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Sources of log canonical centers

János Kollár

Abstract.

Given a log canonical pair (X,Δ) and a log canonical center Z ⊂
X, we define a Calabi–Yau fiber space (S,ΔS) → Z, called the source
of Z. We believe that the source carries – and makes accessible – all
the relevant information about the log canonical center Z. There is a
natural Poincaré residue map fromX to S which is used to solve several
problems in higher-codimension adjunction. The main application is
to the construction of semi-log-canonical pairs.

§1. Introduction

Let X be a smooth variety and S ⊂ X a smooth hypersurface. The
Poincaré residue map is an isomorphism

R : ωX(S)|S ∼= ωS .

In additive form it gives the adjunction formula (KX + S)|S ∼ KS , but
this variant does not show that R is a canonical isomorphism.

Its generalization to log canonical pairs (X,S + Δ) has been an
important tool in birational geometry; see, for instance, [Kol92, KM98].
One defines a twisted version of the restriction of Δ to S, called the
different and, for m > 0 sufficiently divisible, one gets a Poincaré residue
map

Rm :
(
ω
[m]
X (mS +mΔ)

)|S ∼= ω
[m]
S

(
mDiffS Δ

)
,

where the exponent [m] denotes the double dual of themth tensor power.
As before, it is frequently written as a Q-linear equivalence of divisors

(
KX + S +Δ)|S ∼Q KS +DiffS Δ.

There have been several attempts to extend these formulas to the case
when S is replaced by a higher codimension log canonical center of a
pair (X,Δ) [Kaw97, Kaw98, Kol07]. None of these have been completely
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successful; the main difficulty is understanding what kind of object the
different should be.

Let Z ⊂ X be a log canonical center of a pair (X,Δ). We can choose
a resolution f : X ′ → X such that if we write f∗(KX +Δ

) ∼Q KX′ +Δ′

then there is a divisor S ⊂ X ′ that dominates Z and appears in Δ′ with
coefficient 1. The usual adjunction formula now gives

(
KX′ +Δ′)|S ∼Q KS +DiffS(Δ

′ − S) =: KS +ΔS .

Note further that KX′ + Δ′ is trivial on the fibers of f , hence so is
KS +ΔS . Thus

f |S : (S,ΔS) → Z

is a fiber space whose (possibly disconnected) fibers have (numerically)
trivial (log) canonical class. The aim of previous attempts was to gener-
alize Kodaira’s canonical bundle formula for elliptic surfaces (cf. [BPV84,
Sec.V.12]) to this setting. The difficulty is to make sure that we do not
lose information in the summand that corresponds to the j-invariant of
the fibers in the classical case. (For families of elliptic curves this could
be achieved by keeping the corresponding variation of Hodge structures
as part of our data.)

This suggests that it could be better to view the pair (S,ΔS) as
the answer to the problem. However, in general there are many divisors
Sj ⊂ X ′ that satisfy our requirements and they do not seem to be related
to each other in any nice way.

Our aim is to remedy this problem, essentially by looking at the
smallest possible intersections of the various divisors Sj on a dlt model
of (X,Δ). There can be many of these models and intersections, but they
turn out to be birational to each other and have several unexpectedly
nice properties. These are summarized in the next theorem. For the
rest of this note we work over a field of characteristic 0.

Dlt models, the different and crepant birational equivalence are re-
called in Definitions 4–6.

Theorem 1. Let (X,Δ) be an lc pair, Z ⊂ X an lc center and
n : Zn → Z its normalization. Let f :

(
Xm,Δm

) → (X,Δ) be a dlt
model and S ⊂ Xm a minimal (with respect to inclusion) lc center of(
Xm,Δm

)
that dominates Z. Set ΔS := Diff∗

S Δm and fS := f |S. Let

fn
S : S → Z̃S → Zn denote the Stein factorization.

(1) (Uniqueness of sources) The crepant birational equivalence class
of (S,ΔS) does not depend on the choice of Xm and S. It is
called the source of Z and denoted by Src(Z,X,Δ).
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(2) (Uniqueness of springs) The isomorphism class of Z̃S does not
depend on the choice of Xm and S. It is called the spring of Z
and denoted by Spr(Z,X,Δ).

