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ABSTRACT. This paper is the course of lectures delivered by the first author
in Kyoto in 1996-97 and recorded by the others. We tried to follow closely
the notes of the lectures not yielding to the temptation of giving more exam-
ples and names. The focus is on the relations of the Knizhnik-Zamolodchikov
equations and Kac-Moody algebras to a new theory of spherical and hyper-
geometric functions based on affine and double affine Hecke algebras. Here
mathematics and physics are closer than Siamese twins. We did not try to
separate them, but the course turned out to be mainly about the mathemat-
ical issues. However we hope that the paper will be understandable for both
physicists and mathematicians, for those who want to master the new Hecke
algebra technique.
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1. INTRODUCTION : HECKE ALGEBRAS IN REPRESENTATION THEORY

Before a systematic exposition, I will try to outline the connections of the repre-
sentation theory of Lie groups, Lie algebras, and Kac-Moody algebras with Hecke
algebras and the Macdonald theory.

A couple of remarks about the growth of Mathematics. It can be illustrated
(with all buts and ifs) by Figl.

It is extremely fast in the imaginary (conceptual) direction but very slow in the
real direction. Mainly I mean modern mathematics, but it may be more general.
For instance, ancient Greeks created a highly conceptual axiomatic geometry with
a modest ‘real output’. I do not think that the ratio Real/Imaginary is much
higher now. There are many theories and a very limited number of functions which
are really special. Let us try to project the representation theory on the real axis
(Figl). We focus on Lie groups(algebras) and Kac-Moody algebras, ignoring the
arithmetic direction (ad\‘eles and automorphic forms). Look at Fig2.

1) By this I mean the zonal spherical functions on $K\backslash G/K$ for maximal com-
pact K in a semi-simple Lie group G. The theory was started by Gelfand et
al. in the early 50’s and completed by Harish-Chandra and many others.
It generalized quite a few classical special functions. Lie groups greatly
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FIGURE 1. Real and Imaginary

FIGURE 2. Representation Theory
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helped to elaborate a systematic approach, although much can be done
without them, as we will see below.

2) The characters of Kac-Moody algebras can also be introduced without any
representation theory (Looijenga, Saito). They are not too far from the
products of classical one-dimensional $\theta$-functions. However it is a new and
very important class of special functions with various applications. The
representation theory explains well some of their properties (but not all).

3) This construction gives a lot of remarkable combinatorial formulas, and
generating functions. Decomposing tensor products of finite dimensional
representations of compact Lie groups was in the focus of representation
theory in the $70’ s$ and early $80’ s$ , as well as various restriction problems.
This direction is still very important, but the representation theory moved
towards infinite-dimensional objects.

4) Here the problem is to calculate the multiplicities of irreducible represen-
tations of Lie algebras in the Verma modules or other induced represen-
tations. It is complicated. It took time to realize that these multiplicities
are ‘real’ and to establish relations to the theory of special functions. The
Verma modules and the BGG-resolutions were designed as a technical tool
for the Weyl character formula and seemed too algebraic for real applica-
tions when they appeared.

Let us update the picture adding the results which were obtained in the $80’ s$

and $90’ s$ mainly inspired by a breakthrough in mathematical physics.

FIGURE 3. New Vintage
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$\tilde{1})$ These functions will be the subject of my mini-course. We will study
them in the differential and difference cases. The interpretation and gen-
eralization of hypergeometric functions was an important problem of the
representation theory (the Gelfand program).

$\tilde{2})$ Actually conformal blocks belong to the imaginary axis (conceptual math-
ematics). Only some of them can be considered as ‘real’ functions. Mostly
it happens in the case of rational and elliptic KZ-equations.

3) The Verlinde algebras are formed by integrable representations of Kac-
Moody algebras of a given level with the fusion instead of tensoring. They
can be also defined using quantum groups at roots of unity.

4) Whatever you think about the ‘reality’ of $[M_{\lambda} : L_{\mu}]$ , these multiplicities
are connected with modular representations including the representations
of the symmetric group over fields of finite characteristic. Nothing can be
more real!

Conjecture 1.1. The real projection of the representation theory goes$\cdot$ through
Hecke-type algebras.

As to the examples under discussion the picture is as follows:
a) This arrow is the most recognized now. Several questions in the Harish-

Chandra theory (the zonal case) were covered by the representation theory
of the degenerate (graded) affine Hecke algebras defined by Lusztig [52].
For instance, the operators from [14] give a simple approach to the radial
parts of invariant differential operators on symmetric spaces and are use-
ful for the Harish-Chandra transform. The hypergeometric functions (the
arrow $(\tilde{a}))$ appear naturally in this way [38],[61].
Still, I belive, the difference theory is more promising. It was demonstrated
in [20] that the difference Fourier transform is self-dual (it is not in the
differential case). It could simplify and generalize the Harish-Chandra
theory. The same program was started in the p-adic representation theory
(see [21, 24]). Note that certain Macdonald polynomials can be interpreted
via the quantum groups (Noumi and others, see[57]). However the Hecke
algebra technique seems to be more relevant (especially for arbitrary root
systems).

b) The double Hecke algebras lead to a certain elliptic generalization of the
Macdonald polynomials [22, 23, 24]. In the differential case there is also
the so-called parabolic operator (see [30] and [22]). As to $(\tilde{b})$ , the conformal
blocks are more general than the characters. Obviously Hecke algebras are
not enough to obtain all of them. On the other hand, the conformal blocks
are defined for the configuration spaces of type $A$ only. Double affine Hecke
algebras work well for all root systems.

c) Here one can rediscover the same combinatorial formulas for the characters
(mostly based on the so-called Kostant partition function) and find some
new ones. I do not expect anything brand new. However if you switch
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FIGURE 4. Hecke Algebras
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to the spherical functions (instead of the characters) then the new theory
results in the formulas for the products of spherical functions, which cannot
be obtained in the classical theory (they require the difference setting). The
multiplicities $[V_{\lambda}\otimes V_{\mu} : V_{\nu}]$ govern the products of the characters and vice
versa.
Concerning $(\tilde{c})$ , the Macdonald theory at roots of unity gave a simple ap-
proach to the Verlinde algebras. I mean [47], and my two papers $[20, 21]$ .
A. Kirillov Jr. found a k-deformation of the Verlinde algebras in the case
of $GL_{n}$ using quantum groups at roots of unity. My technique is applica-
ble to all root systems and works well for the nonsymmetric Macdonald
polynomials (the Kac-Moody characters are symmetric in contrast to the
main classical elliptic functions).

d) This arrow is the Kazhdan-Lusztig conjecture proved by Brylinski-Kashiwara
and Beilinson-Bernstein $and\sim$ then generalized to the Kac-Moody case by
Kashiwara-Tanisaki. By $(d)$ , I mean the modular Lusztig conjecture (par-
tially) proved by Anderson, Jantzen, and Soergel. The arrow from the
Macdonald theory to modular representations is marked by ‘!’. It seems
the most challenging now. I hope to extend my results on the Macdonald
polynomials at roots of unity from the restricted case (alcove) to arbitrary
weights (parallelogram). If might give a k-generalization of the classical
theory, formulas for the modular characters (not only those for the multi-
plicities), and a description of modular representations of arbitrary Weyl
groups. However now it looks difficult.

Let me comment on the role of the Kac-Moody algebras and their relations
(real and imaginary) to the spherical functions and the Hecke algebras. I will give
some arguments for and against the existence of this relation, connected with the
contents of these lectures.

Remark 1.1. Fusion procedure. I think that the penetration of double Hecke alge-
bras into the fusion procedure and related problems of the theory of Kac-Moody
algebras is a very convincing demonstration. I had certain personal reasons to
develop double Hecke algebras in this direction. The fusion procedure appeared in
my paper [8]. Given an integrable representation of the n-th power of a Kac-Moody
algebra (where all $n$ central elements are identified) and two sets of points on a
Riemann surface ( $n$ and $m$ points), I constructed an integrable representation of
the m-th power of the same Kac-Moody algebra. The procedure does not change
the central charge. I missed that in the special case when $n=2,$ $m=1$ the multi-
plicities of irreducibles in the resulting representation are the structural constants
of a certain commutative algebra, the Verlinde algebra [70].

Now we know that these multiplicities can be extracted from the simplest (poly-
nomial) representation of the double affine Hecke algebra at roots of unity in the
so-called group case. The Macdonald polynomials turn into the finite dimensional
characters and do not depend on $q,$

$t$ in this case, so it is very special. Double Hecke
algebras simplify the inner product on the Verlinde algebra, the (projective) action
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of $PSL_{2}(\mathbb{Z})$ , and give more. These structures exist in the general theory (with $q,$
$t$ )

as well. Only the integrality and positivity of the structural constants of the Ver-
linde algebras is missing. So the Kac-Moody algebras are undoubtedly connected
with the new theory of difference spherical functions (including the Macdonald
polynomials). Let me comment on relations to the classical differential theory.

$I’ d$ like to add that I borrowed the fusion procedure from arithmetics. I had
known Ihara’s papers “On congruence monodromy problem” well. A similar pro-
cedure is a foundation of his theory. Of course I changed something, but the
procedure is basically the same. Can we go back and define Verlinde algebras in
arithmetics?

Remark 1.2. Kac-Moody algebras and spherical functions. The classification of the
Kac-Moody algebras resembles very much that of the symmetric spaces. See [42],
[41]. It is not surprising because the key point is the same in both theories: the
description of involutions and more general automorphisms of finite dimensional
reductive Lie algebras. The classification lists are similar but do not coincide. The
$BC_{n}$-symmetric spaces have no Kac-Moody counterparts. Vice versa, the KM-
algebra of type, say, $D_{4}^{(3)}$ is not associated (even formally) with either symmetric
space. Still one could hope that this parallelism is not incidental.

To try to establish a connection we need to switch from the genuine Harish-
Chandra theory of zonal spherical functions to the quantum many-body problem,
where the root multiplicities $k$ can be arbitrary complex numbers. The classical
ones are $k=1/2$ for $Sl_{2}(R)/SO_{2},$ $k=1$ in the so-called group case $Sl_{2}(\mathbb{C})/SU_{2}$ ,
$k=2$ for the $Sp_{2}$ , etc. The corresponding generalized spherical functions (due to
Heckman and Opdam) can be viewed as deformations of the classical characters of
finite dimensional representations of Lie groups. The KM-characters also depend
on a new parameter, the central charge $c$ of representations (the level), and extend
the classical characters. Could we expect any $c\Leftrightarrow k$ correspondence?

Generally speaking, the answer is negative. Indeed, the number of independent
k-parameters can be from 1 $(A, D, E)$ to 5 ( $C^{\vee}C$ , the so-called Koornwinder case),
but we have only one $c$ in the Kac-Moody theory. Moreover, the k-spherical func-
tions are eigenfunctions of differential operators generalizing the radial parts of the
invariant operators on symmetric spaces, and are pairwise orthogonal for different
eigenvalues. This has no counterpart for the Kac-Moody characters. After all, the
latter are elliptic functions. The spherical functions are not.

We will discuss in the course the elliptic quantum many-body problem. It is a
candidate for a theory of spherical functions in the Kac-Moody setup at critical
level and leads to a definition of elliptic spherical polynomials. However this is
rather about unification of $c$ and $k$ than about the connection between them. The
elliptic QMBP in the $GL_{n}$-case was introduced by Olshanetsky-Perelomov. The
classical root systems were considered in [58]. Finally, the operators for arbitrary
root systems were constructed in [22].

In spite of all this, a map from the Kac-Moody algebras to spherical functions
exists. It is for $GL_{n}$ only and not exactly for the KM-characters, but it exists!
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Remark 1.3. Integral formulas for $KZ$. The KZ-eqation is the system of differential
equations for the matrix elements (correlation functions) of the representations of
the Kac-Moody algebras in the n-point case. The matrix elements are simpler to
deal with than the characters. We differentiate them with respect to the positions
of the points. A natural setup here is the so-called $r$-matrix Kac-Moody algebras
[7] and r-matrix KZ equations introduced in [10]. The points are taken on $\mathbb{P}^{1}$ or
on elliptic curves, and the theory is “integrable”. The Knizhnik-Zamolodchikov-
Bernard (KZB) equation $[5, 35]$ and the double affine KZ from [22] are also of this
type (with certain reservations).

The parameter $k$ which appears in KZ is given by the formula:

$k=1/(c+g),$ $g=$ dual Coxeter number, $c=$ central charge.

The KZ equations for arbitrary curves involve the derivatives with respect to
the moduli of curves and vector bundles and are much more complicated (non-
integrable”).

In the following cases we know explicit integral representations for the solutions
of KZ:
(a) the Yang rational r-matrix (see [65]),
(b) the basic trigonometric (or hyperbolic) one [13],
(c) KZB $[5, 35]$ .

Given a Lie algebra $\mathfrak{g}$ (simple, finite dimensional, or even abstract associated
with a Cartan matrix), one may define the integrand using the coinvariant of $U(\wedge \mathfrak{g})$

in the Weil representations [13]. The contours of integration are governed by the
quantum $U_{q}(\mathfrak{g})$ for $q=\exp(\pi ik)$ and the above $k$ . See [36], [69] and references
therein.

Here $q$ appears because the configuration space is endowed with a scalar local
system depending on $k$ . This is closely connected with the equivalence of the $U(\mathfrak{g}\wedge)_{c}$

and $U_{q}(\mathfrak{g})$ due to Kazhdan, Lusztig, and Finkelberg (see [46]). In these notes we
will discuss the integrands only, which are uniform for any r-matrix KZ. As to the
action of $U_{q}(\mathfrak{g})$ on the space of the contours, it is more subtle. Certain affine and
elliptic extensions are necessary in the trigonometric and elliptic cases. What does
it give for the spherical functions?

Remark 1.4. From $KZ$ to spherical functions. Since the configuration space for KZ
consists of sets of $n$ points on $\mathbb{P}^{1}$ or elliptic curves, the connection could be expected
with the spherical functions of type $A$ only (for either $\mathfrak{g}$ ). The corresponding
differential operators can be rational, trigonometric (hyperbolic), or elliptic. Let
us consider the hyperbolic case, to make the consideration compatible with the
Harish-Chandra theory. One may start with any $\mathfrak{g}$ . However only $\mathfrak{g}\mathfrak{l}_{N}$ leads to
scalar differential operators due to Etingof and Kirillov Jr. So let $\mathfrak{g}=\mathfrak{g}\mathfrak{l}_{N}$ .

Now we can apply the isomorphism of KZ with the quantum many-body problem
from $[56, 19]$ , where $k$ is the same as for KZ. It results in futher constraints. We
take $N=n$ and consider KZ with the values in the the O-weight component of
$(\mathbb{C}^{n})^{\otimes n}$ , which is isomorphic to the group algebra $\mathbb{C}[S_{n}]$ . It readily gives that the
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dimension of the contours of integration must be $n(n-1)/2$ . At least, it is the
same as in the Harish-Chandra integral representations for sperical functions of
type $A_{n-1}$ . His integrals are over $K=SO_{n}\subset SL_{n}$ .

It is likely that the Harish-Chandra formula is a particular case of the integral
formulas for the hyperbolic KZ subject to the above constraints. Certain calcula-
tions due to Mimachi, Varchenko, Felder and others confirm this. If it is true, then
we will have a solid relation between spherical functions and Kac-Moody algebras
in the case of $A_{n-1}$ .

It is necessary to note that the integral formulas can be justified without Kac-
Moody algebras. A straightforward analysis is somewhat complicated but possible
[65]. A simple proof presented below is based on the Kac-Moody coinvariant [13].
However it does not clarify the relation $k=1/(c+g)$ . I used Kac-Moody at critical
level to get a certain algebraic relation, which contains no $c,$ $g,$

$k$ . Adding a scalar
local system depending on $k$ (no relation to $c!$ ), one readily arrives at the integral
formulas. So in my approach, Kac-Moody algebras are used as a technical tool
(and at critical level only).

There is another justification of the (same) integral formulas based on the coin-
variant for the Wakimoto modules instead of that for the Weil ones [32]. It is
not simpler than my proof (the calculations with the coinvariant are similar), but
requires almost no combinatorial considerations.

Still, I think, we should have more evidence to conclude that the classical theory
of spherical functions is related to the Kac-Moody algebras. Anyway, what we know
is mainly for type $A$ , not too convincing without the other root systems.
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2. THE AFFINE KNIZHNIK-ZAMOLODCHIKOV EQUATION

We discuss the degenerate affine Hecke algebra and the corresponding affine
Knizhnik-Zamolodchikov equation. We show how the former appears as the con-
sistency and invariance conditions for the latter.

2.1. The algebra $\mathcal{H}_{A_{1}}^{\prime}$ and the hypergeometric equation. In this section,
we introduce the affine Knizhnik-Zamolodchikov (AKZ) equation associated with
the root system of type $A_{1}$ . It is a first-order differential equation for $\Phi$ , where $\Phi$

depends on a single variable $u$ and takes values in an infinite-dimensional algebra
called the degenerate affine Hecke algebra.

The equation is as follows:

$\frac{\partial\Phi}{\partial u}=(k\frac{s}{e^{u}-1}+x)\Phi$ . (2.1)

Here $k\in \mathbb{C}$ is a parameter, and $s$ and $x$ are operators acting on a vector space
where $\Phi$ takes its value. We impose the following two relations.

$s^{2}=1$ , (2.2)
$sx+xs=k$ . (2.3)

These relations make (2.1) invariant. Namely, if $\Phi$ solves (2.1), then

$\tilde{\Phi}(u)=s\Phi(-u)$ (2.4)

also is a solution of (2.1). We claim that (2.1) is integrable in terms of the clas-
sical hypergeometric functions. At least this statement is valid under a certain
irreducibility condition.

The $AKZ$ is the equation (2.1) with values in the degenerate afiine Hecke algebm
$\mathcal{H}_{A_{1}}^{\prime}$ of type $A_{1}$ generated by the elements $s$ and $x$ satisfying the defining relations
(2.2) and (2.3):

$\mathcal{H}_{A_{1}}^{\prime}=(s,$ $ x\rangle$ $/\{(2.2), (2.3)\}$ . (2.5)

Let $\Phi(u)$ be a function of $u$ with values in $\mathcal{H}_{A_{1}}^{\prime}$ . Note that one can multiply $\Phi(u)$

by an arbitrary constant element on the right, i.e. if $\Phi(u)$ is a solution, then $\Phi(u)a$

$(a\in \mathcal{H}_{A_{1}})$ is also a solution. Let us check the invarianoe of AKZ (see (2.4)).
We plug in

$-\frac{\partial\tilde{\Phi}(u)}{\partial u}$

$=$ $s(k\frac{s}{e^{-u}-1}+x)\Phi(-u)$

$=$ $(k\frac{s}{e^{-u}-1}+sxs)\tilde{\Phi}(u)$

and use
$\frac{1}{1-e^{-u}}=\frac{1}{e^{u}-1}+1$ .
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Finally,

$\frac{\partial\tilde{\Phi}(u)}{\partial u}=(k\frac{s}{e^{u}-1}+ks-sxs)\tilde{\Phi}(u)$ ,

where ks–sxs $=x$ .
Now we will integrate (2.1). More generally, let us first consider the equation

$\frac{\partial\Phi}{\partial z}=(\frac{A}{1-z}+\frac{B}{z})\Phi$ . (2.6)

It is (2.1) for $z=e^{-u},$ $A=-ks$ , and $B=-x$ . The equation (2.6) is much
more complicated than the AKZ. However, if $A,$ $B$ are $2\times 2$ matrices acting on
the 2-component vector $\Phi$ , this equation is nothing but the hypergeometric differ-
ential equation. It readily gives the formulas when $\Phi$ takes values in irreducible
representations of $\mathcal{H}_{A_{1}}$ , because the latter exist only in dimensions 1 or 2.

Indeed, a generic 2-dimensional representation $\rho$ of $\mathcal{H}_{A_{1}}$ is given by

$\rho(s)=\left(\begin{array}{ll}1 & 0\\0 & -1\end{array}\right)$ , $\rho(x)=k(\frac{s}{2}+\left(\begin{array}{ll}0 & \zeta\\\xi & 0\end{array}\right))$ . (2.7)

Because of the gauge transformation $\zeta\rightarrow c\zeta,$ $\xi\rightarrow c^{-1}\xi$ , it is characterized by $\zeta\xi$ ,
or by

$\mu=(\zeta\xi+\frac{1}{4}I^{1/2}$ (2.8)

Then a solution $\Phi=\left(\begin{array}{l}\Phi_{1}\\\Phi_{2}\end{array}\right)$ for $A=-k\rho(s),$ $B=-\rho(x)$ is given in terms of the

Gauss hypergeometric function. The first component is

$\Phi_{1}(u)=z^{-k\mu}(1-z)^{k}F(k(1-2\mu), k, 1-2k\mu;z)$ , (2.9)

where $z=e^{-u}$ and $F(\alpha, \beta, \gamma;z)=\sum_{n=0}^{\infty}\frac{(\alpha)_{n}(\beta)_{n}}{(\gamma)_{n}n!}z^{n}$ with $(x)_{n}=x(x+1)\cdots(x+$

$n-1)$ .
If $\zeta\xi=0$ , then the representation $\rho(2.7)$ is reducible. In this case, the solutions

are in terms of elementary functions. We note that the parameters $\alpha,$
$\beta,$

$\gamma$ in (2.9)
are not arbitrary but obey the constraint $\alpha+1=\beta+\gamma$ .

2.2. The AKZ equation for $GL_{n}$ . In this section, we introduce the AKZ equa-
tion of type $GL_{n}$ . It can be obtained as a specialization of the standard Knizhnik-
Zamolodchikov (KZ) equation from the conformal field theory. The consistency
and invariance conditions give rise to the defining relations of the degenerate affine
Hecke algebra $\mathcal{H}_{GL_{n}}^{\prime}$ introduced by Drinfeld.

Recall that the KZ equation reads

$\frac{\partial\Phi}{\partial z_{i}}=k(\sum_{j\neq}\frac{\Omega_{ij}}{z_{i}-z_{j}})\Phi$ $(0\leq i\leq n)$ . (2.10)
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In the less sophisticated case $\Omega_{ij}$ are the permutation matrices [48]. Let us assume
that $\Omega_{ij}$ are any constant elements (operators) and $\Omega_{ij}=\Omega_{ji}$ . We consider $\Phi(z)$

$(z=(z_{0}, \ldots z_{n}))$ taking values in the abstract algebra generated by the elements
$\Omega_{ij}$ . The self-consistency of the system of equations (2.10) means that

$\frac{\partial A_{j}}{\partial z_{i}}-\frac{\partial A_{i}}{\partial z_{j}}=[A_{i}, A_{j}]$ , (2.11)

where

$A_{i}=k\sum_{j\neq i}\frac{\Omega_{ij}}{z_{i}-z_{j}}$ . (2.12)

It holds for all values of the complex parameter $k$ if and only if

$[\Omega_{ij}, \Omega_{kl}]=0$ , (2.13)
$[\Omega_{ij}, \Omega_{ik}+\Omega_{jk}]=0$ , (2.14)

where the indices $i,j,$ $k,$ $l$ are pairwise distinct. The KZ in this form is due to
Aomoto [1] (it was also studied by Kohno [49]).

The trigonometric KZ (and the elliptic ones) where introduced for the first time
in [10]. Actually the paper was about a more general class of the equations which I
called the r-matrix $KZ$. I established their relation to Kac-Moody algebras and cal-
culated the monodromy (see below). The equations corresponding to the simplest
trigonometric r-matrices (there are many of them due to Belavin and Drinfeld) are
closely connected with the AKZ. The physical interpretation of the trigonometric
KZ was not clear when they appeared (my approach was mathematical). Now they
are quite common for both mathematicians and physicists.

Consider the group algebra $\mathbb{C}[S_{n}]$ of the permutation group $S_{n}$ of the set $\{$ 1, $\ldots$ , $n\}$ .
We denote by $s_{ij}$ the transposition of $i$ and $j$ . If we put $\Omega_{ij}=s_{ij}(0\leq i,j\leq n)$ ,
the relations (2.13)-(2.14) are satisfied.

Setting

$z_{0}=0$ , (2.15)
$\Omega_{ij}=s_{ij}$ $(i,j\neq 0)$ , (2.16)
$\Omega_{0i}=k^{-1}\Omega_{i}$ , (2.17)

the equation (2.10) turns into

$\frac{\partial\Phi}{\partial z_{i}}=[k(\sum_{j\neq}\frac{s_{ij}}{z_{i}-z_{j}}I+\frac{\Omega_{i}}{z_{i}}]\Phi$ $(1 \leq i\leq n)$ , (2.18)
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and the relations (2.13),(2.14) read as follows:

$[s_{ij}, \Omega_{i}+\Omega_{j}]=0$ , (2.19)
$[ks_{ij}+\Omega_{i}, \Omega_{j}]=0$ , (2.20)
$[s_{ij}, \Omega_{l}]=0$ , (2.21)

where the indices $i,j,$ $l$ are pairwise distinct.
Substituting

$z_{i}=e^{v_{i}}$ , (2.22)

we come to

$\frac{\partial\Phi}{\partial v_{i}}=(k\sum_{j\neq i}\frac{s_{ij}}{1-e^{v_{j}-v}}+\Omega_{i})\Phi$ . (2.23)

Using the elements

$y_{i}=\Omega_{i}+k\sum_{j>i}s_{ij}$
, (2.24)

$\frac{\partial\Phi}{\partial v_{i}}=(k\sum_{j>i}\frac{s_{ij}}{e^{v.\cdot-v_{j}}-1}-k\sum_{j<i}\frac{s_{ij}}{e^{v_{j}-v}\cdot-1}+y_{i})\Phi$ . (2.25)

The elements $\{y\}$ are convenient since in the limit

$v_{1}\gg v_{2}\gg\cdots\gg v_{n}$ ,

we get the system

$\frac{\partial\Phi}{\partial v_{i}}=y_{i}\Phi$ . (2.26)

The consistency of these equations is equivalent to the commutativity

$[y_{i}, y_{j}]=0$ . (2.27)

We claim that (2.27), a ‘limiting self-consistency’, together with the relations
$[s_{i}, y_{j}]=0$ if $j\neq i,$ $i+1$ , (2.28)
$s_{i}y_{i}-y_{i+1}s_{i}=k$ , (2.29)

where $s_{i}=s_{ii+1}(1\leq i\leq n-1)$ , ensure (2.19)-(2.21).
It can be put in the following way. Let us introduce the degenemte affine Hecke

algebra of type $GL_{n}$ as an algebraic span of $\mathbb{C}[S_{n}]$ and $y_{i}(1\leq i\leq n)$ with the
relations (2.27), (2.28) and (2.29), denoting it by $\mathcal{H}_{GL_{n}}$ , or simply by $\mathcal{H}_{n}^{\prime}$ . We call
the system (2.25) with the values in $\mathcal{H}_{n}^{\prime}$ the $AKZ$ of type $GL_{n}$ . It is well-defined,
i.e. self-consistent.
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Actually the relations for $\{y\}$ give more than the self-consistence. They also
ensure the $S_{n}$-invariance of the AKZ equation.

The group $S_{n}$ acts on $\mathbb{C}^{n}$ naturally by

$v=(v_{1}, \ldots v_{n})\in \mathbb{C}^{n}\mapsto w(v)=(v_{i_{1}}, \ldots v_{i_{n}})\in \mathbb{C}^{n}$

for $w^{-1}=(i_{1}, i_{2}, \ldots i_{n})\in S_{n}$ . Given a function $\Phi(v)$ of $v\in \mathbb{C}^{n}$ with values in
$\mathcal{H}_{n}^{\prime}$ , we define the action of $w\in \mathbb{C}[S_{n}]$ on $\Phi(v)$ by

$(w(\Phi))(v)=w\cdot\Phi(w^{-1}(v))$ . (2.30)

Here the dot means the product in $\mathcal{H}_{n}^{\prime}$ . It follows from (2.28) and (2.29) that if
$\Phi$ solves (2.25), so does $w(\Phi)$ . Just conjugate the equations by $\{s_{i}\}$ . Moreover,
the invariance is exactly equivalent to the relations (2.28) and (2.29). Thus the
invariance and the limiting self-consistency (2.27) give the self-consistency of our
system for all $k$ .

Example 2.1. The basic variant of the Knizhnik-Zamolodchikov equation is as
follows. Let $\mathfrak{g}\mathfrak{l}_{N}$ be the matrix algebra with the standard set of generators $\{e_{lm},$ $ 1\leq$

$l,$ $m\leq n$ } with the entries $e_{lm}^{ab}=\delta_{la}\delta_{mb}$ . Given any representations $V_{0},$ $V_{1}\ldots V_{n}$

of $\mathfrak{g}\mathfrak{l}_{N}$ , the tensor product $V=V_{0}\otimes V_{1}\otimes\cdots\otimes V_{n}$ has a natural structure of $\mathfrak{g}\mathfrak{l}_{N^{-}}$

module. We set $\Omega_{ij}=\sum_{lm}e_{lm}^{(i)}e_{ml}^{(j)}$ , where $e_{lm}^{(i)}$ act in $V_{i},$ $i\neq j$ . Then (2.14) and
(2.13) are fulfilled and we get a self-consistent KZ equation. This example was
generalized by Kohno to arbitrary reductive Lie algebras and extensively used by
Drinfeld in his theory of quasi-Hopf algebras.

If $V_{i}$ coincide with the fundamental n-dimensional representation for all $i>0$ ,
then $\Omega_{ij}$ can be identified with the transposition $s_{ij}$ for $i,j>0$ . The representation
$V_{0}$ is still arbitrary. We arrive at a $S_{n}$ -invariant self-consistent equation in the form
(2.18). Hence we have a representation of $\mathcal{H}_{n}$ in $V$ . Moreover, given any weight
of $\mathfrak{g}\mathfrak{l}_{N}$ , the subspace of the corresponding highest vectors in $V$ is a $\mathcal{H}_{n}^{\prime}$-submodule.
The formulas for the action of $\mathcal{H}_{n}^{\prime}$ are the same as above:

$s_{ij}-\Omega_{ij},$
$y_{i}\mapsto\Omega_{0i}+k\sum_{j>i}\Omega_{ij},$

$1\leq i,j\leq n$ .

2.3. Degenerate affine Hecke algebras. In this section, we fix notations for
root systems and define the degenerate affine Hecke algebra for an arbitrary root
system.

Let $\Sigma$ be a root system in $R^{n}$ with the inner product $( , )$ . Choose a system
of simple roots $\alpha_{1},$ $\ldots\alpha_{n}$ of $\Sigma$ and denote by $\Sigma_{+}$ the set of positive roots. For a
root $\alpha\in\Sigma$ , define the coroot $\alpha^{\vee}$ by

$\alpha^{\vee}=\frac{2\alpha}{(\alpha,\alpha)}$

and the reflection $s_{\alpha}$ by

$ s_{\alpha}(u)=u-(\alpha^{\vee}, u)\alpha$ $(u\in R^{n})$ .
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We will denote $s_{\alpha:}$ simply by $s_{i}$ . The fundamental coweights $b_{i}$ are as follows:

$(b_{i}, \alpha_{j})=\delta_{1j}$ .

We also use the notation $a_{i}=\alpha_{i}^{\vee}$ . For $u\in R^{n}$ , the coordinates will be $u_{i}=(u, \alpha_{i})$ .
We also set $u_{\alpha}=(u, \alpha)$ for $\alpha\in\Sigma$ . Check that

$\frac{\partial u_{\alpha}}{\partial u_{i}}=\nu_{\alpha}^{i}=(b_{i}, \alpha)=the$ multiplicity of $\alpha_{i}$ in $\alpha$ .

Let $W$ be the Weyl group of $\Sigma;W=\{s_{\alpha}, \alpha\in\Sigma\}=\{s_{1}, \ldots , s_{n}\}$ . Define the
action of $W$ on functions on $R^{n}$ by

$wf(u)=f(w^{-1}(u))$ $(u\in R^{n})$ . (2.31)

Then we have

$wu_{\alpha}=(w^{-1}(u), \alpha)=u_{w(\alpha)}$ .

Now we can define the degenerate affine Hecke algebra $\mathcal{H}_{\Sigma}^{\prime}$ associated with $\Sigma$ .
This definition is due to Lusztig [52] (he calls it the graded affine Hecke algebra,
considering $k$ as a formal parameter). Drinfeld introduced this algebra in the
$GL_{n}$-case in [27] prior to Lusztig. These algebras are natural degenerations of the
corresponding padic ones.

Definition 2.1. Let $\mathcal{H}_{\Sigma}^{\prime}$ be the associative algebra generated by $\mathbb{C}[W]$ and $x_{1},\ldots,x_{n}$

with the following relations

$[x_{i},x_{j}]=0$ , $\forall i,j$ , (2.32)
$[s_{i}, x_{j}]=0$ , if $i\neq j$ , (2.33)
$s_{i}x_{i}-\hat{x}_{i}s_{i}=k$ . (2.34)

Here $k$ is a complex number and

$\hat{x}_{i}=x_{i}-\sum_{j=1}^{n}(\alpha_{i}^{\vee}, \alpha_{j})x_{j}$ . (2.35)

Introducing

$x_{b}=\sum_{i=1}^{n}(b, \alpha_{i})x_{i}=\sum_{i=1}^{n}k_{i}x_{i}$ for $b=\sum_{i=1}^{n}k_{i}b_{i}$ , (2.36)

we can express the right hand side of (2.35) as $x_{s_{i}(b_{i})}=x_{b_{i}}-x_{a_{i}}$ . More generally,

$sx-x_{s_{i}(b)^{S}i}=xb^{S}i^{-S}i^{X}s.(b)=k(b, \alpha i)$ . (2.37)

Later we will use the following partial derivatives

$\partial_{b}(u_{\alpha})=(\alpha, b)$ . (2.38)
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For instance,

$\frac{\partial}{\partial u_{i}}=\partial_{i}=\partial_{b_{i}}$

2.4. The AKZ equation associated with $\mathcal{H}_{\Sigma}$ . In this section we introduce the
AKZ equation associated with the root system $\Sigma$ , and give several examples.

Let us consider the following system of partial differential equations

$\frac{\partial\Phi}{\partial u_{i}}=(k\sum_{\alpha\in\Sigma_{+}}\nu_{\alpha}^{i}\frac{s_{\alpha}}{e^{u_{\alpha}}-1}+x_{i})\Phi$ $(1 \leq i\leq n)$ . (2.39)

Here $k$ is a complex number. We denote the right hand side of (2.39) as $ A_{i}\Phi$ . First
we assume that $\Phi$ takes values in an associative algebra generated by $\mathbb{C}[W]$ and
$x_{1},\ldots,$ $x_{n}$ . We say that the system (2.39) is self-consistent provided that

$[\frac{\partial}{\partial u_{i}}-A_{i}, \frac{\partial}{\partial u_{j}}-A_{j}]=0$ . (2.40)

It is called invariant if, for any solution $\Phi$ of (2.39) and any element $w$ of $W,$ $w(\Phi)$

(see 2.30) is again a solution of (2.39).

Theorem 2.1. The system (2.39) is self-consistent and invariant if and only if $s_{1}$ ,
. . ., $s_{n},$ $x_{1},$

$\ldots,$
$x_{n}$ satisfy the relations (2.32), (2.33), (2.34) defining $\mathcal{H}_{\Sigma}^{\prime}$ .

We introduce the AKZ equation associated with $\Sigma$ to be the system (2.39) for
functions $\Phi$ with values in $\mathcal{H}_{\Sigma}$ .

Using the notation $x_{b}$ and $\partial_{b}$ from (2.36) and (2.38), the system (2.39) can be
expressed as

$\partial_{b}\Phi=(k\sum_{\alpha\in\Sigma_{+}}(b, \alpha)\frac{s_{\alpha}}{e^{u_{\alpha}}-1}+x_{b})\Phi$ . (2.41)

Remark 2.1. The parameter $k$ may depend on the lengths of roots. Generally
speaking the AKZ equation is as follows:

$\frac{\partial\Phi}{\partial u_{i}}=(\sum_{\alpha\in\Sigma_{+}}k_{|\alpha|}\nu_{\alpha}^{i}\frac{s_{\alpha}}{e^{u_{\alpha}}-1}+x_{i})\Phi$ . (2.42)

Let us write down the explicit forms of the AKZ equation in the simplest cases.

