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Billey’s formula in combinatorics, geometry, and
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§1. Introduction

In this paper we describe a powerful combinatorial formula and its
implications in geometry, topology, and algebra. This formula first ap-
peared in the appendix of a book by Andersen, Jantzen, and Soergel [1,
Appendix D]. Sara Billey discovered it independently five years later,
and it played a prominent role in her work to evaluate certain polyno-
mials closely related to Schubert polynomials [4].

To set the stage for our discussion, we review well-known founda-
tions of Schubert calculus in Lie type An−1. Consider the group of
invertible matrices GLn(C) with the subgroup B of upper-triangular
matrices. The flag variety is the quotient GLn(C)/B and can be thought
of geometrically as the collection of nested vector subspaces V1 ⊆ V2 ⊆
· · ·Vn−1 ⊆ Cn where each Vi is i-dimensional. The geometry of the flag
variety is interwoven with the combinatorics of the permutation group:
the torus T of diagonal matrices in B acts on the flag variety, and its
fixed points are the flags corresponding to permutation matrices. For
each permutation w, the double coset BwB is an affine cell inside the flag
variety, and the union of these double cosets forms a CW-decomposition.
The closures of the cells BwB/B are the Schubert varieties, which induce
a basis for the cohomology of the flag variety. Combinatorial properties
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of the permutations w determine topological properties of Schubert va-
rieties: for instance, the number of inversions of w counts the dimension
of the variety BwB/B in the flag variety.

Billey’s polynomials relate all of these pieces of Schubert calculus:
the geometry of Schubert varieties, the action of the torus T on the flag
variety, combinatorial data about permutations, the cohomology of the
flag variety and of the Schubert varieties, and the combinatorics of root
systems (the generalization of inversions of a permutation).

Combinatorially, Billey’s formula describes an invariant of pairs of
elements of a Weyl group. On its face, this invariant is a polynomial
combination of roots built from subwords of a fixed word. As we will
see, it has deeper geometric and topological meaning as well:

• It tells us about the tangent spaces at each permutation flag
in each Schubert variety.

• It tells us about singular points in Schubert varieties.
• It tells us about the values of Kostant polynomials.

It also reflects an aspect of GKM theory, which is a way of describing the
torus-equivariant cohomology of a variety just from information about
the torus-fixed points in the variety.

We will also describe some ways to use Billey’s polynomials, in-
cluding concrete combinatorial descriptions in special cases, and ways
to bootstrap the polynomials to describe the equivariant cohomology of
subvarieties of the flag variety to which GKM theory does not apply.

More precisely, Section 2 states Billey’s formula, gives examples,
and lists its main properties. Section 3 describes background and mo-
tivation, including the geometric viewpoint: that Billey and Andersen-
Jantzen-Soergel gave a formula for the localizations of Schubert classes
at torus-fixed points. Sections 4 and 5 then describe newer applications:
a tool called excited Young diagrams with which one can compute local-
izations of Schubert classes in Grassmannians, and a tool called poset
pinball with which one can compute the equivariant cohomology of var-
ious subvarieties of the flag variety. Section 5.2 even shows how poset
pinball can be used to construct a complete Schubert calculus for the
Peterson variety, a singular subvariety of the flag variety with important
applications to quantum cohomology. Finally Section 6 concludes with
some open questions and conjectures.

We used the example of Lie type A in this introduction but the
theorems in this paper apply to all complex reductive linear algebraic
groups. We use the following notation in the rest of this manuscript.

• G is a connected reductive complex linear algebraic group
• B is a Borel subgroup of G
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• T is a maximal torus in B
• Φ is the root system corresponding to G
• Δ = {α1, . . . , αn} is the set of positive simple roots correspond-
ing to B

• W is the Weyl group associated to G and T
• All cohomology is taken with complex coefficients

A reader interested primarily in the case of type A might find it helpful
to recall that αi = ei−ei+1 and that each simple reflection si = (i, i+1)
in cycle notation. Thus for instance the calculation

s2α1 = α1 + α2

is equivalent to

(23)(e1 − e2) = e1 − e3 = (e1 − e2) + (e2 − e3).