(3) (Crepant log structure) (S,ΔS) is dlt, KS+ΔS ∼Q f∗
S

(
KX+Δ

)
and (S,ΔS) is klt on the generic fiber of fS.

(4) (Poincaré residue map) For m > 0 sufficiently divisible, there
are well defined isomorphisms

f∗(ω[m]
X (mΔ)

)|S ∼= ω
[m]
S (mΔS) and

n∗(ω[m]
X (mΔ)|Z

) ∼=
((

fn
S

)
∗ω

[m]
S (mΔS)

)inv

where the exponent inv denotes the invariants under the action
of the group of crepant birational self-maps BircZ(S,ΔS).

(5) (Galois property) The extension Z̃S → Z is Galois and the

natural map BirZ(S,ΔS) � Gal
(
Z̃S/Z

)
is surjective.

(6) (Adjunction) Assume Δ = D + Δ1. Let nD : Dn → D be the
normalization and ZD ⊂ Dn an lc center of

(
Dn,DiffDn Δ1

)
such that nD(ZD) = Z. Then there is a commutative diagram

Src
(
ZD, Dn,DiffDn Δ1

) cbir∼ Src
(
Z,X,D +Δ1

)
↓ ↓
ZD

nD→ Z.

Crepant log structures are defined in Section 2. Theorem 10 shows
that minimal lc centers are birational to each other; this proves (1.1)
and it also establishes (1.6). Its consequences for the Poincaré residue
map are derived in Section 3. Sources and springs are formally defined
in Section 4 and (1.5) is proved in Proposition 19.

Section 5 contains the main application, Theorems 23–24. We show
that normalization gives a one-to-one correspondence:⎧⎨
⎩

slc pairs (X,Δ)
such that

KX +Δ is ample

⎫⎬
⎭ ∼=

⎧⎨
⎩

lc pairs
(
X̄, D̄ + Δ̄

)
such that

KX̄ + D̄ + Δ̄ is ample plus an
involution τ of

(
D̄n,DiffD̄n Δ̄

)
⎫⎬
⎭ .

The papers [Oda13, OX12] contain further applications to K-stability
and to slc models of deminormal schemes.

Shokurov informed me that his forthcoming paper [Sho13] contains
another approach to Theorem 1.

§2. Crepant log structures

Definition 2. Let Z be a normal variety. A crepant log structure
on Z is a proper, surjective morphism f : (X,Δ) → Z such that
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(1) f has connected fibers,
(2) (X,Δ) is lc and
(3) KX +Δ ∼f,Q 0.

A proper morphism f : (X,Δ) → Z is called a weak crepant log
structure on Z if it satisfies (1) and (3) but Δ is allowed to be a non-
effective sub-boundary.

Any lc pair
(
Z,ΔZ

)
has a trivial crepant log structure where (X,Δ) =(

Z,ΔZ

)
. Conversely, if f is birational then

(
Z,ΔZ := f∗Δ

)
is lc.

An irreducible subvariety W ⊂ Z is a log canonical center or lc
center of a weak crepant log structure f : (X,Δ) → Z iff it is the image
of an lc center WX ⊂ X of (X,Δ). A weak crepant log structure has
only finitely many lc centers.

Let (Z,ΔZ) be an lc pair and f : X → Z a proper, birational
morphism. Write KX +ΔX ∼Q f∗(KZ +ΔZ). Then f : (X,ΔX) → Z
is a weak crepant log structure. The lc centers of f : (X,ΔX) → Z are
the same as the lc centers of (Z,ΔZ).

By Proposition 5 we can choose f such that f : (X,ΔX) → (Z,ΔZ)
is a crepant log structure, X is Q-factorial and (X,ΔX) is dlt.

Let f : (X,ΔX) → Z be a dlt crepant log structure and Y ⊂ X an
lc center. Consider the Stein factorization

f |Y : Y
fY−→ ZY

π−→ Z

and set ΔY := Diff∗
Y ΔX . Then

(
Y,ΔY

)
is dlt and fY :

(
Y,ΔY

) → ZY

is a crepant log structure.

Definition 3 (Divisorial log terminal). A pair (X,
∑

aiDi) is called
simple normal crossing (abbreviated as snc) if X is smooth and for
every p ∈ X one can choose an open neighborhood p ∈ U and local
coordinates xi such that for every i there is an index a(i) such that
Di ∩ U = (xa(i) = 0).