Example 2.2. When $\Sigma=A_{1}$ , the AKZ equation is exactly (2.1).
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Example 2.3. For $A_{2}$ , the AKZ equation is

$\frac{\partial\Phi}{\partial u_{1}}=$ $\{k(\frac{s_{12}}{e^{u_{1}}-1}+\frac{s_{13}}{e^{u_{1}+u_{2}}-1})+x_{1}\}\Phi$ ,

$\frac{\partial\Phi}{\partial u_{2}}=$ $\{k(\frac{s_{23}}{e^{u_{2}}-1}+\frac{s_{13}}{e^{u_{1}+u_{2}}-1}I+x_{2}\}\Phi$ ,

where $s_{ij}$ denotes the transposition of $i$ and $j$ . In this case $\hat{x}_{1}=x_{2}-x_{1}$ , $\hat{x}_{2}=$

$x_{1}-x_{2}$ .

Example 2.4. The root system $B_{2}$ is realized in the following way. Let $\epsilon_{1}$ and
$\epsilon_{2}$ form an orthonormal basis of $R^{2}$ . Then the set of positive roots consists of the
following vectors:

$\alpha_{1}=\epsilon_{1}-\epsilon_{2}$ ,
$\alpha_{2}=\epsilon_{2}$ ,
$\alpha_{1}+\alpha_{2}=\epsilon_{1}$ ,
$\alpha_{1}+2\alpha_{2}=\epsilon_{1}+\epsilon_{2}$ .

Let $s=s_{1}$ and $t=s_{2}$ . Then $s$ and $t$ satisfy $tsts=stst$ (the Coxeter relation for
$W_{B_{2}}=W_{C_{2}})$ and $s^{2}=1,$ $t^{2}=1$ . In this case $\hat{x}_{1}=x_{2}-x_{1},\hat{x}_{2}=2x_{1}-x_{2}$ . The
AKZ equation reads as follows:

$\frac{\partial\Phi}{\partial u_{1}}=$ $\{k(\frac{s}{e^{u_{1}}-1}+\frac{sts}{e^{u_{1}+u_{2}}-1}+\frac{tst}{e^{u_{1}+2u_{2}}-1})+x_{1}\}\Phi$

$\frac{\partial\Phi}{\partial u_{2}}=$ $\{k(\frac{t}{e^{u_{2}}-1}+\frac{sts}{e^{u_{1}+u_{2}}-1}+2\frac{tst}{e^{u_{1}+2u_{2}}-1})+x_{2}\}\Phi$ .

Note the appearanoe of the coefficient 2 in the latter. In the case of $E_{8}$ the coeffi-
cients are from 1 to 6 (otherwise they are less than 6).

2.5. The $A_{n-1}$ case. In this section, we will show that the AKZ equation of type
$GL_{n}$ discussed in \S 2.2 reduces to the AKZ equation for the root system $\Sigma\subset R^{n-1}$

of type $A_{n-1}$ .
First note that

$x=y_{1}+\ldots+y_{n}$ (2.43)

is central in the algebra $\mathcal{H}_{n}$ . By setting

$x_{i}=y_{1}+\ldots+y_{i}-\frac{i}{n}x$ , (2.44)

we have an embedding of $\mathcal{H}_{\Sigma}^{\prime}$ , where $\Sigma$ is the root system of type $A_{n-1}$ , into $\mathcal{H}_{n}^{\prime}$ .
We put

$u_{i}=v_{i}-v_{i+1}$ $(1 \leq i\leq n-1)$ . (2.45)
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The space $R^{n-1}$ is identified with the quotient space of $R^{n}=$ { $\sum_{i=1}^{n}v_{i}\epsilon_{i}$ I $v_{i}\in R$}
$R^{n-1}\simeq\oplus_{i=1}^{n}R\epsilon_{i}/R\epsilon$

where $\{\epsilon_{i}\}_{1\leq i\leq n}$ is the orthonormal basis and $\epsilon=\epsilon_{1}+\ldots+\epsilon_{n}$ . From (2.25) we
have

$\sum_{i=1}^{n}\frac{\partial\Phi}{\partial v_{i}}=x\Phi$ .

Therefore, the function
$\Phi(v)=e^{-x\cdot\frac{1}{n}(v_{1}+\cdots+v_{\mathfrak{n}})}\Phi(v)$

is well-defined on the quotient space $R^{n-1}$ . Now it is straightforward to see that
(2.25) reduces to the AKZ equation of type $A_{n-1}$ for $\Phi^{\prime}(v)$

$\frac{\partial\Phi^{\prime}}{\partial u_{i}}=(k\sum_{j\leq i<l}\frac{s_{jl}}{e^{u_{j}+\cdots+u_{l-1}}-1}+x_{i})\Phi^{\prime}$ $(1\leq i\leq n-1)$ .
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3. ISOMORPHISM THEOREMS FOR THE AKZ EQUATION

We introduce the affine Hecke algebra $\mathcal{H}_{\Sigma}^{t}$ and connect them with the degenerate
affine Hecke algebra $\mathcal{H}_{\Sigma}^{\prime}$ using the monodromy of the AKZ equation. We also
establish an isomorphism between the solution space of the AKZ equation and
that of a quantum many body problem.

3.1. Representations of $\mathcal{H}_{\Sigma}$ . In this section we define induced representations
of $\mathcal{H}_{\Sigma}^{\prime}$ .

For $\lambda=(\lambda_{1}, \ldots\lambda_{n})\in \mathbb{C}^{n}$ , the character of $\mathbb{C}[x_{1}, \ldots x_{n}]$ (i.e. a ring homomor-
phism $\mathbb{C}[x_{1}, \ldots x_{n}]\rightarrow \mathbb{C}$ ) is an assignment $x_{i}\mapsto\lambda_{i}$ . We denote it by $\lambda$ .

Deflnition 3.1. We define an $\mathcal{H}_{\Sigma}^{\prime}$ -module $I_{\lambda}$ as the representation induced from
$\lambda$ :

$I_{\lambda}=Ind_{\mathbb{C}[x_{1},\ldots,x_{n}]}^{\mathcal{H}_{\Sigma}}(\lambda)=\mathcal{H}_{\Sigma}\otimes_{\mathbb{C}[x_{1},\ldots,x_{n}]}\mathbb{C}_{\lambda}$ . (3.1)

Here $\mathbb{C}_{\lambda}$ is endowed with the $\mathbb{C}[x_{1}, \ldots x_{n}]$-module structure by the character $\lambda$ .

We have the Poincar\’e-Birkhoff-Witt type theorem for $\mathcal{H}_{\Sigma}$ . Namely any $h\in \mathcal{H}_{\Sigma}$

is expressed uniquely in either of the following ways:

$h=\sum_{w\in W}p_{w}(x)w=\sum_{w\in W}wq_{w}(x)$
(3.2)

with $p_{w},$ $q_{w}\in \mathbb{C}[x_{1}, \ldots , x_{n}]$ . The existence results from the relations $(2.32)-(2.34)$

in $\mathcal{H}_{\Sigma}$ . Hence

$I_{\lambda}=\mathbb{C}[W]=\oplus_{w\in W}\mathbb{C}w$ . (3.3)

Thus $I_{\lambda}$ is $\mathbb{C}[W]$ as a W-module, where the action of $x_{i}$ is determined by $x_{i}(e)=\lambda_{i}e$

for the identity $e\in W$ . The action of $x_{i}$ on other elements of $\mathbb{C}[W]$ have to
be determined using the defining relation (similar to the calculations in the Fock
representation).

We also need another construction. Let $J$ be induced from the trivial character
$+:W\rightarrow \mathbb{C},$ $w\rightarrow 1$ . Then

$J=Ind_{\mathbb{C}[W]}^{\mathcal{H}_{\Sigma}^{\prime}}(+)$ , (3.4)

is isomorphic to $\mathbb{C}[x_{1}, \ldots x_{n}]$ as a vector space and moreover as a $\mathbb{C}[x_{1}, \ldots , x_{n}]-$

module. To get finite-dimensional representations from $J$ , we use the coincidence
of the center of $\mathcal{H}_{\Sigma}$ with the algebra of W-invariant polynomials in $x_{i}$ . This
theorem is due to Bernstein. The procedure is as follows. Let us fix an element
$\lambda=(\lambda_{1}, \ldots\lambda_{n})\in \mathbb{C}^{n}$ and introduce the ideal $L_{\lambda}$ in $\mathbb{C}[x_{1}, \ldots x_{n}]$ generated by
$p(x)-p(\lambda)$ for all W-invariant polynomials $p$ . Set $J_{\lambda}=J/L_{\lambda}$ . Then $J_{\lambda}$ has a
structure of $\mathcal{H}_{\Sigma}$ -module by virtue of the Bernstein theorem.

We will also use the anti-involution $0$ on $\mathcal{H}_{\Sigma}$ :

$x_{i}^{o}=x_{i}$ , $s_{i}^{o}=s_{i}$ , (ab)o $=b^{o}a^{o},$ $k^{o}=k$ . (3.5)
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Since the relations of $\mathcal{H}_{\Sigma}$ are self-dual it is well-defined. For an $\mathcal{H}_{\Sigma}^{\prime}$ -module $V$ , we
consider its dual $Hom_{\mathbb{C}}(V, \mathbb{C})$ . The dual has an anti-action (a right action) of $\mathcal{H}_{\Sigma}^{\prime}$ .
Composing it with the anti-automorphism $0$ we get a natural (left) action of $\mathcal{H}_{\Sigma}^{\prime}$ .
We denote the resulting module by $V^{o}$ .

We write $\lambda_{b}=\sum k_{i}\lambda_{i}$ for $b=\sum k_{i}b_{i}$ .

Theorem 3.1. (a) $I_{\lambda}$ is irreducible if and only if $\lambda_{\alpha}\vee\neq\pm k$ for any $\alpha\in\Sigma_{+}$ .
(b) There exists a permutation $\lambda$ of $\lambda$ ($i.e$ . $\lambda^{\prime}=w(\lambda)$ for $w\in W$) such that

$\lambda_{\alpha^{\vee}}\neq-k$ for any $\alpha\in\Sigma_{+}$ . Then

$J_{\lambda}\simeq I_{\lambda^{\prime}}$ . (3.6)

(c) For the longest element $w_{0}$ in $W$ ,

$I_{\lambda}^{o}=I_{w_{0}(\lambda)}$ (3.7)

A key lemma in proving Theorem 3.1 is

Lemma 3.2. $I_{(0,\ldots,0)}$ is irreducible.

The proof from [20] is based on the intertwining operators of degenerate affine
Hecke $al$gebras (to be defined below). See also [45, 44, 62] and the references therein
(the non-degenerate case).

Definition 3.2. For $1\leq i\leq n$ we set

$f_{i}=f_{s_{i}}=s_{i}-\frac{k}{x_{a_{1}}}$ . (3.8)

For $w\in W$ with a reduced decomposition $w=s_{i_{n}}\cdots s_{i_{1}},$ $f_{w}=f_{i_{n}}\cdots f_{i_{1}}$ . We call
the elements $f_{w}$ intertwiners.

The elements $f_{w}$ belong to the localization of the degenerate affine Hecke algebra
$\mathcal{H}_{\Sigma}$ by the W-invariant polynomials. They give a certain ‘baxterization’ of $w$ , and
are closely related to the Yang’s R-matrix. Let us show that $f_{w}$ does not depend
on the choice of the reduced decomposition of $w$ .

We have

$f_{s_{i}}x_{b}$ $=$

$f_{w}x_{b}$ $=$

Indeed,

$x_{s_{i}(b)}f_{s_{i}}$ , (3.9)
$x_{w(b)}f_{w}$ . (3.10)

$(s_{i}-\frac{k}{x_{a}})x_{b}=x_{s_{i}(b)}(s_{i}-\frac{k}{x_{a}})$ , (3.11)

which can be rewritten as follows:

$s_{i}x_{b}-x_{s_{i}(b)}s_{i}=-k\frac{x_{s:(b)}-x_{b}}{x_{a_{l}}}$ . (3.12)
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Using the definition of $x_{b}(2.36)$ , the right hand side of (3.12) is $k(b, \alpha_{i})$ . So we
come to (2.37). The relations (3.10) fix $f_{w}$ uniquely up to the multiplication on
the right by functions in $x$ . The leading terms of $f_{w}$ being $w$ , they coincide for any
reduced decompositions.

To demonstrate the role of intertwiners, let us check the irreducibility of $I_{\lambda}$ for
generic $\lambda$ . First note that the vectors $\{f_{w}(e)\in I_{\lambda}\}$ are common eigenvectors of
$x_{b}.$ , because

$x_{b}f_{w}(e)=f_{w}x_{w^{-1}(b)}(e)=\lambda_{w^{-1}(b)}f_{w}(e)$ ,

For a generic $\lambda$ the eigenvalues are simple, hence these vectors are linearly indepen-
dent. Now, any nonzero $\mathcal{H}_{\Sigma}$ -submodule $A$ of $I_{\lambda}$ contains at least one eigenvector
of $x_{b}$ . By the simplicity of eigenvalues, such an eigenvector must be in the form
$f_{w}(e)$ for some $w\in W$ . On the other hand, $f_{w}$ are invertible elements. Indeed,

$f_{i}^{-1}=(1-\frac{k^{2}}{X_{a}.2})^{-1}f_{i}$ .

Therefore $e\in A$ . Since $I_{\lambda}$ is generated by $e$ , we conclude that $A=I_{\lambda}$ .
Actually this very reasoning leads to the proof of the Theorem (a),(b). However

if $\lambda$ is arbitrary one must operate with the intertwiners much more carefully. It is
necessary to multiply them by the denominators and remember that the invertibil-
ity does not hold for special $\lambda$ .

Remark 3.1. The $\mathcal{H}$’-quotients $A$ of $J_{\lambda}^{o}$ will be interpreted below as certain quo-
tients of the D-module representing the quantum many-body eigenvalue problem.
A solution of the AKZ in $J_{\lambda}^{o}$ induces solutions in any of its $\mathcal{H}$ -quotients (if $I$ is
reducible). It gives a one-to-one correspondence between the $\mathcal{H}^{\prime}$-submodules (quo-
tients, constituents) of $J$ and those of the D-modules representing the quantum
many-body eigenvalue problem. The description of the latter is an analytical prob-
lem. The classification of the former is a difficult question in the representation
theory of Hecke algebras. For instance, the multiplicities of the irreducible con-
stituents are described in terms of the Kazhdan-Lusztig polynomials. It is very
interesting to combine the two approaches.

3.2. The monodromy of the AKZ equation. In this section we discuss the
monodromy of the AKZ equation, which is a key ingredient in establishing the
isomorphism between the AKZ equation in the representation $J_{\lambda}^{o}$ and the quantum
many-body problem (QMBP) with the eigenvalue $\lambda$ .

Let $U$‘ be the open subset of $\mathbb{C}^{n}$ given by

$U^{\prime}=\{u\in \mathbb{C}^{n}|\prod_{\alpha\in\Sigma_{+}}(e^{u_{\alpha}}-1)\neq 0\}$
. (3.13)

The lattice generated by $b_{1},$
$\ldots$ , $b_{n}$ will be denoted by $B$ . It is isomorphic to $\mathbb{Z}^{n}$ .

and acts on $\mathbb{C}^{n}$ by translations. Namely, $b(u)=u+2\pi\sqrt{-1}b$ , where $b\in B$ . The
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semi-direct product $W=WxB$ is the so-called extended affine Weyl group, acting
on $\mathbb{C}^{n}$ and leaving $U$’ invariant. $Pickingu^{0}’\in U’$ , we set

$\pi_{1}=\pi_{1}(U^{\prime}/\overline{W}, u^{0})$ .

The group structure of $\pi_{1}$ is described as follows. Given an element $w\in\overline{W}$ , let
$\gamma_{w}$ be a path from $u^{0}$ to $w^{-1}(u^{0})$ in $U^{\prime}$ . For elements $w_{1},$

$w_{2}\in\overline{W}$ , we define the
composition $\gamma_{w_{2}}\circ\gamma_{w_{1}}$ of $\gamma_{w_{1}}$ and $\gamma_{w_{2}}$ as the path composed of $\gamma_{w_{1}}$ and the path
$\gamma_{w_{2}}$ mapped by $w_{1}^{-1}$ (see Fig5). The class of $\gamma$ will be denoted by $\overline{\gamma}$ . The map
$\overline{\gamma}_{w}\rightarrow w$ is a homomorphism onto $\overline{W}$ .

$w_{1}^{-1}w_{2}^{-1}(u^{0})$

$u^{0}$

FIGURE 5. Composition of paths

It is convenient to choose $u^{0}$ and the generators of $\pi_{1}$ as follows. Set $\Re=Re,$ $\Im=$

$Im$ ,

$C=(\sqrt{-1}R)^{n}\backslash $ {$ u\in(\sqrt{-1}R)^{n}|0<\Im u_{\alpha}<2\pi$ for every $\alpha\in\Sigma_{+}$ }.
Then $\mathbb{C}^{n}\backslash C$ is a simply connected open subset of $U$‘. Let us take $u^{0}\in \mathbb{C}^{n}$ such
that $\Re u_{\alpha}^{0}\gg 0$ for $\alpha\in\Sigma_{+}$ . For any element $w\in\overline{W}$ , we denote a path from $u^{0}$

to $w^{-1}(u^{0})$ in $\mathbb{C}^{n}\backslash C$ by $\gamma_{w}$ . This condition simply means that whenever $u_{\alpha}\in iR$

intersects the imaginary $\underline{ax}is$ it must go through the ‘window’ $ 0<\Im u_{\alpha}<2\pi$ .
For any element $w\in W$ we define an element $\overline{\gamma}_{w}$ of $\pi_{1}$ to be the image of $\gamma_{w}$ .

Since $\mathbb{C}^{n}\backslash C$ is simply connected, $\overline{\gamma}_{w}$ depends only on $w$ . We set $\tau_{i}=\gamma_{s_{i}}$ and
choose $\chi_{i}$ to be a path from $u^{0}$ to the point $u^{\prime}$ with the same coordinates $u_{j}^{\prime}=u_{j}^{0}$
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for $j\neq i$ and $u_{t}=u_{i}^{0}+2\pi\sqrt{-1}$ . The structure of $\pi_{1}$ is described in the following
theorem from [51].

Theorem 3.3.

$\pi_{1}=\{\overline{\tau}_{1}, \ldots\overline{\tau}_{n},\overline{\chi}_{1}, \ldots\overline{\chi}_{n}\}$ , (3.14)
$\overline{\tau}_{i}$ satisfy the Coxeter relations, (3.15)
$[\overline{\chi}_{i},\overline{\chi}_{j}]=[\overline{\tau}_{i},\overline{\chi}_{j}]=0$ $(i\neq j)$ , (3.16)
$\overline{\tau}_{i}^{-1}\overline{\chi}_{i}\overline{\tau}_{i}^{-1}=\overline{\chi}_{s.(b)}:$ . (3.17)

Here for $b=\sum_{i=1}^{n}k_{i}b_{i}$ we put

$\overline{\chi}_{b}=\prod_{i=1}^{n}\overline{\chi}_{i}^{k_{i}}$ . (3.18)

Fig6 proves the relation (3.17). It shows the $u_{i}$-coordinate only, which is suffi-
cient for this relation.

Let us introduce the affine Hecke algebra $\mathcal{H}_{\Sigma}^{t}$ associated with a root system $\Sigma$

as a quotient of the group algebra of $\pi_{1}$ by the quadratic relations.

Definition 3.3. The affine Hecke algebra associated with a root system $\Sigma$ is an
associative $\mathbb{C}$-algebra generated by 1, $T_{1},\ldots,T_{n},$ $X_{1},\ldots,X_{n}$ with the following rela-
tions:

$T_{i}$ satisfy the Coxeter relations, (3.19)
$[X_{i}, X_{j}]=[T_{i}, X_{j}]=0$ $i\neq j$ , (3.20)
$T_{i}^{-1}X_{i}T_{i}^{-1}=X_{s.(b_{i})}$ , (3.21)
$(T_{i}-t)(T_{i}+t^{-1})=0$ . (3.22)

The monomials $X_{b}$ are defined as in (3.18), $t\in \mathbb{C}^{*}$ . Here and above we mean the
homogeneous Coxeter relations: $T_{i}T_{j}T_{i}\ldots=T_{j}T_{i}T_{j}\ldots,$ $m_{ij}$ factors on each side,
where $m_{ij}=2,3,4$ whenever the corresponding vertices in the Dynkin diagram are
connected by 0,1,2 laces.

Let $\Phi$ be an invertible solution of the $\underline{AK}Z$ equation associated with $\Sigma$ , defined
in a neighborhood of $u^{0}$ . Then, for $w\in W,$ $w^{-1}(\Phi)$ is defined near $w^{-1}(u^{0})$ (see
(2.30)). Let $\gamma$ be a path in $U^{\prime}$ from $u^{0}$ to $w^{-1}(u^{0})$ . Denote by $(w^{-1}(\Phi))_{\overline{\gamma}}$ the ana-
lytic continuation of $w^{-1}(\Phi)$ back to $u^{0}$ along the path $\gamma$ , where $\overline{\gamma}$ denotes the class
$\underline{of}\gamma$ in the fundamental group $\pi_{1}$ . We will also use the projection homomorphism
$W\rightarrow W$ sending $w=\overline{w}b$ to $\overline{w}$ for $b\in B,\underline{\overline{w}}\in W$ . Using this homomorphism we
can extend the action of $W$ from (2.30) to $W$ , multiplying $\Phi$ on the left by $\overline{w}$ .

Let us define the monodromy $T_{\overline{\gamma}}$ to be the ratio

$ T_{\nabla}=(w^{-1}(\Phi))_{7}^{-1}\Phi=(\Phi(w(u)))_{\overline{\gamma}}^{-1}\cdot\overline{w}\cdot\Phi$ . (3.23)
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FIGURE 6. Proof of the relation (3.17)
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Here the dot means the product in $\mathcal{H}_{\Sigma}$ . Since $\Phi$ and $w^{-1}(\Phi)$ both satisfy the same
AKZ equation, $T_{\overline{\gamma}}$ does not depend on $u$ . So it is an invariant of the homotopy
class of $\gamma$ and is always invertible. If we choose $u^{0}$ and the paths $\gamma_{w}$ in $\mathbb{C}^{n}\backslash C$ as
above, then $T_{w}$ for $w\in\overline{W}-$ are well-defined. The monodromy is a homomorphism
from $\pi_{1}$ (but not from $W$ ), which readily results from the definition.

As a preparation for an explicit computation of $\{T_{w}\}$ in the next section, we
shall introduce a special class of solutions $\Phi$ .
Proposition 3.4. For generzc $\lambda$ , there exists a unique solution $\Phi_{as}(u)$ of the $AKZ$
equation such that

$\Phi_{as}(u)$ $=$
$\hat{\Phi}(u)e^{\sum_{=1}^{n}u_{i}x_{i}}$ for (3.24)

$\hat{\Phi}(u)$ $=$
$1+\sum_{m=(m_{1},\ldots,m_{n}),m_{i}\geq 0,m\neq 0}\Phi_{m}e^{-\sum_{=1}^{n}m_{i}u_{i}}$ , (3.25)

where $\Re u\rightarrow\infty$ , and $\Phi_{m}$ are independent of $u$ .
We call the solution in the proposition the asymptotically free solution. To

be more exact, we need either to complete $\mathcal{H}_{\Sigma}^{\prime}$ , or restrict ourselves with finite-
dimensional representations of this algebra. Then establishing the (local) con-
vergence is easy. In these notes we will follow the second way. We give general
formulas, which are quite rigorous in finite-dimensional representations (say, in the
induced representations).

Let us examine the condition necessary for the existence of the asymptotically
free solutions in the case of $A_{1}$ . A general consideration follows the same lines. In
this case,

$\Phi_{as}(u)=(1+\sum_{m>0}\Phi_{m}e^{-mu})e^{ux}=\hat{\Phi}(u)e^{ux}$ . (3.26)

The equation (2.39) leads to

$\frac{\partial\hat{\Phi}(u)}{\partial u}=k\frac{s}{e^{u}-1}\hat{\Phi}(u)+[x,\hat{\Phi}(u)]$ . (3.27)

Comparing the coefficients of $e^{-mu}$ :

$-m\Phi_{m}=[x, \Phi_{m}]+$ (terms with $\Phi_{j},j<m$ ). (3.28)

Given a representation of $\mathcal{H}_{\Sigma}^{\prime}$ , we find $\Phi_{m}$ assuming that $m+ad(x)$ is invertible for
any $m>0$ in this representation. Therefore, setting $Spec(x)=\{\mu_{j}\}$ , the conditions
$m+\mu_{i}-\mu_{j}\neq 0,$ $m=1,2,$ $\ldots$ , ensure the existence of the asymptotically free
solutions. The convergence estimates are straightforward. These conditions are
fulfilled in generic induced representations.
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3.3. Lusztig’s isomorphisms via the monodromy. In this section we establish
an isomorphism between $\mathcal{H}_{\Sigma}^{t}$ and $\mathcal{H}_{\Sigma}^{\prime}$ using the monodromy of the AKZ equation.

Let us fix an invertible solution $\Phi(u)$ of the AKZ system in a neighborhood of
$u^{0}\in U^{*}=\mathbb{C}^{n}\backslash C\subset U$ . The functions $\Phi(w(u))$ will be extended to $u^{0}$ through
$U^{*}$ . Since $\mathcal{H}_{\Sigma}$ is infinite-dimensional, we have to consider all formulas in finite
dimensional representations. Once we get the final expressions it is not difficult to
find a proper completion of the degenerate Hecke algebra for them.

Theorem 3.5 ([13]). There exists a $homomo7phism$ from $\mathcal{H}_{\Sigma}^{t}$ to $\mathcal{H}_{\Sigma}^{\prime}$ given by

$T_{j}\mapsto T_{j}^{\prime}$ , $X_{j}\mapsto X_{j}$ ,

where
$T_{j}=\Phi(s_{j}(u))^{-1}s_{j}\Phi(u)$ , $X_{j}^{\prime}=\Phi(u-2\pi\sqrt{-1}b_{j})^{-1}\Phi(u)$ .

If $t=\exp(\pi\sqrt{-1}k)$ is sufficiently geneml (say, not a root of unity), then it is an
isomorphism at the level of finite dimensional representations or after a proper
completion.

Under the notation (3.23), $T_{j}^{\prime}=T_{\overline{\tau}_{j}}$ and $X_{j}^{\prime}=T_{\overline{\chi}_{j}}$ . Hence the relations (3.19)-
(3.21) result from Theorem 3.3, and only the quadratic relations (3.22) need to be
proved. We omit a simple direct proof since these relations follow from the exact
formula\S below.

Let us find the formulas for $T_{j}^{\prime}$ and $X_{j}$ for the asymptotically free solution
$\Phi_{as}(u)$ . Given $b\in B$ , we set

$X_{b}=\prod_{j=1}^{n}X_{j}^{k_{j}}$ for $b=\sum_{j=1}^{n}k_{j}b_{j}$ ,

and define $X_{b}^{\prime}$ analogously.

Theorem 3.6 ([12]). Let us choose the asymptotically free solution $\Phi_{as}(u)$ as $\Phi(u)$ .
Then

(a) $X_{j}=\exp(2\pi\sqrt{-1}x_{j})$ ,

(b) $s_{i}-\frac{k}{x_{a:}}=g(x_{a_{i}})(T_{i}^{\prime}+\frac{t-t^{-1}}{X_{a}^{\prime.-1}-1})$ ,

where the function $g(v)$ is defined by

$g(v)=\frac{\Gamma(1+v)^{2}}{\Gamma(1+k+v)\Gamma(1-k+v)}$

and $(b)$ is in fact a formula for $T_{i}$ in terms of $\{s,x\}$ .
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We will give a sketch of the proof of Theorem 3.6. The statement (a) is imme-
diate, since

$\Phi_{as}(u-2\pi\sqrt{-1}b_{j})=\hat{\Phi}(u)e^{\sum u_{i}x_{i}-2\pi\sqrt{-1}x_{j}}=\Phi_{as}(u)e^{-2\pi\sqrt{-1}x_{j}}$ .
To prove the statement (b), we reduce the problem to the $A_{1}$ case. Let us fix the
index $i(1\leq i\leq n)$ . Set $E(u)=e^{\sum_{:=1}^{\mathfrak{n}}u.x_{i}}$ , so that $\Phi_{as}(u)=\hat{\Phi}(u)E(u)$ . Let us
define $\Phi^{(i)}(u)$ as follows:

$\Phi^{(i)}(u)=\Phi^{\infty(i)}(u_{i})E(u)$ ,

where $\Phi^{\infty(i)}(u_{i})=\lim_{\Re u_{j}\rightarrow+\infty(j\neq i)}\hat{\Phi}(u)$ . The AKZ system for $\Phi^{(i)}(u)$ reads:

$\frac{\partial\Phi^{(i)}}{\partial u_{i}}$ $=$ $(k\frac{s_{i}}{e^{u}\cdot-1}+x_{i})\Phi^{(i)}$ , (3.29)

$\frac{\partial\Phi^{(i)}}{\partial u_{j}}$ $=$ $x_{j}\Phi^{(i)}$ $(j\neq i)$ . (3.30)

Reduction procedure. Since the monodromy $T_{i}^{\prime}$ does not depend on $u$ , the
point $u^{0}$ and the path connecting $u^{0}$ and $s_{i}(u^{0})$ may be replaced by any defor-
mations in $U^{\prime}$ or their limits. Provided the existence, the resulting monodromy
coincides with $T_{i}^{\prime}$ . For instance, $T_{i}^{\prime}$ equals

$\tau_{i}^{(i)}=(\Phi^{(i)}(s_{i}(u)))^{-1}s_{i}\Phi^{(i)}(u)$ .
Indeed, the latter is the limiting monodromy for a path with $\Re u_{j}(j\neq i)$ ap-

proaching the infinity. We note that $\Re u_{j}(s_{i}(u^{0}))\rightarrow+\infty$ if $\Re u_{j}(u^{0})$ does.
In the reduced equations (3.29) and (3.30), we may diminish the values, consid-

ering the subalgebra of $\mathcal{H}_{\Sigma}^{\prime}$ generated by $x_{j}(1\leq j\leq n)$ , and $s_{i}$ . In this algebra,
the following elements are central:

$x_{j}(j\neq i)$ , $x_{i}-\frac{1}{2}x_{a_{i}}$ .

Hence, if we define $E^{(i)}(u)$ by

$E^{(i)}(u)=e^{\sum_{j=1}^{\mathfrak{n}}u_{j}x_{j}-u_{i}x_{a_{i}}/2}$ ,

it enjoys the following properties:
(i) $E^{(i)}(u)$ commutes with $s_{i}$ ,
(ii) $E^{(t)}(s_{i}(u))=E^{(i)}(u)$ .

The second property can be verified directly:

$\sum_{j}(s_{i}(u))_{j}x_{j}-\frac{1}{2}(s_{i}(u))_{i}x_{a_{i}}=\sum_{j}(u_{j}-(a_{i}, \alpha_{j})u_{i})x_{j}+\frac{1}{2}u_{i}x_{a_{i}}=\sum_{j}u_{j}x_{j}-\frac{1}{2}u_{i}x_{a_{i}}$ .

We have used that $(s_{i}(u))_{j}=(\alpha_{j}, s_{i}(u))$ and $\sum_{j}(a_{i}, \alpha_{j})x_{j}=x_{a:}$ . Setting

$\tilde{\Phi}^{(i)}(u)=\Phi^{(i)}(u)E^{(i)}(u)^{-1}$ ,
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the system of equations (3.29),(3.30) becomes precisely the AKZ equation for
$\tilde{\Phi}^{(i)}(u)$ in the $A_{1}$ case:

$\frac{\partial\tilde{\Phi}^{(i)}(u)}{\partial u_{i}}$ $=$ $(k\frac{s_{i}}{e^{u_{i}}-1}+\frac{1}{2}x_{a}.)\tilde{\Phi}^{(i)}(u)$ , (3.31)

$\frac{\partial\tilde{\Phi}^{(i)}(u)}{\partial u_{j}}$ $=$ $0$ $(j\neq i)$ . (3.32)

Because of the above properties of $E^{(i)}(u)$ , the monodromy of $\tilde{\Phi}^{(i)}(u)$ coincides
with $T_{i}$ . However $\tilde{\Phi}^{(i)}(u)$ can be expressed in terms of the hypergeometric function,
which conclude the proof up to a straightforward calculation.

To explain the structure of the formula for $T$‘, let us involve the intertwiners of
$\mathcal{H}_{\Sigma}^{t}$ . They are defind similar to those in the degenerate case:

$f_{i}=s_{i}-\frac{k}{x_{a_{l}}}$ for $\mathcal{H}_{\Sigma}$ , $F_{i}=T_{i}+\frac{t-t^{-1}}{X_{a_{1}}^{-1}-1}$ for $\mathcal{H}_{\Sigma}^{t}$ .

Lemma 3.7. $F_{i}X_{b}=X_{s_{i}(b)}F_{i}$ .

It readily results from the definition of $\mathcal{H}_{\Sigma}^{t}$ (cf. 3.10).
The image $F_{i}$ of $F_{i}$ in $\mathcal{H}_{\Sigma}^{\prime}$ with respect to the homomorphism constructed in

Theorem 3.5 can be represented as $F_{i}^{\prime}=g_{i}(x)f_{i}$ for a function $g_{i}$ of $x$ . Indeed,
$f_{i}X_{b}=X_{s:(b)}^{\prime}f_{i}$ , which gives the proportionality. Recall that $X_{b}^{\prime}=\exp(2\pi\sqrt{-1}x_{b})$ .
Here $g_{i}(x)$ must be of the form $g(x_{a_{i}})$ for a function $g$ in one variable, and can
be calculated using the hypergeometric equation (3.31). We omit the details (see
[12]).

We note that the quadratic relations for $T_{i}$ can be made quite obvious using
the same reduction (the exact formulas above are not necessary). Set $i=1$ to
simplify the indices. We switch from (3.31) to (2.18) with two variables $z_{1},$ $z_{2}$ and
a parameter $z_{0}$ :

$\frac{\partial\Phi^{\prime}}{\partial z_{j}}=[k(\frac{s_{1}}{z_{j}-z_{k}})+\frac{\Omega_{i}}{z_{j}-z_{0}}]\Phi$ $(j=1,2, k=3-j)$ . (3.33)

When $z_{0}=0$ the substitutions are as follows

$2x_{1}=\Omega_{1}-\Omega_{2}+ks_{1},$ $u_{1}=\log(z_{1}/z_{2}),$ $\Phi^{\prime}=\Phi^{(1)}(u_{1})(z_{1}z_{2})^{-1/2(\Omega_{1}+\Omega_{2}+ks_{1})}$ .

The monodromy corresponding to the transposition of $z_{1}$ and $z_{2}$ for $z_{0}=0$ coin-
cides with $T_{1}^{\prime}$ . It does not depend on $z_{0}$ up to a conjugation (the same reduction
argument applied to the KZ-equation with three variables). Sending $z_{0}$ to infin-
ity we eliminate the $\Omega$-terms. The monodromy of the resulting equation can be
calculated immediately. Since it is conjugated to $T_{1}^{\prime}$ we get the desired quadratic
relations.

Heckman in [39] used a similar reduction approach when calculating the mon-
odromy of the quantum many-body problem (also called the Heckman-Opdam
system). Our next aim is to establish an isomorphism of AKZ and the latter.
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Combining Heckman’s formulas and mine for the AKZ, which coincide since the
representation of $\mathcal{H}^{t}$ is the same, we readily conclude that these equations are iso-
morphic for generic $\lambda$ . This will be made much more constructive below. We will
also consider any $\lambda$ .

Remark 3.2. Let us apply Theorem 3.6 $t0$ the standard rational KZ equation in
the $GL_{n}$ case. We calculated the monodromy of

$\frac{\partial\Phi}{\partial v_{i}}=(k\sum_{j>i}\frac{s_{ij}}{e^{v.\cdot-v_{j}}-1}-k\sum_{j<i}\frac{s_{ij}}{e^{v_{j}-v}\cdot-1}+y_{i})\Phi$ $(1\leq i\leq n)$ .