§2. Billey’s Formula in Combinatorics

We begin by introducing Billey’s formula from a strictly combina-
torial viewpoint, from which it looks like Billey’s polynomials. More
formally, for each pair v, w in the Weyl group W , we will describe a
polynomial σv(w) in the simple roots α1, α2, . . . , αn.

We need two main tools:

(1) A reduced word b1b2b3 · · · bm is an expression for which each bi
is a simple reflection in W and the product b1b2b3 · · · bm cannot
be written in fewer simple reflections.

(2) To each reduced word b1b2b3 · · · bm and integer j such that
1 ≤ j ≤ m we associate the root rj = b1b2b3 · · · bj−1(αj).

Reduced words are commonly used when considering Weyl groups,
Coxeter groups, or indeed any group with prescribed generator sets.

The roots rj deserve more comment. Surprisingly, they are always
positive [12, Section 10.2]. In fact, they are exactly those positive roots
negated by w−1 in the sense that every rj is −w(α) for some positive
root α. Even more important, the set of roots rj determine w. More
precisely, let b1b2b3 · · · bm be a reduced word for w and denote by N(w)
the set {r1, r2, . . . , rm} of all m positive roots formed according to Rule
(2) in the previous paragraph. Then the set N(w) uniquely specifies w
in the sense that if N(w1) = N(w2) then w1 = w2 [18]. These sets N(w)
satisfy many other interesting combinatorial properties.

Definition 2.1 (Billey’s formula [4, 1]). Let v, w be elements of
W . Fix a reduced word b1b2b3 · · · bm for w. Billey’s formula for the
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polynomial σv(w) is

σv(w) =
∑ k∏

i=1

rj1rj2 · · · rjk

where the sum is over all reduced subwords bj1bj2 · · · bjk for v in w, and
for each j

rj = b1b2b3 · · · bj−1(αj).

Andersen, Jantzen, and Soergel gave this first [1, Appendix D, Re-
mark on p. 298]. Willems later provided a geometric proof [31].

Example 1. Let v = s1 and w = s2s1s2 in the symmetric group
S3, namely the Weyl group of type A2.

Step 1: Find all possible subwords of w that equal v:

s2 s1�s2

Step 2: Compute the roots in each term:

s2 α1���s2= α1 + α2

Step 3: Add terms:

σs1(s2s1s2) = α1 + α2.

In this case we obtain the polynomial α1 + α2.

We now consider several extreme cases of the definition.
First, suppose v is not a subword of w. In this case, the first step

of the algorithm (“find all possible subwords...”) fails and there are no
terms in the polynomial. More formally, we have the following.

Proposition 2. If v �≤ w in Bruhat order then σv(w) = 0.

Second, suppose v is the identity e ∈ W . In this case, every element
w ∈ W contains e trivially and uniquely as the empty subword. We take
the root computed in the second step of the algorithm to be 1, giving us
the following.

Proposition 3. If v = e then σe(w) = 1 for all w ∈ W .

Finally, suppose v and w are both the same element in the Weyl
group. Then the polynomial σw(w) is always the product of the roots
in the subset N(w) described above.

Proposition 4. If v = w is an element of the Weyl group then

σw(w) =
∏

α∈N(w)

α.
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For instance if v and w are both the longest element w0 ∈ W then
the polynomial σw0(w0) is simply the product of all positive roots.

Other important properties are more subtle; before discussing them,
we give one more substantive example.

Example 5. Let v = s1 and w = s1s2s1 in type A.

Step 1: Find all possible subwords of w that equal v:

s1�s2 s1 and s1 s2 s1�
Step 2: Compute the roots in each term:

α1���s2 ��s1 and s1 s2 α1�
Step 3: Add terms:

σs1(s1s2s1) = α1 + α2.