As key examples, I emphasize that the pair
(
A2

k, (x
2 = y2 + y3)

)
is

not snc and
(
A2

k, (x
2 + y2 = 0)

)
is snc iff

√−1 ∈ k. Thus being snc is a
Zariski local (but not étale local) property.

Given any pair (X,Δ), there is a largest open subset Xsnc ⊂ X such
that

(
Xsnc,Δ|Xsnc

)
is snc.

A pair (X,Δ) is called divisorial log terminal (abbreviated as dlt)
if the discrepancy a(E,X,Δ) is > −1 for every divisor whose center is
contained in X \Xsnc.

Definition 4 (Different). Let (X,Δ) be a dlt pair and Y ⊂ X an
lc center. Generalizing the usual notion of the different [Kol92, Sec.16],
there is a naturally defined Q-divisor Diff∗

Y Δ, called the different of Δ
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on Y such that (
KX +Δ

)|Y ∼Q KY +Diff∗
Y Δ.

The traditional different [Kol92, Sec.16] is defined such that if Y = D is
a divisor then

(
KX +D +Δ

)|D ∼Q KD +DiffD Δ.

Thus, in this case, Diff∗
D(D + Δ) = DiffD Δ. This inductively defines

Diff∗
Y Δ whenever Y is an irreducible component of a complete intersec-

tion of divisors in 	Δ
. In the dlt case, this takes care of every lc center
by [Fuj07, Sec.3.9]; see also [Kol13, Sec.4.1] for details.

The following result was proved by Hacon (and published in [KK10]).
A simplified proof is in [Fuj11].

Proposition 5. Let (Z,ΔZ) be an lc pair. Then it has a Q-factorial,
crepant, dlt model p : (X,ΔX) → (Z,ΔZ). That is, X is Q-factorial,
(X,ΔX) is dlt, KX + ΔX is p-nef and ΔX = E + p−1

∗ ΔZ where E
contains all p-exceptional divisors with multiplicity 1. Q.E.D.

6 (Birational weak crepant log structures).
Let f : (X,Δ) → Z be a weak crepant log structure. If f factors as

X
g→ X ′ f ′

→ Z where g is birational, then f ′ : (X ′,Δ′ := g∗Δ) → Z also
a weak crepant log structure. We say that f : (X,Δ) → Z birationally
dominates f ′ : (X ′,Δ′) → Z.

Conversely, assume that f ′ : (X ′,Δ′) → Z is a weak crepant log
structure and g : X → X ′ is a proper birational morphism. Write
KX +Δ ∼Q g∗

(
KX′ +Δ′). Then f := f ′ ◦g : (X,Δ) → Z is also a weak

crepant log structure.
By Proposition 5 every (weak) crepant log structure f : (X,Δ) → Z

is dominated by another (weak) crepant log structure f∗ : (X∗,Δ∗) → Z
such that (X∗,Δ∗) is dlt and Q-factorial. If Δ is effective then we can
choose Δ∗ to be effective.

Two weak crepant log structures fi : (Xi,Δi) → Z are called crepant
birational if there is a third weak crepant log structure h : (Y,ΔY ) → Z
which birationally dominates both of them. Crepant birational equiva-

lence is denoted by
cbir∼ .

The group of crepant birational self-maps of a weak crepant log
structure f : (X,Δ) → Z is denoted by BircZ(X,Δ). By also allowing
k-automorphisms, we get the larger group Birck(X,Δ).

Let f : (X,Δ) → Z be a weak crepant log structure and f ′ : X ′ → Z
a proper morphism. Assume that there is a birational map φ : X ��� X ′

such that f ′ ◦ φ = f . By the above, there is a unique Q-divisor Δ′ such
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that f ′ : (X ′,Δ′) → Z is a weak crepant log structure that is birational
to f : (X,Δ) → Z. If φ−1 has no exceptional divisors, then Δ′ = φ∗Δ
and hence Δ′ is effective if Δ is.