Taking special $y_{i}=k\sum_{j=i+1}^{n}s_{ij}$ and substituting $z_{i}=e^{v_{i}}$ , we come to

$\frac{\partial\Phi}{\partial z_{i}}=k\sum_{j\neq i}\frac{s_{ij}}{z_{i}-z_{j}}\Phi$
$(1\leq i\leq n)$ .

It corresponds to the simplest $\Omega_{ij}=0$ in (2.18). By the way, these $\{y\}$ induce a
homomorphism from $\mathcal{H}_{n}$ to $\mathbb{C}S_{n+1}$ due to Drinfeld. Diagonalizing the commuting
elements $\sum_{j>i}s_{ij}$ we recover the monodromy computed by Tsuchiya-Kanie [68].
It also gives an explict example of the general results on the monodromy of the
rational KZ over Lie algebras due to Drinfeld and Kohno (see [49]).

Remark 3.3. In Theorems 3.5 and 3.6, we established the isomorphism

$\mathcal{H}_{\Sigma}^{t}\simeq \mathcal{H}_{\Sigma}^{\prime}$ , $X_{j}\mapsto t^{2x_{j}}$ ,

where $t=e^{\pi\sqrt{-1}k}$ and represented it as a relation between the intertwiners of the
degenerate and non-degenerate affine Hecke algebras:

$F_{j}=T_{j}+\frac{t-t^{-1}}{X_{\overline{a_{j}}}^{1}-1}\mapsto g(x_{a_{j}})(s_{j}-\frac{k}{x_{a_{j}}})$ .

This construction can be naturally generalized. In fact we need only a very mild
restriction on $g(x)$ to get such a homomorphism. Normalizing the intertwiners to
make them ‘unitary’ $(f^{2}=1=F^{2})$ , we come to the simplest possible map:

$X_{j}\mapsto t^{2x_{j}},$
$\frac{F_{j}}{t+\frac{t-t^{-1}}{X_{a_{j}}^{-1}-1}}-\frac{s_{j}-\frac{k}{x_{a_{j}}}}{1-\frac{k}{x_{a_{j}}}}$

Actually here we have four formulas in one since we can put the denominators
on the right and on the left. One of them was found by Lusztig in [52].
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3.4. The isomorphism ofAKZ and QMBP. Here we present the isomorphism
between the AKZ equation and the quantum many-body problem (QMBP). The
latter will appear as a ‘trace’ of the first.

We will need a variant of the general notion of monodromy by A. Grothendieck.
Let us fix the notations:

$w\Phi(u)=\Phi(w^{-1}(u)),$ $w=\overline{w}b\in\overline{W}=W\ltimes B,$ $u\in \mathbb{C}^{n}$ .

Given a finite union $C$ of affine real closed half-hyperplanes, we set $U=\mathbb{C}^{n}\backslash C$

assuming that

(i) $U$ does not contain ‘bad hyperplanes’ $\prod_{\alpha\in\Sigma_{+}}(e^{u_{\alpha}}-1)=0$ ,
(ii) $U$ is simply connected,
(iii) $(\mathbb{C}^{n}\backslash \bigcup_{w\in\tilde{W}}w(C))/\overline{W}$ is connected.

We shall refer to such $C$ as a system of cutoffs. In \S 3.2, a special system of cutoffs
$(U^{*})$ has been already used in order to compute the monodromy.

Let us fix a system of cutoffs $C$ and $U$ . Then for each $w\in W$ there is a path
$\gamma_{w}$ (unique up to homotopy) joining $u^{0}$ and $w^{-1}(u^{0})$ . So the choice of $C$ implies
a choice of representatives $\overline{\gamma}_{w}$ in the fundamental group $\pi_{1}(U/\overline{W}, u^{0})$ . Here $U^{\prime}$ is
the complement of the union of ‘bad hyperplanes’ (3.13).

We pick a solution $\Phi$ of the AKZ equation in $U$ and define the monodromy
function $\mathcal{T}_{w}(w\in\overline{W})$

$\overline{w}\Phi=w^{-1}\Phi\cdot \mathcal{T}_{w}$ $w=\overline{w}b\in\overline{W}$ . (3.34)

Here $\Phi$ is invertible at least at one point and is extended analytically to the whole
$U$ . The values are in the endomorphisms of any finite-dimensional represenation
of $\mathcal{H}_{\Sigma}^{\prime}$ (we will apply the construction to the induced representations).

The monodromy $\{\mathcal{T}_{w}\}_{w\in\tilde{W}}$ satisfies the following:

(a) (
$ 1\partial$

-cocycle condition) $v^{-}i$

$(\mathcal{T}_{w})\mathcal{T}_{v}=\mathcal{T}_{wv}$ $\forall w,$
$v\in\overline{W}$ ,

(b)
$\overline{\partial u_{i}}\mathcal{T}_{w}=0$ , and hence $\mathcal{T}_{w}$ is locally constant.

The property (b) holds since both $\Phi$ and $ w(\Phi)=\overline{w}^{w}\Phi$ satisfy the same differential
equation of the first order (the AKZ equation). It readily results in the invertibility
of $\mathcal{T}_{w}$ on $\mathbb{C}^{n}-\bigcup_{w\in\tilde{W}}w(C)$ . The latter set is not connected, so $\mathcal{T}$ is not just a
constant.

Next let us introduce the operators $\sigma_{w},$
$\sigma_{w}^{\prime}(w\in\overline{W})$ , acting on functions $F$ on

$U$ :

$(\sigma_{w}F)(u)=(^{w^{-1}}F)(u)=F(w(u))$ , $\sigma_{i}=\sigma_{s_{i}}$ ,
$(\sigma_{w}F)(u)=(w^{-1}F)(u)\mathcal{T}_{w}$ , $\sigma_{i}^{\prime}=\sigma_{s_{i}}^{\prime}$ .
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The relations for the operators $\sigma_{w}^{\prime}$ are the same as for the permutations $\sigma_{w}$ :

a) $\sigma_{w}^{\prime}\sigma_{v}=\sigma_{vw}^{\prime}$ ,

b) $\sigma_{w}^{\prime}u_{b}=u_{w^{-1}(b)}\sigma_{w}$ , (3.35)

c) $\sigma_{w}\partial_{b}=\partial_{w^{-1}(b)}\sigma_{w}$ , $\partial_{b}(u_{\alpha})=(b, \alpha)$ .

Note that the property a) follows from the l-cocycle condition for $\{\mathcal{T}_{w}\}_{w\in\tilde{W}}$ . In-
deed,

$(\sigma_{w}^{\prime}\sigma_{v}^{\prime})(F)=\sigma_{w}^{\prime}(\sigma_{v}(F))$

$=\sigma_{w}^{\prime}(v^{-1}F\mathcal{T}_{v})$

$=^{w^{-1}}(v^{-1}F\mathcal{T}_{v})\mathcal{T}_{w}$

$=^{w^{-1}v^{-1}}F(w^{-1}\mathcal{T}_{v})\mathcal{T}_{w}$

$=(vw)^{-1}F\mathcal{T}_{vw}$

$=\sigma_{vw}^{\prime}(F)$ .

Let $Sol_{AKZ}$ be the space of solutions of the AKZ equation with values in $\mathcal{H}_{\Sigma}$ .
When we consider the AKZ equation on a finite-dimensional $\mathcal{H}_{\Sigma}^{\prime}$ -module $V$ , we will
denote the space of its solutions by $SolAKZ(V)$ . Starting with AKZ let us go to
QMBP. In what follows, $\Phi\in Sol_{AKZ}$ or $\Phi\in Sol_{AKZ}(End(V))$ . In the latter case
all operators act on End $(V)$-valued functions.

(1) Using $ s_{\alpha}\Phi=\sigma_{s_{\alpha}}\Phi$ , we rewrite the AKZ equation:

$ x_{i}\Phi$ $=$ $(\frac{\partial}{\partial u_{i}}-k\sum_{\alpha\in\Sigma_{+}}\nu_{\alpha}^{i}\frac{s_{\alpha}}{e^{u_{\alpha}}-1})\Phi$

$=$ $(\frac{\partial}{\partial u_{i}}-k\sum_{\alpha\in\Sigma_{+}}\nu_{\alpha}^{i}(e^{u_{\alpha}}-1)^{-1}\sigma_{s_{\alpha}}^{\prime})\Phi$ $(1\leq i\leq n)$ .

Let us denote:

$\mathcal{D}_{i}=\frac{\partial}{\partial u_{i}}-k\sum_{\alpha\in\Sigma_{+}}\nu_{\alpha}^{i}(e^{u_{\alpha}}-1)^{-1}\sigma_{s_{\alpha}}^{\prime}$ .

The local invertibility of $\Phi$ and the relations $\mathcal{D}_{i}\Phi=x_{i}\Phi$ result in the
commutativity

$[\mathcal{D}_{i}, \mathcal{D}_{j}]=0$ $\forall i,j$ .
Here one can use that the commutators do not contain the derivatives,
which readily results from the relations for $\sigma^{\prime}$ . Moreover, the commutativ-
ity follows trom these relations algebraically. It was proved in [16] (see [19]
for a more conceptual proof based on the induced representations). It also
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follows from the corresponding difference theory, where this and similar
statements are much simpler (and completely conceptual).

(2) Since the multiplication by $x_{i}$ commutes with $\mathcal{D}_{j}^{\prime}$ , we get

$ p(x_{1}, \ldots x_{n})\Phi=p(\mathcal{D}_{1}, \ldots \mathcal{D}_{n})\Phi$

for any polynomial $p\in \mathbb{C}[x_{1}, \ldots x_{n}]$ .
(3) For $\lambda=(\lambda_{1}, \ldots\lambda_{n})\in \mathbb{C}^{n}$ let us take an $\mathcal{H}_{\Sigma}^{\prime}$ -module $V_{\lambda}$ with the following

properties:

(i) $p(x_{1}, \ldots x_{n})=p(\lambda_{1}, \ldots\lambda_{n})$ on $V_{\lambda}$ for any $p\in \mathbb{C}[x_{1}, \ldots x_{n}]^{W}$ ,
(3.36)

(ii) there exists a linear map tr: $V_{\lambda}\rightarrow \mathbb{C}$ satisfying
$tr(wa)=tr(a)$ $\forall w\in W,a\in V_{\lambda}$ . (3.37)

Let $p(x_{1}, \ldots x_{n})$ be a polynomial. Using the commutation relations (3.35), we
can write

$p(\mathcal{D}_{1}, \ldots \mathcal{D}_{n})=\sum_{w\in W}\mathcal{D}_{w}^{\prime(p)}\sigma_{w}^{\prime}$
,

where $\mathcal{D}_{w}^{\prime(p)}$ are differential operators (they do not contain $\sigma$ ). They are scalar and
commute with $\mathcal{H}_{\Sigma}^{\prime}$ . Thus

$ p(x_{1}, \ldots x_{n})\Phi=\sum_{w\in W}\mathcal{D}_{w}^{\prime(p)}\sigma_{w}^{\prime}\Phi=\sum_{w\in W}\mathcal{D}_{w}^{;(p)}w\Phi$ .

Now, we assume that $p$ is W-invariant. Applying tr (see (3.36) and (3.37)), we
come to

$ p(\lambda_{1}, \ldots\lambda_{n})\psi=L_{p}\psi$ for $L_{p}=\sum_{w\in W}\mathcal{D}_{w}^{\prime(p)}$
,

where
$\psi(u)=tr(\Phi(u))$

is a $\mathbb{C}$-valued function. The differential operators $L_{p}^{\prime}$ are W-invariant, which follows
from the same construction (we will reprove this algebraically below).

Let us introduce the trigonometric Dunkl opemtors $\mathcal{D}_{i}(1\leq i\leq n)$ replacing $\sigma^{\prime}$

by $\sigma$ :

$\mathcal{D}_{i}=\frac{\partial}{\partial u_{i}}-k\sum_{\alpha\in\Sigma_{+}}\nu_{\alpha}^{i}(e^{u_{\alpha}}-1)^{-1}\sigma_{s_{\alpha}}$ .

Repeating the above construction, define $\mathcal{D}^{(p)}$ for a W-invariant polynomial $p$ by

$p(\mathcal{D}_{1}, \ldots \mathcal{D}_{n})=\sum_{w\in W}\mathcal{D}_{w}^{(p)}\sigma_{w}$
.

Since in the construction of $L_{p}$ and $L_{p}$ we use only the commutation relations (3.35)
for $\sigma_{w}$ and $\sigma_{i}$ these operators just coincide. The trigonometric Dunkl operators are
from [14]. Dunkl introduced their rational counterparts (see also [19] and references
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therein). When defining my operators I also used [40]. Heckman’s ‘global Dunkl
operators’ are sufficient to introduce QMBP, but do not commute.

We are now in a position to introduce the QMBP with the eigenvalue $\lambda=$

$(\lambda_{1}, \ldots , \lambda_{n})\in \mathbb{C}^{n}$ . It is the following system of differential equations for a $\mathbb{C}-$

valued function $\psi$ .
$ L_{p}\psi=p(\lambda_{1}, \ldots\lambda_{n})\psi$ $(p\in \mathbb{C}[x_{1}, \ldots x_{n}]^{W})$ .

It is known [38] (and easy to see by looking at the leading terms of $L_{p}$ ) that the
dimension of the space of solutions $\psi$ is $|W|$ .

Summarizing, we come to the theorem.

Theorem 3.8. Applying tr we get a homomorphism

tr : $SolAKZ(V\lambda)\rightarrow SolQMBP(\lambda)$ .

Here $Sol_{QMBP}(\lambda)$ denotes the space of solutions to QMBP with the eigenvalue $\lambda$ .

We can say more for concrete represenatations, especially for the induced rep-
resentations $J_{\lambda}^{o}$ (see (3.4)). We define the ‘trace’

tr: $J_{\lambda}^{o}\rightarrow \mathbb{C}$

as the map dual to the embedding

$\mathbb{C}\rightarrow J_{\lambda}=\mathbb{C}[x_{1}, \ldots x_{n}]/L_{\lambda}$

sending 1 to $1\in \mathbb{C}[x_{1}, \ldots x_{n}]$ . Here $L_{\lambda}$ denotes the ideal generated by $p(x)-p(\lambda)$ ,
$p\in \mathbb{C}[x_{1}, \ldots x_{n}]^{W}$ . One easily checks that tr satisfies the conditions (3.37).

Theorem 3.9 ([13]). For any $\lambda\in \mathbb{C}^{n}$ , tr gives an isomorphism

tr : $Sol_{AKZ}(J_{\lambda}^{o})\rightarrow^{\sim}Sol_{QMBP}(\lambda)$ .

Proof. The key observation:

for any $\mathcal{H}_{\Sigma}^{\prime}$ -submodule $0\neq M\subset J_{\mathring{\lambda}}$ , we have tr $|_{M}\neq 0$ . (3.38)

Indeed, if $0\neq f\in M$ , then there exists a polynomial $p(x)\in \mathbb{C}[x_{1}, \ldots x_{n}]$ such
that $f(p)\neq 0$ . However $f(p)=tr(p(f))\in tr(M)$ .

To prove Theorem 3.9, it is enough to show the injectivity of tr, since the
surjectivity will then follow by comparing the dimensions of the solution spaces
(both of them are $|W|$ ). So let us suppose that for $\varphi(u)\in Sol_{AKZ}(J_{\lambda}^{o})$ identically

$tr(\varphi)=0$ . (3.39)

We will show that

tr $(\mathcal{H}_{\Sigma}\varphi)=0$ . (3.40)
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Differentiating (3.39),

$0=tr(\frac{\partial\varphi}{\partial u_{i}})=k\sum_{\alpha\in\Sigma_{+}}\nu_{\alpha}^{i}$ tr $(\frac{s_{\alpha}}{e^{u_{\alpha}}-1}\varphi)+tr(x_{i}\varphi)$ .

By the W-invariance of tr, $tr(s_{\alpha}\varphi)=tr(\varphi)=0$ . Hence

$tr(x_{i}\varphi)=0$ . (3.41)

Differentiating this equation by $u_{j}$ we have

$0=k\sum_{\alpha\in\Sigma_{+}}\nu_{\alpha}^{j}$
tr $(x_{i}\frac{s_{\alpha}}{e^{u_{\alpha}}-1}\varphi)+tr(x_{i}x_{j}\varphi)$ .

Using the commutation relations of $x_{j}$ and $s_{\alpha}$ , we deduce from (3.39), (3.41) that

$tr(x_{i}x_{j}\varphi)=0$ .

Proceeding in the same way, we establish that

tr $(x_{i_{1}}\cdots x_{i},\varphi)=0$

for any $i_{1},$
$\ldots$ , $i_{l}$ . Combining this with the W-invariance of tr, we get (3.40).

For each $u^{0}$ , consider the submodule $M=\mathcal{H}_{\Sigma}^{\prime}\varphi(u^{0})\subset J_{\lambda}^{o}$ . Then $tr|_{M}=0$ , and
from the key observation above, we deduce that $M=0$ . This completes the proof
of Theorem 3.9. $\square $

The map from Theorem 3.9 was found by Matsuo [56] for induced representa-
tions $I_{\lambda}$ . He proved his theorem algebraically (without the passage through the
trigonometric Dunkl operators discussed above) using an explicit presentation for
AKZ in $I_{\lambda}$ . The isomorphism for $J_{\lambda}^{o}$ (or for $I_{\lambda}$ with properly ordered $\lambda-(3.6)$ ) was
established independently and simultaneously by Matsuo and the author in [19].
He proved that a certain determinant is non-zero for properly ordered $\lambda$ . I used
the modules $J$ . Matsuo was the first to conjecture that the QMBP (the Heckman-
Opdam system) and a certain specialization of the trigonometric KZ from [10] are
isomorphic. The affine KZ were defined in full generality a bit later (in [12]).

Let us give the formula for the simplest $L_{p}$ .

Example 3.1. Let $p_{2}(x_{1}, \ldots x_{n})=\sum_{i=1}^{n}x_{\alpha_{i}}x_{i}$ . Then we have

$L_{2}=L_{p_{2}}=\sum_{i=1}^{n}\partial_{\alpha_{i}}\partial_{i}+\sum_{\alpha\in\Sigma_{+}}(\alpha, \alpha)\frac{k(1-k)}{(e^{u_{\alpha}/2}-e^{-u_{\alpha}/2})^{2}}$ .

It was studied in [59].



36 IVAN CHEREDNIK

Remark 3.4. More generally, let $A$ be a $\mathbb{C}[W]$ -module and

$V_{A,\lambda}=(Ind_{\mathbb{C}[W]}^{\mathcal{H}_{\Sigma}}(A)/L_{\lambda})^{o}$

As before, $L_{\lambda}$ is the ideal generated by $p(x)-p(\lambda),$ $p\in \mathbb{C}[x_{1}, \ldots x_{n}]^{W}$ . Then the
following holds

$SolAKZ(VA,\lambda)\rightarrow^{\sim}SolQMBP_{A}(\lambda)$

where now the right hand side means a matrix version of QMBP (sometimes it
is called spin-QMBP). It was introduced in [19] for the first time. It is a ceratin
unification of the Haldane-Shastry model and that by Calogero-Sutherland.

For example, the L-operator corresponding to $p_{2}$ above reads

$L_{2}=\sum_{i=1}^{n}\partial_{\alpha_{i}}\partial_{i}+\sum_{\alpha\in\Sigma_{+}}(\alpha, \alpha)\frac{k(s_{\alpha}^{*}-k)}{(e^{u_{\alpha}/2}-e^{-u_{\alpha}/2})^{2}}$ .

where by $s_{\alpha}^{*}$ we mean the image of $s_{\alpha}$ in $Aut(A)$ .

3.5. The $GL_{n}$ case. Let us describe AKZ and QMBP in the $GL_{n}$ case.
In \S 2.3, we introduced the degenerate affine Hecke algebra of type $GL_{n}$ . It is

the algebra
$\mathcal{H}_{n}=(\mathbb{C}S_{n}, y_{1}, \ldots y_{n})$

subject to the following relations:

$siyi^{-yi+1^{S}\iota=k}$ , $siyj=yj^{S}i$ $(i\neq j,j+1)$ ,
$y_{i}y_{j}=y_{j}y_{i}$ $(1\leq i,j\leq n)$ .

As in \S 2.3, we will use the coordinates $v_{i}$ .
To prepare the passage to the difference case, we conjugate the AKZ for $GL_{n}$

by the function $\Delta^{k}$ for $\Delta=\prod_{i<j}(e^{v_{*}}-e^{v_{j}})$ . The equation becomes as follows:

$\frac{\partial\Phi}{\partial v_{i}}=(k(\sum_{j(>i)}\frac{s_{ij}-1}{e^{v.-v_{j}}-1}-\sum_{j(<i)}\frac{s_{ij}-1}{e^{v_{j}-v}\cdot-1})+y_{i}+k(i-\frac{n+1}{2}))\Phi(3.42)$

Only in this form it can be quantized (see \S 4.2). The system is consistent and
$S_{n}$-invariant.

The corresponding Dunkl operators are given by the formula

$\mathcal{D}_{i}=\frac{\partial}{\partial v_{i}}$

$-k(\sum_{j(>i)}(e^{v_{i}-v_{j}}-1)^{-1}(\sigma_{ij}-1)-\sum_{j(<i)}(e^{v_{j}-v_{i}}-1)^{-1}(\sigma_{ij}-1)+i-\frac{n+1}{2})$

Here $\sigma_{ij}$ stands for the transpositions of the coordinates:

$\sigma_{ij}v_{i}=v_{j}\sigma_{ij}$ .
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Similarly, $\sigma_{w}$ means the permutation of the coordinates corresponding to $w^{-1}$ .
The main point of the theory is that they satisfy the relations from the degen-

erate Hecke algebra:

$[\mathcal{D}i, \mathcal{D}j]=0=[\mathcal{D}i, yj],$ $i\neq j$ , $\sigma ii+1\mathcal{D}i-\mathcal{D}i+1\sigma ii+1=k$ .
It holds for any root systems. This statement is from [19]. In these notes we will
deduce these relations from the difference theory (where they are almost obvious).
These relations readily give that $p(\mathcal{D}_{1}, \ldots \mathcal{D}_{n})$ and the corresponding $L_{p}$ are W-
invariant for the W-invariant polynomilas. Use the description of the center of $\mathcal{H}^{\prime}$

to see this.
In the case of $GL_{n}$ , given symmetric $p\in \mathbb{C}[x_{1} , \ldots x_{n}]^{S_{\mathfrak{n}}}$ ,

$p(\mathcal{D}_{1}, \ldots \mathcal{D}_{n})=\sum_{w\in S_{n}}D_{w}^{(p)}\sigma_{w}$
,

where $D_{w}^{(p)}$ are scalar differential operators,

$L_{p}=p(\mathcal{D}_{1}, \ldots \mathcal{D}_{n})|_{symm.poly}.=\sum_{w\in S_{n}}D_{w}^{(p)}$
.

Let us take the elementary symmetric polynomials:

$e_{m}(x)=\sum_{i_{1}<\cdots<i_{m}}x_{i_{1}}\cdots x_{i_{m}}$
,

as $p$ , setting $L_{m}=L_{e_{m}}$ . Clearly

$L_{1}=\sum_{i=1}^{n}\frac{\partial}{\partial v_{i}}$

The next operator is:

$L_{2}=\sum_{i<j}\frac{\partial^{2}}{\partial v_{i}\partial v_{j}}-\frac{k}{2}\sum_{i<j}\coth(\frac{v_{i}-v_{j}}{2})(\frac{\partial}{\partial v_{i}}-\frac{\partial}{\partial v_{j}})-\frac{k^{2}}{4}\left(\begin{array}{ll}n & +1\\ & 3\end{array}\right)$ .

When we replace $e_{2}$ by $p=\sum_{i}x_{i}^{2}$ , the corresponding L-operator is conjugated
(by $\triangle^{k}$ ) to the original Sutherland operator up to a constant term [67]. For special
values of the parameter $k$ , these operators are the radial parts of the Laplace oper-
ators on the symmetric spaces. A particular case was considered by Koornwinder.
The rational counterpart is due to Calogero. It is equivalent to a rational variant
of the AKZ (an extension of the rational W-valued KZ from [10] by the x-s). Here
the $J_{\lambda}$ -modules cannot be represented as $I_{\lambda}$ , the theorem holds in terms of $J$ only
(see [19]). See also [38] and [61].
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4. ISOMORPHISM THEOREMS FOR THE QAKZ EQUATION

Let us now turn to the q-deformations. We introduce the quantum affine
Knizhnik-Zamolodchikov (QAKZ) equation, and show that there is an isomor-
phism between solutions of the QAKZ equation and solutions of the generalized
Macdonald eigenvalue problem.

4.1. Affine Hecke algebras and intertwiners. In this section we recall the
definition of the affine Hecke algebra $\mathcal{H}_{n}^{t}$ in the case of $GL_{n}$ .

Let $t\in \mathbb{C}^{*}$ be a parameter. Then $\mathcal{H}_{n}^{t}$ is the algebra defined over $\mathbb{C}$ by the
following set of generators and relations:

generators : $T_{1},$ $\ldots T_{n-1},$ $Y_{1},$ $\ldots Y_{n}$ ,
relations : $(T_{i}-t)(T_{i}+t^{-1})=0$ , $(1 \leq i\leq n-1)$ (4.1)

$T_{i}T_{i+1}T_{i}=T_{i+1}T_{i}T_{i+1}$ , $(1 \leq i\leq n-2)$ (4.2)
$T_{i}T_{j}=T_{j}T_{i}$ , $(|i-j|>1)$ (4.3)
$Y\cdot Y_{j}=Y_{j}Y_{i}$ , $(1 \leq i,j\leq n)$ (4.4)
$Y_{i}T_{j}=T_{j}Y_{i}$ , $(j\neq i,i-1)$ , (4.5)
$T_{i}^{-1}Y_{i}T_{i}^{-1}=Y_{i+1}$ . $(1 \leq i\leq n-1)$ (4.6)

The relations (4.1) are called the quadratic relations, $(4.2)-(4.3)$ the Coxeter rela-
tions, (4.4) the commutativity, and (4.5),(4.6) the cross relations.

Set
$P=T_{1}\cdots T_{1-1}Y_{i}T_{i}^{-1}\cdots T_{n-1}^{-1}$ .

It follows from the defining relations $(4.1)-(4.6)$ that the right hand side is inde-
pendent of $i(1\leq i\leq n)$ and therefore equals to

$P=T_{1}\cdots T_{n-1}Y_{n}=Y_{1}T_{1}^{-1}\cdots T_{n-1}^{-1}$ . (4.7)

Lemma 4.1. The algebra $\mathcal{H}_{n}^{t}$ can be presented as
$\mathcal{H}_{n}^{t}=(T_{1},$ $\ldots T_{n-1},$ $ P\rangle$ $/\sim$ , (4.8)

where the quotient is by the quadmtic relations (4.1), the Coxeter relations $(4.2)-$

(4.3) and the following:
(a) $PT_{i-1}=T_{i}P(1<i<n)$ ,
(b) $P^{n}$ is centml.

Proof. Notice that in terms of $Y_{i}’ s$ we have $P^{n}=Y_{1}\cdots Y_{n}$ . The relations (a) and
(b) readily follow from (4.7) and the defining relations $(4.1)-(4.6)$ . For instance,

$PT_{1}P^{-1}=Y_{1}T_{1}^{-1}(T_{2}^{-1}T_{1}T_{2})T_{1}Y_{1}^{-1}=Y_{1}T_{1}^{-1}(T_{1}T_{2}^{-1}T_{1}^{-1})T_{1}Y_{1}^{-1}=T_{2}$ .

To establish (4.8), we start with $T_{1},$ $\ldots T_{n-1},$ $P$ and introduce the elements
$Y_{1},$ $\ldots Y_{n}$ by

$Y_{1}=PT_{n-1}\cdots T_{1}$ , $Y_{2}=T_{1}^{-1}Y_{1}T_{1}^{-1},$
$\ldots$ .
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We must check the commutativity $Y_{1}Y_{2}=Y_{2}Y_{1},$ $T_{j}Y_{1}=Y_{1}T_{j}(j>1)$ , etc. using
(a), (b). The first reads

$Y_{1}T_{1}^{-1}Y_{1}T_{1}^{-1}=T_{1}^{-1}Y_{1}T_{1}^{-1}Y_{1}$ .
We plug in the above formula for $Y_{1}$ and move $P$ to the left. The commuativity
with ‘distant’ $T$ is obvious. The other relations formally follow from them. We
leave the verifications to the reader as an exercise. $\square $

4.2. The QAKZ equation. In this section, we introduce the QAKZ equation.

Definition 4.1. For $u\in \mathbb{C}$ , we define the intertwiners by

$F_{i}(u)=\frac{T_{i}+\frac{t-t^{-1}}{e^{u}-1}}{t+\frac{t-t^{-1}}{e^{u}-1}}$ (4.9)

They satisfy

$F_{i}(u)F_{i}(-u)=1$ , (4.10)
$F_{i}(u)F_{i+1}(u+v)F_{i}(v)=F_{i+1}(v)F_{i}(u+v)F_{i+1}(u)$ . (4.11)

The second relation can be deduced from Lemma 3.7 as we did for the degenerate
Hecke algebra.

The quantum affine Knizhnik-Zamolodchikov (QAKZ) equation is the following
system of difference equations for a function $\Phi(v)$ that takes values in $\mathcal{H}_{n}^{t}$ (or any
$\mathcal{H}_{n}^{t}$-module).

$\Phi(v_{1}, \ldots v_{i}+h, \ldots v_{n})$

$=F_{i-1}(v_{i}-v_{i+1}+h)\ldots F_{1}(v_{i}-v_{1}+h)T_{1}\cdots T_{i-1}Y_{i}$

$\times T_{i}^{-1}\cdots T_{n-1}^{-1}F_{n-1}(v_{i}-v_{n})\cdots F_{i}(v_{i}-v_{i+1})$

$\times\Phi(v_{1}, \ldots , v_{i}, \ldots v_{n})$ $(i=1, \ldots n)$ . (4.12)

Here $h$ is a new parameter.

Theorem 4.2. The QAKZ system (4.12) is self-consistent. It is invareant in the
following sense: if $\Phi(v)$ is a solution, then so is

$F_{i}(v_{i+1}-v_{i})^{s_{i}}\Phi(v)=\iota:(F_{i}(v_{i}-v_{i+1})\Phi(v))$ .
This follows from (4.10), (4.11). Later we will make it quite obvious.
Let us discuss the quasi-classical limit of the QAKZ system. Setting

$t=e^{kh/2}=q^{k}$ , $q=e^{h}$ ,

let $h\rightarrow 0$ . The generators $T_{i},$ $Y_{i}$ are supposed to have the form

$T_{i}$ $=$ $ s_{i}+\frac{kh}{2}+\cdots$ $(s_{i}^{2}=1)$ ,
$Y_{i}$ $=$ $ 1+hy_{i}+\cdots$ ,
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where by . . . we mean terms of order $h^{2}$ . The relations of the degenerate affine
Hecke algebra for $s_{i},y_{i}$ can be readily verified. Using the formula

$ tT_{i}^{-1}F_{i}(u)=1+\frac{kh}{e^{u}-1}(s_{i}-1)+\cdots$ ,

we find that

$h^{-1}(\Phi(\ldots v_{i}+h, \ldots)-\Phi(\ldots v_{i}, \ldots))=\{y_{i}+$

$+k(\sum_{j(>i)}\frac{s_{ij}-1}{e^{v:-v_{J}}-1}-\sum_{j(<i)}\frac{s_{ij}-1}{e^{v_{j}-v_{1}}-1}+i-\frac{n+1}{2})\}\Phi(\ldots v_{i}, \ldots)+\cdots$

Hence the AKZ equation (3.42) is a semi-classical limit $(h\rightarrow 0)$ of the QAKZ
equation.

To make the QAKZ equations more transparent, let us discuss the action of the
affine Weyl group. The affine Weyl group of type $GL_{n}$ is the semi-direct product

$\tilde{S}_{n}=S_{n}\ltimes \mathbb{Z}^{n}$ ,

where
$\mathbb{Z}^{n}=\bigoplus_{i=1}^{n}\mathbb{Z}\gamma_{i}$

is a free abelian group of rank $n$ . Define the action of $\sim S_{n}$ on a vector $v=$
$(v_{1}, \ldots v_{n})\in R^{n}$ by

$s_{ij}v=(v_{1}, \ldots v_{j}, \ldots v_{i}, \ldots v_{n})=s_{ji}v$ , $i<j$ ,
$\gamma_{i}v=$ $(v_{1}, \ldots v_{i}+h, \ldots , v_{n}),$ $\gamma_{i}(v_{j})=v_{j}-h\delta_{ij}$ .

We also introduce
$\pi=\gamma_{1}s_{1}\cdots s_{n-1}=s_{1}\cdots s_{n-1}\gamma_{n}$ .

Its action on $R^{n}$ and the coordinates reads as
$\pi v=(v_{n}+h, v_{1}, \ldots v_{n-1}),$ $\pi v_{n}=v_{1}-h,$ $\pi v_{1}=v_{2},$ $\cdots$

Lemma $4.3$ . $\sim S_{n}$ can be presented as
$\overline{S}_{n}=(s_{1},$ $\ldots s_{n-1},\pi\rangle$ $/\sim$ ,

where the relations are
$s_{i}^{2}=1$ , $si^{S}j=sj^{S}i$ $(|i-j|>1)$ , $si^{S}i+1^{S}i=si+1^{S}t^{S}i+1$ ,

and
(a) $\pi s_{i-1}\pi^{-1}=s_{i}(1<i<n)$ ,
(b) $\pi^{n}$ is central.

It is convenient to represent the elements $\gamma_{i},$ $\pi$ graphically.
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$\gamma_{i}$
$\pi$

FIGURE 7. Graphs for $\gamma$ and $\pi$

Fig7 showes a reduced decomposition of $\gamma_{i}$ :

$\gamma_{i}=s_{i-1}\cdots s_{1}\pi s_{n-1}\cdots s_{i}$ .

For a function $\Psi(v)$ with values in $\mathcal{H}_{n}^{t}$ , let

$\tilde{s}_{i}(\Psi)$ $=$ $ F_{i}(v_{i+1}-v_{i})^{s_{i}}\Psi$ , (4.13)
$\tilde{\pi}(\Psi)$ $=$ $ P^{\pi}\Psi$ . (4.14)

Theorem 4.4 ([15]). The formulas (4.13), (4.14) can be extended to an action of
$\sim S_{n}$ .

We denote this action by $\sim S_{n}\ni w:\Psi$ }$\rightarrow\tilde{w}(\Psi)$ . For instance,

$\tilde{\gamma}_{i}(\Psi)(v_{1}, \ldots v_{n})=F_{i-1}(v_{i-1}-v_{i})^{-1}\cdots F_{1}(v_{1}-v_{i})^{-1}P$

$\times F_{n-1}(v_{i}-v_{n}-h)\cdots F_{i}(v_{i}-v_{i+1}-h)\Psi(v_{1}, \ldots v_{i}-h, \ldots v_{n})$ .

Hence the QAKZ equation simply means the invariance of $\Phi(v)$ with respect to the
pairwise commuting elements $\gamma_{i}$ :

$QAKZ\Leftrightarrow\tilde{\gamma}_{i}(\Phi)=\Phi$ $(i=1, \ldots , n)$ . (4.15)
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Let us connect QAKZ with the q-KZ introduced by Smirnov and Frenkel-
Reshetikhin $[66, 37]$ . We fix an N-dimensional complex vector space $V$ and in-
troduce $T\in End(V\otimes V)$ by

$T=(t-t^{-1})\sum_{i<j}E_{ii}\otimes E_{jj}+\sum_{i\neq j}E_{ij}\otimes E_{ji}+t\sum_{i=1}^{N}E_{ii}\otimes E_{ii}$

due to Baxter and Jimbo. The algebra $\mathcal{H}_{n}^{t}$ acts on $V^{\otimes n}$ by

$T_{i}(a_{1}\otimes\cdots\otimes a_{n})=a_{1}\otimes\cdots\otimes T(a_{i}\otimes a_{i+1})\otimes\cdots\otimes a_{n}$ , (4.16)
$P(a_{1}\otimes\cdots\otimes a_{n})=Ca_{n}\otimes a_{1}\otimes\cdots\otimes a_{n-1}$ , (4.17)

where $a_{i}\in V$ and $C=diag(\lambda_{1}, \ldots\lambda_{n})$ . One can check that this action is well-
defined by a direct calculation.

