2}+\frac{5}{6}F_{3}$ .

It is clear that $K_{X}+D$ is lc and numerically trivial. We claim that there are no
regular complements of $K_{X}+D$ . Indeed, assume that $K_{X}+D$ has a regular n-
complement $K_{X}+D^{+}$ . Then $K_{F}+Diff_{C}(\frac{1}{2}F_{1}+\frac{2}{3}F_{2}+\frac{5}{6}F_{3})$ is also n-complementary.
Therefore $n=6$ (see 4.1.12). On the other hand, by definition we have

$D^{+}\geq C+\frac{1}{6}H_{1}+H_{2}+\frac{1}{2}F_{1}+\frac{2}{3}F_{2}+\frac{5}{6}F_{3}$ ,

a contradiction with $K_{X}+D^{+}\equiv 0$ .

The following example shows that under additional assumptions we can expect
some inductive theorems even $if-(K+D)$ is not big.

EXAMPLE 8.1.3. Let $D=C+B$ be a boundary on $X$ $:=\mathbb{P}^{2}$ such that $K_{X}+D$

is lc and $C$ $:=\lfloor D\rfloor\neq 0$ . Assume that $-(K_{X}+D)$ is nef. Then there exists a
regular complement of $K_{X}+D$ . Indeed, for some $n\in R_{2}$ the $\log$ divisor $K_{C}+B|c$

is n-complementary. Since $H^{1}(\mathbb{P}^{2}, \mathcal{L})=0$ for any invertible sheaf $\mathcal{L}$ on $\mathbb{P}^{2},$ n-
complement (where $n\in R_{2}$ ) on $C$ can be extended to some $\mathbb{Q}$-divisor $D^{+}$ on $X$ .
We write $D^{+}=C+B^{+}$ . By Corollary 2.2.7, $K_{X}+D^{+}$ is lc near $C$ . It is sufficient
to show that $K_{X}+D^{+}$ is lc everywhere. But in the opposite case $K_{X}+C+\alpha B^{+}$ is
not lc for some $\alpha<1$ . By Connectedness Lemma, LCS(X, $C+\alpha B^{+}$ ) is connected.
This gives a contradiction.

8.2. Nonrational case

Now we consider the question 8.1 for the case when the surface $X$ is nonrational.

THEOREM 8.2.1 ([Sh3]). Let $X$ be a normal projective nonrational surface and
$D$ a boundary on $X$ such that $K_{X}+D$ is $lcand-(K_{X}+D)$ is $nef$. Assume that

(i) $K_{X}+D$ is not $klt$;
(ii) there is a boundary $D$ ‘ such that $D’\geq D$ and $K_{X}+D^{\prime}$ is $lc$ and numerically

trivial.
Then $K_{X}+D$ is n-complementary for $n\in R_{2}$ .

PROOF. By taking a $\log$ terminal modification we may assume that $X$ is
smooth, $K_{X}+D$ is dlt and $\lfloor D\rfloor\neq 0$ (see 3.1.1). Since $D\neq 0,$ $\kappa(X)=-\infty$ .
So there is a morphism $f:X\rightarrow Z$ onto a curve $Z$ of genus $g\geq 1$ .

LEMMA 8.2.2. Let $f:X\rightarrow Z$ be a contraction from a projective surface onto
a curve of genus $g\geq 1$ . Assume that $K_{X}+D$ is $lc$ and $-(K_{X}+D)$ is $nef$.
Furthermore, assume that the general fiber of $f$ is a smooth rational curve. Then
no components of $SuppD$ are contained in fibers.
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PROOF. Let $L$ be such a component. Replace (X, $D$ ) with a dlt modification.
Then we may assume
$(*)$ $K_{X}+(1-\epsilon)D$ is klt for $0<\epsilon\ll 1$ . In particular, $X$ is $\mathbb{Q}$-factorial.
If the fiber $f^{-1}(f(L))$ is reducible, there is its component $L_{1}\neq L$ meeting $L$ . Then
$L_{1}^{2}<0$ and $(K_{X}+D-\epsilon’ L)\cdot L_{1}<0$ for $0<\epsilon’\ll 1$ . Thus $L_{1}$ generates an extremal
ray which is negative with respect to $K_{X}+(1-\epsilon^{\prime}’)D-\epsilon’ L$ for $0<\epsilon^{\prime}\ll\epsilon^{\prime}$ . By
Contraction Theorem [KMM, 3-2-1] we can contract $L_{1}$ over $Z$ . This contraction
preserves all assumptions of the lemma as well as assumption $(*)$ (however, we
can lose the dlt property of (X, $D$ )). Continuing the process, we get the situation
when the fiber containing $L$ is irreducible. Similarly, components of all reducible
fibers can be contracted. We obtain a model $f^{\prime}$ : $X^{\prime}\rightarrow Z$ such that all fibers are
irreducible. Moreover $f^{\prime}$ is an extremal K-negative contraction. Hence $\rho(X/Z)=$

1. By our construction, $K_{X}+D^{\prime}$ is lc, $X$ is $\mathbb{Q}$-factorial and $L\subset SuppD$ ’ is a
fiber of $f^{\prime}$ . Let $R$ be an extremal ray on $X^{\prime}$ other than that generated by fibers of
$f^{\prime}$ . Then $R\cdot L^{\prime}>0$ and $(K_{X^{\prime}}+D^{\prime})\cdot R\leq 0$ . Therefore $(K_{X}+D^{\prime}-\delta^{\prime}L^{\prime})\cdot R<0$

for $\delta^{\prime}>0$ . Hence there is a curve $M$ on $X^{\prime}$ generating $R$ (as above, if $K_{X^{\prime}}+D^{\prime}$

is not dlt, we can use Contraction Theorem for $K_{X}+(1-\delta)D^{\prime}-\delta^{\prime}L^{\prime}$ , see also
Appendix 11.2). In this situation, $M\simeq \mathbb{P}^{1}$ (see Proposition 11.2.5). But then the
base curve $Z$ also should be rational, a contradiction with $g\geq 1$ . $\square $

COROLLARY 8.2.3. Notation as in Lemma 8.2.2. Then the pair (X, $D$ ) has at
worst canonical singularities.

SKETCH OF PROOF. Replace (X, $D$ ) with a suitable $\log$ terminal modification
(see Proposition 3.1.2) and apply Lemma 8.2.2. $\square $

Going back to the proof of Theorem 8.2.1, denote $ C:=\lfloor D\rfloor$ and $B:=\{D\}$ . Let
$L$ be a component of $C$ . By Lemma 8.2.2, $f(L)=Z$ . If $\rho(X/Z)>1$ , there is a curve
$E$ in a (reducible) fiber such that $E^{2}<0$ and $L\cdot E>0$ . Since $(K_{X}+D)\cdot E\leq 0$ ,
$E$ is $a-1$-curve and

$-K_{X}\cdot E=L\cdot E=1$ , $E\cdot(D-L)=0$ .

Hence we can contract $E$ and by Lemma 4.3.2 and Remark 4.3.3 we can pull back
complements under this contraction. Repeating the process, we reach the situation
when $\rho(X/Z)=1$ . Thus we may assume that $X$ is a (smooth) ruled surface over
a nonrational curve $Z$ , i.e., $X=\mathbb{P}_{Z}(\mathcal{E})$ , where $\mathcal{E}$ is a rank two vector bundle on $Z$ .
Moreover, $K_{X}+D$ is dlt (see Proposition 1.1.6). Then

$0\geq(K_{X}+D)\cdot L\geq(K_{X}+L)\cdot L=2p_{a}(L)-2\geq 0$ .
This implies

(8.1) $(K_{X}+D)\cdot L=(K_{X}+L)\cdot L=(D-L)\cdot L=0$ .
Thus $p_{a}(L)=1$ and $L$ is a smooth elliptic curve. Hence $g=1$ .

CLAIM. We may assume that $(K_{X}+L)^{2}\geq 0$ .
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PROOF. Let $F$ be a general fiber of $f$ . Since $\rho(X)=2$ , there is exactly one
extremal ray $R\neq R+[F]$ on $X$ . Assume that $(K_{X}+L)^{2}<0$ . Then $-(K_{X}+L)$ is
not nef, $D\neq L$ and $(K_{X}+L)\cdot R>0$ . If $L^{2}\leq 0$ , then $L$ generates an extremal ray
(see Proposition 11.2.1), so $R=R_{+}[L]$ . This contradicts (8.1). Therefore, $L^{2}>0$ .
In particular, $L\cdot R\geq 0$ .

Further, if $L\cdot R>0$ , then $R$ is negative with respect to $K_{X}+D-L$ . Since
$K_{X}+D-L$ is dlt, the ray $R$ must be generated by a rational curve. This implies
that $Z$ is also rational, a contradiction. Finally, we have $L\cdot R=0$ . Then (8.1)
implies $[D-L]\in R$ (recall that $D-L$ is effective). By the Hodge Index Theorem,
$R^{2}<0$ . Thus, $D-L=aL^{\prime}$ and $R=R_{+}[L^{\prime}]$ , where $0<a\leq 1$ and $L^{\prime}$ is
an irreducible curve with $L^{2}<0$ . If $a<1$ , then $R$ is negative with respect to
$K_{X}+D+\epsilon L^{\prime}$ for $0<\epsilon\ll 1$ . Again we have a contradiction. Hence $a=1$ and
$D=L+L’$ . As in (8.1) we have

$(K_{X}+D)\cdot L^{\prime}=(K_{X}+L^{\prime})\cdot L^{\prime}=L\cdot L=0$ .

Since $\rho(X)=2,$ $-(K_{X}+L^{\prime})$ is nef, so $(K_{X}+L^{\prime})^{2}\geq 0$ . Replacing $L$ with $L$ ‘ we
get our assertion. $\square $

Taking into account the equality $K_{X}^{2}=8(1-g(Z))=0$ , we obtain

$0\leq(K_{X}+L)^{2}=L\cdot K_{X}$ , $L^{2}\leq 0$ .

Therefore $L$ generates an extremal ray $R$ on $X$ (see Proposition 11.2.1). It cannot
be $K_{X}$ -negative (otherwise $R$ is generated by a rational curve). Hence $L\cdot K_{X}=$

$L^{2}=0$ and in relations above equalities hold. Thus inequality (8.1) gives that $L$

and all the components $D_{i}\subset Supp(D-L)$ are numerically proportional (because
$\rho(X)=2)$ . In particular,

(8.2) $D_{i}^{2}=0$ , $\forall i$ and $ L\cap D_{i}=D_{i}\cap D_{j}=\emptyset$ , $\forall i,j$ .
Let $F$ be a general fiber of $f$ . Then $F\cdot(K_{X}+D)\leq 0$ and $K_{X}\cdot F=-2$ . This
yields $1\leq C\cdot F\leq D\cdot F\leq 2$ .

LEMMA 8.2.4. Let $f:X\rightarrow Z$ be a ruled surface over an elliptic curve and let
$C$ be a reduced divisor such that $K_{X}+C\equiv 0$ . Then $2(K_{X}+C)\sim 0$ . Moreover, if
$C$ is reducible, then $K_{X}+C\sim 0$ .

PROOF. Since $K_{X}+C\equiv 0,$ $K_{X}+C=f^{*}N$ for some integral divisor of degree
$0$ on $Z$ . First we assume that $C$ is irreducible. Then $C$ is a smooth elliptic curve
and we have $f_{C}^{*}N=(K_{X}+C)|c=K_{C}=0$ . Hence $2N\sim 0$ because $f_{C}$ is of degree
two. Now we assume that $C=C_{1}+C_{2}$ , where $C_{1},$ $C_{2}$ are sections. Similarly,
$f_{C_{1}}^{*}N=(K_{X}+C)|c=K_{C}=0$ . Hence $N\sim O$ because $f_{C_{1}}$ is an isomorphism. $\square $

Now we finish the proof of Theorem 8.2.1.
If $C\cdot F=2$ (i.e., $C$ is a2-section of $f$ ), then $D=C,$ $B=0$ and $(K_{X}+C)\cdot F=0$ .