Let fi : (Xi,Δi) → S be weak crepant log structures and φ : X1 ���
X2 a birational map. Let Z1 ⊂ X1 an lc center such that, at the generic
point of Z1, the pair (X1,Δ1) is dlt and φ is a local isomorphism. Then
Z2 := φ∗Z1 is also an lc center and

φ|Z1 :
(
Z1,Diff∗

Z1
Δ1

)
���

(
Z2,Diff∗

Z2
Δ1

)
is crepant birational.

Theorem 7. [NU73, Uen75, Gon13, FG14] Let f : (X,ΔX) → Z
be a crepant log structure. Then:

(1) The BircZ(X,ΔX) action on ω
[m]
X (mΔX) is finite for every m ≥

0.
(2) If Z is projective and KX +ΔX ∼Q f∗(ample Q-divisor) then

the Birck(X,ΔX) action on Z is finite. Q.E.D.

8 (Minimal dominating lc centers). Let f : (X,Δ) → S be a dlt,
weak crepant log structure. Let W ⊂ S be an lc center and {Wi :
i ∈ I(W )} the minimal (with respect to inclusion) lc centers of (X,Δ)
that dominate W . We claim that the set of their crepant birational
isomorphism classes

{(
Wi,Diff∗

Wi
Δ
)
: i ∈ I(W )

}
(8.1)

is a birational invariant of f : (X,Δ) → S.
To see this note that by [Sza94] we can assume that (X,Δ) is snc.

Then it is enough to check birational invariance for one smooth blow up.
If we blow up V ⊂ X that is not an lc center, then the set of lc centers
is unchanged.

If V is an lc center that is the complete intersection of sayD1, . . . , Dr ⊂
	Δ
, then we get an exceptional divisor EV that is a Pr−1-bundle over
V . Locally on V , we get a direct product

(
EV ,Diff∗

EV
ΔBV X

) ∼= (
V,Diff∗

V Δ
)× (

Pr−1, (x1 · · · xr = 0)
)
,

thus every minimal lc center of
(
V,Diff∗

V Δ
)
corresponds to r isomorphic

copies of itself among the minimal lc centers of
(
EV ,Diff∗

EV
ΔBV X

)
,

hence among the minimal lc centers of
(
BV X,ΔBV X

)
. Q.E.D.

Our next aim is to prove that for crepant log structures, the invariant
defined in (8.1) consist of a single birational equivalence class.
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P1-linking of minimal lc centers

Definition 9 (P1-linking). A standard P1-link is a dlt, Q-factorial,
pair

(
X,D1 +D2 +Δ) whose sole lc centers are D1, D2 (hence D1 and

D2 are disjoint) plus a proper morphism π : X → S such that KX +
D1 + D2 + Δ ∼Q,π 0, π : Di → S are both isomorphisms and every
reduced fiber redXs is isomorphic to P1.

Let F denote a general smooth fiber. Then
(
(KX+D1+D2)·F

)
= 0,

hence (Δ·F ) = 0. That is, Δ is a vertical divisor, the projection gives an
isomorphism

(
D1,DiffD1 Δ

) ∼= (
D2,DiffD2 Δ

)
and these pairs are klt.

The simplest example of a standard P1-link is a product
(
S × P1, S × {0}+ S × {∞}+ΔS × P1

)
for some Q-divisor ΔS .

It turns out that every standard P1-link is locally the quotient of a
product. To see this note that

(
(D1 − D2) · F

)
= 0, thus every point

s ∈ S has an open neighborhood U such that D1 −D2 ∼Q 0 on π−1(U).
Taking the corresponding cyclic cover we get another standard P1-link

π̃ :
(
X̃U , D̃1 + D̃2 + Δ̃) → Ũ

where the D̃i are now Cartier divisors and Δ̃ = π̃∗Δ̃U for some Q-divisor
Δ̃U . Here D̃1 ∼ D̃2, hence the linear system |D̃1, D̃2| maps X̃U to P1.
Together with π̃ this gives an isomorphism

(
Ũ × P1, Ũ × {0}+ Ũ × {∞}+ Δ̃U × P1

) ∼= (
X̃U , D̃1 + D̃2 + Δ̃).