Using a different word for w than Example 1, we still obtain α1 + α2.

This leads directly to the fundamental properties of σv(w). Recall
that the length �(w) of a Weyl group element w ∈ W is the number
of simple reflections in a reduced word for w, namely if w = b1b2 · · · bm
then �(w) = m.

Proposition 6. Let v, w ∈ W . Billey’s formula for σv(w) gives:

• a polynomial in α1, α2, . . . , αn with nonnegative integer coeffi-
cients

• that has degree �(v)
• and is independent of the choice of reduced word for w.

The first claim in this proposition follows from the fact that each
root rj is always positive, and that every positive root can be written
in terms of the simple roots with nonnegative integer coefficients. The
second claim follows from the algorithm itself: each term in σv(w) is the
product of roots, one for each simple reflection in a reduced word for v.
Hence each term has degree �(v). The third claim is not combinatorially
trivial: Billey proved it in her original manuscript [4], and Andersen,
Jantzen, and Soergel sketched a proof using the relationship between
Schubert classes and the polynomials σv(w) that is described in the
next section [1].

§3. What Billey’s formula means

We now consider the motivation behind the discovery of these poly-
nomials and other places they first emerged.
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3.1. Representations of quantum groups

Andersen, Jantzen, and Soergel wanted to answer a problem of a
different flavor from the Schubert calculus described in this manuscript:
identifying representations of quantum groups and of semisimple groups
over fields of characteristic p. Their approach was to fit their specific
questions into a larger framework. They built a more abstract endo-
morphism algebra and showed that its properties captured their original
representation-theoretic questions.

As a small application of their results, Andersen, Jantzen, and So-
ergel consider a particular endomorphism ring studied earlier by Kostant
and Kumar [20, 21]. They proved that classes σw constructed by Kostant
and Kumar actually generate various sub- and quotient modules of the
endomorphism ring. In order to do this, Andersen, Jantzen, and Soergel
explicitly identified the polynomials σv(w) [1, Chapter 19, Appendix D].

3.2. Orbit values of Kostant polynomials

Billey’s original goal was to study the values of certain polynomials
called Kostant polynomials that are also related to the classes σw. Let
O denote a regular element of the torus t. Kostant polynomials are
(nonhomogeneous) elements of C[t∗] parametrized by the Weyl group,
of degree determined by the length of the Weyl group element associated
to the polynomial, and defined by certain vanishing conditions on the
orbits Ov for each v ∈ W . Surprisingly, these polynomials are essentially
unique: Kostant showed that they are unique up to the ideal in C[t∗]
that vanishes on the orbits OW . Moreover, the highest homogeneous
component is a Schubert class in H∗(G/B).

Later work expanded this deep connection between the Kostant
polynomials and the cohomology of the flag variety. Carrell proved that
the cohomology H∗(G/B) is isomorphic as a graded ring to the coordi-
nate ring of the variety associated to the points OW [5]. Kostant and
Kumar generalized Kostant polynomials to the collections of polynomi-
als σw and in a series of papers proved that the classes σw generate the
equivariant cohomology of the flag variety G/B [20, 21].

3.3. Kumar’s criterion for Schubert varieties

Of course, algebraic information about Schubert classes is closely
related to geometric data of Schubert varieties. Kumar pursued this re-
lationship, strengthening his analysis of some specific polynomials σv(w)
to give a criterion for when the (opposite) Schubert variety Xv is smooth
at the flag wB. It turns out that smoothness is equivalent to σv(w) being
a specific product of distinct positive roots [23].
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Theorem 7 (Kumar’s Criterion). The opposite Schubert variety Xv

is smooth at the flag wB if and only if

σv(w) =
∏

α ∈ Φ+s.t.
v �≤ sαw

α.