Hence $K_{X}+C\equiv 0$ . By Lemma 8.2.4, $2(K_{X}+C)\sim 0$ , i.e., we have an 1 or 2-
complement (with $C^{+}=C$).
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If $C\cdot F=1$ , then $C$ is a section of $f$ . Recall that $X=\mathbb{P}_{Z}(\mathcal{E})$ , where $\mathcal{E}$ is a
rank two vector bundle on $Z$ . By assumption (ii) of the theorem, the surface $X$ is
not such as in Example 8.1.1. On the other hand, by (8.2) $C^{2}=0$ and the vector
bundle $\mathcal{E}$ has even degree. From the classification of rank two vector bundles over
elliptic curves (see e.g., [Ha]), we obtain that $\mathcal{E}$ is of splitting type. Hence there is
a section $C_{1}$ such that $ C\cap C_{1}=\emptyset$ . Write $B=\sum b_{i}B_{i}$ . Then

(8.3) $\sum b_{i}B_{i}\cdot F\leq 1$ .

From 8.2.4 we have

(8.4) $-K_{X}\sim C+C_{1}$ ,

where $C,$ $C_{1}$ is a pair of disjoint sections.
By (8.4) and by the definition of complements, $D^{+}=C+C_{1}$ is an l-complement

of $K_{X}+D$ if $b_{i}<1/2$ whenever $B_{i}\neq C_{1}$ . By (8.3) this does not hold only if $B=$
$\frac{1}{2}B_{1}$ , where $B_{1}$ is a 2-section. Consider this case. As in the proof of Lemma 8.2.4,
$2(K_{X}+C+B)=f^{*}N$ and $f_{C}^{*}N=2(K_{X}+C+B)|c=2K_{C}+B_{1}|c=0$ . Therefore
$N=0$ and $2(K_{X}+C+B)\sim 0$ . This proves our theorem. $\square $

8.3. The Main Inductive Theorem

THEOREM 8.3.1 (Inductive Theorem, [Sh3]). Let (X, $D$ ) be a projective $log$

surface such that $D\in\Phi_{m},$ $K_{X}+D$ is $lc$ , but not $klt$ and $-(K_{X}+D)$ is $nef$.
Assume additionally that there exists a boundary $D^{\prime}\leq D$ such that $K_{X}+D$ is $klt$

$and-(K_{X}+D^{\prime})$ is $nef$ and big. Then there exists a regular complement of $K_{X}+D$ .

Shokurov proved this theorem under weaker assumptions [Sh3]. In particular,
he showed that if we remove condition $D\in\Phi_{m}$ in the theorem, we obtain a weaker
result: there exists an n-complement of $K_{X}+D$ , where

$n\in\{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22$ ,
23, 24, 25, 26, 27, 28, 29, 30, 31, 35, 36, 40, 41, 42, 43, 56, 57}.

REMARK. In contrast with 5.3.1, in Theorem 8.3.1 we cannot say that any
regular complement of $K_{C}+Diff_{C}(B)$ can be extended to $X$ . For example, let
$X=\mathbb{P}^{1}\times \mathbb{P}^{1},$ $C$ is a fiber of $pr_{1}$ : $X\rightarrow \mathbb{P}^{1}$ and $B:=\frac{1}{2}(B^{\prime}+B^{\prime\prime})+\frac{2}{3}(B_{1}+B_{2}+B_{3})$ ,
where $B^{\prime},$ $B^{\prime\prime}$ are fibers of $pr_{1}$ and $B_{1},$ $B_{2},$ $B_{3}$ are fibers of $pr_{2}$ . Then $K_{X}+$

$C+B\equiv 0,$ $K_{C}+Diff_{C}(B)=K_{C}+\frac{2}{3}(P_{1}+P_{2}+P_{3})$ is 3-complementary and
$K_{X}+C+B$ has no 3-complements. Indeed, otherwise for a 3-complement, we
have $B^{+}\geq\frac{2}{3}(B+B^{\prime\prime}+B_{1}+B_{2}+B_{3})$ , a contradiction. However, $K_{X}+C+B$
has a 6-complement with $B^{+}=B$ .

COROLLARY 8.3.2. Notation as in Theorem 8.3.1. We can take a regular com-
plement $K_{X}+D^{+}$ so that $a(E, D)=-1$ implies $a(E, D^{+})=-1$ for any $E$ .

PROOF. Since $D^{+}\geq D$ (see Remark 4.2.8), we have $a(E, D^{+})\leq a(E, D)$ . $\square $
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PROOF OF THEOREM 8.3.1. $If-(K_{X}+D)$ is big, then by Proposition 5.3.1
there is a regular complement. Therefore we assume that $K_{X}+D\equiv 0$ or
$\kappa(X, -(K_{X}+D))=1$ .

8.3.3. Applying a minimal $\log$ terminal modification $f:\overline{X}\rightarrow X$ we may
assume that $K_{\overline{X}}+\overline{D}=f^{*}(K_{X}+D)$ is dlt and $\lfloor\overline{D}\rfloor\neq 0$ . Take the crepant pull
back

$f^{*}(K_{X}+D^{\prime})=K_{\overline{X}}+\overline{D^{\prime}}$ , with $f_{*}\overline{D’}=D^{\prime}$ .

By 1.1.6, $K_{\overline{X}}+\overline{D^{\prime}}$ is klt, but it is not necessarily a boundary. Consider the new
boundary

$\overline{D’}$ $:=\overline{D^{\prime}}+t(\overline{D}-\overline{D^{\prime}})$ , where $0<1-t\ll 1$ .

Then $K_{\overline{X}}+\overline{D^{\prime}’}$ is klt and $-(K_{\overline{X}}+\overline{D^{\prime\prime}})$ is nef and big. Further, by 4.3.1 we can
push-down complements. So we replace $X,$ $D,$ $D$ with $\overline{X},$ $\overline{D},$

$\overline{D^{\prime\prime}}$ . Thus we assume
now that $K_{X}+D$ is dlt, $\lfloor D\rfloor\neq 0,$ $-(K_{X}+D)$ is nef, and there exists a boundary
$D^{\prime}\leq D$ such that $K_{X}+D^{\prime}$ is klt $and-(K_{X}+D^{\prime})$ is nef and big. By Lemma 5.4.1,
$X$ is rational. Set $C$ $:=\lfloor D\rfloor$ and $B$ $:=\{D\}$ . The following lemma shows that the
Mori cone $\overline{NE}(X)$ is polyhedral and generated by contractible extremal curves.

LEMMA 8.3.4. Let $(X/Z, B)$ be a $log$ variety such that $K_{X}+B$ is $klt$ and
$-(K_{X}+B)$ is $nef$ and big over Z. Then there exists a new boundary $B^{\prime}\geq B$

on $X$ such that $K_{X}+B^{\prime}$ is again $kltand-(K_{X}+B^{\prime})$ is ample over $Z$ .

SKETCH OF PROOF. Let $H$ be a very ample divisor on $X$ (over $Z$). By Ko-
daira’s Lemma, $|-n(K_{X}+B)-H|\neq\emptyset$ for some $n\gg O$ (see e.g., [KMM, 0-3-4]).
Take $L\in|-n(K_{X}+B)-H|$ and put $B$ $:=B+\epsilon L$ . $\square $

The lemma shows that we can contract all extremal rays on $X$ . Moreover, if an
extremal ray $R$ on $X$ is birational and generated by a curve $L$ which is not contained
in $C$ , then the contraction preserves all assumptions (see 1.1.6). If additionally $R$

is $(K_{X}+D)$-trivial, we can pull back regular complements by Proposition 4.3.2.

8.3.5. Division into cases. By Proposition 3.3.2, $C$ has at most two con-
nected components. As in proofs of Theorems 6.1.6 and 7.2.10 we distinguish the
following cases: $C$ is disconnected, $C$ is a smooth elliptic curve or a wheel of smooth
rational curves, $C\simeq \mathbb{P}^{1},$ $C$ is a tree of rational curves. Also we should separate
cases $K_{X}+C+B\equiv 0$ and $K_{X}+C+B\not\equiv 0$ . If $K_{X}+C+B\not\equiv 0$ , then by Base
Point Free Theorem the linear system $|-m(K_{X}+C+B)|$ determines a contraction
$\nu:X\rightarrow \mathbb{P}^{1}$ . By Lemma 8.3.4, $-(K_{X}+D^{\prime})$ is ample for some boundary $D^{\prime\prime}$ , hence
a general fiber is rational. Then we consider cases when $C$ is contained in a fiber
of $\nu$ and $C$ has a horizontal component.
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8.3.6. Case: $C$ is disconnected. By Proposition 3.3.2 there exists a con-
traction $f:X\rightarrow Z$ onto a curve such that $C=C_{1}+C_{2}$ is a pair of two disjoint
smooth sections (in particular, $K_{X}+D$ is plt). A general fiber $F$ of $f$ is $\mathbb{P}^{1}$ (see
8.3.5), so $-K_{X}\cdot F=C\cdot F=2,$ $B\cdot F=0$ and $B$ is contained in fibers of $f$ .
Since $X$ is rational, $Z\simeq \mathbb{P}^{1}$ . In our case $-(K_{X}+D)$ is numerically trivial on
a general fiber of $f$ , so it is numerically trivial on all fibers. Contracting curves
in fibers we get the situation when $\rho(X/Z)=1$ . We can pull back all comple-
ments by Proposition 4.3.2. If $C_{1}^{2}>0$ , then $-(K_{X}+(1-\epsilon)C_{1}+C_{2}+B)$ is nef
and big for any $\epsilon>0$ . By Proposition 5.3.1 there exists a regular complement
of $K_{X}+(1-\epsilon)C_{1}+C_{2}+B$ . By Corollary 4.1.8 $K_{X}+C_{1}+C_{2}+B$ also has a
regular complement. Therefore we may assume that $C_{1}^{2}\leq 0$ and $C_{2}^{2}\leq 0$ . Then
both $C_{1}$ and $C_{2}$ generate extremal rays which must coincide because $\rho(X)=2$ .
The ray cannot be birational, so $C_{1}^{2}=C_{2}^{2}=0$ . This shows that there exists
a nonbirational contraction $g:X\rightarrow \mathbb{P}^{1}$ such that $C_{1}$ and $C_{2}$ are fibers of $g$ . If
$K_{X}+C_{1}+C_{2}+B\not\equiv 0$ , then $again-(K_{X}+(1-\epsilon)C_{1}+C_{2}+B)$ is ample for $\epsilon>0$ .
As above (by Proposition 5.3.1 and Corollary 4.1.8) there is a regular complement.
Therefore we may assume that $K_{X}+C_{1}+C_{2}+B\equiv 0$ . Now it is sufficient to verify
$n(K_{X}+C+B)\sim 0$ for some $n\in R_{2}$ . By Lemma 5.1.3 the numerical equivalence
in Pic(X) coincides with linear one. Therefore it is sufficient to show only that
$n(K_{X}+C+B)$ is Cartier for some $n\in R_{2}$ . Take