For $N=n$ , let

$(V^{\otimes n})_{0}=span\{e_{w(1)}\otimes\cdots\otimes e_{w(n)}|w\in S_{n}\}$

be the O-weight subspace. Here $e_{1},$ $\ldots e_{n}$ denote the standard basis of $V$ . It is
easy to see that this subspace is closed under the action of $\mathcal{H}_{n}^{t}$ . We state the next
proposition without proof.

Proposition 4.5. If $N=n$ and $\lambda=(\lambda_{1}, \ldots\lambda_{n})$ is generic, then the O-weight
space $(V^{\otimes n})_{0}$ is isomorphic to $I_{\lambda}=Ind_{\mathbb{C}[Y_{1},\ldots,Y_{n}]}^{\mathcal{H}_{\mathfrak{n}}^{t}}(\lambda)$ .

Writing down AQKZ in $(V^{\otimes n})_{0}$ we get the q-KZ (for $GL_{n}$ and in the fundamen-
tal representation). Combining this observation with the isomorphism with the
Macdonald eigenvalue problem (our next aim) we can explain why the Macdonald
polynomials appear in many calculations involving the vertex operators.

4.3. The monodromy cocycle. Let $\Phi$ be a solution of the QAKZ equation.
Thanks to (4.15), $\tilde{w}(\Phi)$ is also a solution of the QAKZ equation for any $w\in\tilde{S}_{n}$ .
We define $\mathcal{T}_{w}\in \mathcal{H}_{n}^{t}$ by

$w_{\mathcal{T}_{w}=\Phi^{-1}\tilde{w}(\Phi)}$ for $w\in\tilde{S}_{n}$

and call it the monodromy cocycle. It follows From (4.13) and (4.14) that

$F_{i}(v_{i}-v_{i+1})\Phi=s{}^{t}\Phi\mathcal{T}_{i}$ (4.18)

and

$P\Phi=^{\pi^{-1}}\Phi \mathcal{T}_{\pi}$ . (4.19)

Here $\mathcal{T}_{i}$ stands for $\mathcal{T}_{s_{i}}$ .
Lemma 4.6.

$w_{2}^{-1}(\mathcal{T}_{w_{1}})\mathcal{T}_{w_{2}}=\mathcal{T}_{w_{1}w_{2}}$ for $w_{1},$
$w_{2}\in\tilde{S}_{n}$ .
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Indeed,

$\Phi^{w_{1}w_{2}}T_{w_{1}w_{2}}=\overline{w_{1}w_{2}}(\Phi)=\tilde{w}_{1}(\tilde{w}_{2}\Phi)=\tilde{w}_{1}(\Phi^{w_{2}}\mathcal{T}_{w_{2}})=\Phi^{w_{1}}\mathcal{T}_{w_{1}}^{w_{1}w_{2}}\mathcal{T}_{w_{2}}$ .
The QAKZ equation implies that $\mathcal{T}_{\gamma_{i}}=1$ . Hence $\mathcal{T}_{w}$ depends only on the image

$\overline{w}$ of $w$ in $S_{n}$ .
Let $\mathcal{F}(\mathbb{C}^{n}, \mathcal{H}_{s\iota}^{t})$ be the set of $\mathcal{H}_{n}^{t}$-valued function on $\mathbb{C}^{n}$ . Next we define two

anti-actions of $S_{n}$ :
$\sigma_{w}(\Psi)$ $=$

$ w^{-1}\Psi$ , (4.20)
$\sigma_{w}^{\prime}(\Psi)$ $=$

$w^{-1}\Psi \mathcal{T}_{w}$ , (4.21)

where $w\in\tilde{S}_{n}$ and $\Psi\in \mathcal{F}(\mathbb{C}^{n},\mathcal{H}_{n}^{t})$ . Lemma 4.6 means exactly that $\sigma^{\prime}$ is an anti-
action (i.e. $\sigma_{w_{1}w_{2}}^{/}=\sigma_{w_{2}}^{\prime}\sigma_{w_{1}}$ ). For instance, $\sigma_{\gamma_{i}}(v_{i})=v_{i}+h=\sigma_{\gamma_{i}}(v_{i})$ .

We note that in the difference theory the monodromy can be always made trivial.
Indeed, the l-cocycle $\{\mathcal{T}_{w}, w\in W\}$ is always a co-boundary because of the Hilbert
90 theorem. Hence conjugating solutions of AQKZ we can always get rid of the
monodromy. So the above actions $\sigma,$

$\sigma$ are not too much different in contrast to
the differential theory.

This argument can be applied to the AQKZ itself, although the group $\mathbb{Z}^{n}$ is
infinite. We can formally solve the QAKZ equation as follows. Let $\Psi\in \mathcal{F}(\mathbb{C}^{n}, \mathcal{H}_{n}^{t})$ .
Then the infinite sum

$\sum_{b\in B}\tilde{b}(\Psi)$
, (4.22)

where $B=\oplus_{i=1}^{n}\mathbb{Z}\gamma_{i}\subset\tilde{S}_{n}$ , satisfies the AQKZ, provided the convergence. For ex-
ample, if $\Psi$ is rapidly decreasing, then one can check that $\sum_{b\in B}\tilde{b}(\Psi)$ is convergent.

We see that constructing End $(V)$-valued solution $\Phi$ to QAKZ for finite dimen-
sional $\mathcal{H}_{n}^{t}$-modules $V$ poses no problem. What is more difficult is to ensure a proper
asymptotical behavior.

4.4. Isomorphism of QAKZ and the Macdonald eigenvalue problem. In
this subsection, we introduce the Macdonald eigenvalue problem and prove its
equivalence to the QAKZ equation. This is a q-analogue of the relation between
AKZ and QMBP discussed in \S 3.4.

Let $\Phi$ be a solution of the QAKZ equation with values in End(V) for a $\mathcal{H}_{n^{-}}^{t}$

module $V$ . We assume that it is invertible for sufficiently general $v$ . Setting $\sigma_{i}=$

$\sigma_{s_{i}}^{\prime}$ , we get from (4.18) and (4.9):

$F_{i}(v_{i}-v_{i+1})\Phi=\sigma_{i}^{\prime}(\Phi)$ ,

$ T_{i}\Phi=(t\sigma_{i}+\frac{t-t^{-1}}{e^{v.-v.\cdot+1}-1}(\sigma_{i}^{\prime}-1))\Phi$ .

Let us introduce the operator $\hat{T}_{i}(1\leq i\leq n)$ by

$\hat{\tau}_{i}^{\prime}=t\sigma_{i}^{\prime}+\frac{t-t^{-1}}{e^{v_{1}-v_{1+1}}-1}(\sigma_{i}^{\prime}-1)$ . (4.23)
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Then $\hat{T}_{i}^{\prime}\Phi=T_{i}\Phi$ and $\sigma_{\pi}\Phi=P\Phi$ (see (4.19)). The operators $\hat{\tau}_{i}^{\prime}$ and $\sigma_{\pi}^{\prime}$ commute
with the left multiplication by $T_{j},$ $P$ and any elements from $\mathcal{H}_{n}^{t}$ . Using all these:

$Y_{i}\Phi=T_{i-1}^{-1}\cdots T_{1}^{-1}PT_{n-1}\cdots T_{i+1}T_{i}\Phi$

$=T_{i-1}^{-1}\cdots T_{1}^{-1}PT_{n-1}\cdots T_{i+1}\hat{T}_{i}^{\prime}\Phi$

$=\hat{T}_{i}^{\prime}T_{i-1}^{-1}\cdots T_{1}^{-1}PT_{n-1}\cdots T_{i+1}\Phi$

$=\hat{T}_{i}\cdots\hat{T}_{n-1}\sigma_{\pi}(\hat{T}_{1}^{\prime})^{-1}\cdots(\hat{T}_{i-1}^{\prime})^{-1}\Phi$ .

We come to the following definition:

$\Delta_{i}=\hat{T}_{i}^{\prime}\cdots\hat{T}_{n-1}^{\prime}\sigma_{\pi}^{\prime}(\hat{T}_{1}^{\prime})^{-1}\cdots(\hat{T}_{i-1}^{\prime})^{-1},1\leq i\leq n$ . (4.24)

Since $Y_{i}\Phi=\Delta_{i}\Phi$ and $Y_{i}$ commute with each other,

$[\triangle_{i}, \Delta_{j}^{\prime}]=0$ .
By the construction, the operators $\Delta_{i}^{\prime}$ act in End $(V)$ -valued functions. However if
we understand them formally the commutativity can be deduced from the relations

$\sigma_{i}v_{i}=v_{i+1}\sigma_{i}^{\prime}$ , (4.25)
$\sigma_{i}^{\prime}\sigma_{\gamma}$. $=\sigma_{\gamma_{i+1}}\sigma_{i}^{\prime}$ . (4.26)
$\sigma_{\gamma}^{\prime}=\sigma_{\gamma_{i}}$ (4.27)

The latter means that $\mathcal{T}_{\gamma_{i}}=1$ .
Let $Q$ be a polynomial in $n$ variables. Then

$ Q(Y_{1}, \ldots Y_{n})\Phi=Q(\Delta_{1}^{\prime}, \ldots\Delta_{n}^{\prime})\Phi$

and we can represent

$Q(\triangle_{1}, \ldots , \Delta_{n}^{\prime})=\sum_{w\in S_{\mathfrak{n}}}D_{w}^{(Q)}\sigma_{w}^{\prime}$
, (4.28)

where $D_{w}^{(Q)}$ are pure difference operators, which do not contain $\sigma_{w}(w\in S_{n})$ .
For symmetric $Q$ , we introduce a difference operator of Macdonald type $M_{Q}$ by

$M_{Q}=\sum_{w\in S_{n}}D_{w}^{(Q)}$
.

Let $\varphi$ be a $\mathbb{C}$-valued function on $\mathbb{C}^{n}$ . The system

$ M_{Q}\varphi=Q(\lambda_{1}, \ldots\lambda_{n})\varphi$ . (4.29)

will be called the Macdonald eigenvalue problem. The operators $M_{Q}$ can be cal-
culated for $\sigma$ instead of $\sigma$ . As in the differential case, the result will be the same.

Fix $\lambda=(\lambda_{1}, \ldots\lambda_{n})\in \mathbb{C}^{n}$ . We take a left $\mathcal{H}_{n}^{t}$ -module $V_{\lambda}$ with the following
properties:
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(1) for any symmetric polynomial $Q$ in $n$ variables and all $a\in V_{\lambda}$ ,

$Q(Y_{1}, \ldots Y_{n})a=Q(\lambda_{1}, \ldots\lambda_{n})a$ ,

(2) there exists a $\mathbb{C}$-linear map tr: $V_{\lambda}\rightarrow \mathbb{C}$ such that

$tr((T_{i}-t)a)=0$

for all $i$ and $a\in V_{\lambda}$ .
As always, we fix a (local) invertible solution $\Phi(v)$ of the QAKZ equation with

values in End $(V_{\lambda})$ . Note that all $V_{\lambda}$-valued solutions of the QAKZ equation can be
written in the form $\varphi(v)=\Phi(v)a(v)$ for B-periodic $V_{\lambda}$ -valued function $a(v)$ :

$a(\ldots v_{i}+h, \ldots)=a(v)$ for $i=1,$ $\ldots$ , $n$ .

Theorem 4.7. Let $V_{\lambda}$ be an $\mathcal{H}_{n}^{t}$ -module with the above properties, $Sol_{QAKZ}(V_{\lambda})$

be the space of solutions of the QAKZ equation with values in $V_{\lambda}$ , and $Sol_{Mac}(\lambda)$

the space of solutions of the Macdonald eigenvalue problem (4.29). Then

$Sol_{QAKZ}(V_{\lambda})\rightarrow trSol_{Mac}(\lambda)$ .

Proof. Let $\varphi(v)=\Phi(v)a\in Sol_{QAKZ}(V_{\lambda})$ . Then

$(\sigma_{i}^{\prime}-1)\Phi=(t+\frac{t-.t^{-1}}{e^{v_{*}-v\cdot+1}-1})^{-1}(T_{i}-t)\Phi$ .

For a reduced decomposition $w=s_{i_{1}}\cdots s_{i}$ , of $w\in S_{n}$ ,

$\sigma_{w}^{\prime}-1=\sigma_{i_{l}}\cdots\sigma_{i_{1}}-1$

$=\sigma_{s_{i}}^{\prime}\cdots\sigma_{i_{2}}(\sigma_{i_{1}}-1)+\sigma_{i}^{\prime},$ $\cdots\sigma_{i_{2}}-1$

$=\sum_{k=1}^{l}\sigma_{i},$ $\cdots\sigma_{i_{k+1}}^{\prime}(\sigma_{i_{k}}^{\prime}-1)$ .

Since $\sigma_{i}^{\prime}$ commutes with the left action of $\{T\}$ , we have

$(\sigma_{w}-1)\Phi=\sum_{k=1}^{l}\sigma_{i_{l}}^{\prime}\cdots\sigma_{i_{k+1}}(\sigma_{i_{k}}-1)\Phi$

$=\sum_{k=1}^{l}\sigma_{i_{l}}^{\prime}\cdots\sigma_{i_{k+1}}$ (a scalar $function$ ) $(T_{i_{k}}-t)\Phi$

$=\sum_{k=1}^{l}$ (a scalar $function$ ) $(T_{i_{k}}-t)\sigma_{i_{l}}\cdots\sigma_{i_{k+1}}^{\prime}\Phi$ .
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Using the commutativity of $D_{w}^{(Q)}$ with $T_{i}-t$ we represent $ D_{w}^{(Q)}(\sigma_{w}^{\prime}-1)\Phi$ as a sum
$\sum(T_{i}-t)\Psi_{i}$ for some $\mathcal{H}_{n}^{t}$-valued functions $\Psi_{i}$ . Finally

$ Q(\lambda_{1}, \ldots\lambda_{n})\Phi=Q(\Delta_{1}, \ldots\Delta_{n}^{\prime})\Phi$

$=\sum_{w\in S_{n}}D_{w}^{(Q)}\sigma_{w}^{\prime}\Phi$

$=\sum_{w\in S_{n}}D_{w}^{(Q)}\Phi+\sum_{w\in S_{n}}D_{w}^{(Q)}(\sigma_{w}^{\prime}-1)\Phi$

$=M_{Q}\Phi+\sum(T_{i}-t)\Psi_{i}$ .

Applying this relation to $a\in V_{\lambda}$ and taking tr, we conclude:

$Q(\lambda_{1}, \ldots\lambda_{n})tr(\varphi)=M_{Q}tr(\varphi)$ .
$\square $

Let us now consider $V_{\lambda}=J_{\lambda}^{o}$ . The definition is quite similar to the differential
case. We start with

$J_{\lambda}=Ind_{H_{\mathfrak{n}}^{t}}^{\mathcal{H}_{n}^{\ell}}(+)/L_{\lambda}$ .
Here $H_{n}^{t}=\langle T_{1},$ $\ldots T_{n-1}$ ) $\subset \mathcal{H}_{n}^{t},$ $+:H_{n}^{t}\rightarrow \mathbb{C}$ is the one-dimensional repre-
sentation sending $T_{i}$ to $t$ , and $L_{\lambda}$ is the ideal generated by $p(Y_{1}, \ldots Y_{n})-p(\lambda)$

$(p\in \mathbb{C}[x_{1}, \ldots x_{n}]^{S_{n}})$ . As in \S 3.1, $J_{\mathring{\lambda}}$ stands for the dual module defined via the
anti-involution $\circ$ of $\mathcal{H}_{n}^{t}$ :

$Y_{i}^{o}=Y_{i}$ , $T_{i}^{o}=T_{i}$ .
The main result of this subsection is the following theorem from $[16, 18]$ .

Theorem 4.8. If $V_{\lambda}=J_{\lambda}^{o}$ , then the map from $Sol_{QAKZ}(V_{\lambda})$ to $Sol_{Mac}(\lambda)$ is
injective.

The theorem results from the following two lemmas.

Lemma 4.9. Let $K$ be a $\mathcal{H}_{n}^{t}$ -submodule of $J_{\lambda}^{o}$ . Then $tr(K)=0$ implies $K=0$ .
The proof repeats that in the differential case (see $((3.38))$ ).

Lemma 4.10. Let $\varphi$ be a $V_{\lambda}$ -valued solution of the QAKZ equation. Assume
$tr(\varphi)=0$ . Then $tr(\mathcal{H}_{n}^{t}\varphi)=0$ .

Proof. First
$tr(T_{i}\varphi)=ttr(\varphi)=0$

for all $i$ . Then $\pi=s_{1}s_{2}\cdots s_{n-1}\gamma_{n}$ ,

$\sigma_{\pi}-1=\sigma_{\gamma_{\mathfrak{n}}}\sigma_{n-1}^{\prime}\cdots\sigma_{1}-1$

$=\sigma_{\gamma_{n}}(\sum_{k=1}^{n-1}\sigma_{n-1}^{\prime}\cdots\sigma_{k+1}^{\prime}(\sigma_{k}^{\prime}-1))+\sigma_{\gamma_{n}}-1$ ,
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and $tr(\sigma_{\gamma_{n}}\varphi)=tr(\varphi)=0$ . $Therefore_{r}$ representing $\varphi=\Phi a(a\in V_{\lambda})$ , we have

$tr(P\varphi)-tr(\varphi)=tr((\sigma_{\pi}-1)\Phi a)$

$=$ tr $(\sigma_{\gamma_{\mathfrak{n}}}(\sum_{k=1}^{n-1}\sigma_{n-1}^{\prime}\cdots\sigma_{k+1}^{\prime}(\sigma_{k}-1)\Phi)a)$

$=\sum_{k=1}^{n-1}$ tr $(\sigma_{\gamma_{\mathfrak{n}}}\sigma_{n-1}^{\prime}\cdots\sigma_{k+1}^{\prime}f_{i}(v)(T_{k}-t)\Phi a)$

$=\sum_{k=1}^{n-1}$ tr $((T_{k}-t)\sigma_{\gamma_{n}}\sigma_{n-1}\cdots\sigma_{k+1}^{\prime}f_{i}(v)\Phi a)$

$=0$ ,

where $f_{i}(v)$ are $\mathbb{C}$-valued function. Hence $tr(P\varphi)=0$ and

$tr(Y_{n}\varphi)=tr(T_{n-1}^{-1}\cdots T_{1}^{-1}P\varphi)$

$=t^{1-n}tr(P\varphi)$

$=0$ .

Now we shall prove that $tr(Y_{i}\varphi)=0$ for all $i$ by induction. Assume that
$tr(Y_{i}\varphi)=0$ for $k+1\leq i\leq n$ . Since $Y_{k}=T_{k-1}^{-1}\cdots T_{1}^{-1}PT_{n-1}\cdots T_{k}$ it is enough
to see that $tr(PT_{n-1}\cdots T_{k}\varphi)=0$ . Since $\varphi$ is a solution of the QAKZ equation we
have

$tr(F_{k-1}^{-1}\cdots F_{1}^{-1}PF_{n-1}\cdots F_{k}\varphi)=tr(\gamma_{k}^{-1}\varphi)$

$=^{\gamma_{k}^{-1}}tr(\varphi)$

$=0$ .

On the other hand,
$F_{i}(v)=c_{i}(v)(T_{i}+f_{i}(v))$

where $c_{i}(v)$ and $f_{i}(v)$ are some scalar functions. Therefore

$0=tr(PF_{n-1}\cdots F_{k}\varphi)=tr(c_{n-1}\cdots c_{k}P(T_{n-1}+f_{n-1}(v))\cdots(T_{k}+f_{k}(v))\varphi)$

$=\sum_{I=(i_{1},..,i,)}.tr(c_{I}(v)PT_{i}, \cdots T_{i_{1}}\varphi)$

where $I=(i_{1}, \ldots i_{l})$ is a sequence of integers such that $ k\leq i_{1}<i_{2}<\cdots<i_{l}\leq$

$n-1$ , and $c_{I}(v)$ is some scalar function. If $I\neq I_{0}=(k, k+1, \ldots n-1)$ then there
are the following possibilities:

(1) $i_{l}\neq n-1$ ,
(2) $i_{l}=n-1$ and there exists an $m(1\leq m\leq l)$ such that $i_{j}-i_{j-1}=1$ for

any $j=m+1,$ $m+2,$ $\ldots l$ and $i_{m}-i_{m-1}>1$ ,
(3) otherwise.
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case (1): As $i_{l}<n-1$ , we have

$tr(PT_{i}, \cdots T_{i_{1}}\varphi)=tr(T_{i,+1}\cdots T_{i_{1}+1}P\varphi)$

$=t^{l}tr(P\varphi)$

$=0$ .

case (2): $Since[T_{i}, T_{j}]=0$ for $|i-j|>1$ ,

$tr(P(T_{i}, \cdots T_{i_{m}})(T_{i_{m-1}}\cdots T_{i_{1}})\varphi)=tr(P(T_{i_{m-1}}\cdots T_{i_{1}})(T_{i}, \cdots T_{i_{m}})\varphi)$

$=tr(T_{i_{m-1}+1}\cdots T_{i_{1}+1}PT_{i_{l}}\cdots T_{i_{m}}\varphi)$

$=t^{m-1}tr(PT_{i}, \cdots T_{i_{m}}\varphi)$ .

By the induction hypothesis, $tr(PT_{i}, \cdots T_{i_{m}}\varphi)=0$ . Hence

$tr(PT_{i_{l}}\cdots T_{i_{1}}\varphi)=0$ .

case (3): In this case $I=(i_{1}, \ldots i_{t})$ must be of the form $i_{l}=n-1,$ $i_{l-1}=$

$n-2,$ $\ldots i_{1}=n-l>k$ . By induction, $tr(PT_{i}, \cdots T_{i_{1}}\varphi)=0$ . So $tr(Y_{i}\varphi)=0$ for
all $i$ .

Because of the relations between $T$ and $Y$ , it remains to check that

$tr(Y_{i_{1}}\cdots Y_{i},\varphi)=0$

for any $l$ . One can show this by induction on $l$ . $\square $

4.5. Macdonald operators. We set

$\hat{T}_{i}$ $=$ $t\sigma_{i}+\frac{t-t^{-1}}{e^{v:-v:+1}-1}(\sigma_{i}-1)$ , $(1 \leq i\leq n-1)$ , (4.30)

$G_{ij}$ $=$ $t+\frac{t-t^{-1}}{e^{v_{1}-v_{j}}-1}(1-\sigma_{ij})$ , $(1 \leq i,j\leq n)$ , (4.31)

$\Delta_{i}$ $=$ $\hat{T}_{i}\cdots\hat{T}_{n-1}\sigma_{\pi}\hat{T}_{1}^{-1}\cdots\hat{T}_{i-1}^{-1}$ . (4.32)

Here $\sigma_{w}$ are from (4.20), $\sigma_{ij}=\sigma_{s_{ij}}$ .
Switching from $\{T\}$ to $\{G\}$ ;

$\hat{T}_{i}\sigma_{i}$

$=$ $G_{ii+1}$ ,

$G_{ij}^{-1}$ $=$ $t^{-1}-\frac{t-t^{-1}}{e^{v:-v_{j}}-1}(1-\sigma_{ij})$ ,

$\Delta_{i}$ $=$ $G_{ii+1}\cdots G_{in}\sigma_{\gamma}.G_{1i}^{-i}\cdots G_{i-1i}^{-1}$ .

Let $e_{m}$ be the m-th elementary symmetric polynomial in $n$ variables. We represent

$e_{m}(\Delta_{1}, \ldots\triangle_{n})=\sum_{w\in S_{\mathfrak{n}}}D_{w}^{(m)}\sigma_{w}$
, (4.33)
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for difference operators $D_{w}^{(m)}$ , and define

$M_{m}=M_{e_{m}}=\sum_{w\in S_{n}}D_{w}^{(m)}$
.

All these operators are W-invariant, which results from the following lemmas.

Lemma 4.11. Consider the algebm $\hat{\mathcal{H}}$ generated by $\hat{T}_{i}(1\leq i\leq n-1),$ $\Delta_{j}(1\leq$

$j\leq n)$ . Then $ T_{i}-\rangle$ $\hat{T}_{i},$
$Y_{j}-\rangle$ $\triangle_{j}$ extends to an algebm isomorphism $\mathcal{H}_{n}^{t}\rightarrow\hat{\mathcal{H}}\sim$ .

Moreover, if $Q$ is a symmetric polynomial in $n$ variables, then $Q(\Delta_{1}, \ldots \Delta_{n})$ is a
centml element in $\hat{\mathcal{H}}$ .

Actually this observation is the key point (it can be checked directly or with
some representation theory). We note that the formulas for $T$ generalize the $s$0-
called Demazure operations and the Bernstein-Gelfand-Gelfand operations. They
were also studied by Lusztig and in a paper by Kostant-Kumar.

From now on we identify $\hat{\mathcal{H}}$ with $\mathcal{H}_{n}^{t}$ .
Lemma 4.12. Let $f(v_{1}, \ldots v_{n})$ be a function on $\mathbb{C}^{n}$ . Then $f$ is symmetric if and
only if $(\hat{T}_{i}-t)f=0$ for all $i$ .
Lemma 4.13. Let $Q$ be a symmetric polynomial in $n$ variables. Then the opemtor
$Q(\triangle_{1}, \ldots \triangle_{n})$ acts on the space of the symmetric polynomials in $e^{v_{i}}(1\leq i\leq n)$ .

Proof. This follows immediately from Lemma 4.11 and 4.12. $\square $

Let us calculate $M_{1}$ . Since $M_{1}$ is symmetric, it is enough to find the coefficient
of $\sigma_{\gamma_{1}}$ . Using the G-representation it is easy to see that $\sigma_{\gamma_{1}}$ does not appear in
$\Delta_{2},$ $\ldots\Delta_{n}$ . The $\sigma_{\gamma_{1}}$ -factor of $\Delta_{1}$ is equal to $\prod_{i=2}^{n}\frac{te^{v_{1}-v_{i}}-t^{-1}}{e^{v_{1}-v}:-1}\sigma_{\gamma_{1}}$ .

After the symmetrization we get the formula:

$M_{1}=\sum_{i=1j}^{n}\prod_{\neq i}\frac{te^{v:}-t^{-1}e^{v_{j}}}{e^{v}\cdot-e^{v_{j}}}\sigma_{\gamma_{i}}$ .

Similarly,

$M_{m}=\sum_{I=(i_{1},\ldots,i_{m})i\in}\prod_{Ij\not\in I}\frac{te^{v:}-t^{-1}e^{v_{j}}}{e^{v_{i}}-e^{v_{j}}}\sigma_{\gamma_{i_{1}}}\cdots\sigma_{\gamma_{i_{m}}}$

where $I=(i_{1}, \ldots i_{m})$ is a sequence of integers such that $1\leq i_{1}<\cdots<i_{m}<n$ .
To recapitulate, let us consider the classical limit of the Macdonald operators.

Setting $q=e^{h}$ and $t=q^{k/2},$ $h\rightarrow 0$ , we have
$\triangle_{i}$ $=$ $1+h\mathcal{D}_{i}+O(h^{2})$ ,

$M_{1}-n$ $=$ $h\sum\frac{\partial}{\partial v_{i}}+O(h^{2})$ ,

$M_{2}-(n-1)M_{1}+\frac{n(n-1)}{2}=h^{2}L_{2}+O(h^{3})$ .
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4.6. Comments.

Remark 4.1. Take a solution $\Phi=\Phi(v)$ of the QAKZ equation in an $\mathcal{H}^{t}$-module
$V$ , assuming that $\Phi$ has the trivial monodromy. Then, for any polynomial $ p\in$

$\mathbb{C}[x_{1}, \ldots x_{n}]$ , we have

$ p(Y_{1}, \ldots Y_{n})\Phi=p(\Delta_{1}, \ldots\triangle_{n})\Phi$ , (4.34)

where $\Delta_{i}$ are the difference Dunkl operators defined before. Note that $\Delta_{i}^{\prime}$ can
be replaced by $\Delta_{i}$ because the monodromy of $\Phi$ is trivial. We also need a linear
functional $pr:V_{\lambda}\rightarrow \mathbb{C}$ for a vector $\lambda=(\lambda_{1}, \ldots\lambda_{n})\in \mathbb{C}^{n}$ such that

$pr(Y_{i}b)=\lambda_{i}pr(b)$ $(i=1, \ldots n)$ (4.35)

for any $b\in V$ . Given any element $a\in V$ , let us define a scalar-valued function
$\varphi=\varphi(v)$ setting

$\varphi(v)=pr(\Phi(v)a)\in \mathbb{C}$ . (4.36)

Then the formula (4.34) implies

$ p(\lambda_{1}, \ldots\lambda_{n})\varphi=p(\Delta_{1}, \ldots\Delta_{n})\varphi$ . (4.37)

Thus, the scalar-valued function $\varphi=\varphi(v)$ solves the Dunkl eigenvalue problem.

Remark 4.2. Arbitmry mot systems. Let $\Sigma=\{\alpha\}\in R^{n}$ be any reduced root
system of rank $n$ (of type $A,$ $B,$ $C,$ $D,$ $E,$ $F$ or $G$), and

$\mathcal{H}^{t}=(T_{1}, \ldots T_{n}, X_{1}, \ldots X_{n})$ (4.38)

the corresponding affine Hecke algebra. The baxte $r\dot{\tau}zation$ (a parametric deforma-
tion satisfying the Yang-Baxter relations) of $T_{i}$ will be given by

$F_{i}=T_{i}+\frac{t-t^{-1}}{e^{u}\cdot-1}$ with $u_{i}=(u, \alpha_{i})$ (4.39)

for each $i=1,$ $\ldots n$ . We also have to use the element

$T_{0}=X_{\theta^{v}}T_{\theta}^{-1}$ (4.40)

corresponding to the simple affine root $\alpha_{0}=\delta-\theta$ for $\theta$ being the highest root. Its
baxterization is quite similar:

$F_{0}=T_{0}+\frac{t-t^{-1}}{e^{h-u_{\theta}}-1}$ , (4.41)

where $u_{\theta}=(u, \theta)$ . The functions $F_{0},$ $F_{1},$ $\ldots F_{n}$ satisfy the Yang-Baxter equations
associated with the extended Dynkin diagram. For example, in the case of $0^{1}\Rightarrow 0^{2}$ ,
we have

$F_{1}(v)F_{2}(u+v)F_{1}(2u+v)F_{2}(u)=F_{2}(u)F_{1}(2u+v)F_{2}(u+v)F_{1}(v)$ . (4.42)



KNIZHNIK-ZAMOLODCHIKOV EQUATIONS 51

The arguments of $F_{i}$ can also be determined graphically by mean $s$ of the equivalent
pictures of the reflection of two particles (see [15]).

Using $T_{0}$ , the affine Hecke algebra $\mathcal{H}^{t}$ has an alternative representation

$\mathcal{H}^{t}=(T_{0},$ $T_{1},$ $\ldots T_{n};\Pi\rangle$ , (4.43)
where $\Pi$ is a certain finite abelian group. The group $\Pi$ is isomorphic to $P^{\vee}/Q^{\vee}$ .
It is the set of all elements of the extended affine Weyl group

$\overline{W}=W\ltimes B$ , $B=\bigoplus_{i=1}^{n}\mathbb{Z}b_{i}$ , (4.44)

preserving the set $\{\alpha_{0}, \alpha_{1}, \ldots\alpha_{n}\}$ of the simple affine roots. It gives the embed-
ding of $\underline{\Pi i}nto$ the automorphism group of the extended Dynkin diagram. The
action of $W$ on $R^{n}\oplus R\delta$ is by the affine reflections and the corresponding shifts in
the $\delta$-direction for $B$ :

$ b(z+\zeta\delta)=z+(\zeta-(b, z))\delta$ .
Lemma 4.14. $\overline{W}=\langle s_{0}, s_{1}, \ldots s_{n};\Pi\rangle$ with $s_{0}=(\theta^{\vee})\cdot s_{\theta}$ .

The group $\Pi$ can be embedded into the affine Hecke algebra. The images $P_{\pi}$ of
the elements $\pi\in\Pi$ permute $\{T_{i}\}$ in the same way as $\pi$ do in $W$ with $\{s_{i}\}$ . The
baxterization of the elements in $\Pi$ is trivial: $F_{\pi}=P_{\pi}$ for each $\pi\in\Pi$ .

Keeping the notations of the previous sections, we have the following theorem.
Theorem 4.15. Given any $\mathcal{H}^{t}$ -valued function $\Psi=\Psi(u)$ , the fomulas

$\sim s_{i}(\Psi)=^{s_{i}}(F_{i}\Psi)$ (4.45)

for all $i=0,1,$ $\ldots n$ , and

$\pi\sim(\Psi)=P_{\pi}^{\pi}\Psi$ (4.46)

for all $\pi\in\Pi$ induce a representation of $\overline{W}$ .
The QAKZ equation for $\Sigma$ is the invariance condition $\sim b(\Phi)=\Phi$ for all $b\in B$ . It

can be shown that this equation is equivalent to the difference QMBP associated
with the root system $\Sigma$ defined via similar Dunkl operators. A conceptual proof
of this isomorphism theorem is given by means of the intertwiners of double affine
Hecke algebras (see [16, 18]).
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5. DOUBLE AFFINE HECKE ALGEBRAS AND MACDONALD POLYNOMIALS

5.1. Macdonald polynomials : the $A_{1}$ case. The subject of this section is to
show how the Hecke algebra technique is applied to the Macdonald polynomials.
We will concentrate on the duality and the recurrence relations. The key notion
will be the double affine Hecke. Let us start with $A_{1}$ .

The corresponding L-operator in the differential case read $s$ as follows

$L^{(k)}=\frac{\partial^{2}}{\partial u^{2}}+2k\frac{e^{u}+e^{-u}}{e^{u}-e^{-u}}\frac{\partial}{\partial u}+k^{2}$ , (5.1)

where $k$ is a complex parameter. There are two special values of $k$ when the
operator $L^{(k)}$ is very simple. For $k=0$ we have $L^{(0)}=\partial^{2}/\partial u^{2}$ . When $k=1$ ,

$L^{(1)}=d^{-1}\frac{\partial^{2}}{\partial u^{2}}d$ , with $d=e^{u}-e^{-u}$ . (5.2)

Similarly, we can conjugate by $d^{k}$ for any $k$ :

$d^{k}L^{(k)}d^{-k}=\frac{\partial^{2}}{\partial u^{2}}-\frac{4k(k-1)}{(e^{u}-e^{-u})^{2}}$ . (5.3)

Sometimes $L$ is more convenient to deal with in this form.
Let us now consider the eigenvalue problem for the operator $L^{(k)}$ :

$ L^{(k)}\varphi=\lambda^{2}\varphi$ . (5.4)

If $k=1$ , the solution of this equation is immediate:

$\varphi(u;\lambda)=\frac{\sinh(u\lambda)}{\sinh(u)sinh(\lambda)}$ (5.5)

In this normalization it is symmetric with respect to $u$ and $\lambda$ . Without $\sinh(\lambda)$ it
generalizes the characters of finite-dimensional representations of $SL_{2}(\mathbb{C})(k=1)$ .

If $k=1/2$ , this operator is the radial part of the Casimir operator for the
symmetric space $SL_{2}(R)/SO_{2}(R)$ . It is the restriction of the Casimir operator
$C$ on the double coset space $SO_{2}\backslash SL_{2}/SO_{2}$ wich is identified with a domain in
$R^{*}/S_{2}$ . If $k=1,2$ , then $L^{(k)}$ corresponds in the same way to $SL_{2}(\mathbb{C})/SU(2)$ and
$SL_{2}(\mathcal{K})/SU_{2}(\mathcal{K})$ for the quaternions $\mathcal{K}$ .