3.4. Restriction to fixed points and GKM theory

The two previous points—(1) constructing the cohomology of the
flag variety and (2) the topology of Schubert varieties—fit together in
a natural framework: the family of polynomials associated to σv by
Billey’s formula actually represent the equivariant Schubert class corre-
sponding to v and the individual polynomials σv(w) encode topological
information about the Schubert variety at the fixed point w. This is now
viewed as a part of a larger topological construction of torus-equivariant
cohomology for a wider class of varieties that is often referred to as
GKM theory. (Andersen-Jantzen-Soergel’s endomorphism algebras en-
capsulate key properties of GKM theory from a purely algebraic point
of view.)

We describe GKM theory for flag varieties. To begin, the inclusion
(G/B)T ↪→ G/B induces a map

H∗
T (G/B) → H∗

T ((G/B)T ).

For the flag variety (and many other varieties, including G/P ), this map
is an injection:

H∗
T (G/B) ↪→ H∗

T ((G/B)T ).

The equivariant cohomology of a point is

H∗
T (pt)

∼= C[α1, α2, . . . , αn].

The fixed points (G/B)T are the flags associated to Weyl group elements
{wB : w ∈ W} so

H∗
T ((G/B)T ) ∼=

⊕
w∈W

C[α1, α2, . . . , αn].

Inclusion of fixed points induces an injection

H∗
T (G/B) ↪→

⊕
w∈W

C[α1, α2, . . . , αn].

This brings us to a key point.
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Fact 8. The image of the Schubert class [Xv] under this map is

[Xv] �→ (σv(w))w∈W

where σv(w) are the very same polynomials given by Billey’s formula.

In fact, Kumar showed that this fact holds for affine flag manifolds
[4, Appendix] and for any G/P [24].

When the flag wB is a smooth point in the variety Xv then the
polynomials σv(w) describe the (torus weight on the) tangent space to
the variety Xv at the fixed point w. Geometrically, then, Kumar’s cri-
terion says that a fixed point is smooth in a Schubert variety if Billey’s
formula gives the product of certain distinct roots.

Remark 9. Both Billey and Andersen-Jantzen-Soergel use the same
basic approach to identifying and proving the formula for the polynomials
σv(w): induction on the length of v together with divided difference
operators. Divided difference operators ∂i are degree-lowering operators
defined on Schubert classes for G/B. Their key property is that

∂i(σv) =

{
σsiv if siv < v and
0 otherwise.

Kostant and Kumar discovered an explicit formula for divided differ-
ence operators in the GKM setting [20, Propositions 4.20 and 4.24].
Explicit formulas for the top-degree Schubert class σw0 and the lowest-
degree Schubert class σe in the GKM presentation follow from the defini-
tions. Billey uses divided difference operators to induct down from σw0

while Kumar (in the Appendix to Billey’s paper) and Andersen-Jantzen-
Soergel induct up from σe.

We often represent equivariant Schubert classes combinatorially. The
Bruhat graph of W is the graph with vertices given by w ∈ W and with
edges sαw ↔ w between vertices w, sαw that differ by left-multiplication
by a reflection. We then describe the class σv by labeling each vertex w
of the Bruhat graph with the polynomial σv(w) as shown in Figure 1.

Remark 10 (GKM (Goresky-Kottwitz-MacPherson) theory). This
construction of Schubert classes (and the cohomology ring) holds much
more generally than just for the flag variety. In fact, we can identify the
image H∗

T (X) ↪→ H∗
T (X

T ) for a large family of varieties X. In many
cases—now referred to as GKM theory—the image can be described as
a subset of polynomials labeling the vertices of a graph associated to X.
The conditions defining which polynomials are allowed are given by a
straightforward combinatorial algorithm. GKM theory builds on work of
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Chang-Skjelbred, Kirwan, Atiyah-Bott, Guillemin-Sternberg, and many
others [6, 15, 2, 9].