$ n:=\min$ {$r\in N|rB$ is integral.}
Since $\lfloor B\rfloor=0,$ $n>1$ . By Theorem 7.2.11, $K_{X}+C+B$ has a regular $n_{1}$ -complement
$K_{X}+C+B^{+}$ near $C_{1}$ (a fiber of $g:X\rightarrow \mathbb{P}^{1}$ ). Then $B^{+}\geq B$ by Remark 4.2.8.
This yields $B^{+}=B,$ $n_{1}B$ is integral and $n_{1}(K_{X}+C+B)\sim 0$ near $C_{1}$ (because
$C_{1}$ intersects all the components of $B$ ). Hence $n|n_{1}$ . Similarly, we have a regular
$n_{2}$ -complement near $C_{2}$ and $n|n_{2}$ . Let $n^{\prime}$ $:=1cm(n_{1}, n_{2})$ . Then $nB$ is integral
and $n^{\prime}(K_{X}+C+B)$ is Cartier near $C$ . Let $F$ be a fiber of $f$ and let $P_{i}$ $:=F\cap C_{i}$ .
By Adjunction,

$0\geq(K_{X}+C+F)\cdot F=\deg K_{F}+\deg Diff_{F}(C)$

and

$Diff_{F}(C)\geq P_{1}+P_{2}$ .
Therefore $Diff_{F}(C)=P_{1}+P_{2}$ and $X$ is smooth outside of $C$ . Further, $n^{\prime}(K_{X}+C+$

$B)$ is Cartier everywhere on $X$ and it is sufficient to show that $n^{\prime}\in R_{2}$ . Assume
the opposite. Then we have (up to permutations $C_{1}$ and $C_{2}$ ) $:n_{1}=4,$ $n_{2}=6$ and
$n=2$ . Since $2B$ is integral, $B\in\Phi_{sm}$ . Corollary 2.2.9 gives $Diff_{C_{i}}(B)\in\Phi_{sm}$ . By
4.1.12,

$Diff_{C_{1}}(B)=\frac{1}{2}Q_{1}+\frac{3}{4}Q_{2}+\frac{3}{4}Q_{3}$ , $Diff_{C_{2}}(B)=\frac{1}{2}R_{1}+\frac{2}{3}R_{2}+\frac{5}{6}R_{3}$ ,

where $Q_{1},$ $Q_{2},$ $Q_{3}\in C_{1},$ $R_{1},$ $R_{2},$ $R_{3}\in C_{2}$ are some points. On the other hand,

$(C_{1}, Diff_{C_{1}}B)\simeq(C_{2}, Diff_{C_{2}}B)$



80 8. INDUCTIVE COMPLEMENTS

(see [Ut, 12.3.4]) a contradiction. This proves our theorem in the case when $C$ is
disconnected.

8.3.7. Case: $C$ is connected and $p_{a}(C)\geq 1$ . By Lemma 8.3.8 below there
is an l-complement. Note that in this case the assumption $D\in\Phi_{m}$ is not needed.
First we claim that $K_{X}+C+B\equiv 0$ . Indeed, by Adjunction we have

$0\geq(K_{X}+C+B)\cdot C\geq(K_{X}+C)\cdot C\geq\deg K_{C}\geq 0$

If $K_{X}+C+B\not\equiv 0$ , then $C$ is contained in fibers of $\nu:X\rightarrow \mathbb{P}^{1}$ . But $\nu$ has rational
fibers (see 8.3.5), a contradiction.

LEMMA 8.3.8. Let (X, $C+B$ ) be a rational projective $log$ surface, where $C$ is
the reduced and $B$ is the fractional part of the boundary. Assume that $K_{X}+C+B$
is analytically $dlt,$ $K_{X}+C+B\equiv 0,$ $C$ is connected and $p_{a}(C)\geq 1$ . Then $B=0$ ,
$K_{X}+C\sim 0,$ $X$ is smooth along $C$ and has only $DuVal$ singularities outside.

PROOF. By Lemma 6.1.7 and Remark 6.1.8, $X$ is smooth and $B=0$ near $C$ .
Replace $X$ with a minimal resolution and $C+B$ with the crepant pull back. It is
sufficient to show only that $B=0$ and $K_{X}+C\sim 0$ . Now we contract -l-curves
on $X$ . Since $C$ is not a tree of rational curves, it cannot be contracted. This
process preserves all the assumptions, so on each step $ C\cap SuppB=\emptyset$ . Since every
$-1$-curve $E$ has positive intersection number with $C+B$ , we have either $C\cdot E\geq 1$ ,
$B\cdot E=0$ or $C\cdot E=0,$ $B\cdot E>0$ . If $B\neq 0$ , then whole $SuppB$ also cannot be
contracted. At the end we get $X=\mathbb{P}^{2}$ or $F_{n}$ (a Hirzebruch surface). In the case
$X=\mathbb{P}^{2},$ $C+B\equiv-K_{X}$ is ample. Hence $Supp(C+B)$ is connected. If $B\neq 0$ we
derive a contradiction. Consider the case $X=F_{n}$ . Then

$0=(K_{X}+C+B)|c=(K_{X}+C)|c+B|c=K_{C}+B_{C}$

and the last two terms are nonnegative. Therefore $(K_{X}+C)|c=B|c=0$ and
$p_{a}(C)=1$ . On the other hand, for a general fiber $F$ of $F_{n}\rightarrow \mathbb{P}^{1}$ one has

$(K_{X}+C+B+F)|_{F}=K_{F}+(C+B)|_{F}$ .
In particular, $(C+B)\cdot F\leq 2$ . Since $p_{a}(C)=1,$ $C$ is not a section of $F_{n}\rightarrow \mathbb{P}^{1}$

at a general point. Hence $C\cdot F=2$ and $B\cdot F=0$ . Recall that $B\cdot C=0$ . Since
$\rho(F_{n})=2$ , we have $B\equiv 0$ and $B=0$ . We proved that $p_{a}(C)=1,$ $B=0$ and
$K_{X}+C\sim 0$ in the case $X=F_{n}$ . Therefore on our original $X$ one also has $B=0$ .
By Proposition 4.3.2 we can pull back an l-complement of $K_{X}+C^{+}=K_{X}+C$
under contractions of-l-curves. $\square $

8.3.9. Case: $C\simeq \mathbb{P}^{1}$ (the exceptional case) and $K_{X}+C+B\equiv 0$ .
In this case, $K_{X}+C+B$ is plt. We claim that after a number of birational
contractions $B\in\Phi_{m}$ . Indeed, otherwise there is a component $B_{i}$ of $B$ with
coefficient $b_{i}\not\in\Phi_{sm}$ and $b_{i}>6/7$ . If $B_{i}^{2}>0$ , then as in 8.3.6 we can reduce $b_{i}$

a little so that $-(K_{X}+C+B)$ becomes big and obtain a regular complement by
Proposition 5.3.1 (note that $b_{i}^{+}=1$ ). This complement is also a complement of
our original $K_{X}+C+B$ by Proposition 4.1.7. If $B_{i}^{2}<0$ , then we can contract
$B_{i}$ and pull back complements by Proposition 4.3.2 and Remark 4.3.3. Consider
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the case $B_{i}^{2}=0$ . By Base Point Free Theorem the linear system $|mB_{i}|$ determines
a contraction $f:X\rightarrow \mathbb{P}^{1}$ such that $B_{i}$ is a fiber of $f$ . Contracting curves $\neq C$

in reducible fibers we get the situation when $\rho(X)=2$ , i.e. $f:X\rightarrow \mathbb{P}^{1}$ is an
extremal contraction. Let $g:X\rightarrow Z$ be another extremal contraction on $X$ and $F$

a nontrivial fiber of $g$ . Then $F\simeq \mathbb{P}^{1}$ and $ F\cap B_{i}\neq\emptyset$ (because $F$ is not a fiber of
$f)$ . Assume that $g$ is nonbirational and $F$ is sufficiently general. Then $X$ is smooth
along $F,$ $Diff_{F}(C+B)=(C+B)|_{F}$ and $F$ intersects $Supp(C+B)$ transversally.
Hence $Diff_{F}(C+B)\in\Phi_{m}$ and we can write

$Diff_{F}(C+B)=\sum_{j}b_{j}P_{j,l}+\sum_{s=1}^{r}Q_{s}$ ,

where $\{P_{j}, {}_{1}P_{j,r_{J}}\}=B_{j}\cap F$ and $\{Q_{1}, \ldots, Q_{r}\}$ $:=C\cap F$ . Moreover, the
coefficient $b_{i}$ of $Diff_{F}(C+B)$ at points $B_{i}\cap F$ satisfies $6/7<b_{i}<1$ . Further,

$\deg Diff_{F}(C+B)=\deg(-K_{F})=2$ .
Easy computations as in 4.1.12 show that this is impossible. Indeed,

(8.5) $2=\deg Diff_{F}(C+B)=r+\sum_{j}b_{j}r_{j}$ .

Clearly, $\sum_{J\neq i}b_{j}r_{j}=2-r-b_{i}r_{i}>0$ (otherwise $b_{i}r_{i}=2-r\in\{0,1,2\}$ but
$6/7<b_{i}<1)$ . Since $b_{j}\in\Phi_{m}$ , we have $\sum_{j\neq i}b_{j}r_{j}\geq 1/2$ . Thus

$2-r=\sum_{j}b_{j}r_{j}\geq 1/2+(6r_{i})/7>1$
.

This gives us $r=0$ and $r_{i}=1$ . Hence $\sum_{j\neq i}b_{j}r_{j}=2-b_{i}<8/7$ . It is easy to check
that the last inequality has no solutions with $r_{j}\in N$ and $b_{j}\in\Phi_{m}$ .

If $g$ is birational and contract $C$ (i.e., $C=F$), then $Diff_{C}(B)\in\Phi_{m}$ (by
Corollary 2.2.9) and has a coefficient $>6/7$ . Moreover, $K_{X}+C+B$ is plt, so
$K_{C}+Diff_{C}(B)$ is klt. As above we derive a contradiction with $\deg Diff_{C}(B)=2$ .
Finally, if $g$ is birational and does not contract $C$ , we can replace $X$ with $Z$ . We
get the situation when $\rho=1$ and $B_{i}^{2}>0$ , as above.

Thus we may assume now that $B\in\Phi_{sm}$ . By Base Point Free Theorem and
assumptions of the theorem, there exists $n\in N$ such that $n(K_{X}+C+B)\sim 0$ . Let
$n$ be the index of $K_{X}+C+B$ (i.e., the minimal positive integer with this property)
and $\varphi:X^{\prime}\rightarrow X$ the $\log$ canonical n-cover (see 1.3). It is sufficient to show that
$n\in R_{2}$ . Write

$K_{X}+C^{\prime}=\varphi^{*}(K_{X}+C+B)$ ,

where $C’=\varphi^{*}C$ . Then $K_{X^{\prime}}+C^{\prime}$ is linearly trivial and plt (see Proposition 1.2.1).
By Adjunction every connected component of C’ is a smooth elliptic curve.

First we assume that $C^{\prime}$ is connected. By construction, $K_{X^{\prime}}+C^{\prime}\sim 0$ and we
can identify $Ga1(C’/C)$ with $\mathbb{Z}_{n}$ . We claim that $Ga1(C^{\prime}/C)$ contains no transla-
tions. Indeed, let $\xi\in Ga1(C’/C)$ a translation. Then we put $X^{\prime\prime}$ $:=X^{\prime}/\{\xi\rangle$ and
$C^{\prime\prime}$

$:=C^{\prime}/\langle\xi\rangle$ . By Lemma 8.3.8, $K_{X^{\prime\prime}}+C^{\prime}$ is linearly trivial and plt (because
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$p_{a}(C^{\prime\prime})=1)$ . But then $n^{\prime\prime}(K_{X}+C+B)\sim 0$ , where $n^{\prime}$ is the degree of $X^{\prime}\rightarrow X$ .
By assumptions $n$ is the smallest positive with this property. The contradiction
shows that $Ga1(C^{\prime}/C)$ contains no translations. Then $Ga1(C’/C)$ is a finite group
of order 2, 3, 4, or 6 (see e.g., [Ha]).