For any $k$ , one can find a family of even $(u\rightarrow-u)$ solutions of the form

$p_{n}=e^{nu}+e^{-nu}+lower$ integral exponents, (5.6)

such that

$L^{(k)}p_{n}=(n+k)^{2}p_{n}$ (5.7)

for $n=0,1,2,$ $\ldots$ . This family of hyperbolic polynomial $s$ satisfy the orthogonality
relations

Constant Term $(p_{n}p_{m}d^{2k})=c_{n}\delta_{nm}$ . (5.8)
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They are called the ultraspherical polynomials.
We can also consider the rational limit

$\ell^{(k)}=\frac{\partial^{2}}{\partial u^{2}}+\frac{2k}{u}\frac{\partial}{\partial u}$ (5.9)

of the operator $L^{(k)}$ , switching from the Sutherland model to the Calogero model.
The solutions of the rational eigenvalue problem are expressed in terms of the
Bessel function. In this case, the solutions can be normalized to ensure the sym-
metry between the variable and the eigenvalue. In the trigonometric case it is
possible only for two special values $k=0,1$ . It is one of the main demerits of the
harmonic analysis on the symmetric spaces.

In the difference theory, this symmetry holds for any root systems. This dis-
covery is expected to renew the Harish-Chandra theory. The so-called group case
$(k=1)$ is an intersection point of the differential (classical) and difference (new)
theories.

We now turn to the difference version. We set $x=e^{u}$ and introduce the ‘multi-
plicative difference’ $\Gamma_{q}$ acting as $\Gamma_{q}(f(x)=f(qx)$ and satisfying the commutation
relation $\Gamma_{q}x=qx\Gamma_{q}$ . The Macdonald operator $L$ is expressed as follows:

$L=\frac{tx-t^{-1}x^{-1}}{x-x^{-1}}\Gamma_{q}+\frac{tx^{-1}-t^{-1_{X}}}{x^{-1}-x}\Gamma_{q}^{-1}$ . (5.10)

The parameter $k$ in the difference setup is determined from the relation $t=q^{k}$ .
When $q=t$ (or $k=1$ ), the operator $L$ is simple:

$L=\frac{1}{x-x^{-1}}(\Gamma_{q}+\Gamma_{q}^{-1})(x-x^{-1})$ . (5.11)

Compare this formula with (5.2) in the differential case and notice that (5.11) is
easier to check than (5.2).

The eigenvalue problem

$ L\varphi=(\Lambda+\Lambda^{-1})\varphi$ (5.12)

always has a self-dual family of solutions. When $n=0,1,2,$ $\ldots$ , there exists a
unique family of the so-called $q$ , t-ultraspherical (or Rogers-Askey-Ismail) Laurent
polynomials

$p_{n}=x^{n}+x^{-n}+lower$ terms, (5.13)

which are symmetric with respect to the transformation $x\rightarrow x^{-1}$ , and satisfy the
equation

$Lp_{n}=(tq^{n}+t^{-1}q^{-n})p_{n}$ . (5.14)

The following duality theorem is proved in the next section by using the double
affine Hecke algebra.

Theorem 5.1 (Duality). $p_{n}(tq^{m})p_{m}(t)=p_{m}(tq^{n})p_{n}(t)$ for any $m,$ $n\geq 0$ .
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If we set

$\pi_{n}(x)=\frac{p_{n}(x)}{p_{n}(t)}$ , (5.15)

the duality can be rewritten as follow $s$ :

$\pi_{n}(tq^{m})=\pi_{m}(tq^{n})$ $(m, n=0,1,2, \ldots)$ . (5.16)

The Askey-Ismail polynomial $s$ are nothing but the Macdonald polynomials of
type $A_{1}$ . There are three main Macdonald’s conjectures for the Macdonald poly-
nomials associated with root systems (see [53, 54]):

(1) the scalar product conjecture,
(2) the evaluation conjecture,
(3) the duality conjecture.
One may also add the Pieri rules to the list. These conjectures were justified

recently using the double affine Hecke algebras in $[17, 20]$ . The scalar product
conjecture was established by Opdam in the differential setup (see [60]). He intro-
duced the shift operators and deduced the norm-formula for any natural $k$ from
the trivial particular case $k=0$ . The passage to any $k$ is based on the analytic
continuation. I extended his approach to the $q$ , t-cas $e$ . The evaluation and the
duality conjectures collapse in the differential case.

5.2. A modern approach to $q$ , t-ultraspherical polynomials. The duality
from Theorem 5.1 can be rephrased as the symmetry of a certain scalar product.
Actually this product is a diffence counterpart of the spherical Fourier transform.
For any symmetric Laurent polynomials $f,$ $g\in \mathbb{C}[x+x^{-1}]$ , we set

$\{f, g\}=(a(L)g)(t)$ , (5.17)

where $a$ is a polynomial such that $f(x)=a(x+x^{-1})$ . So we apply the operator
$a(L)$ to $g$ and then evaluate the result at $x=t$ .

Theorem 5.2. $\{f, g\}=\{g, f\}$ for any $f,$ $g\in \mathbb{C}[x+x^{-1}]$ .

Theorem 5.1 follows from Theorem 5.2. Indeed, if $f=\pi_{m}$ and $g=\pi_{n}$ , we can
compute the scalar product as follows:

$\{\pi_{m}, \pi_{n}\}=(a(L)\pi_{n})(t)=a(tq^{n}+t^{-1}q^{-n})\pi_{n}(t)=\pi_{m}(qt^{n})$ . (5.18)

Use $L\pi_{n}=(tq^{n}+t^{-1}q^{-n})\pi_{n}$ and the normalization $\pi_{n}(t)=1$ . Hence Theorem 5.2
implies $\pi_{m}(qt^{n})=\pi_{n}(qt^{m})$ . Actually the theorems are equivalent, since $p_{n}$ form a
basis in the space of all symmetric Laurent polynomial $s$ .
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Definition 5.1. The double affine Hecke algebra $\mathcal{H}t^{q,t}$ of type $A_{1}$ is the quotient

$ffl^{q,t}=(X,$ $Y,$ $ T\rangle$ $/\sim,$ (5.19)
by the relations for the generators $X,$ $Y,$ $T$

$TXT=X^{-1}$ , $T^{-1}YT^{-1}=Y^{-1}$ , (5.20)
$Y^{-1}X^{-1}YXT^{2}=q^{-1}$ , $(T-t)(T+t^{-1})=0$ . (5.21)

Here we consider $q,$
$t$ as numbers or parameters. The first point of the theory is

the following statement of PBW type.
Any element of $H\in ffl$ can be uniquely expressed in the form

$H=\epsilon=0,1\sum_{i,j\in Z}c_{i\epsilon j}X^{i}T^{\epsilon}Y^{j}$

$(c_{i\epsilon j}\in \mathbb{C})$ . (5.22)

The second imortant fact is the symmetry of $nt^{q,t}$ with respect to $X$ and Y.

Theorem 5.3. There exists an anti-involution $\phi$ : $ffl\rightarrow ffl$ such that $\phi(X)=$
$Y^{-1},$ $\phi(Y)=X^{-1}$ and $\phi(T)=T$ .

Indeed, $\phi$ transposes the first two relations and leaves the remaining invariant.
Next, we introduce the expectation value $\{H\}_{0}\in \mathbb{C}$ of an element $H\in m^{q,t}$ by

$\{H\}_{0}=\epsilon=0,1\sum_{i,j\in Z}c_{i\epsilon j}t^{-i}t^{\epsilon}t^{j}$

, (5.23)

using the expression (5.22). The definitions of $\phi$ and $\{$ $\}_{0}$ give that

$\{\phi(H)\}_{0}=\{H\}_{0}$ for any $H\in \mathcal{H}t^{q,t}$ . (5.24)
Now we can introduce the operator counterpart of the pairing $\{f, g\}=\{g, f\}$ on
$ffl^{q,t}\times ffl^{q,t}$ : setting

$\{A, B\}_{0}=\{\phi(A)B\}_{0}$ (5.25)

for any $A,$ $B\in ffl^{q,t}$ .

The $\phi$-invariance of the expectation value (5.24) ensures that it is symmetric

$\{A, B\}_{0}=\{B, A\}_{0}$ .
We also remark that this pairing is non-degenerate for generic $q,$

$t$ .
Theorem 5.2 readily follows from

Lemma 5.4. For any symmetric Laurent polynomials $f(x),g(x)\in \mathbb{C}[x+x^{-1}]$ ,

$\{f(X), g(X)\}_{0}=\{f, g\}$ .
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To prove the lemma we need to introduce the basic representation of the dou-
ble affine Hecke algebra $\mathcal{H}t^{q,t}$ . Consider the one-dimensional representation of the
Hecke algebra $\mathcal{H}_{Y}=$ \langle $T,$ $Y\}$ sending $T\mapsto t$ and $Y\leftarrow\rangle$ $t$ . We denote this representa-
tion simply $by+$ . Then take the induced representation

$V=Ind_{\mathcal{H}_{Y}}^{ffl}(+)=m/\{m(T-t)+\mathcal{H}i(Y-t)\}\simeq \mathbb{C}[x, x^{-1}]$ , (5.26)

where the last isomorphism is $x^{n}\leftrightarrow X^{n}mod m(T-t)+m(Y-t)$ . Under this
identification of $V$ with the ring $\mathbb{C}[x, x^{-1}]$ of Laurent polynomial $s$ , the element $X$

act $s$ on $\mathbb{C}[x, x^{-1}]$ as the multiplication by $x$ , while $T$ and $Yact$ by the operators

$\hat{T}=ts+\frac{t-t^{-1}}{x^{2}-1}(s-1)$ and $\hat{Y}=s\Gamma_{q}\hat{T}$ , (5.27)

respectively. Here $s(f)(x)=f(x^{-1})$ , the equality $Hf(x)=g(x)$ in $V$ means that
$Hf(X)-g(X)\in m(T-t)+m(Y-t)$ . The latter readily gives the desired formulas
for $\hat{T},\hat{Y}$ .

The expectation value is the composition

$m\rightarrow^{\alpha}V\cong \mathbb{C}[x, x^{-1}]\rightarrow^{\beta}\mathbb{C}$ , (5.28)

where $\alpha$ is a residue $mod m(T-t)+m(Y-t)$ and $\beta(f)=f(t^{-1})$ is the evaluation
map at $t^{-1}$ . Take any $f,$ $g\in \mathbb{C}[X, X^{-1}]$ . Then

$\{f(X), g(X)\}_{0}=\{\phi(f(X))g(X)\}_{0}=\{f(Y^{-1})g(X)\}_{0}=f(\hat{Y}^{-1})(g)(t^{-1})(5.29)$

The last equality follows from (5.28). If $f$ and $g$ are symmetric and $f(X)=$
$a(X+X^{-1})$ , then

$\{f(X), g(X)\}_{0}=a(L)(g)(t)=\{f, g\}$ , (5.30)

since the operator $\hat{Y}+\hat{Y}^{-1}$ acts on symmetric Laurent polynomial $s$ as $L$ . It is
straightforward. The duality is established.

This method of proving the duality theorem can be generalized to any root
system.

We now discuss the application of the duality to the $Pier\dot{\tau}$ rules, the recurrence
formulas for $\pi_{n}’ s$ with respect to the index $n$ . First we will discretize functions and
operators.

Recall that the renormalized $q$ , t-ultraspherical polynomial$s\pi_{n}(x)$ are charac-
terized by the conditions

$L\pi_{n}=(tq^{n}+t^{-1}q^{-n})\pi_{n}$ , $\pi_{n}(t)=1$ , (5.31)

where

$L=\frac{tx-t^{-1}x^{-1}}{x-x^{-1}}\Gamma+\frac{tx^{-1}-t^{-1_{X}}}{x^{-1}-x}I^{-1}$ . (5.32)
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As always, $\Gamma x=qx\Gamma$ . Denote the set of $\mathbb{C}$-valued functions on $\mathbb{Z}$ by Funct $(\mathbb{Z}, \mathbb{C})$ .
For any Laurent polynomial $f\in \mathbb{C}[x, x^{-1}]$ or more general rational function, we
define $f\in\wedge Funct(\mathbb{Z}, \mathbb{C})$ by setting

$f(m)\wedge=f(tq^{m})$ for all $m\in \mathbb{Z}$ . (5.33)

Considering $\mathcal{A}=(\mathbb{C}(x),$ $\Gamma\rangle$ as an abstract algebra with the fundamental relation
$\Gamma x=qx\Gamma$ , the action of $\mathcal{A}$ on $\varphi\in Funct(\mathbb{Z}, \mathbb{C})$ is as follows:

$x\wedge\varphi(m)=tq^{m}\varphi(m)$ , $\hat{\Gamma}\varphi(m)=\varphi(m+1)$ . (5.34)

The correspondence $ f\mapsto f\wedge$, whenever it is well-defined (the functions $f$ may have
denominators), is an A-homomorphism $\mathbb{C}(x)\rightarrow Funct(\mathbb{Z}, \mathbb{C})$ .

Due to (5.31):

$\hat{L}\wedge\pi_{n}(m)=(tq^{-n}+t^{-1}q^{n})\wedge\pi_{n}(m)$ . (5.35)

The Pieri rules result directly from this equality. Indeed, the duality $\wedge\pi_{n}(m)=$

$\wedge\pi_{m}(n)$ implies:

$\mathcal{L}\wedge\pi_{m}(n)=(tq^{n}+t^{-1}q^{-n})\wedge\pi_{m}(n)=(x\wedge+\wedge x^{-1})\wedge\pi_{m}(n)$ . (5.36)

Here $\mathcal{L}$ is $\hat{L}$ acting on the indices $m$ instead of $n$ . Explicitly,

$\frac{t^{2}q^{m}-t^{-2}q^{-m}}{tq^{m}-t^{-1-m}q}\wedge\pi_{m+1}(n)+\frac{q^{-m}-q^{m}}{t^{-1-m}q-tq^{m}}\hat{\pi}_{m-1}(n)=(x\wedge+x^{-1}\wedge)\wedge\pi_{m}(n)$ . $(5.37)$

For generic $q,$
$t$ , the mapping $ f\rightarrow f\wedge$ is injective. Hence one can pull (5.37) back,

removing the hats:

$(x+x^{-1})\pi_{m}=\frac{t^{2}q^{m}-t^{-2}q^{-m}}{tq^{m}-t^{-1-m}q}\pi_{m+1}+\frac{q^{m}-q^{-m}}{tq^{m}-t^{-1-m}q}\pi_{m-1}$ . (5.38)

This is the Pieri formula in the case of $A_{1}$ . See [2]. We remark that this formula
makes sense when $m=0$ , since the coefficient of $\pi_{m-1}$ vanishes at $m=0$ . Generally
speaking the ‘vanishing conditions’ are much less obvious.

The Pieri rules obtained above can be used to prove the so-called evaluation
conjecture describing the values of $p_{n}$ at $x=t$ . Applying (5.38) repeatedly, we get
the formula

$(x+x^{-1})^{\ell}\pi_{m}=c_{\ell,m}\pi_{m+\ell}+lower$ terms (5.39)

for each $\ell=0,1,2,$ $\ldots$ . The leading coefficient $c_{\ell,m}c$an be readily calculated:

$c_{\ell,m}=\prod_{i=0}^{\ell-1}\frac{t^{2}q^{m+i}-t^{-2}q^{-m-i}}{tq^{m+i}-t^{-1-m-i}q}$ . (5.40)
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Let us look at (5.39) for $m=0$ :

$(x+x^{-1})^{\ell}=c_{\ell,0}\pi_{\ell}+lower$ terms. (5.41)

Comparing the coefficients of $x^{l}+x^{-l}$ , we have $1=c_{\ell,0}/p_{\ell}(t)$ , since $p_{\ell}=x^{\ell}+x^{-\ell}+$

$\ldots$ Hence

$p_{\ell}(t)=c\ell,0=\prod_{i=0}^{\ell-1}\frac{t^{2}q^{i}-t^{-2}q^{-i}}{tq^{i}-t^{-1-i}q}$ . (5.42)

This value is easy to calculate directly (the formulas for $p_{n}$ are known). However
the method descibed in this section is applicable to arbitrary root systems. We need
only the duality, which is the main advantage of the difference harmonic analysis
in contrast to the classical Harish-Chandra theory.

5.3. The $GL_{n}$ case. In this last subsection, we will discuss the double affine
Hecke algebra and applications for $GL_{n}$ . Since we have already clarified the $A_{1}$

case in full detail, we will try to get concentrated on the main points only.
In the $GL_{n}$ case, the Macdonald operators $M_{0}=1,$ $M_{1},$

$\ldots$ , $M_{n}$ are as follows:

$M_{m}=\sum_{I=\{i_{1}<..<i_{m}\}}.$ $\prod_{i\in I,j\not\in I}\frac{tx_{i}-t^{-1}x_{j}}{x_{i}-x_{j}}\Gamma_{i_{1}}\cdots\Gamma_{i_{m}}$

. (5.43)

In this normalization, $t=q^{k/2}$ (cf. the differential case). For instance, the so-called
group case is for $k=1/2$ (in contrast to $SL_{2}$ considered above).

The Macdonald polynomials $p_{\lambda}$ for $GL_{n}$ satisfy the Macdonald eigenvalue prob-
lem:

$M_{m}p_{\lambda}=e_{m}(t^{n-1}q^{\lambda_{1}}, \ldots t^{-n+1}q^{\lambda_{n}})p_{\lambda}$ $(m=0,1, \ldots , n)$ , (5.44)

where $\lambda=(\lambda_{1}, \ldots\lambda_{n})$ are partitions, i.e., sequences of integers $\lambda_{i}\in \mathbb{Z}$ such that
$\lambda_{1}\geq\lambda_{2}\geq\ldots\geq\lambda_{n}\geq 0)$ . Here $e_{m}$ is the elementary symmetric function of degree
$m$ . Given $\lambda,$ $p_{\lambda}=p_{\lambda}(x)$ is a symmetric polynomial in $x=(x_{1}, \ldots x_{n})$ of degree
$|\lambda|=\sum_{i=1}^{n}\lambda_{i}$ in the form

$p_{\lambda}(x)=x_{1}^{\lambda_{1}}\cdots x_{n}^{\lambda_{n}}+lower$ order terms. (5.45)

The lower order terms are understood in the sense of the dominance ordering.
Namely, a partition obtained from $\lambda$ by subtracting simple roots is lower than $\lambda$ .
For instance,

$(\lambda_{1}, \lambda_{2}, \ldots)>(\lambda_{1}-1, \lambda_{2}+1, \ldots)>(\lambda_{1}-1, \lambda_{2}, \lambda_{3}+1\ldots)>\cdots$ (5.46)

We will use the abbreviation
$t^{2\rho}q^{\lambda}=(t^{n-1}q^{\lambda_{1}}, \ldots t^{-n+1}q^{\lambda_{n}})$ , (5.47)

where $2\rho=(n-1, n-3, \ldots-n+1)$ . So $M_{m}p_{\lambda}=e_{m}(t^{2\rho}q^{\lambda})p_{\lambda}$ . Using $k:t=q^{k/2}$ ,
and $t^{2\rho}q^{\lambda}=q^{k\rho+\lambda}$ .
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Given a partition $\lambda$ , we set

$\pi_{\lambda}(x)=\frac{p_{\lambda}(x)}{p_{\lambda}(t^{2\rho})}=\frac{p_{\lambda}(x_{1},\ldots.’ x_{n})}{p_{\lambda}(t^{n-1},t^{n-3},..,t^{-n+1})}$ . (5.48)

Theorem 5.5 (Duality). For any partitions $\lambda$ and $\mu$ , we have

$\pi_{\lambda}(t^{2\rho}q^{\mu})=\pi_{\mu}(t^{2\rho}q^{\lambda})$ . (5.49)

This duality theorem implies the following Pieri formula.

Theorem 5.6.

$e_{m}(x)\pi_{\lambda}(x)=\sum_{|I|=m}$ $\prod_{i\in I,j\not\in I}\frac{t^{2(j-i)+1}q^{\lambda.-\lambda_{j}}-t^{-1}}{t^{2(j-i)}q^{\lambda.-\lambda_{j}}-1}\pi_{\lambda+\epsilon_{I}}(x)$
, (5.50)

where $\epsilon_{I}=\sum_{i\in I}\epsilon_{i}$ (sum of unit vectors).

Here the summation is taken only over subsets $I\subset\{1,2, \ldots , n\}(|I|=m)$

such that $\lambda+\epsilon_{I}$ remain partitions (generally speaking, dominant). It happens
automatically, since the coefficient of $\pi_{\lambda+\epsilon_{I}}(x)$ on the right vanishes unless $\lambda+\epsilon_{I}$

is dominant.
We can also determine the value of the Macdonald polynomial $p_{\lambda}(x)$ at $x=t^{2\rho}$

exactly by the method used in the $A_{1}$ case. The formula was conjectured by
Macdonald and proved by Koornwinder. The above theorems (for $GL_{n}$ ) are also
due to Macdonald and Koornwinder. See also [31]. For arbitrary roots they were
established in my recent papers.

Our approach is based on the double Hecke algebras. The operators $M_{m}$ appear
naturally using the operators $\Delta_{i}$ from (4.32). The latter describe the action of the
generators $Y_{i}$ in the induced representation $Ind_{\mathcal{H}_{Y}}^{ffl}(+)$ isomorphic to the algebra of
Laurent polynomials $\mathbb{C}[X_{1}^{\pm 1}, \ldots X_{n}^{\pm 1}]$ . So the analogy with (5.26) is complete.

The double affine Hecke algebm (DAHA) $\mathcal{R}t=ffl^{q,t}$ for $GL_{n}$ is the algebra
generated by the following two commutative algebras of Laurent polynomials in $n$

variables:

$\mathbb{C}[X_{1}^{\pm 1}, \ldots X_{n}^{\pm 1}]$ and $\mathbb{C}[Y_{1}^{\pm 1}, \ldots Y_{n}^{\pm 1}]$ , (5.51)

$andtheHeckealgebraoftypeA_{n-1}$ :

$\mathcal{H}=(T_{1},$ $\ldots T_{n-1}\rangle$ (5.52)
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with the standard braid and quadratic relations. The remaining relations are as
follows:

$T_{i}X_{i}T_{i}=X_{i+1}(i=1, \ldots n-1)$ , $T_{i}X_{j}=X_{j}T_{i}(j\neq i,i+1)$ ,
(5.53)

$T_{i}^{-1}Y_{i}T_{i}^{-1}=Y_{i+1}(i=1, \ldots n-1)$ , $T_{i}Y_{j}=Y_{j}T_{i}(j\neq i, i+1)$ ,
(5.54)

$Y_{2}^{-1}X_{1}Y_{2}X_{1}^{-1}=T_{1}^{2}$ , (5.55)

$\tilde{Y}X_{j}=qX_{j}\tilde{Y}$ and $\tilde{X}Y_{j}=q^{-1}Y_{j}\tilde{X}$ . (5.56)

Here $\tilde{X}=\prod_{i=1}^{n}X_{i}$ and $\tilde{Y}=\prod_{i=1}^{n}Y_{i}$ . They commute with $\{T_{1}, \ldots T_{n-1}\}$ thanks
to 5.53 and 5.55.

When $q=1,$ $t=1$ we come to the elliptic or 2-extended Weyl group of type $GL_{n}$

due to Saito [63]. If $q=1$ and there are no quadratic relations, the corresponding
group is the elliptic braid group ( $\pi_{1}$ of the product of $n$ elliptic curves without the
diagonals divided by $S_{n}$ ). It was calculated by Birman [6] and Scott.

Establishing the connection with (4.32), $X_{i}=e^{v_{i}},$ $T_{i}=\hat{T}_{i}$ and $Y_{i}=\triangle_{i}$ give the
so-called polynomial (or basic) representation of ffl.

There is another version of this definition, using the element $\pi$ . It is introduced
from the formula

$Y=T_{1}\cdots T_{n-1}\pi^{-1}$ (5.57)

and has the following commutation relations with $X_{i}$ and $T_{i}$ :

$\pi X_{i}=X_{i+1}\pi$ $(i=1, \ldots n-1)$ , $\pi X_{n}=q^{-1}X_{1}\pi$ (5.58)

and

$\pi T_{i}=T_{i+1}\pi$ $(i=1, \ldots n-2)$ . (5.59)

In the polynomial representation this element coincides with $\pi$ from Lemma 4.3.
Note that it $ac$ts on the functions $X_{i}=e^{v_{i}}$ through the action of $\pi^{-1}$ on vectors $v$ .
Considered formally, $\pi$ is the image of the element $P$ from Lemma 4.1 with respect
to the Kazhdan-Lusztig automorphism, sending $T\rightarrow T^{-1},$ $Y\rightarrow Y^{-1},$ $t\rightarrow t^{-1}$ .

Since

$T_{i-1}\cdots T_{1}X_{1}T_{1}\cdots T_{i-1}=X_{i}$ , $T_{1}\cdots T_{i-1}Y_{i}T_{i-1}\cdots T_{1}=Y_{1}$ , (5.60)

we can reduce the list of generators. Namely,

$m=(X_{1},$ $Y_{1},$ $T_{1},$
$\ldots$ , $ T_{n-1}\rangle$ (5.61)

or
$m=\{X_{1}, \pi, T_{1}, \ldots T_{n-1}\}$ . (5.62)
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In terms of $\{T, \pi, X\}$ , the list of defining relations of $\mathcal{R}\ell$ is as follows:
(a) $X_{i}X_{j}=X_{j}X_{i}(1\leq i,j\leq n)$ ,
(b) the braid relations and quadratic relations for $T_{1},$

$\ldots$ , $T_{n-1}$ ,
(c) $\pi X_{i}=X_{i+1}\pi(i=1, \ldots n-1)$ and $\pi^{n}X_{i}=q^{-1}X_{i}\pi^{n}(i=1, \ldots n)$ ,
(d) $\pi T_{i}=T_{i+1}\pi(i=1, \ldots n-2)$ and $\pi^{n}T_{i}=T_{i}\pi^{n}(i=1, \ldots n-1)$ .
For instance, let us deduce (5.55) from these formulas. Substituting, the left

hand side equals:

$(T_{1}\pi T_{n-1}^{-1}\cdots T_{2}^{-1})X_{1}(T_{2}\cdots T_{n-1}\pi^{-1}T_{1}^{-1})X_{1}^{-1}$

$=T_{1}\pi T_{n-1}^{-1}\cdots T_{2}^{-1}(T_{2}\cdots T_{n-1})X_{1}\pi^{-1}(T_{1}^{-1}X_{1}^{-1}T_{1}^{-1})T_{1}$

$=T_{1}(\pi X_{1}\pi^{-1}X_{2}^{-1})T_{1}=T_{1}^{2}$ .

This representation, however, is not convenient from the viewpoint of the symmetry
between $X_{i}$ and $Y_{i}$ , which will be discussed next. It is better to use $\{Y\}$ instead
of $\pi$ .

The algebra ffl contains the following two affine Hecke algebras:

$\mathcal{H}_{X}^{t}=\langle X_{1}, \ldots X_{n}, T_{1}, \ldots T_{n-1}\rangle$ ,

$\mathcal{H}_{Y}^{t}=\langle Y_{1}, \ldots Y_{n}, T_{1}, \ldots T_{n-1}\rangle$ . (5.63)

They are isomorphic to each other by the correspondence $X_{i}\leftrightarrow Y_{i}^{-1}$ . This map
can be extended to an anti-involution of $m$ . It is a general statement which holds
for any root systems.

Theorem 5.7. There exists an anti-involution $\phi$ : $m^{q,t}\rightarrow \mathcal{R}l^{q,t}$ such that $\phi(X_{i})=$

$Y_{i}^{-1},$ $\phi(Y_{i})=X_{i}^{-1}$ for $i=1,$ $\ldots$ , $n$ , and $\phi(T_{i})=T_{i}(i=1, \ldots n-1)$ . It preserves
$q,$

$t$ .

Proof. We need to check that the relation (5.55) is self-dual with respect to $\phi$ . The
other relations are obviously $\phi-$-invariant. One has:

$1=T_{1}^{-2}Y_{2}^{-1}X_{1}Y_{2}X_{1}^{-1}==T_{1}^{-1}\{Y_{1}^{-1}(T_{1}X_{1}T_{1}^{-1})Y_{1}T_{1}^{-1}X_{1}^{-1}\}$

$=Y_{1}^{-1}X_{2}T_{1}^{-2}Y_{1}(T_{1}^{-1}X_{1}^{-1}T_{1}^{-1})=Y_{1}^{-1}X_{2}T_{1}^{-2}Y_{1}X_{2}^{-1}$ .
The latter can be rewritten as $Y_{1}X_{2}^{-1}Y_{1}^{-1}X_{2}=T_{1}^{2}$ , which is the $\phi$-image of
(5.55). $\square $

Using this involution we can establish the duality theorem for the $GL_{n}$ case in the
same way as we did in the $A_{1}$ case. Generalizing the theory to the case of arbitrary
roots we can prove the Macdonald $COI\dot{u}ectures$ and much more. It gives a very
convincing example of the power of the modern difference-operator methods.
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6. ABSTRACT KZ AND ELLIPTIC QMBP

We will introduce general $r$-matrix KZ and use them to prove the self-consistency
of the affine Knizhnik-Zamolodchikov equations. Another application will be the
elliptic quantum many-body problem for arbitrary root systems, generalizing that
due to Olshanetsky-Perelomov, and the double affine KZ.

6.1. Abstract $r$-matrices. Recall the notations for root systems. Let $\Sigma=$

$\{\alpha\}\subset R^{n}$ be a finite root system of rank $n$ of type $A_{n},$ $B_{n},$ $\ldots G_{2}$ . We normalize
the inner product of $R^{n}$ setting $(\theta, \theta)=2$ , where $\theta\in\Sigma$ is the maximal root. Let
$\{\alpha_{1}, \ldots\alpha_{n}\}$ be the simple roots, $\Sigma_{+}=\{\alpha=\sum_{i=1}^{n}c_{i}\alpha_{i}\in\Sigma|\forall i, c_{i}\geq 0\}$ the set of
positive roots, $\{b_{1}, \ldots, b_{n}\}\subset R^{n}$ the dual fundamental weights (i.e. $(b_{i},$ $\alpha_{\gamma})=\delta_{ij}$ ),
$P^{\vee}$ the lattice spanned by $\{b_{1}, \ldots, b_{n}\},$ $W$ the Weyl group generated by the reflec-
tions

$s_{\alpha}(u)=u-\frac{2(\alpha,u)}{(\alpha,\alpha)}\alpha,$ $u\in R^{n},$ $\alpha\in\Sigma,$ $s_{i}=s_{\alpha_{i}}$ .

For $u\in R^{n}$ and $\alpha\in\Sigma,$ $u_{\alpha}=(\alpha, u)\in R$ and $u_{i}=(\alpha_{i}, u)$ . So if $\alpha=\sum_{i=1}^{n}c_{i}\alpha_{i}$

then $u_{\alpha}=\sum_{i=1}^{n}c_{i}u_{i}$ . We will use the derivations:

$\partial_{v}(u_{\alpha})=(v, \alpha),$ $\partial_{i}(u_{\alpha})=(b_{i}, \alpha),$ $i=1,$ $\ldots n,$ $v\in R^{n}$ . (6.1)

Let us begin with the formal theory of the following partial differential equations:

$\partial_{i}\Phi(u)=(\sum_{\alpha\in\Sigma_{+}}\nu_{\alpha}^{i}r_{\alpha})\Phi(u)$ . (6.2)

Here the values of $\Phi(u)$ are in a vector space $V$ over $\mathbb{C},$ $r_{\alpha}=r_{\alpha}(u_{\alpha})$ is a function
of one variable $u_{\alpha}$ with the values in End(V), $\nu_{\alpha}^{i}=mult_{\alpha_{i}}(\alpha)=(b_{i}, \alpha)$ .

More generally, we set

$\partial_{v}\Phi(u)=(\sum_{\alpha\in\Sigma_{+}}(v, \alpha)r_{\alpha})\Phi(u)$ , (6.3)

for $v\in R^{n}$ ($v=b_{i}$ in the above formula). Let

$X_{i}=\sum_{\alpha\in R+}\nu_{\alpha}^{i}r_{\alpha},$ $X_{v}=\sum_{\alpha\in R+}(v, \alpha)r_{\alpha}$
. (6.4)

The compatibility of system (6.2) (the cross-derivative integrability conditions)
is equivalent to a purely algebraic commutativity of $\{X_{i}\}(\Leftrightarrow[X_{v}, X_{v^{\prime}}]=0\forall v,$ $ v^{\prime}\in$

$R^{n})$ . Indeed, $\partial_{i}(\nu_{\alpha}^{j}r_{\alpha})=\partial_{j}(\nu_{\alpha}^{i}r_{\alpha})$ for all $\alpha$ . We are going to establish the necessary
conditions for the compatibility.

For $\alpha,$ $\beta\in\Sigma(\beta\neq\pm\alpha)$ , let $\langle\alpha, \beta\rangle$ be the subspace of $R^{n}$ spanned by $\alpha$ and $\beta$ .
Then $\Sigma\cap\langle\alpha,$ $\beta$ } is a root system of rank 2.
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Proposition 6.1. If the opemtors

$x_{v}^{(\alpha,\beta)}=\gamma\in\Sigma(\alpha,\beta)\gamma\in\sum_{\cap}\sum_{+}(v, \gamma)r_{\gamma}(v\in\{\alpha, \beta\rangle)$

(6.5)

commute for $ v\in\langle\alpha, \beta\rangle$ (say, for $ v=\alpha$ and $ v=\beta$) and any arbitrary given pair
$\{\alpha, \beta\}\subset\Sigma_{+}$ , then $[X_{i}, X_{j}]=0(\forall i,j=1, \ldots, n)$ .

By Proposition 6.1, it is sufficient to consider the rank 2 cases (Fig8.). One
may assume that $\alpha,$

$\beta$ are the standard simple roots from the figure, switching to
proper linear combinations if necessary. The commutativity conditions are directly
connected with the quantum Yang-Baxter equations from [9]. The definition is as
follows.

$A_{1}\times A_{1}$ case $A_{2}$ case $B_{2}$ case

FIGURE 8. The root systems of rank two

We set formally

$R_{\alpha}=1+hr_{\alpha}+O(h^{2})$ . (6.6)

The classical Yang-Baxter equations are the coefficient of $h^{2}$ in the quantum Yang-
Baxter equations for $R$ :
$0)A_{1}\times A_{1}$ case: $ R_{\alpha}R_{\beta}=R_{\beta}R_{\alpha}\Rightarrow$

$[r_{\alpha}, r_{\beta}]=0$ . (6.7)

1) $A_{2}$ case: $ R_{\alpha}R_{\alpha+\beta}R_{\beta}=R_{\beta}R_{\alpha+\beta}R_{\alpha}\Rightarrow$

$[r_{\alpha}, r_{\alpha+\beta}+r_{\beta}]+[r_{\alpha+\beta}, r_{\beta}]=0$ . (6.8)

2) $B_{2}$ case: $ R_{\alpha}R_{\alpha+\beta}R_{\alpha+2\beta}R_{\beta}=R_{\beta}R_{\alpha+2\beta}R_{\alpha+\beta}R_{\alpha}\Rightarrow$

$[r_{\alpha}, r_{\alpha+\beta}+r_{\alpha+2\beta}+r_{\beta}]+[r_{\alpha+\beta}, r_{\alpha+2\beta}+r_{\beta}]+[r_{\alpha+2\beta,\beta}r]=0$ . (6.9)
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3) $G_{2}$ case: $ R_{\alpha}R_{\alpha+\beta}R_{2\alpha+3\beta}R_{\alpha+2\beta}R_{\alpha+3\beta}R_{\beta}=R_{\beta}R_{\alpha+3\beta}R_{\alpha+2\beta}R_{2\alpha+3\beta}R_{\alpha+\beta}R_{\alpha}\Rightarrow$

$[r_{\alpha}, r_{\alpha+\beta}+r_{2\alpha+3\beta}+r_{\alpha+2\beta}+r_{\alpha+3\beta}+r_{\beta}]+$

$+[r_{\alpha+\beta}, r_{2\alpha+3\beta}+r_{\alpha+2\beta}+r_{\alpha+3\beta}+r_{\beta}]+$ (6.10)
$+[r_{2\alpha+3\beta}, r_{\alpha+2\beta}+r_{\alpha+3\beta}+r_{\beta}]+[r_{\alpha+2\beta}, r_{\alpha+3\beta}+r_{\beta}]+[r_{\alpha+3\beta}, r_{\beta}]=0$ .