Figure 2 shows all of the Schubert classes for GL3/B with large
vertices indicating the support of the class.
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The central goal of Schubert calculus is to identify the products
σuσv in terms of Schubert classes, namely find explicit formulas for the
coefficients cwuv in the expansion

σuσv =
∑

cwuvσw.
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With the GKM presentation of the equivariant cohomology ring, several
aspects of Schubert calculus become simpler:

• The ring structure of H∗
T (G/B) is streamlined: we multiply

and add these classes vertex-wise, using Billey’s formula to
identify the polynomials associated to each vertex.

• The Schubert classes are “upper-triangular” with respect to
the partial order on W in which u ≤ v if u can be written
as a subword of v. (Figure 2 demonstrates this visually and
Proposition 2 states it algebraically.)

Kostant and Kumar applied this kind of strategy directly to get
a non-positive formula for the structure constants of flag varieties [20,
Proposition 4.24(f)] which Willems refined [32, Theorem 4.8]. Often
additional combinatorial insight is needed to give an explicitly positive
formula.

For instance, Knutson and Tao used GKM theory in their paper on
puzzles to give a positive formula for equivariant structure constants in
H∗

T (G(k, n)) [17]. Their proof had three main steps: 1) proving that a
small subset of structure constants determine all of the structure con-
stants; 2) establishing certain instances of Billey’s formula to identify
this subset of structure constants; and 3) proving that the structure
constants agreed in those instances with the polynomials given by their
puzzles.

Remark 11. An elegant closed formula for the localizations of
Schubert classes exists in large part because of the strong combinatorial
structures inherent in the flag variety. Nonetheless, there has been some
work to generalize Billey’s formula to cohomology bases for a larger fam-
ily of symplectic manifolds, notably by Goldin and Tolman [8]. Goldin
and Tolman both generalize the concept of Schubert classes to a large
family of symplectic manifolds and give a (generally-non-positive) for-
mula for the restriction of these classes to the fixed points.

§4. Billey’s formula for the Grassmannian G(k, n)

In brief, this formula turns calculations in geometric Schubert cal-
culus into combinatorics. It can be restricted to subvarieties of G/P
and so can be used in a wide range of applications of Schubert calculus.
This section describes applications for Grassmannians. The next section
shows applications when GKM theory does not hold.

In particular cases, we can make the combinatorics involved more
explicit. For instance, if the ambient variety is the GrassmannianG(k, n)
of k-dimensional subspaces of Cn then the combinatorial construction for
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Billey’s formula is called excited Young diagrams by Ikeda and Naruse
[13], who discovered it independently after Kreiman [22], or Knutson-
Miller-Yong in the case of ordinary cohomology [16].

Theorem 12 (Kreiman, Ikeda-Naruse). In G(k, n) the polynomial
σλ(μ) is the sum of the excited Young diagrams of λ inside μ, weighted
according to the position of the boxes.

An excited Young diagram is a Young diagram in which certain
boxes are marked. We draw our Young diagrams so that the partition
μ = (μ1 ≥ μ2 ≥ . . .) has μ1 boxes in the first row, μ2 boxes in the second
row, and so on, with the rows aligned on the leftmost column.

Definition 4.1. A marked box in a Young diagram can be excited
if it has empty boxes to the east, south, and southeast. When a box is
excited, its marking moves to the box directly southeast.

We now assign a weight (i, j) to each box in the Young diagram:

• i is the index of the column in which the box is located (read
from the left).

• j is (the number of rows at or below the box) + (the index of
the rightmost column in the box’s row).

To construct all excited Young diagrams of λ inside μ, follow the
resulting simple algorithm (which we demonstrate with an example):

(1) Mark the boxes of λ inside μ.

∗ ∗

(2) Excite all marked boxes in all possible ways.

∗ ∗
,
∗

∗ , ∗ ∗

(3) Sum the diagrams, weighted by position of marked boxes.