If C’ is disconnected, then Gal(X’ $/X$ ) interchange connected components of
$C^{\prime}$ . By Proposition 3.3.2 there is a contraction $X^{\prime}\rightarrow Z^{\prime}$ onto an elliptic curve
with rational fibers such that components of $C’=C\text{\’{i}}$ $+C_{2}^{\prime}$ are sections. This
contraction must be Gal(X’ $/X$)-equivariant because $X^{\prime}$ has a unique structure of
a contraction with rational fibers. Set $G_{0}$ $:=Ker(Ga1(X^{\prime}/X)\rightarrow Aut(Z^{\prime}))$ . Since
the ramification locus of $X^{\prime}\rightarrow X$ does not contain components of $C^{\prime},$ $G_{0}\simeq \mathbb{Z}_{2}$ . As
above we consider $X^{\prime\prime}$ $:=X^{\prime}/G_{0}$ and $C^{\prime}$ $:=C^{\prime}/G_{0}$ . Then $C^{\prime}$ ’ is a smooth elliptic
curve, hence $K_{X^{\prime}},+C^{\prime\prime}\sim 0$ by Lemma 8.3.8. This contradicts our choice of $n$ .

8.3.10. Case: $C$ is a tree of rational curves and $K_{X}+C+B\equiv 0$ . By
Lemma 6.1.9, $C$ is a chain and $B$ has coefficients $=1/2$ near $C$ . As in case 8.3.9
we claim that after some birational contractions $B\in\Phi_{sm}$ . Let $B_{k}$ be a component
with nonstandard coefficient. If $B_{k}^{2}\neq 0$ , then we can argue as in case 8.3.9. The
only nontrivial case is $B_{k}^{2}=0$ and $ B_{k}\cap C=\emptyset$ . Then again $|mB_{k}|$ determines
a contraction $f:X\rightarrow \mathbb{P}^{1}$ . Clearly, $B_{k}$ is a fiber and $C$ is contained in a fiber
(because $C\cdot B_{k}=0$). There is an extremal rational curve $F$ which is not contained
in fibers. Then $ F\cap B_{k}\neq\emptyset$ . If $F^{2}<0$ , we contract $F$ and replace $X$ with a new
birational model. If $F^{2}=0$ we derive a contradiction computing $Diff_{F}(C+B)$ as
in (8.5) of case 8.3.9.

Thus we may assume that $B\in\Phi_{sm}$ . As in case 8.3.9 take the $\log$ canonical
n-cover $\varphi:X^{\prime}\rightarrow X$ . It is sufficient to show that $n\in R_{2}$ . Again we can write

$\varphi^{*}(K_{X}+C+B)=K_{X^{\prime}}+C’\sim 0$ ,

where $C^{\prime}$ $:=\varphi^{*}C$ . Obviously, $C^{\prime}$ is reducible. We claim that $K_{X^{\prime}}+C^{\prime}$ is dlt.
By Proposition 1.2.1 $K_{X}+C^{\prime}$ is plt outside of $\varphi^{-1}$ (SingC). Recall that the
ramification divisor of $\varphi$ is $SuppB$ . Hence none of irreducible components of the
ramification divisor intersects SingC. At points SingC the surface $X$ is smooth,
so $\varphi$ is \’etale over SingC. Therefore $K_{X^{\prime}}+C$

’ is dlt and $X^{\prime}$ is smooth at points
$\varphi^{-1}$ (SingC). Since $K_{X^{\prime}}+C^{\prime}\sim 0,$ $X^{\prime}$ is smooth along $C^{\prime}$ (see 2.1.2) and $p_{a}(C^{\prime})=1$ .
By Lemma 6.1.7, $C^{\prime}$ is a wheel of smooth rational curves and by our construction
Gal(X’ $/X$ ) $=\mathbb{Z}_{n}$ acts on $C^{\prime}$ faithfully. Let $C$ ‘ $=\sum_{i=1}^{r}$ C\’i be the irreducible
decomposition and $P_{1},$ $\cdots$ $P_{r}$ singular points of $C$ ‘. If Gal(X’ $/X$ ) contains an
element $\xi$ such that $\xi\cdot C_{i}^{\prime}=C\text{{\it \’{i}}}$ and $\xi\cdot P_{i}=P_{i}$ for all $i$ , then $C^{\prime\prime}$

$:=C^{\prime}/\langle\xi\rangle$ is
again a wheel of smooth rational curves. As in case 8.3.9 we derive a contradiction.
Therefore Gal(X’ $/X$ ) acts faithfully on the dual graph of C’ and then it is a
subgroup of the dihedral group $\mathfrak{D}_{r}$ . The same arguments show that every $\xi\in$

$Ga1(X‘/X)$ has a fixed point on $C^{\prime}$ . This is possible only if Gal(X’ $/X$ ) $\simeq \mathbb{Z}_{2}$ .
Therefore $n=2$ and $K_{X}+C+B$ is 2-complementary.

8.3.11. Case: $K_{X}+C+B\not\equiv O$ and $C$ is contained in a fiber of $\nu$ . We
may contract all components of reducible fibers of $\nu:X\rightarrow \mathbb{P}^{1}$ which are different
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from components of $C$ . Thus $C=\nu^{-1}(P),$ $P\in \mathbb{P}^{1}$ is a fiber and all other fibers of
$\nu$ are irreducible. Again we may assume that v-horizontal components of $B$ have
standard coefficients (otherwise some $b_{i}>6/7$ and $-(K_{X}+C+B-\epsilon B_{i})$ is nef
and big for $0<\epsilon\ll 1$ , hence we can use Proposition 5.3.1 and Corollary 4.1.8).
Note that the horizontal part $B_{hor}$ of $B$ is nontrivial (because a general fiber of
$\nu$ is $\mathbb{P}^{1}$ ). Further, there is a regular n-semicomplement of $K_{C}+Diff_{C}(B)$ (see
Theorem 4.1.10). For sufficiently small $\epsilon>0$ the $\mathbb{Q}- divisor-(K_{X}+C+B-\epsilon B_{hor})$

is nef and big. Thus we can extend n-semicomplements of $K_{C}+Diff_{C}(B-\epsilon B_{hor})$

from $C$ by Proposition 5.3.1. If $n+1$ is not a denominator of coefficients of $B_{hor}$ ,
then by Proposition 4.1.7 we obtain a regular complement of $K_{X}+C+B$ . If $C$

is reducible, then by Theorem 4.1.10 we can take $n=2$ . On the other hand, by
Lemma 6.1.9 coefficients of $B_{hor}$ are equal to 1/2. Therefore $n+1=3$ is not a
denominator of coefficients of $B_{hor}$ in this case and there is a 2-semicomplement of
$K_{X}+C+B$ . Now we assume that $C\simeq \mathbb{P}^{1}$ . Then $\rho(X)=2$ . By 4.1.12 and by
Corollary 2.2.9 we have the following possibilities:

$Diff_{S}(B)$ $n$

$\frac P_{1}+\frac{}{3}P_{2}+P_{3}\frac{}{2\not\in}P_{1}+\frac{}{\not\in}P_{2}+\frac{}{\frac,6\#}P_{3}\frac{}{\S}P_{1}+\frac{2}{\S}P_{2}+\frac{2}{\S}P_{3}\frac{1}{\not\in}P_{1}+\cdots+\frac{1}{2}P_{4}$ $4632$

By Corollary 2.2.8, $n+1$ is not a denominator of coefficients of $B_{hor}$ in all cases.

8.3.12. Case: $K_{X}+C+B\not\equiv 0$ and $C$ is not contained in a flber of
$\nu$ . So, we assume that there is a horizontal component $C_{i}\subset C$ (i.e., such that
$\nu(C_{i})=\mathbb{P}^{1})$ . It is clear that $-(K_{X}+C+B-\epsilon C_{i})$ is nef and big for a sufficiently
small positive $\epsilon$ . If $C_{i}\subsetneq C$ (i.e., $C$ is reducible), then the same trick as in 8.3.6
(using Corollary 4.1.8) gives the existence of regular complements. Thus we may
assume that $C=C_{i}$ and $\nu(C)=\mathbb{P}^{1}$ . In particular, $K_{X}+C+B$ is plt. Contracting
curves $\neq C$ in fibers we get the situation, when fibers are irreducible, i.e., $\rho(X)=2$ .
We can pull back complements by 4.3.2. There are two subcases: (a) $C$ is a section
of $\nu$ , and (b) $C$ is a 2-section of $\nu$ .

8.3.13. If $C$ is a section of $\nu$ , then the horizontal part $B_{hor}$ of $B$ is nontrivial
and either $B_{hor}=\frac{1}{2}B_{1}+\frac{1}{2}B_{2}$ or $B_{hor}=\frac{1}{2}B_{0}$ , where $B_{1},$ $B_{2}$ are sections and $B_{0}$ is
a 2-section. As above we can take a regular n-complement for $K_{X}+C+B-\epsilon B_{hor}$ .
If $n\neq 1$ , then again this gives a regular complement of $K_{X}+C+B$ by Propo-
sition 4.1.7. But on $C\simeq \mathbb{P}^{1}$ there exists a regular 2, 3, 4, or 6-complement for
the boundary $\triangle$ $:=Diff_{C}(B)\geq Diff_{C}(B-\epsilon B_{hor})$ . Indeed, otherwise by Theo-
rem 4.1.10 there is an l-complement $K_{C}+\triangle^{+}$ . By Corollary 2.2.9, $\triangle\in\Phi_{m}$ .
Therefore $\triangle^{+}\geq\triangle$ and $\triangle$ is supported in one or two points (because $\deg\triangle^{+}=2$).
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Then $K_{C}+\triangle^{+}$ is also n-complement for any $n$ . This shows that we have a regular
complement in the case when $C$ is a section.

8.3.14. Now let $C$ be a 2-section of $\nu$ . Then $B$ is contained in the fibers of
X. Since $C\simeq \mathbb{P}^{1}$ , the restriction $\nu:C\rightarrow \mathbb{P}^{1}$ has exactly two ramification points,
say $P_{1},$ $P_{2}\in C$ . Put $Q_{i}$ $:=\nu(P_{i})$ and $F_{i}$ $:=\nu^{-1}(Q_{i})_{red},$ $i=1,2$ .

LEMMA 8.3.15. Notation as in 8.3.14. Let $F$ be a fiber of $\nu$ such that $ F\neq$

$F_{1},$ $F_{2}$ and $F\cap C=\{P^{\prime}, P^{\prime\prime}\}$ (where $P^{\prime}\neq P^{\prime\prime}$). Then
(i) $SingX\subset C\cup F_{1}\cup F_{2}$ ;
(ii) $K_{X}+C+F$ is $lc$ and linearly trivial near $F$ ;
(iii) $K_{X}+F$ is $plt$;
(iv) $Diff_{C}(B)$ is invariant under the natural Galois action of $\mathbb{Z}_{2}$ on $C\rightarrow \mathbb{P}^{1}$ .

PROOF. First we show that $K_{X}+C+F$ is lc. Assume the converse and
regard $X$ as an analytic germ near $F$ . Let $C_{1},$ $C_{2}$ be analytic components of $C$ . If
$K_{X}+C_{1}+C_{2}+F$ is not lc near $C_{1}$ , then $K_{X}+(1-\epsilon)C_{1}+C_{2}+(1-\epsilon)F$ is not,
either. But in this case, LCS(X, $(1-\epsilon)C_{1}+C_{2}+(1-\epsilon)F$) is not connected. This
contradicts Theorem 2.3.1.