Let g : (X,Δ) → S be a crepant, dlt log structure and Z1, Z2 ⊂ X
two lc centers. We say that Z1, Z2 are directly P1-linked if there is an
lc center W ⊂ X containing the Zi such that g(W ) = g(Z1) = g(Z2)
and

(
W,Diff∗

W Δ
)
is crepant birational to a standard P1-link with Zi

mapping to Di.
We say that Z1, Z2 ⊂ X are P1-linked if there is a sequence of

lc centers Z ′
1, . . . , Z

′
m such that Z ′

1 = Z1, Z
′
m = Z2 and Z ′

i is directly
P1-linked to Z ′

i+1 for i = 1, . . . ,m− 1 (or Z1 = Z2).

The following strengthening of [KK10, 1.7] was the reason to intro-
duce the notion of P1-linking.

Theorem 10. Let k be a field and S essentially of finite type over
k. Let f : (X,Δ) → S be a proper morphism such that KX +Δ ∼Q,f 0
and (X,Δ) is dlt. Let s ∈ S be a point such that f−1(s) is connected
(as a k(s)-scheme). Let Z ⊂ X be minimal (with respect to inclusion)
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among the lc centers of (X,Δ) such that s ∈ f(Z). Let W ⊂ X be an lc
center of (X,Δ) such that s ∈ f(W ).

Then there is an lc center ZW ⊂ W such that Z and ZW are P1-
linked.

In particular, all the minimal (with respect to inclusion) lc centers
Zi ⊂ X such that s ∈ f(Zi) are P1-linked to each other.

Remarks. For the applications it is crucial to understand the case
when k(s) is not algebraically closed.

Each P1-linking defines a birational map Z ��� ZW , but different
P1-linkings can give different birational maps.

Proof. We use induction on dimX and on dimZ.
Write 	Δ
 =

∑
Di. By passing to a suitable étale neighborhood

of s ∈ S we may assume that each Di → Y has connected fiber over
s and every lc center of (X,Δ) intersects f−1(s). (We need to do this
without changing the residue field so that f−1(s) stays connected, cf.
[Mil80, I.4.2].)

Assume first that f−1(s)∩∑
Di is connected. By suitable indexing,

we may assume that Z ⊂ D1, W ⊂ Dr and f−1(s) ∩Di ∩Di+1 �= ∅ for
i = 1, . . . , r − 1.

By induction, we can apply Theorem 10 to D1 → S with Z as Z and
D1∩D2 as W . We get that there is an lc center Z2 ⊂ W such that Z and
Z2 are P1-linked. As we noted in Definition 9, Z2 is also minimal (with
respect to inclusion) among the lc centers of (X,Δ) such that s ∈ f(Z2).
Note that Z2 is an lc center of

(
D1,Diff∗

D1
(Δ)

)
. By adjunction, it is an

lc center of (X,Δ) and also an lc center of
(
D2,Diff∗

D2
(Δ)

)
.

Next we apply Theorem 10 to D2 → S with Z2 as Z and D2 ∩D3

as W , and so on. At the end we work on Dr → S with Zr as Z and W
as W to get an lc center ZW ⊂ W such that Z and ZW are P1-linked.
This proves the first claim if f−1(s) ∩∑

Di is connected.
If f−1(s) ∩ ∑

Di is disconnected, then write Δ =
∑m

i=1 Di + Δ1.
We claim that in this case m = 2 and D1, D2 ⊂ X are directly P1-linked
(by W = X). We may assume that X is Q-factorial.

First we show that
∑

Di dominates S. Indeed, consider the exact
sequence

0 → OX(−∑
Di) → OX → O∑

Di
→ 0

and its push-forward

OS
∼= f∗OX → f∗O∑

Di
→ R1f∗OX(−∑

Di).

Since −∑
Di ∼Q,f KX +Δ1, the sheaf R

1f∗OX(−∑
Di) is torsion free

by [Kol86] (see [KK10] for the extension to the klt case that we use).
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Thus OS � f∗O∑
Di

is surjective hence
∑

Di → S has connected fibers,
a contradiction.

This implies that KX + Δ1 is not f -pseudo-effective and so by
[BCHM10, 1.3.2] one can run the (X,Δ1)-MMP over S.