1, 6 2, 6

+
1, 6

3, 4 + 2, 4 3, 4 =

(t1 − t6)(t2 − t6) + (t1 − t6)(t3 − t4) + (t2 − t4)(t3 − t4)

We sketch the main ideas of the proof of Theorem 12, though we
omit details. Young diagrams represent fixed points in G(k, n) as well
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as permutations. These Grassmannian permutations satisfy a strong al-
gebraic condition: every reduced word ends in the reflection sk. Excited
Young diagrams enumerate all possible reduced subwords for λ inside
the word for μ using the combinatorics of Sn.

§5. Billey’s formula for subvarieties

GKM theory cannot be applied to all varieties, not even if those vari-
eties have rich geometric and combinatorial structures. We can nonethe-
less construct a kind of GKM theory for suitable subvarieties Y of G/B
using Billey’s formula for localizations of Schubert classes in G/B. Our
strategy is to bootstrap information about Schubert classes to obtain a
module basis for the equivariant cohomology of Y .

The subvariety Y must satisfy two important conditions.

(1) Y must admit the action of a (one-dimensional) subtorus S ⊆ T
under which the fixed points Y S ⊆ (G/B)T .

(2) Y must be equivariantly formal.

Subvarieties of G/B that are defined by linear conditions, like Schubert
varieties or Hessenberg varieties (see below) often satisfy the first condi-
tion. Any variety with no odd-dimensional ordinary cohomology satisfies
the second condition.

Here are the three tools that we have developed thus far:

• a graph Γ built from G/B
• fixed points Y S that are a subset of vertices in Γ
• basis classes σv of H∗

T (G/B) that are indexed by the set of
v ∈ (G/B)T

The graph Γ is the Bruhat graph (see Section 3.4, or Figure 1 for an
example), which is essential for GKM theory in a way that we did not
need to make precise for our exposition. The basis classes σv are the
Schubert classes, and they are specified by Billey’s formula. Finally, the
fixed points Y S are guaranteed to be a subset of the vertices in Γ by our
hypotheses on Y .

We will use this information to identify a subset σv whose images
σ̃v|Y S generate H∗

S(Y ).
Intuitively, our strategy is as follows:

• Drop one ball from each vertex v ∈ Y S in turn and let it roll down
the edges of the graph Γ until it lands at a vertex r(v) ∈ (G/B)T

v � r(v)
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Fig. 3. Restricted Schubert classes for the Springer variety

This heuristic was originally called poset pinball, though others point
out that poset pachinko may be more appropriate. The fixed point r(v)
is called the roll-down vertex of v.

We first give the main theorem and then give several examples.
The theorem identifies a collection of Schubert classes, considered as
functions σr(v) : W → C[α1, . . . , αn] for the fixed points v ∈ Y S , and

then asserts that the restrictions σ̃r(v) : Y S → C[t] generate the S-
equivariant cohomology ring of Y .

Theorem 13 (Harada-Tymoczko). For each u ∈ (G/B)T let σ̃u

denote the image of the Schubert class σu under the natural restriction
map H∗

T (G/B) →→ H∗
S(G/B). If Y is an appropriate subspace of G/B

then the set of functions {
σ̃r(w)|Y S : w ∈ Y S

}
generate H∗

S(Y ) as a ring and form a module basis for H∗
S(Y ).

Figure 3 shows this in practice. Each roll-down permutation gives a
Schubert class; the vertices labeled by nonzero polynomials are empha-
sized, and the lowest of the marked vertices is the roll-down permutation.
The circled vertices are the elements of Y S . We record the polynomials
for the Schubert class at those vertices and discard all other information.
The resulting classes generate H∗

S(Y ) as a subring of (C[t])
3
.

Various different sets of conditions for Y can be used in this theorem
[10, 11]. Our main examples are subvarieties of G/B though the results
hold for a wider class of ambient varieties than even G/P .