The structure of the quantum Yang-Baxter equations is very simple: the product
of all $R_{\alpha}$ for positive $\alpha$ clockwise coincides with the product taken counterclockwise.
Respectively, the left hand sides of the classical equations are the sums of the
$co.mmutators\Sigma[r_{\alpha}’’ r_{\beta}]$

where $\alpha,$
$\beta^{\prime}$ are ordered clockwise. All roots are positive in

However the classical Yang-Baxter equations are not exactly what we need for
the commutativity. Indeed, the coefficients of all $[r,r]$ -commutators in these equa-
tions are 1, but they are not always 1 in the commutators of $x_{v}^{(a,b)}$ . The simplest
example is $B_{2}$ . This discrepancy can be clarified only in the theory of quantum KZ
(see [15]). However it is not difficult to find the desired conditions without any ref-
erence to QKZ, as I did in my first paper devoted to the Knizhnik-Zamolodchikov
equations [10].

Proposition 6.2. For any pair $\{\alpha, \beta\}\in\Sigma_{+}$ such that the entire intersection of $\Sigma$

and ( $\alpha,$
$\beta\rangle$ is represented by one of the pictures above, we impose the conditions:

$0)A_{1}\times A_{1}$ case: (6.7),
1) $A_{2}$ case: (6.8),
2) $B_{2}$ case: (6.9) and $([r_{\alpha}, r_{\alpha+2\beta}]=0)$ ,
3) $G_{2}$ case: (6.10), $(\alpha\perp\beta^{\prime}\Rightarrow[r_{\alpha^{\prime}}, r_{\beta}]=0)$ , and (the $A_{2}$ relation (6.8) for the
long roots), where $\alpha,$ $\beta’\in\{\alpha,$ $\beta\rangle$ $\cap\Sigma_{+}$ .
Then the opemtors $X$ are pairwise commutative.

Let us consider a bit more special situation. For the same root system $\Sigma$ , we set

$x_{i}=\sum_{\alpha\in\Sigma_{+}}k_{\alpha}\nu_{\alpha}^{i}r_{\alpha}$
, (6.11)

where $k_{\alpha}=k_{\beta}$ if there exists $w\in W$ such that $ w(\alpha)=\beta$ (in other words, $k_{\alpha}=k_{\beta}$

if $(\alpha, \alpha)=(\beta, \beta))$ . We call such $k$ invariant.

Proposition 6.3. Let $\Sigma$ be a root system of rank $n$ . If a pair of positive roots $\alpha,$
$\beta$

is standard ($i.e$ . corresponds to one of the pictures above) in a $2D$ -subsystem of $\Sigma$ ,
which may be less then the complete intersection with ( $\alpha,$

$\beta\rangle$ , then the conditions
$0)A_{1}\times A_{1}$ case: (6.7), 1) $A_{2}$ case: (6.8),
2) $B_{2}$ case: (6.9), 3) $G_{2}$ case: (6.10)
are sufficient for the commutativity of the opemtors $x_{i}(i=1, \ldots, n)$ for arbitrary
invariant $k$ .
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6.2. Degenerate Hecke algebras. One may use the same definitions for $\{r_{\alpha}\}$

defined on all roots (positive and negative). Let us assume that $r$ satisfies the con-
ditions of Proposition 6.3 for positive roots. Then there are two natural extensions
of $r$ to all roots, where the relations (0-3) hold for any standard $\alpha,$

$\beta$ (positive or
not in $\Sigma$ ). The first is the extension by $0:r_{-\alpha}=0(\alpha\in\Sigma_{+})$ . The second is given
by $r_{-\alpha}=r_{\alpha}(\alpha\in\Sigma_{+})$ . One more extension exists for the $W$-invariant $r$ .

We need to suppose that the Weyl group $W$ acts on an algebra $\mathcal{R}$ containing
$\{r_{\alpha}\}$ provided the relations $w(r_{\alpha})=r_{w(\alpha)}(\alpha, w(\alpha)\in\Sigma_{+},$ $w\in W$ ). Such $r$ are
called $W$-invariant. Given a root $\beta\in\Sigma$ , we set $r_{\beta}=w(r_{\alpha})$ for any $w\in W$

and $\alpha\in\Sigma_{+}$ satisfying $ w(\alpha)=\beta$ . The definition does not depend on the particular
choice of $w$ and $\alpha$ . The group $W$ acts on all $\{r_{\alpha}|\alpha\in\Sigma\}$ by the same formulas as for
positive roots. We will call $W$-invariant $r$ satisfying the assumption of Proposition
6.3 for all roots invariant r-matrices.

Proposition 6.4. For an invariant r-matrix, we set

$x_{b}=\sum_{\alpha\in\Sigma_{+}}k_{\alpha}(b, \alpha)r_{\alpha(u)}$
, (6.12)

where $u\in R^{n}$ and $k_{\alpha}=k_{\beta}$ if $\exists w\in Ws.t$. $ w(\alpha)=\beta$ . Then

$[x_{b}, x_{b^{\prime}}]=0$ $(\forall b, b\in R^{n})$ , (6.13)
$s_{i}(x_{b})-x_{s_{i}(b)}=k_{\alpha_{i}}(b, \alpha_{i})(s_{i}(r_{\alpha_{i}})+r_{\alpha_{i}})$ . (6.14)

Proof. The relation (6.13) results readily from Proposition 6.3. As to (6.14), it
$followsfromtherelations_{i}(\Sigma_{+})=(\Sigma_{+}\backslash \{\alpha_{i}\})\cup\{-\alpha_{i}\}$ . $\square $

If $W\subset \mathcal{R},$ $w(a)=waw^{-1}$ for $w\in W$ for $a\in \mathcal{R}$ , and $s(r_{\alpha_{i}})+r_{\alpha;}=s_{i}$ , we get

$s_{i}x_{b}s_{i}-x_{s_{*}(b)}=k_{\alpha_{i}}(b, \alpha_{i})s_{i}$ . (6.15)

So we come back to the definition the degenerate Hecke algebra $\mathcal{H}_{\Sigma}$ :

Definition 6.1. The degenerate Hecke algebm $\mathcal{H}_{\Sigma}^{\prime}$ for $\Sigma$ is generated by

$\{s_{\alpha}(\alpha\in R),y_{b}(b\in P^{\vee})\}$

with the defining relations

$[x_{b},x_{b^{\prime}}]=0$ $(\forall b, b\in P^{\vee})$ , (6.16)
$s_{i}x_{b}-x_{s_{i}(b)}s_{i}=k_{\alpha_{i}}(b, \alpha_{i})$ , (6.17)

and those from the Weyl group.

Now we are able to construct quite a few interesting representations of $\mathcal{H}_{\Sigma}^{\prime}$

using various $r$-matrices. For instance, let us apply this machinery to establish the
compatibility and $W$-invariance of AKZ. Let us double the set of variables adding
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pairwise commutative $\{v_{a}(a\in P^{\vee})\}$ provided that $v_{a+b}=v_{a}+v_{b}(a, b\in P^{\vee})$ .
However, in contrast to $\{u_{a}\}$ , they will not commute with $W$ :

$wv_{\alpha}=v_{w(\alpha)}w(\alpha\in P^{\vee}, w\in W)$ .
We set

$r_{\alpha}^{o}=-(e^{v_{\alpha}}-1)^{-1}s_{\alpha}$ . (6.18)

This $r$-matrix is derived from the $R$-matrix

$R_{\alpha}=t+(t-t^{-1})(e^{v_{\alpha}}-1)^{-1}(1-s_{\alpha})$ , (6.19)

when $h\rightarrow 0(t=1+h)$ . It is easy to check that the latter does satisfy relations
(0-3) for $R$ above. The claim is due to Lusztig. There is a conceptual proof based
on the explicit formulas for the generators $\{T\}$ in the polynomial representation of
the affine He $c$ke algebra induced from the character $\{T_{i}-\rangle t, 0\leq i\leq n\}$ . Anyhow
$r^{o}$ satisfies Proposition 6.3.

Proposition 6.5. The elements

$x_{b}^{o}=\sum_{\alpha>0}k_{\alpha}(b, \alpha)r_{\alpha}^{o}$

$(b\in P^{\vee})$ (6.20)

satisfy the relations of the degenemte Hecke algebm $\mathcal{H}_{\Sigma}^{\prime}$ . The representation $\mathcal{H}_{\Sigma}^{\prime}\rightarrow$

$End(\mathbb{C}[e^{v_{a}}, a\in P^{\vee}])$ sending $w\mapsto w,$ $ x_{b}-\rangle$ $x_{b}^{o}$ is faithful.
Finally,

$\hat{r}_{\alpha}=\hat{r}_{\alpha}(u_{\alpha})=\frac{s_{\alpha}}{e^{u_{\alpha}}-1}+r_{\alpha}^{o}$ . (6.21)

It is an invariant $r$-matrix and moreover unitary:

$\hat{r}_{\alpha}(u_{\alpha})+s_{\alpha}\hat{r}_{\alpha}(-u_{\alpha})s_{\alpha}=0$ . (6.22)

This $r$ is nothing else but the $W$-extension of the intertwining operators of the
degenerate Hecke algebra, where the generators $\{T\}$ are taken in the “ polynomial”
representation $\mathbb{C}[e^{v_{a}}]$ .

Proposition 6.6. 1) The following system of partial differential equations

$\partial_{b}\Phi(u)=\sum_{\alpha>0}k_{\alpha}(b, \alpha)\hat{r}_{\alpha}\Phi(u)$
(6.23)

for $\hat{r}_{\alpha}$ from (6.21), $\Phi(u)\in \mathbb{C}[e^{v_{a}}]$ and invariant $\{k_{\alpha}\}$ is self-consistent and $W-$

invamant.
2) The $AKZ$ with the values in $\mathcal{H}_{\Sigma}^{\prime}$

$\frac{\partial\Phi}{\partial u_{i}}=(\sum_{\alpha\in\Sigma_{+}}k_{\alpha}\nu_{\alpha}^{i}\frac{s_{\alpha}}{e^{u_{\alpha}}-1}+x_{i})\Phi$ $(1 \leq i\leq n)$ (6.24)
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is self-consistent and W-invariant.

Here the $W$-invariance of (6.23) follows from (6.22). Recall that the system
$\partial_{b}\Phi(u)=A_{b}\Phi(u)(b\in P^{\vee})$ is said to be self-consistent if

$[\partial_{b}-A_{b}, \partial_{b^{\prime}}-A_{b^{\prime}}]=0$ $(b, b^{\prime}\in P^{\vee})$ . (6.25)

The invariance means that if $\Phi(u)$ is a solution so are $s_{i}\Phi(s_{i}(u))$ for all $i$ . The
second claim readily results from the first. Collecting all $r^{o}$ togeteher and replacing
them by $\{x\}$ , we get the AKZ in the representation $\mathbb{C}[e^{v_{a}}]$ , which is faithful.

6.3. Elliptic QMBP. Another application of the general theory of the classical $r-$

matrice $s$ will be a generalization of the elliptic quantum many-body problem from
[59] to arbitrary root systems. Olshanetsky and Perelomov introduced it for $GL_{n}$ .
Ochiai, Oshima and Sekiguchi in [58] generalized their construction to arbitrary
classical root systems. More exactly, they considered the quantum Hamiltonian in
the form

$H=\sum_{i=1}^{n}\partial_{\alpha_{i}}\partial_{i}+\sum_{\alpha>0}V(u_{\alpha})$ (6.26)

and deduced from the existence of the higher conservation laws (differential opera-
tors commuting with $H$) that the potential $V$ has to be the Weierstrass -function
or its degenerations. Arbitrary root systems were covered in [22]. We will reproduce
here the simplest variant of the construction from this paper.

Let us first recall the construction of the Calogero-Sutherland operators. We
keep the notation from the previos section. The root system $\Sigma(\in R^{n})$ is arbitrary.
We will use the same $u_{\alpha}=(u, \alpha)$ imposing the relation $s_{\alpha}u_{b}S_{\alpha}^{-1}=u_{s_{\alpha}(b)}$ , where
$s_{\alpha}\in W$ . So in this section they do not commute with $W$ .

Proposition 6.7. The operators

$\mathcal{D}_{b}=\partial_{b}-\sum_{\alpha\in\Sigma_{+}}k_{\alpha}(b, \alpha)(e^{u_{\alpha}}-1)^{-1}s_{\alpha}$
(6.27)

are pairwise commutative for $b\in P^{\vee}$ and satisfy the relations of the degenemte
affine Hecke algebm:

$s_{i}\mathcal{D}_{b}-\mathcal{D}_{s_{i}(b)}s_{i}=k_{i}(b, \alpha_{i})$ . (6.28)

Here $k$ is invariant: $k_{\alpha}=k_{\beta}$ if ( $\exists w\in W$ s.t. $ w(\alpha)=\beta$ ). The statement is
obvious since $r_{\alpha}^{o}=-(e^{u_{\alpha}}-1)^{-1}s_{\alpha}$ obey Proposition 6.3 and the relation

$r_{\alpha}^{o}+s_{\alpha}r_{\alpha}^{o}s_{\alpha}=s_{\alpha}$ . (6.29)

Then we proceeded in Section 3.4 as follows. Let $\mathbb{C}[x_{1}, \ldots, x_{n}]^{W}$ be the algebra
of $W$-invariant polynomials. We set

$\mathcal{L}_{p}=p(\mathcal{D}_{b_{1}}, \ldots, \mathcal{D}_{b_{n}})$ , (6.30)
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where $p\in \mathbb{C}[x_{1}, \ldots, x_{n}]^{W}$ . Since $w\mathcal{L}_{p}w^{-1}=\mathcal{L}_{p}$ the operators $L_{p}=\mathcal{L}_{p}|_{Sym}$ (re-
striction to the symmetric function) are pairwise commutative and $W$-invariant.
If $p_{2}=\sum_{i=1}^{n}x_{\alpha_{i}}x_{b_{i}}$ then

$L_{p_{2}}=\sum_{i=1}^{n}\partial_{\alpha;}\partial_{b_{i}}+\sum_{\alpha\in\Sigma_{+}}\frac{k_{\alpha}(1-k_{\alpha})(\alpha,\alpha)}{(e^{-\div}u-e^{-}u\#)^{2}}$ (6.31)

This operator is the Hamiltonian of the Sutherland model.
Proposition 6.3 can be readily extended to affine root systems provided the

convergence of the products of $D_{i}$ . The affine root system is the set

$\Sigma^{a}=\{[\alpha, k]\in R^{n+1}|\alpha\in\Sigma, k\in \mathbb{Z}\}$ , (6.32)
$\Sigma_{+}^{a}=\{[\alpha, k]|\alpha\in\Sigma, k\in \mathbb{Z}_{>0}\}\cup\{\alpha=[\alpha, 0]|\alpha\in\Sigma_{+}\}$ . (6.33)

The affine Weyl group $W^{a}$ is generated by the reflections $s_{\overline{\alpha}}(\tilde{\alpha}=[\alpha, k]\in R^{a})$

acting in $R^{n+1}$ :

$s_{\overline{\alpha}}([v, \xi])=[v, \xi]+2\frac{(\alpha,v)}{(\alpha,\alpha)}\tilde{\alpha}$ , (6.34)

where $v\in R^{n}$ and $\xi\in R$ .
The extended affine Weyl group $\overline{W}$ is generated by $W$ and the “translations”

corresponding to $b\in P^{\vee}=\oplus_{i=1}^{n}\mathbb{Z}b_{i}$ :

$b([v, \xi])=[v, -(b, v)+\xi]$ , (6.35)

where $v\times\xi\in R^{n+1}$ . On the space $R^{n+1},$ $W$ acts preserving $\xi$ . The group $\overline{W}$

contains $W^{a}$ generated by $W$ and $Q^{\vee}=\oplus_{i=1}^{n}\mathbb{Z}a_{i}$ for $a_{i}=\alpha_{i}^{\vee}=2\alpha_{i}/(\alpha, \alpha)$ . One
has:

$W^{b}=W\ltimes P^{\vee}$ , $W^{b}=\Pi\ltimes W^{a}$ , (6.36)

for the group $\Pi$ isomorpic to $P^{\vee}/Q^{\vee}$ .
Concerning the abstract theory, one starts with an $W$-invariant. nonaffine $r-$

matrix $r_{\alpha}$ and assume that $W$ acts on the algebra $\mathcal{R}$ which contains $\{r_{\alpha}\}$ , provided
the relations $b(r_{\alpha})=r_{\alpha}$ whenever $(b, \alpha)=0$ . This is sufficient to extend $r$ to a $\overline{W}-$

invariant affine $r$-matrix: $r_{[\alpha,\xi]}=b(r_{\alpha})$ for any $b\in P^{\vee}$ such that $(b, \alpha)=-\xi$ . The
natural setup here is that from Proposition 6.1. The additional conditions which
appear in this proposition to ensure the comutativity of {X} (the commutativity
of $r$ for orthogonal long roots in the case of $B_{2}$ , etc.) are exactly those which are
necessary to ensure the existence of an affine extension. This coincidence is not by
chance and can be explained in full in the difference (quantum) theory.

Once an affine $r$-matrix is given, we can introduce the operators $X$ and $x$ and
get a formal proof of their commutativity. The sums for these operators are infinite
so we need to provide the convergence to make it rigorous. Let us demonstrate
how it works for the elliptic QMB.
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We will define the double affine $Dunk\underline{l}$opemtors, $wh\underline{ich}$ are differential operators
with the coefficients from Funct $(\mathbb{C}^{n}, \mathbb{C}_{\infty}W)$ , where $\mathbb{C}_{\infty}W=\{\sum_{\tilde{w}\in\tilde{W}}c_{\overline{w}}\tilde{w}, c_{\overline{w}}\in \mathbb{C}\}$

consists of infinite sums in contrast to the standard group algebra $\mathbb{C}\overline{W}$ . For each
$b\in P^{\vee}$ ,

$\mathcal{D}_{b}=\partial_{b}-\sum_{\overline{\alpha}\in\Sigma_{+}^{a}}k_{\alpha}(e^{u_{\overline{\alpha}}}-1)^{-1}s_{\overline{\alpha}}$

, (6.37)

where $\tilde{\alpha}=[\alpha, m],$ $k_{\alpha}$ is an arbitrary $W$-invariant function on $\Sigma$ , and $e^{u_{\overline{\alpha}}}=e^{u_{\alpha}+m\eta}$

for a fixed $\eta\in \mathbb{C}$ (by definition).

Lemma 6.8. If ${\rm Re}\eta>0$ then the products of opemtors $\mathcal{D}_{c}$ are well-defined and
can be represented as infinite sums

$\mathcal{D}_{c_{1}}\ldots \mathcal{D}_{c_{k}}=\sum_{\tilde{w}\in W^{b}}\Psi_{\overline{w}}(u,\eta)\tilde{w}$
, (6.38)

where $\Psi_{\overline{w}}(u, \eta)$ are differential opemtors with the coefficients memmorphic in $\mathbb{C}^{n}\ni$

$v$ . Moreover, the absolute values of the coefficients of $\Psi_{\overline{w}}(u,\eta)$ are bounded point-
wise (apart from the singularities) by a $functionC(u, \eta)-\epsilon(u, \eta)^{l(\tilde{w})}$ , where $ 0\leq$

$\epsilon(u, \eta)<1,$ $C>0$ , and $l(\tilde{w})$ is the length of $\tilde{w}$ in $W$ with respect to the generators
$\{s_{i}, 0\leq i\leq n\}$ .

See [22] for the proof and the exact definition of the length. The condition
${\rm Re}\eta>0$ is replaced by a less exact inequality in [22], but the claim holds for all
positive ${\rm Re}\eta$ .

Theorem 6.9. If ${\rm Re}\eta>0$ then we have the following relations:

$[\mathcal{D}_{b},\mathcal{D}_{b}]=0$ , (6.39)
$s_{i}\mathcal{D}_{b}-\mathcal{D}_{s_{i}(b)}s_{i}=k_{i}(b, \alpha_{i})$ , (6.40)
$s_{0}\mathcal{D}_{b}-\mathcal{D}_{s_{\theta}(b)}s_{0}=-k_{\theta}(b,\theta)$ , (6.41)

where $\theta$ is the maximal root of $\Sigma$ and $s_{0}=s_{[-\theta,1]}\in W^{a}\subset\overline{W}$ .

For $p\in \mathbb{C}[x_{1}, \ldots, x_{n}]^{W}$ , we set

$\mathcal{L}_{p}=p(\mathcal{D}_{b_{1}}, \ldots, \mathcal{D}_{b_{n}})$ . (6.42)

Then $w\mathcal{L}_{p}w^{-1}=\mathcal{L}_{p}(w\in W^{b})$ and the operators $L_{p}=\mathcal{L}_{p}|_{Sym}$ are pairwise
commutative, i.e. $[L_{p}, L_{p}]=0$ . However now $|_{Sym}$ is the restriction to the $\overline{W}-$

invariant functions in contrast to the non-affine theory. More explicitly, if we have
$p(\mathcal{D}_{b_{1}}, \ldots , \mathcal{D}_{b_{n}})=\sum_{\overline{w}}\Psi_{\overline{w}}(u, \eta)\tilde{w}$ where $\Psi_{\overline{w}}(u, \eta)$ is the differential operator and
does not contain the elements from $\overline{W}$ , then we have

$L_{p}=\sum_{\tilde{w}}\Psi_{\overline{w}}(u, \eta)$
. (6.43)
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The convergence readily follows from the lemma. The coefficients of $L_{p}$ are $\tilde{W}-$

invariant functions.
For instance, if we put $p_{2}=\sum_{i=1}^{n}x_{\alpha_{i}}x_{b_{i}}$ , then

$L_{P2}=\sum_{i=1}^{n}\partial_{\alpha_{i}}\partial_{b_{i}}+\sum_{\alpha\in\Sigma_{+}}(a, \alpha)k_{\alpha}(k_{\alpha}-1)\tilde{\zeta}^{\prime}(u_{\alpha})$ , (6.44)

where

$\tilde{\zeta}(t)=\sum_{m=0}^{\infty}\frac{1}{e^{m\eta+t}-1}-\sum_{m=1}^{\infty}\frac{1}{e^{m\eta-t}-1},\tilde{\zeta}^{\prime}(t)=\frac{d\tilde{\zeta}(t)}{dt}$ . (6.45)

Note that

$\tilde{\zeta}(t+\eta)=\tilde{\zeta}(t)+1$ , $\tilde{\zeta}(t)+\tilde{\zeta}(-t)=-1$ , (6.46)

$-\tilde{\zeta}^{\prime}(t)+c=\wp(t;\Omega)=\frac{1}{t^{2}}+\sum_{\omega\in\Omega\backslash \{0\}}\{\frac{1}{(t-\omega)^{2}}-\frac{1}{\omega^{2}}\}$ (6.47)

for some constant $c$ . Here $\Omega=\{2\pi\sqrt{-1}\mathbb{Z}+\eta \mathbb{Z}\}$ is a lattice in $\mathbb{C}$ .
The above construction is more interesting when we consider the Dunkl oper-

ators with $(s_{\overline{\alpha}}-1)$ instead of $s_{\overline{\alpha}}$ . Still they are pairwise commutative. However
relation (6.41) is more complicated and the reduction to the $L$-operators is some-
what different. The latter is governed by the degenerate double affine Hecke algebra
with zero central charge. The resulting operators preserve the Looijenga space of
(formal) theta-functions of level $c=-kg$ for the dual Coxeter number $g$ (it is the
dot product $k\cdot h$ if $k$ has more than one component). See [22]. When $k=1$ (the
group case), we come to the relation $c+g=0$ coinciding with the the critical
level condition for the Kac-Moody algebras ( $c$ is the central charge). It obviously
indicates that double Hecke algebras are on the right track.

6.4. Double affine KZ. Continuing the main line of this course let us esatblish
the relations of the elliptic QMBP to KZ-equations. The commutativity of $u_{\alpha}$ (the
coordinates) with $\overline{W}$ and $m_{0}^{\prime}$ is resumed. We follow [22].

Definition 6.1. The O-level degenemte double affine Hecke $m_{0}$ is generated by
pairwise commutative $\{x_{b}\}$ and $W^{a}s$atisfying the relations

$Si^{X}b^{-x}s_{i}(b)iii$ , (6.48)
$s_{0}x_{b}-x_{s_{\theta}(b)}s_{0}=-k_{\theta}(b, \theta)$ , (6.49)

where $s_{0}=s_{[-\theta,1]}\in W^{a}$ .
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Theorem 6.10. The double affine $KZ$ (DAKZ)

$\partial_{b}(\Phi)=(\sum_{\overline{\alpha}\in\Sigma_{+}^{a}}k_{\alpha}(e^{u_{\overline{\alpha}}}-1)^{-1}s_{\overline{\alpha}}+x_{b})\Phi$
, (6.50)

is W-invariant and self-consistent. Here $\tilde{\alpha}=[\alpha,m],$ $k_{\alpha}$ is an arbitrary $W-$

invariant function on $\Sigma$ , and $e^{u_{\tilde{\alpha}}}=e^{u_{\alpha}+m\eta}$ for a fixed $\eta$ .

Let us consider (6.50) in the representation of $ffl_{0}^{\prime}$ induced from the character
$\{s_{i}\mapsto 1\}$ of $W^{a}$ . It is isomorphic to $\mathbb{C}[x_{1}, \ldots x_{n}]$ . We can reduce it furthermore
since the symmetric polynomials $p(x_{1}, \ldots x_{n})(\in \mathbb{C}[x_{1}, \ldots , x_{n}]^{W})$ are central in
$ffl_{0}^{\prime}$ . We fix $\lambda=(\lambda_{1}, \ldots\lambda_{n})\in \mathbb{C}^{n}$ and define $AKZ_{\lambda}$ as AKZ in the representation
$J_{\lambda}^{o}$ dual to $J_{\lambda}=\mathbb{C}[x_{1}, \ldots x_{n}]/((p(x)-p(\lambda))\forall p)$ . Here $p$ are symmetric. By dual
we mean $Hom(J, \mathbb{C})$ with the action of $m_{0}^{\prime}$ via the anti-involution preserving the
generators $s_{i},$ $x_{b}$ . It is similar to the considerations of Section 3.4. Because of the
definition of $J_{\lambda}^{o}$ , there is a natural $W^{a}$-invariant map tr : $J_{\lambda}^{o}\rightarrow \mathbb{C}$ dual to the
embedding $\mathbb{C}\rightarrow \mathbb{C}[x_{1}, \ldots , x_{n}]$ .
Theorem 6.11. The map $\Phi\mapsto\phi=tr(\Phi)$ is an isomorphism of the space of all
(local) solutions of $DAKZ_{\lambda}$ and the space of solutions of the eigenvalue problem
$ L_{p}\phi=p(\lambda)\phi$ for $p\in \mathbb{C}[x_{1}, \ldots x_{n}]^{W}$ .

The proof follows the same lines as in the non-affine case. We note that the
double affine KZ $c$an be defined for the central extension $m^{\prime}$ (non-zero level) of
$ffl_{0}^{\prime}$ as well as the double affine Dunkl operators. The algebra ffl is much more
interesting. However the $\overline{W}$-invariant $L$-operators can be constructed only for
$ffl_{0}^{\prime}$ , which eventually leads to the relation generalizing the criti $c$al level condition
in the Kac-Moody theory (see the Introduction). We consider the KZ via the
Kac-Moody algebras in the next sections.
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7. FACTORIZATION AND $r$-MATRICES

We will introduce the $r$-matrix KZ in this section closely connected with the
$r$-matrix Kac-Moody algebras defined in [7]. They are directly connected with the
interpretation of $r$ matrices via the factorization of the Kac-Moody algebras. The
basic trigonometric $r$ will be considered.

7.1. Basic trigonometric $r$-matrix. Let us start with the following example.

Example 7.1. We set
$V=\mathbb{C}_{N}^{\otimes n}=\frac{n}{\mathbb{C}^{N}\otimes\cdots\otimes \mathbb{C}^{N}}$

and

$r(x)=\frac{1}{2}\coth(\frac{x}{2})P+\frac{1}{2}\sum_{1\leq l<m\leq N}(e_{lm}\otimes e_{ml}-e_{ml}\otimes e_{lm})+D$ . (7.1)

Here $\coth(x)=(e^{x}+e^{-x})/(e^{x}-e^{-x}),$ $P=\sum_{1\leq l,m\leq N}e_{lm}\otimes e_{ml}$ for the standard
generators $\{e_{ab}\}$ of End $(\mathbb{C}^{N})$ with the entries $\delta_{li}\delta_{mj},$ $D$ is any diagonal matrix
$(D=\sum c_{lm}e_{ll}\otimes e_{mm})$ . So the values of $r$ belong to End $(\mathbb{C}^{N}\otimes \mathbb{C}^{N})$ . Note that $P$

is the permutation matrix: $P(v_{1}\otimes v_{2})=v_{2}\otimes v_{1}$ .
We put $r^{ij}=r(u_{i}-u_{j})^{(i,j)}$ where

$c^{(i,j)}=\sum 1\otimes\cdots\otimes ai\otimes\cdots\otimes jb\otimes\ldots 1$ if $C=\sum a\otimes b$ (7.2)

for any matrices $\{a, b\}$ . Note that $r^{21}=(r(u_{2}-u_{1}))^{(2,1)}$ . The following relations
can be verified directly:

$[r^{ij}, r^{ik}+r^{jk}]-[r^{ik}, r^{kj}]=0$ , (7.3)
$[r^{ij}, r^{kl}]=0,$ $r^{ij}+r^{ji}=D^{(i,j)}+D^{(j,i)}$ , (7.4)

for pairwise distinct indices $i,j,$ $k,$ $l$ ( $r^{kj}$ is not a misprint!).
When $D^{(i,j)}+D^{(j,i)}=0$ we get the relations

$[r^{ij}, r^{ik}+r^{jk}]+[r^{ik}, r^{jk}]=0$ , (7.5)

which are nothing else but the assumptions of Proposition 6.3 for the root system
$A_{n-1}$ (the pairs $\{ij\}$ can be identified with the roots). This r-matrix is invariant
and unitary. So we can introduce the corresponding KZ-equation.

Identifying $P^{(i,j)}$ with the transpositions $s_{ij}$ we can represent it in the form
2.23 from Section 2.2 (here we use $u$ instead of $v$ ). The formulas for the operators
$x_{i}$ are straightforward. They involve $D$ . So we arrive at a representation of the
degenerate affine Hecke algebra $\mathcal{H}_{n}^{\prime}$ of type $GL_{n}$ in $V$ . Any weight subspaces of $V$

with respect to the standard action of $\mathfrak{g}\mathfrak{l}_{N}$ are $\mathcal{H}_{n}^{\prime}$-submodules. Actually it is not
necessary to impose the realtion $D^{(i,j)}+D^{(j,i)}=0$ . One can define KZ for any $D$ .
We are coming to this.
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Let us generalize this example to an arbitrary simple finite dimensional Lie
algebra $\mathfrak{g}$ (rank$=l$ ) over $\mathbb{C}$ . Let $\Sigma=\{\alpha\}\subset R^{l}$ be the root system associated with
$\mathfrak{g}$ , $( , )$ the $W$-invariant inner product on $R^{l}$ normalized by the condition $(\theta, \theta)=2$

for the maximal root $\theta$ with respect to the simple roots $\alpha_{1},$ $\ldots\alpha_{l}$ .
We choose nonzero

$e_{\alpha}\in \mathfrak{g}_{\alpha},$ $f_{\alpha}\in \mathfrak{g}_{-\alpha},$ $\alpha\in\Sigma_{+}$ , (7.6)

provided the relations

$[h_{\alpha}, e_{\beta}]=(\alpha, \beta)e_{\beta},$ $[h_{\alpha}, f_{\beta}]=-(\alpha, \beta)f_{\beta}$ , (7.7)

for $h_{\alpha}=\frac{(\alpha,\alpha)}{2}[e_{\alpha}, f_{\beta}]$ . (7.8)

The elements $\{e_{\alpha}\},$ $\{f_{\alpha}\}$ are linearly independent and generate the Borel subal-
gebras b\pm respectively. The elements $h_{m}=h_{\alpha_{m}}$ ($m=1,$ $\ldots$ , l) form a basis in
the Cartan subalgebra $\mathfrak{h};h_{\alpha}=\sum_{m=1}^{l}(\alpha, b_{m})h_{m}$ for the fundamental coweights $b_{m}$

$((b_{m}, \alpha_{n})=\delta_{mn})$ .
Let us connect the above form on $R^{l}$ with the the standard invariant $fom(f, f^{\prime})$

on $f\in \mathfrak{g}\ni f^{\prime}$ (by invariant we mean that $([f, g], h)=(f, [g, h])$ . All invariant forms
are proportional. The standard normalization is as follows:

$(h_{\alpha}, h_{\beta})=(\alpha, \beta)$ , (7.9)

$(e_{\alpha}, f_{\beta})=\frac{2}{(\alpha,\alpha)}\delta_{\alpha\beta}$ , (7.10)

$(e_{\alpha}, e_{\beta})=0=(f_{\alpha}, f_{\beta})$ . (7.11)

See [42]. In terms of this form, the definition of $\{h_{\alpha}\}$ does not depend on the
particular choice of $e_{\alpha},$

$f_{\alpha}$ in the corresponding weight spaces:

$h_{\alpha}=\frac{[e_{\alpha},f_{\alpha}]}{(e_{\alpha},f_{\alpha})}$ . (7.12)

Let us connect the standard form with the Killing form $(f, f^{\prime})_{K}=Tr$ ( $ad$fad $f^{\prime}$ )
for $f,$ $f^{\prime}\in \mathfrak{g}$ :

$(f, f^{\prime})_{K}=(2g)(f, f’),$ $g=1+(\rho, \theta)$ (the dual Coxeter number), (7.13)

where $\rho=\frac{1}{2}\sum_{\alpha\in\Sigma_{+}}\alpha$ .
We set

$\Omega=\sum_{a}I_{a}\otimes I_{a}^{*}\in \mathfrak{g}\otimes \mathfrak{g}$
, (7.14)

for a basis $\{I_{a}(a=1, \ldots, \dim \mathfrak{g})\}$ of $\mathfrak{g}$ and its dual $\{I_{a}^{*}\}:(I_{a}, I_{a}^{*},)=\delta_{a,a^{\prime}}$ . The
definition of $\Omega$ does not depend on the choice of the basis $\{I_{a}\}$ . Using the canonical
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generators:

$\Omega=\sum_{m=1}^{n}h_{m}\otimes h_{m}^{*}+\sum_{\alpha\in R+}\frac{1}{(e_{\alpha},f_{\alpha})}(e_{\alpha}\otimes f_{\alpha}+f_{\alpha}\otimes e_{\alpha})$ , (7.15)

where $\{h_{m}^{*}=h_{b_{m}}\}$ are dual to $\{h_{m}\}$ .
Let $A$ : $\mathfrak{h}\rightarrow \mathfrak{h}$ be a linear map. The basic trigonometric r-matrix is given by

the formula:

$r(x)=\frac{1}{2}\coth(\frac{x}{2})\Omega+\frac{1}{2}\sum_{\alpha\in R+}\frac{f_{\alpha}\otimes e_{\alpha}-e_{\alpha}\otimes f_{\alpha}}{(e_{\alpha},f_{\alpha})}+\frac{1}{2}\sum_{m=1}^{l}A(h_{i})\otimes h_{i}^{*}.(7.16)$

It takes values in $\mathfrak{g}\otimes \mathfrak{g}$ . We use the same notation $r^{ij}=r(u_{i}-u_{j})^{(i,j)},$ $(a\otimes b)(i,j)=$

$1\otimes\cdots\otimes ma\otimes\cdots\otimes jb\otimes\ldots 1$ for $U(\mathfrak{g})^{\otimes n},$ $U(\mathfrak{g})$ is the universal enveloping algebra of
$\mathfrak{g}$ . Generalizing Example 7.1 we arrive at

Proposition 7.1.

$[r^{ij}, r^{ik}+r^{jk}]-[r^{ik}, r^{kj}]=0,$ $[r^{ij}, r^{lm}]=0$ , (7.17)
$r^{ij}+r^{ji}=\Theta^{ij},$ $\Theta=(1/2)\sum_{m=1}^{l}(A(h_{m})\otimes h_{m}^{*}+h_{m}^{*}\otimes A(h_{m}))$ (7.18)

for pairwise distinct indices ( $l$ is not the rank).

7.2. Factorization and $r$-matrices. We will establish the equivalence of $r-$

matrices and Lie subalgebras complementary to the standard holomorphic subal-
gebra in a Kac-Moody algebra.