Every step is numerically KX +
∑

Di + Δ1-trivial, hence
∑

Di is
ample on every extremal ray. Therefore a connected component of

∑
Di

can never be contracted by a birational contraction. By the Connect-
edness Theorem [Kol92, 17.4], the connected components of

∑
Di are

unchanged for birational contractions and flips. Thus, at some point,
we must encounter a Fano contraction p : (X∗,Δ∗

1) → V where
∑

D∗
i

is p-ample. So there is an irreducible component, say D∗
1 that has posi-

tive intersection with the contracted ray. Therefore D∗
1 is p-ample. By

assumption, there is another irreducible component, say D∗
2 that is dis-

joint from D∗
1 . Let Fv ⊂ X∗ be any fiber that intersects D∗

2 . Since D
∗
2 is

disjoint from D∗
1 , we see that D

∗
2 does not contain Fv. Thus D

∗
2 also has

positive intersection with the contracted ray, hence D∗
2 is also p-ample.

Thus D∗
1 and D∗

2 are both relatively ample (possibly multi-) sections
of p and they are disjoint. This is only possible if p has fiber dimension 1,
the generic fiber is a smooth rational curve and D∗

1 and D∗
2 are sections

of p.
Since p is an extremal contraction, R1p∗OX∗ = 0, which implies that

every fiber of p is a tree of smooth rational curves. Both D∗
1 and D∗

2

intersects every fiber in a single point and they both intersect every con-
tracted curve. Thus every fiber is irreducible and so p : (X∗,Δ∗) → V
is a standard P1-link with D∗

1 , D
∗
2 as sections. As we noted in Definition

9, the rest of Δ∗ consists of vertical divisors. Thus any other D∗
i would

make f−1(s)∩∑
Di connected. Therefore D

∗
1 , D

∗
2 are the only lc centers

of (X∗, D∗
1 +D∗

2 +Δ∗
1) and so D1, D2 are the only lc centers of (X,Δ).

As noted at the end of Definition 6, D1, D2 ⊂ X are directly P1-linked
(by W = X). Q.E.D.

Corollary 11. Let f : (X,ΔX) → S be a dlt, crepant log structure.

Let Y ⊂ X be an lc center. Consider the Stein factorization f |Y : Y
fY−→

SY
π−→ S and set ΔY := Diff∗

Y ΔX . Then

(1) fY :
(
Y,ΔY

) → SY is a dlt, crepant log structure.

(2) Let WY ⊂ SY be an lc center of fY :
(
Y,ΔY

) → SY . Then
π(WY ) ⊂ S is an lc center of f : (X,ΔX) → S and every
minimal lc center of

(
Y,ΔY

)
dominating WY is also a minimal

lc center of (X,ΔX) dominating π(WY ).
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(3) Let W ⊂ S be an lc center of f : (X,ΔX) → S. Then ev-
ery irreducible component of π−1(W ) is an lc center of fY :(
Y,ΔY

) → SY .

Proof. (1) is clear. To see (2), note that WY is dominated by
an lc center VY of

(
Y,Diff∗

Y Δ). Thus, by adjunction, VY is also an
lc center of (X,Δ), hence π(WY ) = f(VY ) is an lc center of S. By
Theorem 10, a minimal lc center of Y that dominates WY is also a
minimal lc center of X that dominates π(WY ). Thus Src

(
WY , Y,ΔY

) ∼
Src

(
π(WY ),X,ΔX

)
.

Finally let W ⊂ S be an lc center of f : (X,ΔX) → S and w ∈ W
the generic point. Let VX ⊂ X be a minimal lc center that dominates
W . By Theorem 10, there is an lc center VY ⊂ Y that is P1-linked
to VX . By adjunction, VY is also an lc center of

(
Y,Diff∗

Y Δ). Thus

fY (VY ) ⊂ SY is an lc center of fY :
(
Y,ΔY

) → SY and it is also one of

the irreducible components of π−1(W ).
In order to get (3), after replacing S by an étale neighborhood of w,

we may assume that Y = ∪Yj such that each f−1(w) ∩ Yj is connected.
By the previous argument, each Yj yields an lc center fYj (VYj ) ⊂ SYj

and together these show that every irreducible component of π−1(W ) is
an lc center of fY :

(
Y,ΔY

) → SY . Q.E.D.