Now, by Adjunction

(8.6) $-K_{F}\equiv Diff_{F}(C)\geq P^{\prime}+P^{\prime}$ .
On the other hand,

(8.7) $\deg K_{F}+\deg Diff_{F}(C)=(K_{X}+C)\cdot F\leq 0$ ,

$\deg Diff_{F}(C_{1}+C_{2})\leq 2$ .

This gives that in (8.6) and (8.7) equalities hold. Hence $Diff_{F}(C)=P^{\prime}+P$ and
SingX $=\{P‘, P^{\prime\prime}\}$ near $F$ and proves (i). By Theorem 2.1.3, $K_{X}+C+F$ is Cartier
near $F$ . Since $K_{X}+C+F\equiv 0$ , we have $K_{X}+C+F\sim 0$ . This proves (ii). (iii)
easily follows by (ii). Further,

$Diff_{F}(C)=(1-\frac{1}{m})P^{\prime}+(1-\frac{1}{m})P^{\prime\prime}$ , $m,$ $m^{\prime}\in N$ .

To show (iv) we just note that $\nu:X\rightarrow \mathbb{P}^{1}$ is of type $A^{*}$ of Theorem 7.1.12 near $F$

(because $K_{X}+F$ is plt). In particular, we have $m^{\prime}=m^{\prime\prime}$ . $\square $

As in Corollary 4.1.11 using that Diff$c(B)\in\Phi_{m}$ and $\deg Diff_{C}(B)\leq 2$ , we
have the following cases (up to permutations of $P_{1},$ $P_{2}$ ):

(8.8) $Diff_{C}(B)=\left\{\begin{array}{l}\alpha P_{1}+\beta P_{2}\\\alpha P^{\prime}+\alpha P^{\prime\prime}\\\alpha P_{1}P^{\prime}+\frac{1}{\frac\S,3}P^{\prime\prime}\frac{1}{2}P_{1},\end{array}\right.$ $SuppB\subset\left\{\begin{array}{l}F_{1}+F_{2}\\F\\F_{1}+F\\F_{1}+F,\end{array}\right.$

where $F$ $:=\nu^{-1}(Q)_{red}$ for some $Q\in \mathbb{P}^{1},$ $Q\neq Q_{1},$ $Q_{2},$ $\{P^{\prime}, P^{\prime\prime}\}=F\cap C$ and
$\alpha,$ $\beta\in\Phi_{m}$ .
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Our strategy is very simple: we construct a boundary $B^{\prime}\geq B$ such that $B^{\prime}$ is
contained in fibers of $\nu,$ $K_{X}+C+B^{\prime}$ is lc and numerically trivial. If $B^{\prime}\in\Phi_{m}$ ,
then we can use proved cases with $K_{X}+C+B\equiv 0$ . If $B$ $\not\in\Phi_{m}$ , then we
show that $n(K_{X}+C+B^{\prime})\sim 0$ for some $n\in R_{2}$ . The numerical equivalence in
Pic(X) coincides with linear one (see Lemma 5.1.3), it is sufficient to show only
that $n(K_{X}+C+B^{\prime})$ is Cartier. Note that $K_{X}+C+B^{\prime}$ is trivial on fibers of $\nu$

(because $B^{\prime}$ is contained in fibers). On the other hand,

$(K_{X}+C+B^{\prime})\cdot C=\deg(K_{C}+Diff_{C}(B^{\prime}))=-2+\deg Diff_{C}(B^{\prime})$ .

Since $\rho(X)=2$ , we have

(8.9) $K_{X}+C+B^{\prime}\equiv 0$ $\Leftrightarrow$ $\deg Diff_{C}(B^{\prime})=2$ .

LEMMA 8.3.16. Let $\nu:X\rightarrow Z\ni 0$ be a germ of a contraction from a surface
to a curve, $F_{1}$ $:=\nu^{-1}(0)_{red}$ , and $C\subset X$ a germ of a curve such that $C\cap F_{1}$ is one
point. Assume that $\rho(X/Z)=1,$ $K_{X}+C$ is $plt$ and numerically trivial. Then there
is an 1 or 2-complement $K_{X}+C+\alpha^{\prime}F_{1}$ (with $\alpha^{\prime}\in\{\frac{1}{2},1\}$) such that $K_{X}+C+\alpha F_{1}$

is not $plt$ at $C\cap F_{1}$ .

PROOF. Note that a general fiber of $\nu$ is $\mathbb{P}^{1}$ and $C$ is a 2-section of $\nu$ . Take $\alpha$

so that $K_{X}+C+\alpha F_{1}$ is maximally $\log$ canonical (i.e., $\alpha$ is maximal such that with
the $\log$ canonical property of $K_{X}+C+\alpha F_{1}$ , see 5.3.3). Then $0<\alpha\leq 1$ . We claim
that $K_{X}+C+\alpha F_{1}$ is not plt at $C\cap F_{1}$ . Indeed, otherwise LCS(X, $C+\alpha F_{1}$ ) is not
connected near $F_{1}$ . This is a contradiction with Proposition 3.3.1. In particular,
$(X/Z\ni 0, C+\alpha F_{1})$ is not exceptional. By Theorem 7.2.11, $K_{X}+C+\alpha F_{1}$ has an
1, or 2-complement $K_{X}+C+R$ which is not plt at $C\cap F_{1}$ . In particular, $R\neq 0$ .
Since $C$ is a 2-section of $\nu,$ $R$ has no horizontal components. Hence $R=F_{1}$ or
$\frac{1}{2}F_{1}$ . $\square $

Now we consider possibilities of (8.8) step by step.

Subcase: $Diff_{C}(B)=\alpha P_{1}+\beta P_{2}$ . Then $X$ is smooth outside of $F_{1}\cup F_{2}$ . By
Lemma 8.3.16 there are $\alpha^{\prime},$ $\beta^{\prime}\in\{\frac{1}{2},1\}$ such that $\alpha^{\prime}F_{1}+\beta^{\prime}F_{2}\geq B^{\prime},$ $K_{X}+C+$
$\alpha^{\prime}F_{1}+\beta^{\prime}F_{2}$ is lc and not plt at $P_{1},$ $P_{2}$ and $2(K_{X}+C+\alpha^{\prime}F_{1}+\beta^{\prime}F_{2})\sim 0$ near
$F_{1},$ $F_{2}$ . By Adjunction (see 2.2.6 and 2.2.7) $Diff_{C}(\alpha^{\prime}F_{1}+\beta^{\prime}F_{2})=P_{1}+P_{2}$ . By
(8.9), $K_{X}+C+\alpha^{\prime}P_{1}+\beta^{\prime}P_{2}\equiv 0$ . Moreover, $2(K_{X}+C+\alpha^{\prime}F_{1}+\beta^{\prime}F_{2})$ is Cartier
near $F_{1}$ and $F_{2}$ . Therefore $2(K_{X}+C+\alpha F_{1}+\beta^{\prime}F_{2})$ is Cartier on $X$ (because
$SingX\subset F_{1}\cup F_{2})$ .

Subcase: $Diff_{C}(B)=\alpha P^{\prime}+\alpha P^{\prime\prime}$ . Then $C\cap F=\{P^{\prime}, P^{\prime}\}$ for some fiber $F$

of $\nu$ . By Lemma 8.3.15 $K_{X}+C+F$ is lc. Since $Diff_{C}(F)=P^{\prime}+P^{\prime\prime},$ $K_{X}+C+F$
is numerically trivial. By the above cases with $K_{X}+C+B\equiv 0$ there is a regular
complement of $K_{X}+C+F$ (actually, $p_{a}(C+F)=1$ and we can use Case 8.3.7 to
show the existence of an l-complement).
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Subcase: $Diff_{C}(B)=\alpha P_{1}+\frac{1}{2}P+\frac{1}{2}P^{\prime\prime}$ . By Lemma 8.3.16 there is $\alpha_{1}>0$

such that $2(K_{X}+C+\alpha_{1}F_{1}+B)\sim 0$ near $F_{1},$ $K_{X}+C+\alpha_{1}F_{1}+B$ is lc and not
plt at $P_{1}$ . Since $Diff_{C}(\alpha_{1}F_{1}+B)=P_{1}+\frac{1}{2}P^{\prime}+\frac{1}{2}P^{\prime\prime},$ $K_{X}+C+\alpha_{1}F_{1}+B\equiv 0$ .
Again by the above cases with $K_{X}+C+B\equiv 0$ there is a regular complement
of $K_{X}+C+B$ (more precisely, $K_{X}+C+\alpha_{1}F_{1}+B$ is not plt, so we can use
Case 8.3.10).

Subcase: $Diff_{C}(B)=\frac{1}{2}P_{1}+\frac{2}{3}P+\frac{2}{3}P’$ . Then we take $B=B+\alpha_{1}F_{1}$ so
that $Diff_{C}(B^{\prime})=\frac{2}{3}P_{1}+\frac{2}{3}P^{\prime}+\frac{2}{3}P^{\prime\prime}$ . By (8.9), $K_{X}+C+B’\equiv 0$ . We show that
$6(K_{X}+C+B^{\prime})$ is Cartier. First note that $2(K_{X}+C)$ (and $2(K_{X}+C+B’)$ )
is Cartier along $F_{2}$ . Indeed, $P_{2}\in X$ is smooth and $ C\cdot F_{2}\in$ N. On the other
hand, $\nu^{-1}(Q_{2})\cdot C=2$ . Hence the multiplicity $k$ of the fiber $\nu^{-1}(Q_{2})=kF_{2}$ is at
most 2 and $2F_{2}\sim 0$ near $F_{2}$ over $\mathbb{P}^{1}$ . By Lemma 8.3.16 there is a 2-complement
$K_{X}+C+\alpha_{1}F_{2}$ near $F_{2}$ which is not plt at $P_{2}$ . If $\alpha_{1}=1$ , then $ 2(K_{X}+C+F_{2})\sim$

$2(K_{X}+C)\sim 0$ near $F_{2}$ . Assume that $\alpha_{1}=1/2$ . Then $P_{2}=Diff_{C}(\frac{1}{2}F_{2})=\frac{1}{2}F_{2}|c$ .
Hence $F_{2}\cdot C=2$ and the fiber $\nu^{-1}(Q_{2})=F_{2}$ is not multiple. So $F_{2}$ is Cartier and
$X$ is smooth along $F_{2}$ . This yields $2(K_{X}+C+\frac{1}{2}F_{2})\sim 0$ near $F_{2}$ .

Write

$B=\gamma_{1}F_{1}+\gamma F$, $\gamma_{1},$ $\gamma\in\Phi_{m}$

and

$Diff_{C}(0)=(1-\frac{1}{m_{1}})P_{1}+(1-\frac{1}{m})P^{\prime}+(1-\frac{1}{m})P^{\prime\prime}$ , $m_{1},$ $m\in N$ .

Then by Corollary 2.2.8,

$1-\frac{1}{m_{1}}+\frac{\gamma_{1}n_{1}}{m_{1}}=\frac{1}{2}$ $1-\frac{1}{m}+\frac{\gamma n}{m}=\frac{2}{3}$

where $n_{1},$ $ n\in$ N. Since $\gamma_{1},$ $\gamma\geq 1/2$ , we have $n_{1}=n=1$ . This gives only the
following possibilities for $m$ :

$m=1$ (i.e., $X$ is smooth along $F$ ) and $\gamma=2/3$ ;
$m=3$ (i.e., case $A^{*}$ of Theorem 7.1.12 with $m=3$ ) and $\gamma=0$ .