Poset pinball applies to various important subvarieties of G/B, in-
cluding both smooth and singular examples.

(1) Schubert varieties
Poset pinball can be used for any subvariety to which regular GKM
theory applies—like Schubert varieties, including P/B.
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(2) Springer fibers of a nilpotent matrix X : Cn → Cn

The Springer variety of X is the subvariety

Spr(X) =
{
flags gB ∈ GLn(C)/B : g−1Xg is upper-triangular

}
.

It is important in geometric representation theory: Springer showed
that the symmetric group Sn acts on the cohomology of the Springer
variety [29]. Moreover, the top-dimensional cohomology of Spr(X) is
the irreducible representation corresponding to the partition of n given
by the sizes of the Jordan blocks of X. The combinatorics of Young
tableaux give important information about the components and Betti
numbers of Springer varieties [27, 28, 30].

(3) Peterson varieties for a regular nilpotent X ∈ g
The Peterson variety of a regular nilpotent X ∈ g is

Pet =

{
flags gB ∈ G/B : g−1Xg ∈ b⊕

⊕
αi∈Δ

g−αi

}

Kostant showed that the quantum cohomology ring of the flag variety
is isomorphic to the coordinate ring of a dense open subvariety of the
Peterson variety [19]. Rietsch gave an explicit isomorphism in which
the quantum parameters correspond to certain determinants, giving a
beautiful collection of determinantal identities [26]. The geometry and
topology of Peterson varieties is again deeply linked to combinatorics of
permutations and partitions [25, 14].

(4) Nilpotent Hessenberg varieties in type A for a nilpotent
X ∈ gln and appropriate subspace H ⊆ gln
Both Springer varieties and Peterson varieties are examples of a larger
class of varieties called Hessenberg varieties. Hessenberg varieties have
two parameters: a nilpotent element X ∈ gln and a subspace H ⊆ gln.
The subspace H must satisfy two constraints: that H contains the Borel
subalgebra b and that H is closed under Lie bracket with b in the sense
that [H, b] ⊆ H. The Hessenberg variety for these two parameters X
and H is defined as

Hess(X,H) =
{
flags gB ∈ GLn(C)/B : g−1Xg ∈ H

}
.

Hessenberg varieties have a kind of cell decomposition enumerated by
Young tableaux that relates the geometry of the cells with the combina-
torics of the tableaux [30].

5.1. Examples of poset pinball

We give two examples of the roll-down process.
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We use the subtorus S ⊆ T that consists of diagonal matrices with
ti in the ith row, for each i with 1 ≤ i ≤ n and each t ∈ C. This means
that the map H∗

T (G/B) →→ H∗
S(G/B) sends each αi �→ t.

Both of our examples are for subregular Springer varieties inside the
flag variety GLn(C)/B. In other words, the nilpotent matrix X has two
Jordan blocks of dimensions n− 1 and 1.

Figure 4 shows the case when the subvariety Y ⊆ GL4(C)/B is the
Springer variety associated to the matrix X with 1 in entries (1, 2), (2, 3)
and zero elsewhere. (We only show relevant vertices and edges of the
Bruhat graph Γ.) The bold vertices in Figure 4 are the roll-down ver-
tices; the circled vertices are the fixed points Y S .
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Fig. 4. Poset pinball on a Springer variety

This process is not deterministic: for instance, instead of rolling
down in step 5b of Figure 4, the ball could instead have rolled right to
give the alternate set of roll-down vertices shown in Figure 5.
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Fig. 5. Alternate roll-downs

The next example is similar but in GL3(C)/B. The Springer variety
is given by the matrix whose only nonzero entry is in position (1, 2). We
skip steps of the roll-down process because in this case it is essentially
unique. As long as the balls drop as far down as possible first from s2,
second from s2s1, and last from s1s2s1, then the set of roll-downs must
be the bottom three vertices, as in Figure 6.
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Fig. 6. Placement of balls before and after rolling down

Returning to Figure 3, we see a pictorial summary of Theorem 13.
The three roll-downs from Figure 6 are vertices s2, e, and s1. Figure 2
shows the corresponding Schubert classes (as well as all other Schubert
classes) for the flag variety; Billey’s formula gives the polynomials at
each vertex. Figure 6 shows the classes for vertices s2, e, and s1 from
left-to-right; now we only show polynomials at circled vertices, namely,
the fixed points associated to the subvariety.