Example 12. Fix m ≥ 3 and ε a primitive mth root of unity. On
Pm−1 consider the μm-action generated by

τ1 : (x0 : x1 : · · · : xm−1) �→ (x0 : εx1 : · · · : εm−1xm−1).

The action moves the divisor D0 := (x0 + x1 + · · · + xm−1 = 0) into
m different divisors D0, . . . , Dm−1. One easily checks that

(
Pm−1, D0 +

· · ·+Dm−1

)
is snc (if ε is in our base field) and has trivial log canonical

class.
Let A be an abelian variety with a μm-action τ2. On

(
Pm−1 ×A,Δ := D0 ×A+ · · ·+Dm−1 ×A

)
we have a μm-action generated by τ := (τ1, τ2).

Let X1 :=
(
Pm−1 × A

)
/〈τ〉. The quotient of the boundary Δ has

only 1 component but it has complicated self-intersections, hence it is
not dlt. Let (X,ΔX) be a dlt model.

We see that the minimal lc centers are isomorphic to (A, 0) and the
different P1-linkings between them differ from each other by a power of
τ2.
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§3. Poincaré residue map

Definition 13. Let (X,Δ) be a dlt pair and Z ⊂ X an lc center.

As in Definition 4, if ω
[m]
X (mΔ) is locally free, then, by iterating the

usual Poincaré residue maps for divisors, we get a Poincaré residue map

Rm
X→Z : ω

[m]
X (mΔ)|Z

∼=−→ ω
[m]
Z (m ·Diff∗

Z Δ). (13.1)

(This is well defined if m is even, defined only up to sign if m is odd.)
Let f : (X,Δ) → Y be a dlt, weak crepant log structure. Choose

m > 0 even such that ω
[m]
X (mΔ) ∼ f∗L for some line bundle L on Y .

Let Z ⊂ X be an lc center of (X,Δ). We can view the Poincaré residue
map as

Rm
X→Z : f∗L|Z ∼= ω

[m]
X (mΔ)|Z

∼=−→ ω
[m]
Z (m ·Diff∗

Z Δ). (13.2)

The following result shows, that, for minimal lc centers, (13.2) is
essentially independent of the choice of Z.

Proposition 14. Let f : (X,Δ) → Y be a dlt crepant log structure.

Choose m > 0 even such that ω
[m]
X (mΔ) ∼= f∗L for some line bundle L on

Y . Let Z1, Z2 be minimal lc centers of (X,Δ) such that f(Z1) = f(Z2).
Then there is a birational map φ : Z2 ��� Z1 such that the following
diagram commutes

ω
[m]
X (mΔ) ∼= f∗L ∼= ω

[m]
X (mΔ)

Rm
X→Z1

↓ ↓ Rm
X→Z2

ω
[m]
Z1

(
mDiff∗

Z1
Δ
) φ∗

−→ ω
[m]
Z2

(
mDiff∗

Z2
Δ
) (14.1)

Proof. By Theorem 10 it is sufficient to prove this in case there
is an lc center W that is birational to a P1-bundle P1 × U with Z1, Z2

as sections. Thus projection to U provides a birational isomorphism
φ : Z2 ��� Z1.

Since Rm
X→Zi

= Rm
W→Zi

◦Rm
X→W , we may assume that X = W .

The sheaves in (14.1) are torsion free, hence it is enough to check commu-
tativity after localizing at the generic point of U . This reduces us to the
case when W = P1

L with coordinates (x:y), Z1 = (0:1) and Z2 = (1:0).
A generator of H0

(
P1, ωP1(Z1 + Z2)

)
is dx/x which has residue 1 at Z1

and −1 at Z2. Thus (14.1) commutes for m even and anti-commutes for
m odd. Q.E.D.