In this section we fix a simple Lie algebra $\mathfrak{g}$ , an open neighbourhood $U_{0}(\subset \mathbb{C})$

of $0$ , and the set of pairwise distinct points $u_{1},$ $\ldots,u_{n}\in U_{0}$ such that $u_{i}-u_{j}\in U_{0}$

$(1\leq i\neq j\leq n)$ .

Definition 7.1. Let $r(x)$ be a holomorphic $\mathfrak{g}\otimes \mathfrak{g}$-valued function of $x\in U_{0}\backslash \{0\}$ .
We call $r(x)$ a quasi-unitary r-matrix if:
$(\alpha)r(x)-\frac{\Omega}{x}$ is holomorphic at $0$ ,
$(\beta)[r^{12}, r^{13}+r^{23}]=[r^{12},r^{32}]$ ,
$(\gamma)r^{12}+r^{21}=\Theta,$ $d(\Theta)/dx=0$ .
It is called unitary if $r^{12}+r^{21}=0$ .

Here $r^{ij}=r(x_{i}-x_{j})^{(i,j)}$ for three independent variables $x_{1},$ $x_{2},$ $x_{3}(x=x_{1}-x_{2})$ .
For instance, $r^{21}=(r(-x))^{(2,1)}$ . The relations $(\alpha, \beta,\gamma)$ must be fulfilled whenever
$x_{i}-x_{j}\in U_{0}\backslash \{0\}$ . The element $\Omega$ is from (7.14).
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From now on we set $x_{i}=x-u_{i}$ ,

$\tilde{\mathfrak{g}}^{i}=\mathfrak{g}((x_{i}))=\{\sum_{k\geq p}g_{k}x_{i}^{k}|p\in \mathbb{Z}, g_{k}\in \mathfrak{g}\}$
, (7.19)

$\tilde{\mathfrak{g}}_{0}^{i}=\mathfrak{g}[[x_{i}]]=\{\sum_{k\geq 0}g_{k}x_{i}^{k}|g_{k}\in \mathfrak{g}\}$
, (7.20)

$\tilde{\mathfrak{g}}=\prod_{i=1}^{n}\tilde{\mathfrak{g}}^{i}$ , $\tilde{\mathfrak{g}}_{0}=\prod_{i=1}^{n}\tilde{\mathfrak{g}}_{0}^{i}$ . (7.21)

All these are Lie algebras:

$[f, g]_{\tilde{\mathfrak{g}}}=([f^{1},g^{1}], \ldots[f^{n},g^{n}])$ for $f=(f^{1}, \ldots f^{n}),$
$g=(g^{1}, \ldots , g^{n})\in\tilde{\mathfrak{g}}(7.22)$

where the components $f^{i},$ $g^{i}$ of $f,$ $g$ are formal series in $x_{i}$ ; their commutators are
coefficient-wise. The Lie algebras $\tilde{\mathfrak{g}},\tilde{\mathfrak{g}}_{0}$ are counterparts of the groups of all and
integral ad\‘eles in arithmetics.

The central extension $\hat{\mathfrak{g}}=\tilde{\mathfrak{g}}\oplus \mathbb{C}c$ ( $c$ is the center element) of $\tilde{\mathfrak{g}}$ is introduced as
follows:

$[f+\xi c,g+\zeta c]_{\hat{\mathfrak{g}}}=[f, g]_{\overline{\mathfrak{g}}}+{\rm Res}(\frac{df}{dx},g)c$ , (7.23)

${\rm Res}(\frac{df}{dx},$ $g)=\sum_{i=1}^{n}{\rm Res}_{x_{i}}(\frac{df^{i}}{dx_{i}},$ $g^{i})dx_{i}$ , (7.24)

where ${\rm Res}_{x_{i}}(\sum_{k}f_{k}x_{i}^{k})dx_{i}=f_{-1}$ .

Definition 7.2. The Kac-Moody algebra $\hat{\mathfrak{g}}$ is called factorized if it is endowed
with a subspace, a factorizing subalgebm, $\tilde{\mathfrak{g}}_{r}\subset\tilde{\mathfrak{g}}$ such that
(a) $\tilde{\mathfrak{g}}_{r}\oplus\tilde{\mathfrak{g}}_{0}=\tilde{\mathfrak{g}}$ .
(b) $\tilde{\mathfrak{g}}_{r}$ is a Lie subalgebra of $\tilde{\mathfrak{g}}$ .
(c) $\tilde{\mathfrak{g}}_{r}$ is a Lie subalgebra of $\hat{\mathfrak{g}}$ .

Given an $r$-matrix $r(x)$ with values in $\mathfrak{g}\otimes \mathfrak{g}$ , let us construct the corresponding
factorizing subalgebra $\tilde{\mathfrak{g}}_{r}$ . For $f=$ $(f^{1}, \ldots , f^{n})\in\tilde{\mathfrak{g}}$ , we define a function of $x$ in a
certain neighborhood of zero $\tilde{U}_{0}\subset U_{0}$ :

$\overline{f}(x)={\rm Res}(r(x-y), 1\otimes f)dy=\sum_{i=1}^{n}{\rm Res}_{y_{i}}(r(x_{i}-y_{i}), 1\otimes f^{i}(y_{i}))dy_{i}$ , (7.25)

where $(a\otimes b, 1\otimes c)=(b, c)a(a, b, c, \in \mathfrak{g})$ . Let $f_{r}^{i}=f_{r}^{i}(x_{i})$ be the expansion of $\overline{f}(x)$

at $u_{i}(x_{i}=x-u_{i})$ . We set

$\overline{\mathfrak{g}}=\{\overline{f}\},\tilde{\mathfrak{g}}_{r}=\{f_{r}=(f_{r}^{1}(x_{1}), \ldots, f_{r}^{n}(x_{n})|f\in\tilde{\mathfrak{g}}\},$ . (7.26)
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Theorem 7.2. If $r(x)$ is a $quasi-unitary$ r-matnx, then $\overline{\mathfrak{g}}$ is a Lie algebm and $\tilde{\mathfrak{g}}_{r}$

is a factorizing subalgebm of $\tilde{\mathfrak{g}}$ . Vice versa, every factorizing subalgebm $\tilde{\mathfrak{g}}_{r}$ which
is invarzant with respect to the differentiation $d/dx$ is associated to a quasi-unitary
r-matrix defined on some neighborhood $\tilde{U}_{0}$ of $0$ . The corresponding $r$ is unique:

$r(x-u_{i})=\sum_{a}\overline{(\frac{I_{a}}{x_{i}})}(x)\otimes I_{a}^{*}$ , (7.27)

where $i$ can be arbitmry, $\{I_{a}\}$ is a basis of $\mathfrak{g}$ , and $f=f_{r}+f_{0}$ is the factorization
with respect to the decomposition $\tilde{\mathfrak{g}}=\tilde{\mathfrak{g}}_{r}\oplus\tilde{\mathfrak{g}}_{0}$ .

The proof is based on the relation

$[f_{r}, g_{r}]+[f,g]_{r}=[f_{r}, g]_{r}+[f, g_{r}]_{r},$ $f,$ $g\in\tilde{\mathfrak{g}}$ , (7.28)

following from (b) by considering the principal parts of all four terms. The coinci-
dence of the principal parts is sufficient because of (a). We note that (7.28) results
in the (equivalent) equality $[f_{0}, g_{0}]+[f, g]_{0}=[f_{0}, g]_{0}+[f, g_{0}]_{0}$ . Expressing $f_{r},$

$g_{r}$ in
terms of $r$ one comes to $(\beta)$ . Here it is not necessary to assume that $r$ depends on
the difference (see [7, 8]). The interpretation of $r$ as a projection was formalized by
Manin (see [28]) in the definition of the so-called Manin triple, and by Semenov-
Tjan-Shanskii [64]. They considered abstract (“constant”) $r$ . In [7] it was done
for $r$ depending on the parameter, which resulted in a fruitful theory with many
examples. This paper was stimulated by [4], where the unitary case was considered
in detail. Note that the definition of the classical $r$-matrix appeared for the first
time in paper [50].

Arbitrary $\tilde{\mathfrak{g}}_{r}$ satisfying condition (a) of Definition 7.1 can be obtained by the
construction from (7.25) and (7.26) for a certain series $r(x, y)$ defined on the square
of a formal neighborhood of the set $\{u_{i}\}$ . If $r(x, y)$ depends on the difference, i.e.
$r(x, y)=r(x-y)$ , then condition $(\alpha)$ is fulfilled. For such $r$ , the relations $(\beta)$ and
(b) are equivalent (see ibid.). Moreover, imposing $(\alpha, \beta)$ (or $(a,b)$ ), the remaining
relations $(\gamma)$ and (c) are also equivalent. See $[8, 13]$ . Let us consider some examples.

Example 7.2. The Yang $r$-matrix is given by the formula $r(x)=\frac{\Omega}{x}$ for $\Omega$ defined
in (7.14). It is unitary: $r^{12}+r^{21}=0$ . The corresponding $\tilde{\mathfrak{g}}_{r}$ consists of the
sets $(f_{r}^{1}(x_{1}), \ldots, f_{r}^{n}(x_{n}))\in\tilde{\mathfrak{g}}$ of expansions of $\overline{f}$ at $\{u_{i}\}$ from the Lie algebra $\overline{\mathfrak{g}}$

of rational $\mathfrak{g}$-valued function on $\mathbb{P}^{1}$ with poles at $\{u_{1}\ldots u_{n}\}$ and the normalizion
condition $f(\infty)=0$ . We have

$\overline{(\frac{g}{x_{i}})}=\frac{g}{x-u_{i}}$ (7.29)

for any $i,$ $g\in \mathfrak{g},$ where $\overline{(\cdot)}$ is defined in (7.25).
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Example 7.3. Given a linear map $A$ : $\mathfrak{h}\rightarrow \mathfrak{h}$ , let us describe the factorizing
subalgebra associated to $r$ from (7.16):

$r(x)=\frac{1}{2}\coth(\frac{x}{2})\Omega+\frac{1}{2}\sum_{\alpha\in R+}\frac{f_{\alpha}\otimes e_{\alpha}-e_{\alpha}\otimes f_{\alpha}}{(e_{\alpha},f_{\alpha})}+\sum_{n=1}^{n}A(h_{i})\otimes h_{i}^{*}$ . (7.30)

First of all,

$\overline{\frac{(\frac{f_{\alpha}}{x_{i}})}{(\frac{h}{x_{i}})}}=+A(h)(h\in \mathfrak{h})=\frac{e^{x./2}}{\frac{1}{},2\coth(\frac{x_{i}}{2})he^{x./2}-e^{-x.\cdot/2}}f_{\alpha},\overline{(\frac{e_{\alpha}}{x_{i}})}=\frac{e^{-x./2}}{e^{x./2}-e^{-x./2}}e_{\alpha}$

,
$(7.32)(7.31)$

The Lie algebra $\tilde{\mathfrak{g}}_{r}$ consists of $(f_{r}^{1}(x_{1}), \ldots , f_{r}^{n}(x_{n}))\in\tilde{\mathfrak{g}}$ , where $f_{r}^{i}(x_{i})\in\tilde{\mathfrak{g}}^{i}$ are
the expansions of $\mathfrak{g}$-valued functions $\overline{f}(x)$ such that
(1) they are rational in terms of $v=e^{x}$ on $v\in \mathbb{P}^{1}$ ,
(2) have poles at $v_{1}=e^{u_{1}},$

$\ldots,$
$v_{n}=e^{u_{\mathfrak{n}}}$ only,

(3) $\overline{f}(v=0)\in b_{+},\overline{f}(v=\infty)\in b_{-}$ , and
(4) $(\overline{f}(O)+\overline{f}(\infty))|_{\mathfrak{h}}=A((\overline{f}(0)-\overline{f}(\infty))|_{\mathfrak{h}})$ ,
where $b+=\langle e_{\alpha}, \alpha\in\Sigma_{-}\rangle$ and $\mathfrak{y}_{-}=(f_{\alpha},$ $\alpha\in\Sigma_{+}\rangle$ , $\mathfrak{h}$ is the Cartan subalgebra.

The simplest way to check that $r$ is quasi-unitary is of course based on this
interpretation. Indeed, the functions satisfying conditions (1-4) obviously form a
Lie algebra. So we arrive at (7.28), which readily results in $(\beta)$ .

Let us introduce the $r$-matrix KZ. Given a quasi-unitary $r$ , let

$\rho=\sum_{a}\rho_{a}I_{a}\in U(\mathfrak{g})$ for $\{\Omega/x-r(x)\}(x=0)=\sum_{a}\rho_{a}\otimes I_{a}$ , (7.33)

where $U(\mathfrak{g})$ is the enveloping algebra of $\mathfrak{g}$ .

Theorem 7.3. Setting

$R_{i}=\rho^{i}-\sum_{j(\neq i)}r^{ji},$
$1\leq j\leq n$ , for $1\leq i\leq n$ , (7.34)

the following system of the differential equations for a $U(\mathfrak{g})$ -valued function $\Phi(u)$

is self-consistent:
$\kappa\partial(\Phi)/\partial u_{i}=.R_{i}\Phi,$ $1\leq i\leq n$ . (7.35)

for all $\kappa=k^{-1}$ .

The theorem can be checked by a straightforward calculation using the relation

$[r^{12}, \rho^{1}]+[\rho^{2}, r^{21}]=[r^{12},r^{21}]$ . (7.36)
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Recall that $\rho^{i}=\rho^{(i)}$ is $\rho$ considered in $i$-th component of $U(\mathfrak{g})^{\otimes n}$ . The calculation
is more transparent for unitary $r$ . The last relation becomes $[r^{12}, \rho^{1}+\rho^{2}]=0$ in
this $c$ase. Considering the basic trigonometric $r$ from (7.16),

$\rho=h_{\rho}-\frac{1}{2}\sum_{m=1}^{l}A(h_{m})h_{m}^{*},$
$\rho=\frac{1}{2}\sum_{\alpha\in\Sigma_{+}}\alpha$ . (7.37)

So $\rho=(1/2)\sum_{\alpha>0}h_{\alpha}\in \mathfrak{h}$ when $A=0$ .

7.3. Comments. If $\tilde{\mathfrak{g}}_{r}$ satisfies conditions (a) and (b), then (c) is equivalent to
the relation ${\rm Res}(\frac{df}{dx},$ $g)=0$ for all $f,$ $g\in\tilde{\mathfrak{g}}_{r}$ . The suffix $r$ stays for $r$-matrix”
or “rational”. The latter does not mean that this subalgebra (a counterpart of
the group of principal ad\‘eles in arithmetics) must be associated with an algerbraic
curve. However in all known examples it is so. One can always find a Lie algebras
of rational $\mathfrak{g}$-valued functions on $\mathbb{P}^{1}$ or an elliptic curve (containing $U_{0}$ as an open
subset) such that $\tilde{\mathfrak{g}}_{r}$ is formed by expansions of these functions at $u_{1},$ $\ldots u_{n}$ . We
conjecture that it is true for all $r$ . More generally, let us suppose that the spaces

$\tilde{\mathfrak{g}}/(\tilde{\mathfrak{g}}_{r}+\tilde{\mathfrak{g}}_{0}),\tilde{\mathfrak{g}}_{r}\cap\tilde{\mathfrak{g}}_{0}$ (7.38)

are finite dimensional. Such $\tilde{\mathfrak{g}}_{r}$ are $\mathbb{C}$-variants of discrete subgroups of ad\‘ele groups
with quotients of finite volume in arithmetics.

Conjecture 7.4. There exists a complete algebraic curve $C$ over $\mathbb{C}$ containing $U_{0}$

such that for the Lie algebm $\tilde{\mathfrak{g}}_{C}$ of the expansions at $u_{1},$ $\ldots u_{n}$ of all $\mathfrak{g}$ -valued
rational functions on $C$ with the poles apart from this set both spaces

$(\tilde{\mathfrak{g}}_{r}+\tilde{\mathfrak{g}}_{C})/\tilde{\mathfrak{g}}_{r},$ $(\tilde{\mathfrak{g}}_{r}+\tilde{\mathfrak{g}}_{C})/\tilde{\mathfrak{g}}_{C}$ (7.39)

are finite dimensional.

Its counterpart in arithmetics was proved by Margulis. It holds when either the
number of points $u$ or the rank of the arithmetic group is bigger than 1. It seems
that we do not need this restriction in the Kac-Moody setup. As to the special
( $r$-matrix) conjecture, see paper [4] (the unitary case) and $[7, 8]$ . Almost nothing
is known about the general conjecture (any curves).

We note that unitary $r$-matrices $(r^{12}+r^{21}=0)$ have the following interpretation
in terms of $\tilde{\mathfrak{g}}_{r}$ :

$\{f\in\tilde{\mathfrak{g}}|{\rm Res}(f,\tilde{\mathfrak{g}}_{r})dx=0\}=\tilde{\mathfrak{g}}_{r}$ .
It looks similar to condition (c) but of course does not coincide with it. In (c), $f$

must be replaced by $df/dx$ .
An interesting problem concerns the independence of condition (c) in the defi-

nition of the factorizing subalgebra.

Conjecture 7.5. The subspace $\tilde{\mathfrak{g}}_{r}$ satisfying $(a,b)$ is a Lie subalgebm of $\hat{\mathfrak{g}}$ for a
proper choice of the central extension.
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All central extensions are described by 2-cocycles on $\tilde{\mathfrak{g}}$ (see [42]). I expect that
the conjecture is true even in the setup of Conjecture 7.4. Let me give an outline of
the proof in the $r$-matrix case. I need to reproduce the part of the paper [8] devoted
to a generalization of the $\tau$-function introduced by Date, Jimbo, Kashiwara, and
Miwa in paper [25], and a construction due to Kac, Peterson from [43].

The definition of the r-matrix $\tau$ -function uses that the group $\tilde{\mathcal{G}}_{0}=\exp(\tilde{\mathfrak{g}}_{0})$ has
a natural structure of an infinite dimensional algebraic variety. Given $f\in\tilde{\mathfrak{g}}$ , let
us define the corresponding vector field $D_{f}$ on this variety. It means a formula
for $\Phi^{-1}D_{f}(\Phi)\in\tilde{\mathfrak{g}}_{0}$ for the generic element $\Phi\in\tilde{\mathcal{G}}_{0}$ The coefficients of $\Phi$ in the
expansions with respect to $x_{1},$ $\ldots x_{n}$ are the coordinates of $\tilde{\mathcal{G}}_{0}$ So equating both
sides of the following relation we get the complete list of $D_{f}$ -derivatives of these
coefficients and a differentiation of Funct $(\tilde{\mathcal{G}}_{0})$ :

$\Phi^{-1}D_{f}(\Phi)=(\Phi f\Phi^{-1})_{0}$ , where $\tilde{\mathfrak{g}}\ni f=f_{0}+f_{r},$ $f_{0}\in\tilde{\mathfrak{g}}_{0},$ $f_{r}\in\tilde{\mathfrak{g}}_{r}$ , (7.40)

is the factorization with respect to $\tilde{\mathfrak{g}}_{r}$ , by $\Phi f\Phi^{-1}$ we mean the adjoint action. Note
that $\Phi^{-1}D_{g}(\Phi)=g$ for $g\in\tilde{\mathfrak{g}}_{0}$ , so such $D_{g}$ are left-invariant fields on the group $\tilde{\mathfrak{g}}_{0}$ .

A simple straightforward calculation based on the very definition of the factor-
ization (see (7.28)) gives that

$D_{[f,f^{\prime}]}=[D_{f}, D_{f}]$ on Funct $(\tilde{\mathcal{G}}_{0})$ . (7.41)

Then we introduce the $\tau$-function as the infinite wedge product $\tau=\bigwedge_{g}D_{g}$ of all
vector fields $D_{g}$ where $g$ runs over the following natural basis of $\tilde{\mathfrak{g}}_{0}$ :

$\{I_{A}^{K}=((I_{a_{1}}x_{1}^{k_{1}}), \ldots (I_{a_{n}}x_{n}^{k_{n}}))\}$

Here $\{I_{a}\}$ is a fixed basis of $\mathfrak{g},$ $A=(a_{1}, \ldots a_{n}),$ $K=(k_{1}, \ldots k_{n}),$ $k_{i}\geq 0$ . So $\tau$ is
a section of $the\wedge^{top}\mathcal{T}$ for the tangent bundle $\mathcal{T}$ of $\tilde{\mathcal{G}}_{0}$ .
Theorem 7.6. The commutators $\hat{D}_{f}(\tau)=[D_{f}, \tau]$ are well-defined for $f\in\tilde{\mathfrak{g}}$ ,

$\hat{D}_{f}(\tau)=({\rm Res}(\Phi^{-1}d\Phi, f)_{K}-{\rm Res}(\Phi f\Phi^{-1}, \rho)_{K}dx)\tau$ , (7.42)

where $\rho\in\prod_{i=1}^{n}\mathfrak{g}$ for quasi-unitary $r$ (see [8], $\rho=0$ for quite a few $r$), and

$[\hat{D}_{f},\hat{D}_{f^{\prime}}]=\hat{D}_{[f)f^{\prime}]}+(2g){\rm Res}(\frac{df}{dx},$ $f^{\prime})$ on Funct $(\tilde{\mathcal{G}}_{0})\tau$ (7.43)

for the dual Coxeter number $g$ .

Thus the central extension of $\tilde{\mathfrak{g}}$ emerges naturally for the adjoint action of $\{D\}$

in $\wedge^{top}\mathcal{T}$ . Here $2g$ appears because it is the ratio of the Killing form and the
standard invariant form. Formula (7.42) is an analogue of that from [25]. I also
establish in [8] that $\tau$ coincides with the coinvariant (the next section) defined for
the basic representation of $\hat{\mathfrak{g}}$ with the central charge $2g$ . The basic representations
are irreducible quotients of the Weil modules for zero starting representations of $\mathfrak{g}$ .
A generalization of this relation and formula (7.43) to the coinvariants of arbitrary
Verma and Weil modules does not seem difficult.
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Returning to (c), this condition is not necessary in the theorem. Moreover, an
arbitrary central extensions of $\tilde{\mathfrak{g}}$ can be obtained for a proper choice of the basis in
$\tilde{\mathfrak{g}}_{0}$ . We have arrived at the standard cocycle because our basis $\{I_{A}^{K}\}$ was invariant
with respect to the differentiation $d/dx$ . So, given $\tilde{\mathfrak{g}}_{r}$ , it is sufficient to find a
basis which is “compatible” with the adjoint action of this Lie subalgebra. Then
the commutators of the differentiations $D_{f}$ for the “rational” $f$ will contain no
central additions. I believe it is possible. As to the theory of KZ, it would give the
definition of the $r$-matrix KZ for the most general clas $s$ of $r$-matrices, which are
not supposed to depend on the differences.
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8. COINVARIANT AND INTEGRAL FORMULAS

We introduce the $r$-matrix coinvariant, establish that it satisfies the correspond-
ing KZ when differentiated with respect to the Sugawara elements $L_{-1}$ , and prove
the integral formulas for basic KZ. Last we discuss the KZB. We keep the notation
from the previous section.

8.1. Coinvariant. Let $V=V_{1}\otimes\cdots\otimes V_{n}$ for $\mathfrak{g}$-modules $V_{1},$ $\ldots V_{n}$ . It has a
natural structure of a $\mathfrak{g}$-module and a $\tilde{\mathfrak{g}}_{0}$-module:

$g(v_{1}\otimes v_{2}\otimes\cdots\otimes v_{n})=g^{1}(0)v_{1}\otimes v_{2}\otimes\cdots\otimes v_{n}+$

$v_{1}\otimes g^{2}(0)v_{2}\otimes\cdots\otimes v_{n}+\cdots+v_{1}\otimes v_{2}\otimes\cdots\otimes g^{n}(O)v_{n}$ , (8.1)

where $g=(g^{1}, \ldots g^{n}),$
$g^{t}=\sum_{m\geq 0}g_{m}^{i}x_{i}^{m},$

$g^{i}(0)=g_{0}^{i}$ .

Setting $\tilde{\mathfrak{g}}_{0}\oplus \mathbb{C}c=\hat{\mathfrak{g}}_{0}$ , we define the induced module, the Weil module,

$M_{V}^{\sigma}=Ind_{\hat{\mathfrak{g}}0}^{\hat{\mathfrak{g}}}V$, (8.2)

where the central element $c$ acts as $\sigma\in \mathbb{C}$ , i.e. $c\cdot v=\sigma v\forall v$ . Because of the
decomposition $\tilde{\mathfrak{g}}_{r}\oplus\tilde{\mathfrak{g}}_{0}=\tilde{\mathfrak{g}}$ , given any $m\in M_{V}^{\sigma}$ , there exists a unique element
$\pi(m)\in V$ such that $m-\pi(m)\in\tilde{\mathfrak{g}}_{r}M_{V}^{\sigma}$ . The linear map $\pi$ : $M_{V}^{\sigma}\rightarrow V$ is called the
coinvariant. Its defining property is

$\pi(g_{r}m)=\pi(m)(\forall g\in\tilde{\mathfrak{g}}_{r},m\in M_{V}^{\sigma})$ . (8.3)

Let $\{I_{a}\}$ be a basis of $\mathfrak{g}$ and $\{I_{a}^{*}\}$ the dual basis. We put $I_{a,k}^{i}=(I_{a})^{i}x_{i}^{k}\in\tilde{\mathfrak{g}}^{i}$

and $I_{a,k}^{*i}=(I_{a}^{*})^{i}x_{i}^{k}$ . The Sugawam element of degree-l at $u_{i}$ is given by the series

$L_{-1}^{i}=\sum_{m\geq 0}\sum_{a}I_{a,-1-k}^{i}I_{a,m}^{*i}$
, (8.4)

which belongs to a completion of $U(\hat{\mathfrak{g}})$ (to a completion of $U(\hat{\mathfrak{g}}^{i})$ to be exact). The
definition does not depend on the choice of the basis $\{I_{a}\}$ and the action of these
elements in $M_{V}^{\sigma}$ is well-defined. They commute with each other, $[L_{-1}^{i}, L_{-1}^{j}]=0$ ,
because different components of $U(\hat{\mathfrak{g}})$ are pairwise commutative.

We want to determine the dependence of the coinvariant on the positions of
the points $u_{1},$ $\ldots u_{n}$ . So we need to enlarge the algebras and modules under
consideration assuming that the elements are functions on $u$ . Let $\mathcal{U}$ be the algebra
of $\mathbb{C}$-functions of $u_{1},$ $\ldots u_{n}\in U_{0},\hat{\mathfrak{g}}(U_{0})=\mathcal{U}\otimes\hat{\mathfrak{g}},$ $M_{V}^{\sigma}(U_{0})=\mathcal{U}\otimes M_{V}^{\sigma}$ . Thus the
values of $\pi$ on $M_{V}^{\sigma}(U_{0})$ belong to $\mathcal{U}\otimes V$ . The functions may have singularities along
the diagonals $\{u_{i}=u_{j}\}$ . We extend the derivatives $\partial/\partial u_{i}$ from $\mathcal{U}$ to $g(u)\in\hat{\mathfrak{g}}(U_{0})$

and $m(u)\in M_{V}^{\sigma}(U_{0})$ , setting

$\frac{\partial}{\partial u_{i}}I_{a,k}^{j}=0,$ $\frac{\partial}{\partial u_{i}}(I_{a,k}^{j}v)=0$ , (8.5)

for all “constant” $v\in V$ .
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We note that the latter definition lead $s$ to nontrivial formulas and very quickly
if one combines it with the projection $f\leftrightarrow f_{r}$ . For instance, let $m(u)=(g^{i}/x_{i})_{r}v$

for $v\in V,$ $g\in \mathfrak{g},$
$g^{i}=g^{(i)}=1\otimes\cdots\otimes g^{i}\otimes\cdots\otimes 1$ . Then

$\frac{\partial m(u)}{\partial u_{k}}=\frac{\partial}{\partial u_{k}}\{\prod_{j=1}^{n}(r(x_{j}+u_{j}-u_{i}), g)\}v=$ (8.6)

$=\{\prod_{j=1}^{n}(\delta_{jk}\frac{\partial}{\partial x_{k}}-\delta_{ik}\frac{\partial}{\partial x_{j}})(r(x_{j}+u_{j}-u_{i}), g)\}v$ , (8.7)

where $(a\otimes b, c)=(b, c)a$ for the standard form on $\mathfrak{g}$ . This examples demonstrates
that the dependence of the coinvariant of $u$ may be very complicated, since the
$c$alculation of $\pi$ is based on the factorization. It also shows that one can express
the u-derivatives in terms of x-derivatives, which is important in the next theorem.

We will use the notation from (7.35,7.33):

$\rho=\sum_{a}\rho_{a}I_{a}\in U(\mathfrak{g})$ for

$(\Omega/x-r(x))(x=0)=\sum_{a}\rho_{a}\otimes I_{a},$ $R_{i}=\rho^{i}-\sum_{j(\neq i)}r^{ji}$
. (8.8)

Here $\rho^{i}=\rho^{(i)}$ and the values of $r^{ij}=r(u_{i}-u_{j})^{(i,j)}$ are considered as endomor-
phisms of $V$ . Note that $-r^{ji}=r^{ij}$ for unitary $r$ .

Theorem 8.1. Let $r(x)$ be a quasi-unitary r-matrix, $\tilde{\mathfrak{g}}_{r}$ the factorizing subalgebm
of $\hat{\mathfrak{g}}$ corresponding to $r(x)$ . For $V,$ $M_{V}^{\sigma},$ $\pi$ and $L_{-1}^{i}$ defined as before,

$\pi(\kappa\frac{\partial}{\partial u_{i}}m(u)+L_{-1}^{i}m(u))=(\kappa\frac{\partial}{\partial u_{i}}+\sum_{j\neq i}r^{i,j}(u_{i}-u_{j})+\rho^{i})\pi(m(u)),$

$(8.9)$

where $\kappa=\sigma+g,$ $g$ is the dual Coxeter number of $\mathfrak{g},$ $m(u)\in M_{V}^{\sigma}(U_{0})$ .

Proof. We will consider here the case when $\kappa=0$ . Only this degeneration will be
applied later to the integral formulas. See [13] for the general case. One has

$L_{-1}^{i}v=\sum_{a}(I_{a}^{i}/x_{i})I_{a}^{*i}v=\sum_{a}((I_{a}^{i}/x_{i})_{r}+\rho_{a}^{i})I_{a}^{*i}v$
(8.10)

for $v\in V$ . The $\tilde{\mathfrak{g}}_{r}$-invariance of $\pi$ (see (8.3)) gives that

$\pi(L_{-1}^{i}v)=\sum_{a}\rho_{a}^{i}I_{a}^{*i}v-\sum_{a,j\neq i}(I_{a}^{i}/x_{i})_{r}^{j}I_{a}^{*i}v$
, (8.11)

where $f_{r}^{j}$ here and further is the expansion of $f_{r}(\in\tilde{\mathfrak{g}}_{r})$ at $u_{j}$ with respect to
$x_{j}=x-u_{j}$ . However $\sum_{a}(I_{a}^{i}/x_{i})_{r}^{j}I_{a}^{*i}v=r^{ji}v=r(u_{j}-u_{i})^{(i,j)}$ thanks to relation
(7.27).
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Any element of $M_{V}^{\sigma}$ can be represented as $v+\sum f_{r}m$ for proper $f_{r}$ and $ m\in$

$M_{V}^{\sigma}$ . Since the level is critical $(\kappa=0)$ the Sugawara elements commute with any
$f=(f^{1}, \ldots f^{n})\in\tilde{\mathfrak{g}}$ . Indeed, the general relation is

$[L_{-1}^{i}, f]=-\kappa\partial f^{i}/\partial x_{i}$ . (8.12)

See [42]. So $\pi(L_{-1}^{i}(f_{r}m))=\pi(f_{r}(L_{-1}^{i}m))=0$ , and (8.9) results from the above
$c$alculation with $v$ . $\square $

As a byproduct, we can establish the self-consistency of the $r$-matrix KZ from
(7.35):

$\kappa\partial(\Phi)/\partial u_{i}=R_{i}\Phi,$ $1\leq i\leq n$ . (8.13)

Actually the theorem gives much more. We have a generic formula for solutions
of this equation. Namely, $\Phi=\exp(-\sum_{i=1}^{n}((x_{i}/\kappa)L_{-1}^{i}))m$ satisfies this equation
for an arbitrary element of $M_{V}^{\sigma}$ (costant, not from $M_{V}^{\sigma}(U_{0})$ ).

This is analogous to the claims that $\tau$-functions are universal solutions of soli-
ton equations and cannot be used for constructing explicit solutions without special
analitic or algebrai $c$ methods. In the soliton theory, the main constructive appli-
cations of $\tau$-functions are the Backlund-Darboux transformations and formulas in
terms of $\theta$-functions and their degenerations. The integral formulas for KZ, which
will be discussed next, have many common points with the BD-transforms as well
as with $\theta$-solutions. It is not very surprising since the definition of the $\tau$-function
$(=\phi)$ is literally the same. The difference is with the flows. In the soliton theory,
we consider mainly the vector fields $D_{f},$ $f\in\tilde{\mathfrak{g}}$ , from (7.40). As to KZ, the flows
correspond to the Sugawara elements.

8.2. Integral formulas. We keep the same notation. However now let us assume
that every $V_{i}(1\leq i\leq n)$ is a highest weight module relative to $b+\cdot$ So $V_{i}$ is
generated by the vacuum vector $\nu_{i}$ associated to a weight $\lambda_{i}\in \mathbb{C}^{n}$ (the highest
weight): $h_{\alpha}(vac)=(\alpha, \lambda)vac$ . The above consideration will be applied to $V^{\prime}==$

$V\otimes V_{n+1}\otimes\cdots V_{n+m}$ , where $V=V_{1}\otimes\cdots\otimes V_{n}$ for zero $\hat{\mathfrak{g}}$-modules $V_{i}=\mathbb{C}=\mathbb{C}\nu_{0}$

$(n+1\leq i\leq n+m)$ . Respectively, we introduce the induced $\hat{\mathfrak{g}}$ module $M_{V}^{\sigma},$ , where
the central element $c$ acts as the scalar $\sigma$ , and the coinvariant $\pi$ : $M_{V}^{\sigma},$

$\rightarrow V^{\prime}$ .
Since the va$c$uum vectors $\nu_{0}$ in $V_{n+i}(i>0)$ are fixed, we can identify $V$ and $V^{\prime}$ .
Thus the values of the coinvariant will be actually in the same space $V$ . Note that
the Weil modules defined for zero $\mathfrak{g}$-modules are very nontrivial, and there are no
obvious connections between $M_{V}^{\sigma}$ and $M_{V}^{\sigma},$ . The points $\{u_{1}, \ldots u_{n}\}$ will be called
old, $\{u_{n+1}, \ldots u_{n+m}\}$ new. The same names will be used for the corresponding
indices.