It is easy to see that $3(K_{X}+C+B^{\prime})$ is Cartier near $F$ in both cases.
Now it is sufficient to show only that $6(K_{X}+C+B^{\prime})\sim 0$ near $F_{1}$ . Similarly,

we obtain only the following possibilities for $m_{1}$ :
$m_{1}=1$ (i.e., $P_{1}\in X$ is smooth) and $\gamma_{1}=1/2$ ;
$m_{1}=2$ (i.e., $P_{1}\in X$ is Du Val of type $A_{1}$ ) and $\gamma_{1}=0$ ,

Assume that $P_{1}\in X$ is smooth. Since $K_{X}+C+\frac{1}{2}F_{1}$ is plt, $F_{1}$ intersects
$C$ transversally (see 4.4.4). Hence $B^{\prime}=B+\frac{1}{6}F_{1}$ and the coefficient of $F_{1}$ in $B$ ‘

is 2/3. We claim that $6(K_{X}+C+\frac{2}{3}F_{1})\sim 0$ near $F_{1}$ . Indeed, $C\cdot F_{1}=1$ and
$C\cdot\nu^{-1}(Q_{1})=2$ implies that the multiplicity of the fiber $\nu^{-1}(Q_{1})$ is at most 2 and
$2F_{1}\sim 0$ over $\mathbb{P}^{1}$ . On the other hand, by Lemma 8.3.16 there is a 2-complement
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$K_{X}+C+\alpha_{1}F_{1}$ near $F_{1}$ which is not plt at $P_{1}$ . By our assumptions, $K_{X}+C+\frac{1}{2}F_{1}$

is plt. Thus $\alpha_{1}=1$ and $2(K_{X}+C+F_{1})\sim 2(K_{X}+C)\sim 0$ near $F_{1}$ . This yields

6 $(K_{X}+C+\frac{2}{3}F_{1})\sim 4F_{1}\sim 0$

near $F_{1}$ .
Now we assume that $P_{1}\in X$ is Du Val of type $A_{1}$ . Then $F_{1}$ is not a component

of $B$ . As above, by Lemma 8.3.16 there is a 2-complement $K_{X}+C+\alpha_{1}F_{1}$ near
$F_{1}$ which is not plt at $P_{1}$ . If $\alpha_{1}=1$ , then $K_{X}+C+F_{1}$ is lc and by Theorem 2.1.3,
$C\cdot F_{1}=1/2$ . It is easy to see that in this case

$Diff_{C}(\frac{1}{3}F_{1})=(\frac{1}{2}+\frac{1}{3}C\cdot F_{1})P_{1}=\frac{2}{3}P_{1}$ near $P_{1}$ .

Hence we can take $B^{\prime}=B+\frac{1}{3}F_{1}$ . Then near $F_{1}$ we have

$6(K_{X}+C+B^{\prime})=6(K_{X}+C+F_{1})-4F_{1}\sim-4F_{1}$ .

On the other hand, the multiplicity of the fiber $\nu^{-1}(Q_{1})$ divides 4 (because $\nu^{-1}(Q_{1})$ .
$C=2$ and $C\cdot F_{1}=1/2$). This gives as $4F_{1}\sim 0$ and $6(K_{X}+C+B^{\prime})\sim 0$ near $F_{1}$ .

Finally, let $\alpha_{1}=1/2$ . By Lemma 8.3.16 $K_{X}+C+\frac{1}{2}F_{1}$ is lc but not plt at $P_{1}$ .
Then

$P_{1}=Diff_{C}(\frac{1}{2}F_{1})=(\frac{1}{2}+\frac{1}{2}C\cdot F_{1})P_{1}$ near $P_{1}$ .

Hence $C\cdot F_{1}=1$ and as above, $2F_{1}\sim 0$ . Similarly, we obtain $B^{\prime}=B+\frac{1}{6}F_{1}$ and

$6(K_{X}+C+B^{\prime})=6(K_{X}+C)+F_{1}\sim-3F_{1}+F_{1}\sim 0$ .
near $F_{1}$ .

This finishes the proof of Theorem 8.3.1. $\square $

8.4. Corollaries

The following form of Theorem 8.3.1 is very important for applications.

COROLLARY 8.4.1 (see [P1]). Let (X, $D^{\prime}$ ) be a $logdel$ Pezzo such that $ D^{\prime}\in$

$\Phi_{m}$ . Assume also that there exists a boundary $D\geq D^{\prime}$ such $that-(K_{X}+D)$ is $nef$

and $K_{X}+D$ is not $klt$ . Then $K_{X}+D^{\prime}$ has a regular complement which is not $klt$ .

PROOF. If $K_{X}+D^{\prime}$ is not klt, then there is a regular complement by Proposi-
tion 5.3.1. From now on we assume that $K_{X}+D^{\prime}$ is klt. Replacing $D$ with suitable
$D^{\prime}+\lambda(D-D^{\prime})$ we also may assume that $K_{X}+D$ is lc (and not klt).

First we consider the case when $\lfloor D\rfloor\neq 0$ . Let $D_{1}$ be a component of $\lfloor D\rfloor$ .
Replace $\delta_{1}$ with 1:

$D^{\prime}:=D_{1}+\sum_{i\neq 1}\delta_{i}D_{i}$
, $D^{\prime}\leq D^{\prime\prime}\leq D$ .
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$If-(K_{X}+D^{\prime})$ is nef, then we can apply 8.3.1 (because $\lfloor D^{\prime\prime}\rfloor\neq 0$ and $D\in\Phi_{m}$ ).
Further, we assume that $-(K_{X}+D^{\prime})$ is not nef. Then there exists a $(K_{X}+D^{\prime})-$

nonpositive extremal ray $R$ such that $(K_{X}+D^{\prime\prime})\cdot R>0$ . If it is birational, then
we contract it. Since $K_{X}+D$ is nonpositive on $R$ , this preserves the lc property
of $K_{X}+D$ and $K_{X}+D^{\prime\prime}$ . We can pull back regular complements of $K_{X}+D^{\prime}$

because $D^{\prime}\in\Phi_{m}$ (now we are looking for regular complements of $K_{X}+D^{\prime\prime}$ , see
Proposition 4.3.2 and 4.3.3). Note also that $(D^{\prime\prime}-D)\cdot R>0$ . Therefore $D_{1}$ is
not contracted and on each step $K_{X}+D^{\prime\prime}$ is not klt. If on some $step-(K_{X}+D)$
is nef, we are done. Otherwise continuing the process, we obtain a nonbirational
extremal ray $R$ on $X$ such that $(K_{X}+D^{\prime\prime})\cdot R>0$ . But on the other hand,

$(K_{X}+D^{\prime})\cdot R\leq(K_{X}+D)\cdot R\leq 0$ ,

a contradiction.
Consider now the case $\lfloor D\rfloor=0$ . Then $K_{X}+D$ is lc, but is not plt. Recall

that $K_{X}+D^{\prime}$ is klt. As in Proposition 3.1.4 we can construct a blowup $f:\tilde{X}\rightarrow X$

with an irreducible exceptional divisor $E$ such that $a(E, D)=-1$ , the crepant pull
back

$K_{\overline{X}}+\tilde{D}+E=f^{*}(K_{X}+D)$

is lc and $K_{\tilde{X}}+\tilde{D}^{\epsilon}+E$ is plt for any $\overline{D}^{\epsilon}$

$:=\tilde{D}^{\prime}+\epsilon(\tilde{D}-\tilde{D}^{\prime}),$ $\epsilon<1$ . Here $\overline{D}$ and
$\overline{D}^{\prime}$ are proper transforms of $D$ and $D^{\prime}$ , respectively. Note also that $\rho(\overline{X}/X)=1$ .
Write

$K_{\tilde{X}}+\tilde{D}+\alpha E=f^{*}(K_{X}+D)$ ,

where $\alpha<1$ . Assume that there exists a curve $C$ such that $(K_{\tilde{X}}+\tilde{D}^{\prime}+E)\cdot C>0$ .
Then $(\overline{D}-\overline{D}^{\prime})\cdot C<0$ . Therefore $C$ is a component of $\underline{(}\tilde{D}-\overline{D}$ ) and $C^{2}<0$ . Further,
$C\cdot E>0$ . Hence $C\neq E$ and we can choose $\tilde{D}^{e}<D$ so that $(K_{\tilde{X}}+\tilde{D}^{\epsilon})\cdot C<0$ .
Therefore $C$ is a $(K_{\overline{X}}+\overline{D}^{\prime})$-negative extremal curve and its contraction preserves
the lc property of $K_{\tilde{X}}+\tilde{D}+E$ . Again we can pull back complements of $K_{\tilde{X}}+\tilde{D}^{\prime}+E$

(see Proposition 4.3.2 and 4.3.3). Repeating the process, we get the situation
when $-(K_{\overline{X}}-+\tilde{D}^{\prime}+E)$ is nef. All the steps preserve the nef and big property of
$-(K_{\overline{X}}+D^{\prime}+\alpha E)$ . If $\alpha\geq 0$ , then we apply Theorem 8.3.1 to $(\overline{X},\tilde{D}^{\prime}+E,\overline{D}^{\prime}+\alpha E)$ .
If $\alpha<0$ , then by the monotonicity, $-(K_{\overline{X}}+\tilde{D}^{\prime})$ is nef and big. Again apply
Theorem 8.3.1 to $(\tilde{X},\tilde{D}’+E,\overline{D}^{\prime})$ . This concludes the proof of the corollary. $\square $

COROLLARY 8.4.2. Let (X, $B$ ) be a $logdel$ Pezzo surface such that $B\in\Phi_{m}$ .
Then (X, $B$ ) is nonexceptional if and only if there exists a regular complement
$K_{X}+B^{+}$ which is not $klt$ .

COROLLARY 8.4.3 (cf. Corollary 5.3.4). Let (X, $B$ ) be a $logdel$ Pezzo surface.
Assume that $B\in\Phi_{m}$ and $(K_{X}+B)^{2}\geq 4$ . Then there exists a regular complement
of $K_{X}+B$ . Moreover, there exists such a complement which is not $klt$ (in particular,
(X, $B$ ) is nonexceptional).
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SKETCH OF PROOF. If $K_{X}+B$ is not klt, this assertion follows by Proposi-
tion 5.3.1. Assume that $K_{X}+B$ is klt. Take $n\in N$ so that $H$ $:=-n(K_{X}+B)$ is
an integral (ample) Cartier divisor. By Riemann-Roch

$\dim H^{0}(X, \mathcal{O}_{X}(H))\geq\frac{H\cdot(H-K_{X})}{2}+1=\frac{1}{2}n(n+1)(K_{X}+D)^{2}-$

$\frac{1}{2}n(K_{X}+D)\cdot D+1\geq 2n(n+1)+1$ .

Pick a smooth point $P\in X$ and let $\mathfrak{m}_{P}$ be the ideal sheaf of $P$ . Then

$\dim H^{0}(X, \mathcal{O}_{X}/m_{P}^{2n})=\dim \mathbb{C}[x, y]/(x, y)^{2n}=\frac{(2n+1)2n}{2}=(2n+1)n$ .

From the exact sequence

$0\rightarrow \mathfrak{m}_{P}^{2n}\otimes \mathcal{O}_{X}(H)\rightarrow \mathcal{O}_{X}(H)\rightarrow \mathcal{O}_{X}/m_{P}^{2n}\otimes \mathcal{O}_{X}(H)\simeq \mathcal{O}_{X}/\mathfrak{m}_{P}^{2n}\rightarrow 0$

we see that
$H^{0}(X, m_{P}^{2n}\otimes \mathcal{O}_{X}(H))\neq 0$ .