In short, the roll-down process selects certain Schubert classes for
each subvariety of the flag variety. Theorem 13 then says that restricting
those Schubert classes just to the fixed points in the subvariety—and
discarding all additional information—generates the equivariant coho-
mology of the subvariety. Finally, Billey’s formula for these polynomials
gives an explicit description of each basis class.

5.2. Schubert calculus and poset pinball

We use these results to actually compute Schubert calculus for suit-
able subvarieties of the flag variety, in this case for the Peterson variety
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Y of type An−1. First we identify roll-down classes for the Peterson
variety. Then we give two key formulas that together describe the entire
cohomology ring of Peterson varieties: a Chevalley-Monk formula, which
shows how to multiply any roll-down class by one of a specific family
of generators; and a Giambelli formula, which expresses an arbitrary
roll-down class in terms of the generators.

For each subset A ⊆ {1, 2, . . . , n− 1} define vA =
∏

i∈A si.

Theorem 14. [10, 11] Let Y be the Peterson variety of type An−1

and S be the subtorus of diagonal matrices with ti in the ith row for each
i with 1 ≤ i ≤ n and each t ∈ C.

The equivariant cohomology H∗
S(Y ) is generated by

H∗
S(Y ) =

〈
σ̃vA(w) : A ⊆ {1, 2, . . . , n− 1}, wB ∈ Y S

〉
.

This result is true in type An−1 [10] and in general Lie type [11].
We now give the Chevalley-Monk and Giambelli formulas for

Peterson varieties. The integers in these formulas are straightforward,
but their precise descriptions require distracting notation.

Theorem 15. Let Y be the Peterson variety of type An−1 and S be
the subtorus of diagonal matrices with ti in the ith row for each i with
1 ≤ i ≤ n and each t ∈ C.

(1) Chevalley-Monk formula for Peterson varieties [10]

σ̃si σ̃vA = tcAi,Aσ̃vA +
∑

cBi,Aσ̃vB

where the sum is over B ⊇ A with |B| = |A|+ 1.
(2) Giambelli’s formula for Peterson varieties [3]

σ̃vA = c
∏
i∈A

σ̃si .

All coefficients are explicit, easily-computed, positive integers.

Drellich recently extended this to Peterson varieties of all Lie types
[7]. She proves her results in several cases; however, the uniformity
across type suggests an underlying topological cause.

§6. Conjectures and open questions

First we ask for something like Billey’s formula for varieties other
than G/P . We want a positive formula that explicitly describes each
polynomial in the GKM presentation of H∗

T (X).
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Question 16. We ask for explicit, positive formulas for localizations
of cohomology classes for varieties other than G/P .

Using the methods of Section 5, we can identify a Schubert variety
XH for each regular nilpotent Hessenberg variety YH so that

{σ̃v|XH : vB ∈ XH} generates H∗
S(XH)

and we conjecture

{σ̃v|YH : vB ∈ XH} generates H∗
S(YH)

Analogous conjectures have been posed for Springer and all other nilpo-
tent Hessenberg varieties.

Question 17. Is there a geometric reason for the similarity between
the S-equivariant cohomology of XH and YH?

For instance, is there a deformation of Hessenberg varieties to unions
of Schubert varieties? More generally, are there structural (possibly non-
geometric) explanations for the similarity between the cohomology of
these two families of varieties?
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Samelson et des variétés de drapeaux. Bull. Soc. Math. France. 132
(2004), 569–589.
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