We fix the sequence of numbers $(n+1)^{\prime},$
$\ldots$

$(n+m)^{\prime}\in$ { $1,$ $\ldots l(=$ rank $\mathfrak{g})$ },
which may coincide, and define

$w=\pi(\hat{m}),\hat{m}=\nu_{1}\otimes\cdots\otimes\nu_{n}\otimes(\frac{f_{(n+1)}}{x_{n+1}’})\nu_{0}\otimes\cdots\otimes(\frac{f_{(n+m)^{\prime}}}{x_{n+m}})\nu_{0}$ , (8.14)
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$\hat{m}\in M_{V}^{\sigma},$
$,$

$w\in V=V’$ . The definition is applicable to any $r$-matrices. However $w$

is simple enough to be used for the integral formulas when $r$ are rather special.
From now on we will consider the basic trigonometric $r$-matrix from (7.16):

$r(x)=\frac{1}{2}\coth(\frac{x}{2})\Omega+\frac{1}{2}\sum_{\alpha\in R+}\frac{f_{\alpha}\otimes e_{\alpha}-e_{\alpha}\otimes f_{\alpha}}{(e_{\alpha},f_{\alpha})}+\frac{1}{2}\sum_{m=1}^{l}A(h_{i})\otimes h:.(8.15)$

depending on an arbitrary endomorphism $A:\mathfrak{h}\rightarrow \mathfrak{h}$ . Recall that

$\rho=h_{\rho}-\frac{1}{2}\sum_{k=1}^{l}A(h_{k})h_{k}^{*},$
$\rho=\frac{1}{2}\sum_{\alpha\in\Sigma_{+}}\alpha$ . (8.16)

We identify the elements from $\mathfrak{h}$ with the corresponding weights from $\mathbb{C}^{l}$ :

$h_{b}=\sum_{k=1}^{l}(b, b_{k})h_{k},$ $h_{k}=h_{\alpha_{k}},$ $(h_{b}, \lambda)=(b, \lambda)$ for $b,$
$\lambda\in \mathbb{C}^{l}$ (8.17)

and the invariant forms on $\mathfrak{h}$ and the complexification of $R^{l}$ .
Let

$\Lambda_{i}=\lambda_{i}$ for $1\leq i\leq n,$ $\Lambda_{i}=-\alpha_{i^{\prime}}$ for $i>n,$ $\Lambda=\sum_{i=1}^{n+m}\Lambda_{i}$ . (8.18)

The $\Lambda_{i}$ for new $i>n$ have nothing to do with the corresponding weights, which
are zero. Such uniform notation is convenient in the following definitions:

$\omega_{i}=\sum_{1\leq k\leq n+m,k\neq i}(\Lambda_{i}, \Lambda_{k})\frac{1}{2}\coth(\frac{u_{i}-u_{k}}{2})+(\rho-\frac{A^{*}(\Lambda)}{2}, \Lambda_{i})$ , (8.19)

where $(Aa, b)=(a, A^{*}b)$ on $a,$ $b\in \mathfrak{h}$ . These functions are logarithmic derivatives.
Namely,

$\omega_{i}=\partial\omega/\partial u_{i}$ for $\omega=$ (8.20)

$=\prod_{1\leq i<j\leq n+m}(e^{(u_{i}-u_{j})/2}-e^{(u_{j}-u_{i})/2})^{(\Lambda_{i},\Lambda_{j})/\kappa}\prod_{1\leq i\leq n+m}\exp((\rho-\frac{A^{*}(\Lambda)}{2}, \Lambda_{i})\frac{u_{i}}{\kappa})$ .

We will also use

$\omega_{J}=\sum_{j\in J}\omega_{j}$
(8.21)

for subsets of new points(indices) $J\subset\{n+1, \ldots n+m\}$ .
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Definition 8.1. 1) An ordered sequence $c=$ ($j_{1},$
$\ldots$ , $j_{s}$ ; i) for pairwise distinct

new indices $j_{1},$ $\ldots j_{s}\in\{n+1, \ldots n+m\}$ and one old index $1\leq i\leq n$ is called
a chain.
2) An ordered sequence $d=(c_{1}, \ldots c_{r})$ of chains is called a diagram if every new
$n+1\leq j\leq n+m$ belongs to one and only one chain (no restrictions for old
indices).
3) Given a linear ordering on new $indices\succ$ , a diagram

$d=(c_{1}=(j_{1}^{(1)},j_{2}^{(1)}, \ldots),$ $c_{2}=(j_{1}^{(2)},j_{2}^{(2)}, \ldots),$ $\ldots c_{r}=(j_{1}^{(r)},j_{2}^{(r)}, \ldots))$

is called well-ordered if $j_{1}^{(1)}\succ j_{1}^{(2)}\succ\cdots\succ j_{1}^{(r)}$ .
4) For a diagram $d$ the component of an old $i$ , denoted by $c\sigma mp_{i}(d)$ , is a union of
all new indices connected with $i$ by a chain from $d$ .
Definition 8.2. 1) Given a chain $c=(j_{1}, \ldots j_{s} ; i)$ , we set

$F_{c}=\ovalbox{\tt\small REJECT}_{1)(e^{u_{j_{S}}-u_{1}}-1)}(e^{u_{j_{1}}-u_{j_{2-1)(e^{u_{j_{2}}-u_{j_{3-}}}}}}f\cdot\{f_{j_{1}^{\prime}},f_{j_{2}^{\prime}}$

], $f_{j_{3}}$ ] ,
$\ldots,f_{j_{s-1}}.’..$

] , $f_{j_{s}^{\prime}}]^{i}$

. (8.22)

2) Given a diagram $d=(d_{1}, \ldots d_{r})$ , we set

$F_{d}=F_{r}\cdots F_{2}F_{1}\in U(\mathfrak{g})^{\otimes n}$ , where $F_{j}=F_{c_{j}},$ $F_{\{\emptyset;i\}}=1$ . (8.23)

Theorem 8.2. We fix an ordering $\succ$ . Then $w=\pi(\hat{m})=\sum_{d}F_{d}(vac)$ , where
$vac=\nu_{1}\otimes\cdots\otimes\nu_{n}\otimes\nu_{0}\otimes\cdots\otimes\nu_{0}$ and the summation is over all well-ordered
diagrams. In particular, $w$ does not depend on the centml charge $\sigma$ . Vice versa,
$\sum_{d}F_{d}(vac)$ does not depend on the ordering. The following sums do not depend
on the particular choice of the ordering either:

$w_{i}[J]=\sum_{d}F_{d}(vac),$ $w_{i}(J)=\sum_{d}F_{d}(vac)$ , (8.24)

where the summation is over all well-ordered diagrams such that $c\sigma mp_{i}(d)=J$ and
$J\subset c\sigma mp_{i}(d^{\prime})$ (the second sum) for any set of new points $J$ .
Theorem 8.3. For any old $i(1\leq i\leq n)$ and $R_{i}=\rho^{i}-\sum_{j(\neq i)}r^{ji}$ ,

$R_{i}w=\omega_{i}w+\sum_{j=n+1}^{n+m}\omega_{j}w_{i}(j)=\omega_{i}w+\sum_{J}\omega_{J}w_{i}[J]$ , (8.25)

where $J$ runs over all new subsets $(\subset\{n+1, \ldots n+m\})$ .

Theorem 8.4. For any old $i$ ,

$(R_{i}-\kappa\partial/\partial u_{i})W=\kappa\sum_{j=n+1}^{n+m}\partial W_{i}(j)/\partial u_{j}=\kappa\sum_{newJ}\partial W_{i}[J]/\partial u_{j}$ , (8.26)

where $W=w\omega,$ $W_{i}(j)=w_{i}(j)\omega,$ $ W_{i}[J]=w_{i}[J]\omega$ for $\omega$ from (8.20).
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We will prove the first two theorems in the next section. Let us deduce the third
one from them now. One has:

$\kappa\partial w/\partial u_{i}=-\kappa\sum_{j=n+1}^{n+m}\partial w_{i}(j)/\partial u_{j}$ , (8.27)

since $\partial F_{c}/\partial u_{i}=\partial F_{j_{1}}/\partial u_{j_{1}}+\ldots+\partial F_{j_{s}}/\partial u_{j_{s}}$ for any chain $c=(j_{1}, \ldots j_{s} ; i)$ .
Indeed, the formula for $F_{c}$ depends only on the differences $u_{j_{p}}-u_{j_{q}}$ for $1\leq p,$ $ q\leq$

$s+1,$ $j_{s+1}=i$ . Hence, the same holds for any $F_{d}$ with $comp_{i}(d)=J$ . The relations
$\sum_{j=n+1}^{n+m}\omega_{j}w_{i}(j)=\sum_{\{new}J\}\omega_{J}w_{i}[J]$ are obvious because $w_{i}(j)=\sum_{J\ni j}w_{i}[J]$ .

To get the integral formulas for KZ, we set $\Phi=\int Wdu_{n+1}\cdots du_{n+m}$ , where the
integration contours are taken to ensure that $\int(\partial W_{i}(j)/\partial u_{j})du_{n+1}\cdots du_{n+m}=0$

for all new $j$ . Then $(\kappa\partial/\partial u_{i}-R_{i})\Phi=0$ . The proper choice of the contours and the
description of the spaces of corresponding solutions $\Phi$ can be a difficult problem
especially if $\kappa$ are not assumed generic (see [69]). We discuss in this work the
algebraic machinery only (the integrands but not the integral $s$).

8.3. Proof. For the sake of simplicity we will consider here the Yang $r$-matrix
only. We refer the reader to [13] for the general case (somewhat more general
than that considered above). Let us degenerate the main formulas replacing the
trigonometric formulas (hyperbolic, to be exact) by the rational ones. From now
on $r=\Omega/x$ and

$\omega_{i}=\sum_{1\leq k\leq n+m,k\neq i}\frac{(\Lambda_{i},\Lambda_{k})}{u_{i}-u_{k}},$
$\omega_{i}=\partial\omega/\partial u_{i}$ ,

$\omega=\prod_{1\leq i<j\leq n+m}(u_{i}-u_{j})^{(\Lambda_{i},\Lambda_{j})/\kappa}$
. (8.28)

Since $r$ is unitary and $\rho=0$ we can simplify $R_{i}$ :

$R_{i}=\sum_{j=1}^{n}r^{ij}=\sum_{j=1}^{n}\frac{\Omega^{ij}}{u_{i}-u_{j}},$ $j\neq i,$ $1\leq i\leq n$ . (8.29)

Given a chain $c=$ $(j_{1}, \ldots , j_{s}; i)$ , we set

$F_{c}=\frac{f\cdot\{f_{j_{1}^{\prime}},f_{j_{2}^{\prime}}],f_{j_{3}^{\prime}}],\ldots,f_{j_{s-1}},.],f_{j_{s}},]^{i}}{(u_{j_{1}}-u_{j_{2}})(u_{j_{2}}-u_{j_{3}})\cdot\cdot(u_{j_{s}}-u_{i})}$ . (8.30)

The definition of $F_{d}$ for a diagram $d=(c_{1}, \ldots c_{r})$ is the $s$ame:
$F_{d}=F_{r}\cdots F_{2}F_{1}\in U(\mathfrak{g})^{\otimes n}$ for $F_{j}=F_{c_{j}}$ . (8.31)

Let us fix the ordering and check that $w=\pi(\hat{m})=\sum_{d}F_{d}(vac)$ , where $vac=$
$\nu_{1}\otimes\cdots\otimes\nu_{n}\otimes\nu_{0}\otimes\cdots\otimes\nu_{0}$ and the summation is over all well-ordered diagrams.
It is a straightforward calculation based directly on the defining property of the
coinvariant, that is $\pi(f_{r}\tilde{v})=0$ for $f\in\tilde{\mathfrak{g}}_{r}$ and $\tilde{v}\in M_{V}^{\sigma},$ .
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Recall that

$\overline{(\frac{g}{x_{i}})}=\frac{g}{x-u_{i}}$ $(\frac{g}{x_{i}})_{r}=(\frac{g}{x_{1}+u_{1}-u_{i}}$
$\cdots$ $\frac{g}{x_{n+m}+u_{n+m}-u_{i}})(8.32)$

where $x_{i}=x-u_{i},$ $g\in \mathfrak{g},$ $1\leq i\leq n+m$ . Here $g/x_{i}$ is considered as an element of
the i-th component of $\tilde{\mathfrak{g}}$ (defined in a formal neighborhood of $u_{i}$ only), $g/(x-u_{i})$

is a rational function of $x$ (defined globally). So

$\pi((\frac{g}{x_{i}})^{i}\tilde{v})=\pi((\frac{g}{x_{i}})_{r}^{i}\tilde{v})=-\pi(\sum_{1\leq j\leq n+m,j\neq i}(\frac{g}{x_{j}+u_{j}-u_{i}})^{j}\tilde{v})_{(8.33)}$

If $\tilde{v}=\tilde{v}_{1}\otimes\cdots\otimes\tilde{v}_{n+m}$ and $\tilde{v}_{j}\in V_{j}$ for some $j\neq i$ , then further simplification is
possible:

$(\frac{g}{x_{j}+u_{j}-u_{i}})^{j}\tilde{v}=\tilde{v}_{1}\otimes\cdots(\frac{g}{u_{j}-u_{i}})^{j}\tilde{v}_{j}\cdots\otimes\tilde{v}_{n+m}$ . (8.34)

Moreover, if $j$ is new, then $(g/(u_{j}-u_{i}))^{j}\tilde{v}_{j}=0$ .
If the point $j$ is new $(j>n)$ and $\tilde{v}_{j}=(f^{j}/x_{j})\nu_{0}$ for $f\in \mathfrak{g}$ , then we can proceed

as follows:

$(\frac{g}{x_{j}+u_{j}-u_{i}})^{j}\tilde{v}_{j}=(\frac{g}{x_{j}+u_{j}-u_{i}})^{j}\frac{f^{j}}{x_{j}}\nu_{0}=$

$=[(\frac{g}{x_{j}+u_{j}-u_{i}})^{j},$ $\frac{f^{j}}{x_{j}}]\nu_{0}=\frac{1}{u_{i}-u_{j}}\frac{[f,g]^{j}}{x_{j}}\nu_{0}$ . (8.35)

Formula for the integmnd. Now let $\hat{m}$ be from (8.14), $w=\pi(\hat{m})$ ,

$\hat{m}=\nu_{1}\otimes\cdots\otimes\nu_{n}\otimes(\frac{f_{(n+1)}}{x_{n+1}’})\nu_{0}\otimes\cdots\otimes(\frac{f_{(n+m)^{\prime}}}{x_{n+m}})\nu_{0}$ . (8.36)

We start with the new index $i$ which is maximal with respect to the ordering $\succ$

and use (8.33) in combination with (8.35) to clear up the i-th component, replacing
$(f_{i}^{i},/x_{i})\nu_{0}$ by the sum over all remaining components. Applying (8.33) again and
again we will eventually come to the element from $V\otimes\nu_{0}\otimes\cdots\otimes\nu_{0}$ which contains
pure $\nu_{0}$ at all new points and coincides with its coinvariant. Note that we have to
apply this procedure to all terms of the sum obtained after the previous step.

In this calculation, the terms are in one-to-one correspondence with the chains
$c=$ ( $j_{1},$ $\ldots j_{s}$ ; i) from Definition 8.1. The indices $j_{1},$ $\ldots j_{s}$ must be pairwise
distinct because $g\nu_{j}=0$ for any $g\in \mathfrak{g}$ . There can be only one old $i$ in the chain
due to (8.34). The old point is always the end of the simplffication process. If
all the chains have reached their endpoints, we start the next chain, picking the
maximal new point among the untouched ones and follow the same procedure. The
new points which have already been cleared of $\{f\}$ will not participate. We come
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to the definition of the diagram and establish the formula for $w$ , which is the first
claim of Theorem 8.2.

We can take any ordering $\succ$ in this calculation. The result will be of course
the same. If we did not have an interpretation of $w$ in terms of the coinvariant, it
would not be easy to establish that different orderings result in the same formula
(cf. [65]).

Let us prove that

$w_{i}[J]=\sum_{d}F_{d}(vac),$ $w_{i}(J)=\sum_{d}F_{d^{\prime}}(vac)$
(8.37)

do not depend on the ordering as well. Here the summation is over all well-ordered
diagrams such that $cm\iota p_{i}(d)=J$ or $comp_{i}(d)\subset J$ . It is sufficient to examine $w_{i}[J]$

only. The quantities $\{w_{i}(J)\}$ can be expressed in terms of $\{w_{i}[J]\}$ . We will deform
the positions of the points $u_{1},$ $\ldots u_{n+m}$ . Let

$\tilde{u}_{j}=u_{j}+\delta$ for $j\in\{J\cup i\},\tilde{u}_{j}=u_{j}$ for $j\not\in\{J\cup i\}$ . (8.38)

The terms $F_{d}$ will remain unchanged iff they appear in the sum for $w_{i}[J]$ . Moreover,

$w_{i}[J]=\lim_{\delta\rightarrow\infty}\tilde{w}$ , where $\tilde{w}=w(\tilde{u}_{1}, \ldots\tilde{u}_{n+m})$ . (8.39)

Indeed, all $F_{d}$ with $comp_{i}(d)\neq J$ will contain at least one $\delta$ in the denominator.
This representation does not depend on the ordering. The proof of Theorem 8.2 is
completed. Note that $w=\sum_{J}w_{i}[J]$ for any old $i$ .

Calculating $R_{i}w$ . Let us establish the formulas $R_{\eta}w=\omega_{i}w+\sum_{newJ}\omega_{J}w_{i}[J]$

(Theorem 8.3). To simplify the indices we set $i=n$ . So we need to check that

$(\sum_{1\leq j<n}r^{nj}(u_{n}-u_{j}))\pi(\hat{m})=\sum_{J\subset\{n+1,\ldots,n+m\}}\omega_{J}w_{n}[J]+\omega_{n}\pi(\hat{m})$ . (8.40)

Since $F_{d},$ $w=\pi(\hat{m})$ , and $w_{i}[J]$ do not depend on the central charge $\sigma$ , one may
put $\kappa=\sigma+g=0$ and apply Theorem 8.1:

$(\sum_{1\leq j<n}r^{ij}(u_{n}-u_{j}))\pi(w)=\pi(L_{-1}^{n}w)$ . (8.41)

Explicitly,

$\pi(L_{-1}^{n}w)=\pi((\sum_{\alpha>0}(\frac{e_{\alpha}}{x_{n}}I\frac{f_{\alpha}}{(e_{\alpha},f_{\alpha})}+\sum_{1\leq p\leq l}(\frac{h_{p}}{x_{n}})h_{p}^{*})^{n}w)$ . (8.42)

Later on we will not show the upper right indices indicating the component if the
confusion is impossible. Once there is $x_{j}$ , it means that the corresponding element
acts on the j-th component.
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Making use of (8.33,8.34,8.35), we have

$\pi((\sum_{1\leq p\leq l}(\frac{h_{p}}{x_{n}})h_{p}^{*})\hat{m})=\omega_{n}\pi(\hat{m})$ . (8.43)

Indeed, the left hand side is $\pi(\hat{m})$ multiplied by

$\sum_{j<n}\frac{1}{u_{n}-u_{j}}\sum_{p}(h_{p}, \Lambda_{j})(h_{p}^{*}, \Lambda_{n})=\sum_{j<n}\frac{(\Lambda_{j},\Lambda_{n})}{u_{n}-u_{j}}$ , (8.44)

that is the contribution of the old points, plus that of the new points:

$\sum_{j>n}\frac{1}{u_{n}-u_{j}}\sum_{p}(h_{p}, \Lambda_{j})(h_{p}^{*}, \Lambda_{n})=\sum_{j>n}\frac{(\Lambda_{j},\Lambda_{n})}{u_{n}-u_{j}}$ . (8.45)

The formulas for $j<n$ and $j>n$ are the same but their meaning is different.
In the second formula, we used that $[h_{p}, f_{j^{\prime}}]=-(h_{p}, \alpha_{j})=(h_{p}, \Lambda_{j})$ due to the
definition of $\Lambda_{j}$ at the new points.

Let us now get rid of $(e_{\alpha}/x_{n})$ . The calculation is more involved because $e_{\alpha}$

may “interact” with $h$ , at the new points, but still not too complicated. Since $\nu_{j}$

$(1\leq j<n)$ are the highest weight vectors, we move $e_{\alpha}$ only to the right (to new
points):

$\pi(((\frac{e_{\alpha}}{x_{n}})\frac{f_{\alpha}}{(e_{\alpha},f_{\alpha})})^{n}\hat{m})=$

$=\pi(\sum_{n+1\leq j\leq n+m}(\frac{[e_{\alpha},f_{j}]}{(u_{n}-u_{j})x_{j}}I^{j}(\frac{f_{\alpha}}{(e_{\alpha},f_{\alpha})})^{n}\hat{m}\{j\})$ . (8.46)

Here $\hat{m}\{j\}$ denotes $\hat{m}$ without $f_{j^{\prime}}/x_{j}$ . Namely (see (8.36)):

$\hat{m}\{j\}=\nu_{1}\otimes\cdots\otimes\nu_{n}\otimes\cdots(\frac{f_{(j-1)^{\prime}}}{x_{j-1}})\nu_{0}\otimes\nu_{0}\otimes(\frac{f_{(j+1)}}{x_{j+1}’})\nu_{0}\otimes\cdots$ (8.47)

Next we move each $([e_{\alpha}, f_{j^{\prime}}]/x_{j})$ to all components $\tilde{j}\neq j$ to clear the j-th
component of $[e, f]$ . We will get triple commutators $[[e, f],$ $f$] at new $\tilde{j}$ . Next we
will go to the components $\hat{j}\neq j,\tilde{j}$ and will produce 4-term commutators, etc. The
poles will be always simple. We stop the process when the s-fold commutator is $0$

or when we come to the first old point (including $u_{n}$ ).
Let us examine the successive commutators. Since $f_{j^{\prime}}$ are simple, any commu-

tator given by this procedure is proportional to

(a) $(e_{\beta}/x_{k})^{k}$ , (b) $(h_{\beta}/x_{k})^{k}$ , or (c) the central element $c$ (8.48)

for a certain $\beta>0$ and new $k$ .
In the first $c$ase we will continue and get another new point. In the case (b),

there will be one more (final) step when we replace $(h_{\beta}/x_{k})^{k}$ by the corresponding
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sum over all points (old and new). After this we will stop. As to (c), we just plug
in $c=\sigma=-g$ . Note that since one never gets f-s in this procedure, the only way
to reach the old points is via (b), excluding $u_{n}$ .

Thus we arrive again at the chains $j_{s}=j,j_{s-1}=\tilde{j},j_{s-2}=j,$ $\ldots j_{1}=k$ .
However now we read $\{j\}$ in the opposite order and they describe the process of
elimination of $e_{\alpha}/x_{n}$ . Note that $\beta=\alpha_{k^{\prime}}$ for the last index $k=j_{1}$ . Once we
know all the indices it is not difficult to determine the exact formula up to the
contribution of the central element (the case $(c)$ ) and the chains which go back to
the starting point $u_{n}$ . The calculation is based on the identities:

if $[\cdot\cdot\{f_{ji}, f_{j_{2}},],$ $\ldots f_{j_{s}},$ ] $=cf_{\alpha}$ then
$f\cdot\{e_{\alpha},$ $f_{j_{s}^{\prime}}$ ], $f_{j_{s-1}^{\prime}}$ ], $\ldots f_{ji}$ ]) $=(-1)^{s-1}c(f_{\alpha}, e_{\alpha})h_{ji}$ . (8.49)

Setting $\phi=(u_{n}-u_{j_{1}})(u_{j_{1}}-u_{j_{2}})\cdots(u_{j_{s-1}}-u_{j_{s}})$ , we get

$\pi(((\frac{e_{\alpha}}{x_{n}})\frac{f_{\alpha}}{(e_{\alpha},f_{\alpha})})\hat{m})=$

$=\phi^{-1}\pi(((f_{\alpha})^{n}\otimes 1\otimes\cdots(h_{\alpha_{k}}, /x_{k})\cdots\otimes 1)\hat{m}\{J\})$ . (8.50)

Here $k=j_{1}$ , $\hat{m}\{J\}$ denotes $\hat{m}$ without $(f_{j^{\prime}}/x_{j})$ for all $j\in J$ . Namely,

$\hat{m}\{J\}=\nu_{1}\otimes\cdots\otimes\nu_{n}\otimes\cdots(\frac{f_{1^{\prime}}}{x_{1}})\wedge j_{1}$

. . . $\otimes(\frac{f_{()}}{x_{()}}I^{\nu_{0}\cdots\nu_{0}}\wedge j_{2}$ . . . $(\frac{f_{()}}{x_{()}}I^{\nu_{0}\cdots\cdots\nu_{0}}\wedge j_{s}$ .. . $(\frac{f_{(n+m)}}{x_{n+m}’}I\cdot$

(8.51)

Of course here the order of $\{j\}$ may be arbitrary, $s$ay, $j_{2},$ $\ldots j_{1},$
$\ldots$

Compare the formula with the definition of $F_{c}$ :

$ F_{c}=\phi^{-1}\pi$ (( $(f_{\alpha})^{n}\otimes 1\otimes\cdots\wedge 1k$ . $..\otimes 1$) $\hat{m}\{J\}$) (8.52)

for the chain $c=(j_{1}, \cdots j_{n}; n)$ . We see that the expressions are different only
because of $h_{\alpha_{k}},$ $/x_{k}$ . The latter can be readily replaced by the sum over all old and
new indices $i\neq k$ . Note the cancelation of $(-1)^{s-1}$ from the denominator of the
first formula with $(-1)^{s-1}$ from (8.49).

This procedure is just the first step. We still need to clear the new components
$i\not\in J$ which contain $\{f\}$ . We will follow exactly the process of calculating $w$ ,
numerating the terms by the diagrams. The final formula will be the sum of $F_{d}$

over all diagrams $d$ multiplied by proper $\omega- s$ coming from $h_{\alpha_{k}},$ $/x_{k}$ at the first step.
Here we need to use that $w_{n}[J]$ do not depend on the ordering. Indeed, when
eliminating $e_{\alpha}$ , we cannot control the endpoint $k=j_{1}$ of the (first) chain. So we
change the ordering taking $k$ as the maximal element.
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We arrive at the formula

$R_{n}w-\omega_{n}w-\sum_{newJ}\omega_{J}w_{n}[J]=S$ , (8.53)

where $S$ is a sum of terms with the denominators which may not contain the “chain
products” in the form $(u_{n}-u_{j_{1}})(u_{j_{1}}-u_{j_{2}})\cdots(u_{j_{p}}-u_{i})$ for any new $j$ and old
$i<n$ . It is the contribution of the terms of type (c) and the chains ending at the
n-th component. The later can come from $h$ (the case $(b)$ ) or from certain $e$ if we
go back and fuse them with $(f_{\alpha})\nu_{n}$ .

Let us check that $S=0$ . It can be represented as $S=\sum_{J}S_{n}[J]$ exactly in
the same manner as $w=\sum_{J}w_{n}[J]$ . We will prove that $S_{n}[J]=0$ for any new
set $J$ . Consider the deformation $\tilde{u}$ from (8.38) for $i=n$ and tend $\delta$ to $\infty$ . Then
$w\rightarrow w_{n}[J]$ . In the sum $\omega_{n}+\omega_{J}=\sum_{i,j}\frac{(\Lambda:,\Lambda_{n})}{u_{1}-u_{j}}$ , exactly one index from any pair
$\{i,j\}$ belongs to $\{J\cup n\}$ . So it goes to $0$ as $\delta$ approaches $\infty$ . Since all the terms
of $R_{n}$ contain the differences $u_{i}-u_{n}$ for some $i<n$ in the denominators, the left
hand side of (8.53) identically equals zero. The right hand side tends to $S_{n}[J]$ .
Thus the letter is zero. The proof of the theorem is completed.

Remark 8.1. The direct (combinatorial) definition of the $w$ and $W$ in the rational
case is due to Schechtman and Varchenko (Preprint MPI/89-51, 1989). They estab-
lished that $W$ satisfies KZ up to exact derivatives in terms of the new $\{u_{j},j>n\}$ .
This theorem generalized the paper by Date,Jimbo,Matsuo, and Miwa [26] (the
$SL_{2}$ -case) and that by Matsuo for $SL_{n}$ . There were also results of Dotsenko, Fa-
teev, Aomoto, Christe, and Flume in this direction. An extended version of the
MPI-preprint is [65].

The paper [13] (first published as preprint RIMS-699, 1990) contained the inter-
pretation via the coinvariant, the trigonometric generalization, and Theorem 8.3
with the explicit formulas for the exact derivatives.

Theorem 8.3 has applications not only to KZ. Actually it is a pure algebraic
statement and must have algebraic corollaries. Let us choose the parameters
$\{u_{n+1}, \ldots u_{n+m}\}$ to ensure the relations $\omega_{j}=0$ for $j>n$ . Then $w$ is an eigen-
vector of the pairwise commutative matrices $R_{i}(1\leq i\leq n)$ with the eigenvalues
$\{\omega_{i}\}$ . This eigenvalue problem is called the Gaudin model. The first results on the
diagonalization of $\{R_{i}\}$ were obtained by Babujan and Flume in [3]. See also [32].
We will not discuss this direction here.

8.4. Comment on KZB. Concerning the elliptic examples, there is the so-called
Baxter-Belavin $r$-matrix. It is unique among unitary elliptic ones. There are more
examples of non-unitary type. A variant of Belavin’s $r$ in infinite matrices was
introduced by Shibukawa-Ueno. Theorem 8.1 holds for all such $r$ . However there
are problems with the integral formulas. Our method can be generalized, but we
need to assume that the rational extensions $\overline{f}$ of the elements $f=f_{\alpha}/x_{i}$ and $f=$
$e_{\alpha}/x_{i}$ are proportional to $f_{\alpha}$ and $e_{\alpha}$ , respectively, for certain scalar meromorphic
functions as coefficients of proportionality. As it was demonstrated in [35], the
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KZB due to Bernard [5] leads to a Lie algebra of elliptic functions satisfying this
very property (see also [33]). In this section, we will comment on it.

Let $E$ be an algebraic elliptic curve, $0$ its zero point, $x$ a local parameter in a
neighborhood $U_{0}\subset E$ of $0$ . We fix pairwise distinct $u_{1},$ $\ldots$ , $u_{n}\in U_{0}$ . $Given\underline{\mu}_{1}\in \mathbb{C}$ ,
$aBakerfunction\varphi isafunctiononEregularapartfromU_{0}suchthate^{-\mu x}$ $\varphi(x)$

is meromorphic with poles at points $u_{1},$ $\ldots$ , $u_{n}$ . So they have an “exponential”
singularity at $0$ . We denote the space of such functions by $B_{\mu}$ .

Baker functions are determined by their principal parts, which may be arbitrary.
More precisely, given $p(x)=\sum_{i=1}^{n}\sum_{1<j<\infty}c_{ij}(x-u_{i})^{-j}$ , there exists a unique
function $\tilde{p}(x)\in B_{\mu}$ such that $\tilde{p}(x)-p(x$] is holomorphic on $U_{0}$ . Here $\mu$ is generic.
Say, if $\mu=0andthereisnoessentialsingularityat0,$ $onecandefine\tilde{p}onlywhen$

the sum of residues of $p$ equals zero.
Let $\overline{p_{0}}$ be a rational function on $E$ with the principal part

$q(x)=p(x)-(\sum_{i=1}^{n}{\rm Res}_{u_{i}}p(x)dx)x^{-1}$ (8.54)

normalized by the condition $p_{0}^{\sim}-q(x)=x(\cdot)$ (no constant term at $0$ ).
We keep the notation of the previous section: $\mathfrak{g}$ is simple Lie algebra, $\Sigma=\{\alpha\}\subset$

$R^{l}$ the corresponding root system. Let us fix a vector $\lambda\in \mathbb{C}^{n}$ and set $\lambda_{\alpha}=(\lambda, \alpha)$

for the standard invariant form on $\mathbb{C}^{l}$ .
Given a principal part $p(x)\sum_{i=1}^{k}\sum_{j=1}^{m:}\frac{C|,j}{(x-u_{1})^{g}}$ , let $\overline{p_{\alpha}}$ be the function $\tilde{p}$ from

$B_{\lambda_{\alpha}}$ with the principal part $p$ . Using this definition we set,

$\overline{p(x)e_{\alpha}}=\overline{p_{-\alpha}}(x)e_{\alpha},\overline{p(x)f_{\alpha}}=\overline{p_{\alpha}}(x)f_{\alpha}$ , (8.55)

$\overline{p(x)h_{\alpha}}=p_{0}^{\sim}(x)h_{\alpha}-(\sum_{i=1}^{k}{\rm Res}_{u_{i}}p(x)dx)\partial_{\lambda_{\alpha}}$ , (8.56)

where $\partial_{\lambda_{\alpha}}$ is the differentiation $\partial_{\lambda_{\alpha}}(\lambda_{\beta})=(\alpha, \beta)$ .
Let us extend $\mathbb{C}$ to the noncommutative algebra $\mathcal{L}$ of differential operators of

$\lambda$ with meromorphic coefficents (we will not specify which and where). We set
$\emptyset=\emptyset\otimes \mathcal{L}$ .

Proposition 8.5. The space $\emptyset-$ linearly generated by $\{\overline{p(x)e_{\alpha}},\overline{p(x)f_{\alpha}},\overline{p(x)h_{\alpha}}, h_{\alpha}\}$

for $\alpha\in\Sigma_{+}$ and all principal parts $p$ at $\{u_{1}, \ldots u_{n}\}$ is a Lie algebra.

Proof. The commutator $[\overline{p(x)f_{\alpha}},\overline{q(x)f_{\beta}}]$ is proportional to $[f_{\alpha}, f_{\beta}]$ and the coeffi-
cient of proportionality is from $B_{\lambda_{\alpha+\beta}}$ . So it belongs to $\emptyset-$ as well as the commuta-
tors $[f, e],$ $[e, e]$ . The commutators $[\overline{p(x)h_{\alpha}},\overline{q(x)h_{\beta}}]$ are zero since $p_{0}^{\sim}$ do not depend
on $\lambda$ . Let us calculate $[\overline{q(x)h_{\alpha}},\overline{p(x)f_{\beta}}]$ . The commutator $[\overline{q_{0}}h_{\alpha},\overline{p(x)f_{\beta}}]$ belongs to
$\overline{\mathfrak{g}}$ . As to the $\partial_{\lambda}$ -term, we need to check, that

$[c\partial_{\lambda_{\alpha}}+c\frac{h_{\alpha}}{x}, \overline{q(x)f_{\beta}}]$ (8.57)
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does not contain a pole at $x=0$ . It is easy, since

$[\partial_{\lambda_{\alpha}}+\frac{h_{\alpha}}{x}, e^{\lambda_{\beta}x^{-1}}f_{\beta}]=((\alpha,\beta)\frac{f_{\beta}}{x}-\frac{[h_{\alpha},f_{\beta}]}{x})e^{\lambda_{\beta}x^{-1}}=0$ . (8.58)

$\square $

We note that if one of $u_{i}$ is $0$ , say, $u_{1}=0$ , then the definition still works well.
For instance, $\overline{x^{-1}h_{\alpha}}=-\partial_{\lambda_{\alpha}}$ at $u_{1}=0$ .

One may introduce $\emptyset\sim$ and the Kac-Moody algebra $\emptyset\wedge$ using the same definitions.
The coefficients of all series are taken from $\mathcal{L}$ . Expanding, the elements from $\emptyset-$ we
define $\otimes_{r}\sim$ We see that

$\emptyset=\otimes_{r}+\emptyset 0\sim\sim\sim,\tilde{\mathfrak{G}}_{r}n^{\sim}\otimes_{0}=\mathfrak{H}=\mathfrak{h}\otimes \mathcal{L}$ . (8.59)

So $\otimes_{r}\sim$ is a bit bigger than factorizing.
We can introduce the r-matrix describing the projection of $\emptyset\sim$ onto $\otimes_{r}\sim$ It will

satisfy non-unitary Yang-Baxter equation “up to $\mathfrak{h}’$ , but will not depend on the
difference.

The notion of the coinvariant must be properly changed. Let $V_{i}$ be $\mathfrak{g}$-modules,
$V=\otimes_{i=1}^{n}V_{i},$ $M_{V}^{\sigma}$ the corresponding Weil module. We set $\mathfrak{M}_{V}^{\sigma}=M_{V}^{\sigma}\otimes \mathcal{L}$ and
define the coinvariant

$\pi$ : $\mathfrak{M}_{V}^{\sigma}\rightarrow \mathfrak{B}/(\mathfrak{h}\mathfrak{B})$ for E23 $=V\otimes \mathcal{L}$ . (8.60)

The abstract relation betwen $\pi$ and the Sugawara elements and the integral
formulas can be extended to this setup. To get exactly KZB in the form [35], we
need to add the derivative with respect to the $\tau$-parameter of the elliptic curve
$difference,whichmeansthattherationa1continuation(\cdot)mustbeinvariantwith(theparabo1icequation).Thenwemustswitchtother_{-}-matrixdependingonthe$

respect to the shifts in $x$ . The Baker functions have to be replaced by multi-valued
functions on $E$ with multiplicators. The definitions of $\pi,\hat{m}$ and $w$ follow the same
lines. Eventually we come to the integral formulas due to Felder-Varchenko [34].
The proof is similar to that from [13], excluding the parabolic equation (a special
feature of KZB).

Note that the interpretation of KZB via Baker functions is equivalent to the
Felder interpretation. It might be more convenient to try to extend the integral
formulas to any algebraic curves (there are certain results in this direction). At
least it clarifies why the integral formulas cannot be expected to be too “integrable”
in the general theory.

Acknowledgement. I thank the participants of my lectures at IIAS-RIMS for useful
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