Therefore there is $H^{\prime}\in|H|$ such that mult$P(H)\geq 2n$ . It is easy to see that
$K_{X}+B+\frac{1}{n}H$

‘ is not klt. Then $K_{X}+B+\alpha H^{\prime}$ is lc but not klt for some $\alpha\leq\frac{1}{n}$

Clearly, $-(K_{X}+B+\alpha H^{\prime})$ is nef. Hence we can apply Corollary 8.4.1. $\square $

Note that the above result can be improved: by taking $P\in Supp(B)$ or $ P\in$

$Sing(X)$ it is possible to find nonklt boundary $K_{X}+B+\alpha H^{\prime}$ for smaller values
of $(K_{X}+D)^{2}$ . On the other hand, in the case $B=0$ and $X$ is smooth, it is well
known that $K_{X}$ is strongly l-complementary.

COROLLARY 8.4.4 (see [P1]). Let $X\ni P$ be a three-dimensional $klt$ singular-
ity, $f:(Y, S)\rightarrow X$ a $plt$ blowup, and $K_{X}+D$ an n-complement which is not $klt$ at
P. Then one of the following holds

(i) $a(S, D)=-1$ and $K_{Y}+S+D_{Y}$ $:=f^{*}(K_{X}+D)$ is an n-complement of
$K_{Y}+S$ ;

(ii) $a(S, D)>-1$ and then there exists a regular complement of $K_{Y}+S$ which
is not $plt$ .

PROOF. (i) is obvious. Assume that $a(S, D)>-1$ . Write

$K_{Y}+aS+D_{Y}$ $:=f^{*}(K_{X}+D)$ ,

where $a=-a(S, D)<1$ and $D_{Y}$ is the proper transform of $D$ . By assumptions
$K_{Y}+aS+D_{Y}$ is lc and not klt (see 1.1.6). Therefore $K_{Y}+S+D_{Y}$ is not plt
and we can take $0<b\leq 1$ so that $K_{Y}+S+bD_{Y}$ is lc but not plt. It is easy to
see that $-(K_{Y}+S+bD_{Y})$ is $f$-ample. If $f(S)=P$ , then $(S, Diff_{S}(bD_{Y}))$ is a $\log$

Del Pezzo. By 8.4.1 (or by 5.3.1) there is a regular complement of $K_{S}+Diff_{S}(0)$

and by 4.4.1 it can be extended to a complement of $K_{Y}+S$ . Similarly, in the case
when $f(S)$ is a curve, we can use Theorem 6.0.6. $\square $

Similar to Theorem 8.3.1 one can prove the following
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PROPOSITION 8.4.5 (cf. [B1]). Let (X, $D$ ) be a $log$ Enriques surface $(i.e.,$ $K_{X}+$

$D$ is $lc$ and $K_{X}+D\equiv 0$). Assume that $K_{X}+D$ is not $klt$ and $D\in\Phi_{m}$ . Then
$n(K_{X}+D)\sim 0$ for some $n\in R_{2}$ . In particular, $D\in\Phi_{sm}$ .

PROOF. By 4.2.8 it is sufficient to show the existence of a regular complement.
If $X$ is not rational, then the assertion follows by Theorem 8.2.1. Otherwise we
can apply Theorem 8.3.1. The existence of $D^{\prime}$ in conditions of the theorem follows
by Proposition 8.4.6 below. $\square $

PROPOSITION 8.4.6. Let (X, $\Lambda$ ) be a $log$ Enriques surface. Assume that $X$ is
rational. Then there is a boundary $\Lambda’\leq\Lambda$ such that

(i) $ K_{X}+\Lambda$ is $klt$, and
(ii) $-(K_{X}+\Lambda^{\prime})$ is $nef$ and big.

PROOF. Replace $X$ with its minimal resolution and A with its crepant pull
back. Then again (X, A) is a $\log$ Enriques surface. By Corollary 1.1.7 it is sufficient
to construct $\Lambda$

’ on this new $X$ . Further, there is a sequence of contractions of-l-
curves $\varphi:X\rightarrow X$ , where $X$ $\simeq \mathbb{P}^{2}$ or $X$ $\simeq F_{n},$ $n\geq 0,$ $n\neq 1$ . Put $\Lambda$ $:=\varphi_{*}\Lambda$ .
Then $(X, \Lambda)$ is again a $\log$ Enriques surface. It is sufficient to construct $\Lambda’\leq\Lambda$

such that $K_{X}\cdot+\Lambda^{\prime}$ is klt and $-(K_{X}\cdot+\Lambda’)$ is nef and big. Indeed, the crepant
pull back $\Lambda^{\prime\prime}$ of $\Lambda^{\prime}$ satisfies (i) and (ii). However, $\Lambda^{\prime\prime}$ is not necessarily a boundary
(i.e., effective). To avoid this one can take $\Lambda^{\prime}=\Lambda^{\prime}+t(\Lambda-\Lambda^{\prime\prime})$ for $0<1-t\ll 1$ .

Further, if $X$ $\simeq \mathbb{P}^{2}$ or $X$ $\simeq \mathbb{P}^{1}\times \mathbb{P}^{1}$ , then we take $\Lambda^{\prime}$ $=0$ . In the case
$X\simeq F_{n}$ with $n\geq 2$ , we write $\Lambda=\lambda\Sigma_{0}+\Lambda^{o}$ , where $\Sigma_{0}$ is the negative section of
$X=F_{n},$ $0\leq\lambda\leq 1,$ $\Lambda^{o}\geq 0$ , and $\Sigma_{0}$ is not a component of $\Lambda^{o}$ . It is easy to see

$ 2-n=-K_{X}\cdot\cdot\Sigma_{0}=\Lambda^{\prime}\cdot\Sigma_{0}=-n\lambda+\Lambda^{o}\cdot\Sigma_{0}\geq-n\lambda$ .
Hence, $\lambda\geq 1-2/n$ . Thus we can take $\Lambda^{\prime}=(1-2/n)\Sigma_{0}$ . $\square $

8.5. Characterization of toric surfaces

Following Shokurov we prove Conjecture 2.2.18 in dimension two. Moreover,
we prove a generalization of 2.2.18 for $\rho_{num}$ instead of $rkWei1_{alg}$ (recall that $\rho_{num}(X)$

is the rank of the quotient of Weil(X) modulo numerical equivalence).

THEOREM 8.5.1 ([Sh3]). Let (X, $D=\sum d_{i}D_{i}$ ) be a projective $log$ surface such
that

(i) $K_{X}+D$ is $lc$ , and
(ii) $-(K_{X}+D)$ is $nef$.

Then
(8.10) $\sum d_{i}\leq\rho_{num}(X)+2$ .

If the equality holds, then $K_{X}+D\equiv 0$ and $X$ has only rational singularities (in
particular $X$ is $\mathbb{Q}$ -factorial).

PROOF. Assume that
(8.11) $\sum d_{i}-\rho_{num}(X)-2\geq 0$ .
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First we consider the case $K_{X}+D\equiv 0$ .

Step $0$ . Apply a minimal $\log$ terminal modification as in 3.1.3. It is easy to see
that this preserves the left hand side of (8.11). Thus we may assume that $K_{X}+D$

is dlt. In particular, $K_{X}+\{D\}$ is klt, $X$ is $\mathbb{Q}$-factorial and $\rho_{num}(X)=\rho(X)$ .

Step 1. Write $D=C+B$ , where $ C:=\lfloor D\rfloor$ and $B$ $:=\{D\}$ . $Then-(K_{X}+B)\equiv$

$C+$ ( $nef$ divisor). Hence $K_{X}+B$ cannot be nef. Run $(K_{X}+B)$-MMP, i.e., contract
birational extremal rays $R$ such that $R\cdot(K_{X}+B)<0$ . The left hand side of (8.11)
does not decrease. Of course, we can lose the dlt property of $K_{X}+D$ , but properties
$(i)-(ii)$ are preserved. Moreover, if $C\neq 0$ , then on each step we contract a curve
$R$ with $R\cdot C>0$ . In particular, whole $C$ is not contracted.

At the end we get a nonbirational contraction $\varphi:X\rightarrow Z$ .
Step 2. Assume that after Step 1 we get a Fano contraction $\varphi$ with $\dim(Z)=$

1. Write $D=D^{vert}+D^{hor}$ , where $D^{hor}=\sum_{hor}d_{i}D_{i}$ is the sum of all components
such that $\varphi(D_{i})=Z$ and $D^{vert}=\sum_{vert}d_{j}D_{j}$ is the sum of components which are
fibers of $\varphi$ . Let $F$ be a general fiber of $\varphi$ . Then by Adjunction

$0\geq(K_{X}+D)\cdot F=(K_{X}+D^{hor}+F)\cdot F$

This gives $D^{hor}\cdot F\leq 2$ . In particular,

(8.12)
$\sum_{hor}d_{i}\leq 2$

,

$=\deg K_{F}+D^{hor}\cdot F\geq-2+D^{hor}\cdot F$.

$\sum_{vert}d_{j}\geq 2$

(because $\rho(X)=2$ ). Now, let $R$ be the extremal ray of $\overline{NE}(X)$ other than $R_{+}[F]$ .
Then $R\cdot D^{vert}>0$ . Hence $R\cdot(K_{X}+(1-\epsilon_{1})D-\epsilon D^{vert})<0$ for $0<\epsilon_{1}\ll\epsilon\ll 1$ .
By Contraction Theorem there is a contraction $\psi:X\rightarrow Z_{1}$ of $R$ .

Assume that $\dim Z_{1}=1$ . Then, as above, we have $\sum_{vert}d_{j}\leq 2$ (because
components of $D^{vert}$ are horizontal with respect to $\psi$ ). This yields equalities in
(8.12) and (8.11). If $\dim Z_{1}=2$ , then $\psi$ is birational. Let $E$ be the $\psi$-exceptional
divisor. If $E$ is a component of $C$ $:=\lfloor D\rfloor$ , then again by Adjunction we have

$0\geq(K_{X}+D)\cdot E=\deg K_{E}+\deg Diff_{E}(D-E)$ , $\deg Diff_{E}(D-E)\leq 2$ .
Since any component of $D^{vert}$ meets $E$ , by Corollary 2.2.8 we obtain $\sum_{vert}d_{j}\leq 2$ .
This yields equalities in (8.12) and (8.11). Finally, if $E$ is not a component of
$ C:=\lfloor D\rfloor$ , then we replace $X$ with $Z_{1}$ . Note that in this case we get strict inequality
$\sum d_{i}-\rho(X)-2>0$ in (8.11) and $\rho(X)=1$ . By the next two steps this is a
contradiction.

Step 3. Assume that $Z$ is a point (and $\rho(X)=1$ ). Then $\sum d_{i}\geq 3$ . We
claim that after perturbation of coefficients one can obtain the case when $K_{X}+D$

is not klt. Indeed, assume that $K_{X}+D$ is klt. Let $H$ be the ample generator
of Pic(X) $\simeq \mathbb{Z}$ (see Lemma 5.1.3) and let $D_{i}\equiv a_{i}H,$ $a_{i}>0$ . Without loss of
generality we may assume that $ a_{1}\leq a_{2}\leq\cdots$ Take $D^{t}=D+t(D_{i}-D_{j})$ , where
$i<j$ and $0<t\leq d_{j}$ . Clearly, $-(K_{X}+D^{t})$ is again nef and $D^{t}$ is effective.
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Moreover, for $D^{t}$ the left hand side of (8.11) remains the same. If $K_{X}+D^{t_{0}}$ is
lc but not klt for some for $0\leq t_{0}\leq d_{j}$ , then $D^{t_{0}}$ gives the required boundary. If
$K_{X}+D^{t}$ is klt for $t=d_{j}$ , then we replace $D$ with $D^{d_{j}}$ continue the process with
another pair $D_{i},$ $D_{j}$ . Since the last procedure reduces the number of components
of $D$ , this process terminates. At the end we get the situation when $K_{X}+D$ is not
klt.

Step 4. Now we consider the case when $K_{X}+D$ is not klt. Apply steps 0-2
again. On Step 2 in (8.11) the equality holds. So we assume that $\rho(X)=1$ and
$C:=\lfloor D\rfloor\neq 0$ . For any component $C_{i}\subset C$ by Adjunction we have
(8.13) $2\geq-\deg K_{C}$ . $=\deg Diff_{C_{i}}(D-C_{i})$

On the other hand, all components of $D$ intersect $C_{i}$ and

(8.14) $\deg Diff_{C}.(D-C_{i})\geq\sum d_{j}-1\geq 2$

(see Corollary 2.2.8). Therefore $\sum d_{j}=3$ and $\deg K_{C}$. $=2$ . This completes the
proof in the case $K_{X}+D\equiv 0$ .

Consider the case $K_{X}+D\not\equiv 0$ . As in Step $0$ we may assume that $K_{X}+D$

is dlt. Further, similar to Step 1, run $(K_{X}+D)$ -MMP. This preserves assumption
(8.11). Let $\varphi:X\rightarrow X^{\prime}$ be a birational extremal contraction, $D^{\prime}$ $:=\varphi_{*}D$ , and $E$

the exceptional curve. Clearly, $K_{X}+D\equiv\varphi^{*}(K_{X}+D^{\prime})+aE$ , where $a\in \mathbb{Q}$ . Then
$0>(K_{X}+D)\cdot E=aE^{2}$ . Hence $a>0$ . Assume that $K_{X^{\prime}}+D\equiv 0$ and $H$ a
hyperplane section of $X$ . Then $0\geq(K_{X}+D)\cdot H=aE\cdot H>0$ , a contradiction.
Therefore $K_{X^{\prime}}+D^{\prime}\not\equiv 0$ . We can replace (X, $D$ ) with (X’, $D^{\prime}$ ) and continue the
process. At the end we get a $\log$ surface (X, $D$ ) with a nonbirational $(K_{X}+D)-$

negative extremal contraction $\phi:X\rightarrow Z$ . In particular $\rho(X)\leq 2$ . If $Z$ is a point,
then $\rho(X)=1and-(K_{X}+D)$ is ample. Take $n\geq 0$ so that the $divisor-n(K_{X}+D)$

is integral and very ample. Let $G\in|-n(K_{X}+D)|$ be a general member. Then
$K_{X}+D+\frac{1}{n}G$ is dlt and numerically trivial. In this case, by the proved inequality
(8.10), $3\leq\sum d_{i}<\sum d_{i}+1/n\leq 3$ , a contradiction. If $Z$ is a curve, then we can
use the arguments of Step 2. Thus $4\leq\sum d_{i}=\sum_{hor}d_{i}+\sum_{vert}d_{j}<4$ (because we
have strict inequality in (8.12)). The last contradiction proves that $K_{X}+D\equiv 0$ .

Assume that $X$ has at least one nonrational singularity $P\in X$ . Clearly, $K_{X}$ is
not klt at $P$ and $P\not\in Supp(D)$ . Then by Corollary 6.1.11 $P\in X$ is a simple elliptic
or cusp singularity. As in Step $0$ , let $\varphi:(\tilde{X},\tilde{D})\rightarrow(X, D)$ be a minimal $\log$ terminal
modification. If $\lfloor\tilde{D}\rfloor$ is connected, then $\lfloor\tilde{D}\rfloor=\varphi^{-1}(P)$ and $p_{a}(\lfloor\tilde{D}\rfloor)=1$ . By

Lemma 8.3.8 $\tilde{D}=\lfloor\tilde{D}\rfloor$ and $D=0$ , a contradiction. Therefore $C$ $:=\varphi^{-1}(P)$ is a

connected component of $\lfloor\tilde{D}\rfloor$ . Denote $\tilde{B}$

$:=\tilde{D}-\lfloor\tilde{D}\rfloor$ and C’ $:=\lfloor\overline{D}\rfloor-C$ . Our
assumption (8.11) implies that $\tilde{B}\neq 0$ . Then $ C\cap C^{\prime}=C\cap Supp(\overline{B})=\emptyset$ . By
Proposition 3.3.2 there is a contraction $\psi:\tilde{X}\rightarrow Z$ with rational fibers onto a curve
$Z$ such that $C$ and $C^{\prime}$ are (smooth) disjoint sections. Then $\tilde{B}$ has no horizontal
components. Let $R$ be a $(K_{\overline{X}}+\tilde{D}-\epsilon\tilde{B})$-negative extremal rational curve. Since



8.5. CHARACTERIZATION OF TORIC SURFACES 93

$p_{a}(Z)=p_{a}(C)=1,$ $R$ cannot be horizontal. On the other hand, $\rho(\tilde{X})\geq 3$ (because
$R\cdot\tilde{B}>0)$ . Therefore the contraction of $R$ is birational. This contraction reduces
the left hand side of (8.11), a contradiction. This proves Theorem 8.5.1. $\square $

THEOREM 8.5.2 ([Sh3]). Let (X, $C$ ) be a projective $log$ surface with a reduced
boundary $C=\sum_{i=1}^{r}C_{i}$ such that $K_{X}+C$ is $lc$ and $-(K_{X}+C)$ is $nef$. Assume
also

$r\geq\rho_{num}(X)+2$ .
Then

(i) $r=\rho_{num}(X)+2=\rho(X)+2$ ;
(ii) $K_{X}+C\sim 0$ ($i.e.,$ $K_{X}+C$ is l-complementary);
(iii) $C$ is connected and $p_{a}(C)=1$ ;
(iv) the pair (X, $C$ ) is toric.

PROOF. The assertion (i) follows by Theorem 8.5.1. This also shows that
$K_{X}+C\equiv 0$ . To prove (ii) we apply steps 0-4 of the proof of Theorem 8.5.1 to
(X, $C$ ). At the end we obtain one of the following:

$\bullet$ $\rho(X)=1$ and $C$ has exactly three components. Clearly they intersect each
other and does not pass through one point, so $p_{a}(C)\geq 1$ (cf. Proof of
Corollary 10.1.2). By Lemma 8.3.8, $K_{X}+C$ is a l-complement. According
to 4.3.1 and 4.3.2, $K_{X}+C$ on our original $X$ is l-complementary.

$\bullet$ $\rho(X)=2$ and $C$ has exactly four components. Moreover, there is an ex-
tremal contraction $\varphi:X\rightarrow Z$ onto a curve. By discussions in Step 2 of
the proof of Theorem 8.5.1 (especially, (8.12)), we have a decomposition
$C=C^{hor}+C^{vert}$ such that both $C^{hor}$ and $C^{vert}$ have two irreducible com-
ponents. Any component of $C^{vert}$ meets all components of $C^{hor}$ . As in
(10.2) we have $p_{a}(C)\geq 1$ . Finally, as above, $K_{X}+C$ is l-complementary.

By Proposition 3.3.2, $C\subset LCS(X, C)$ is connected. Since $K_{X}+C$ is Cartier,
$Diff_{C}(0)=0$ (see 2.2.4). Thus $K_{C}=0$ and $p_{a}(C)=1$ . This proves (iii). The
assertion of (iv) follows by the lemma below. $\square $

LEMMA 8.5.3. Let (X, $C$ ) be a projective $log$ surface such that $C$ is reduced and
connected. Assume that $C$ has exactly $\rho_{num}(X)+2$ components, $K_{X}+C$ is $lc$ and
linearly trivial. Then (X, $C$ ) is a toric pair.

PROOF. Let $\varphi:\overline{X}\rightarrow X$ be minimal lt modification of (X, $C$ ). Write $\varphi^{*}(K_{X}+$

$C)=K_{\overline{X}}+\overline{C}$ , where $\overline{C}$ is reduced and $\varphi_{*}(\overline{C})=C$ . The exceptional divisor of
$\varphi$ is contained in $\overline{C}$ . Hence on (X, $\overline{C}$) all our conditions hold. So it is sufficient
to prove our assertion for (X, $\overline{C}$). By Lemma 8.3.8, $p_{a}(\overline{C})=1,$ $\overline{C}$ a wheel of
smooth rational curves, $\overline{X}$ is smooth along $\overline{C}$ and has only Du Val singularities
outside. Run $K_{\overline{X}}$-MMP. By (8.10), on each step we contracted a component of Z7
(which is contained into the smooth locus of $\overline{X}$). Thus our MMP is a sequence of
contractions of-l-curves. At the end we obtain a Fano contraction $\psi:(\hat{X},\hat{C})\rightarrow Z$ ,
where $\hat{X}$ has only Du Val singularities, $K_{\hat{X}}+\hat{C}$ is lc (in fact it is analytically dlt)
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and numerically trivial. The sequence of transformations $\overline{X}\rightarrow\hat{X}$ is a sequence of
blowups of divisors with discrepancies $a(\cdot,\hat{C})=-1$ . They must preserve the action
of a two-dimensional torus (if $(\hat{X},\hat{C})$ is a toric pair). Thus it is sufficient to show
that the pair $(\hat{X},\hat{C})$ is toric.

If $\rho(\hat{X})=1$ , then $C$ has exactly three components which are Cartier divi-
sors. Therefore $\hat{X}$ is a $\log$ del Pezzo of Fano index $r(\hat{X})\geq 3$ (see 10.2.3). By
Lemma 10.2.4, $\hat{X}\simeq \mathbb{P}^{2}$ and $\hat{C}=\hat{C}_{1}+\hat{C}_{2}+\hat{C}_{3}$ , where the $\hat{C}_{i}$ are lines. Obviously,
$(\hat{X},\hat{C})$ is toric in this case. Finally, assume that $\dim Z=1$ . Then $\hat{C}$ has exactly
four components and by Lemma 8.3.8 they form a wheel of smooth rational curves.
It is an easy exercise to prove that $Z\simeq \mathbb{P}^{1}$ and the fibers of $\psi$ are rational. There-
fore $C=C_{1}^{hor}+C_{2}^{hor}+C_{1}^{vert}+C_{2}^{vert}$ , where $C_{1}^{hor},$ $C_{2}^{hor}$ are disjoint sections of $\psi$ and
$C_{1}^{vert},$ $C_{2}^{vert}$ are fibers. We claim that $\hat{X}$ is smooth. Indeed, by construction, $\hat{X}$ is
smooth along $\hat{C}$ . Let $F$ be a fiber of $\psi$ different from $C_{1}^{vert},$ $C_{2}^{vert}$ . Take $c$ so that
$K_{\hat{X}}+\hat{C}+cF$ is maximally lc. If $c<1$ , then $LCS(\hat{X},\hat{C}+cF)$ has three connected
components near $F$ . This contradicts Proposition 3.3.1. Hence $K_{\hat{X}}+\hat{C}+F$ is lc.
By Adjunction $\deg Diff_{F}(\hat{C})=2$ . On the other hand, $Diff_{F}(\hat{C})\geq P_{1}+P_{2}$ , where
$P_{i}=F\cap C_{i}^{hor}$ . Hence $Diff_{F}(\hat{C})=P_{1}+P_{2}$ and $\hat{X}$ is smooth along $F$ .

Thus we have shown that $\hat{X}$ is smooth. Then $\hat{X}\simeq F_{n}$ and $\psi$ is the natural
projection $F_{n}\rightarrow \mathbb{P}^{1}$ . Since $C_{1}^{hor},$ $C_{2}^{hor}$ are disjoint sections one of them, say $C_{1}^{hor}$ ,
must be the minimal section $\Sigma_{0}$ . Now, it is easy to show that the pair $(\hat{X},\hat{C})$ is
toric. $\square $