Remark 15. By Proposition 14 we get a Poincaré residue map as
stated in (1.4) but it is not yet completely canonical. We think of (Z,ΔZ)
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as an element of a crepant birational equivalence class, thus so far Rm

is defined only up to the action of BircY (Z,ΔZ). However, by Theorem
7, the image of this action is a finite group of rth roots of unity for some

r. Thus the BircY (Z,ΔZ) action is trivial on ω
[mr]
Z (mrΔZ) hence

Rmr : ω
[mr]
X (mrΔ)|Z ∼= ω

[mr]
Z (mrΔZ) (15.1)

is completely canonical. Assume next that ω
[mr]
X (mrΔ) ∼ f∗L. Let

us factor f |Z : Z → f(Z) using g : Z → W and the normalization
n : W → f(Z). Then we can push forward (15.1) to get an isomorphism

n∗L ∼= (
g∗ω

[m]
Z (mΔZ)

)inv
(15.2)

where the exponent inv denotes the invariants under the action of the
group of birational self-maps BirY (Z,ΔZ). This shows the second iso-
morphism in (1.4).

Notation 16. Let (Y,ΔY ) be lc and (X,ΔX) → (Y,ΔY ) a crepant,
dlt model. Let W ⊂ Y be an lc center of (Y,ΔY ) and Z ⊂ X minimal
(with respect to inclusion) among the lc centers of (X,ΔX) that domi-
nate W . By Definition 13, we obtain a Poincaré residue map RX→Z .

Let D ⊂ 	ΔY 
 be a divisor with normalization π : Dn → D. Let
DX ⊂ X be its birational transform on X and set ΔDX := Diff∗

DX
ΔX .

Let WD ⊂ Dn be an lc center of
(
Dn,Diff∗

Dn ΔY

)
. Then WX := π(WD)

is an lc center of
(
Y,ΔY

)
. Choose minimal lc centers ZX ⊂ X (resp.

ZD ⊂ DX) dominating WX (resp. WD).

Theorem 17. Notation and assumptions as above. Then there is a
birational map φ : ZD ��� ZX such that for m sufficiently divisible, the
following diagram commutes

ω
[m]
X (mΔX)

Rm
X→DX−→ ω

[m]
DX

(mΔDX )

Rm
X→ZX

↓ ↓ Rm
DX→ZD

ω
[m]
ZX

(
mDiff∗

ZX
ΔX

) φ∗
−→ ω

[m]
ZD

(
mDiff∗

ZD
ΔDX

)
Proof. If we choose ZX as the image of ZD, this holds by the

definition of the higher codimension residue maps. This and Proposition
14 proves the claim for every other choice of ZX . Q.E.D.

§4. Sources and Springs

Definition 18. Let f : (X,Δ) → S be a crepant, dlt log structure
and Z ⊂ S an lc center. An lc center Z ′ of (X,Δ) is called a source of
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Z if f(Z ′) = Z and Z ′ is minimal (with respect to inclusion) among the
lc centers that dominate Z. By restriction we have

f |Z′ :
(
Z ′,Diff∗

Z′ Δ
) → Z and KZ′ +Diff∗

Z′ Δ ∼f,Q 0.

By adjunction, there is a one-to-one correspondence between lc centers
of

(
Z ′,Diff∗

Z′ Δ
)
and lc centers of (X,Δ) that are contained in Z ′. Thus

Z ′ is a source of Z iff the general fiber of
(
Z ′,Diff∗

Z′ Δ
) → Z is klt.

By Theorem 10 all sources of Z are birational to each other (as weak
crepant log structures over Z). Any representative of their birational
equivalence class will be denoted by Src(Z,X,Δ). One can choose a
representative (St,Δt) → Z whose generic fiber is terminal. Such mod-
els are still not unique, but their generic fibers are isomorphic outside
codimension 2 sets. However, if there is an irreducible component of Δt

whose coefficient is 1 (these can not dominate Z) then it does not seem
possible to choose a sensible subclass of models that are isomorphic to
each other outside codimension 2 sets.

Note further that by Remark 8, if two crepant log structures fi :
(Xi,Δi) → Y are crepant birational over Y , then Src(Z,X1,Δ1) is
crepant birational to Src(Z,X2,Δ2).

One can uniquely factor f |Z′ as

f |Z′ :
(
Z ′,Diff∗

Z′ Δ′) = Src(Z,X,Δ)
cZ−→ Z̃ ′ pZ−→ Z (18.1)

where Z̃ ′ is normal, pZ is finite and cZ has connected fibers.
Thus in (18.1), Z̃ ′ is uniquely defined up to isomorphism over Z. Its

isomorphism class will be denoted by Spr(Z,X,Δ) and called the spring
of Z.

Define the group of source-automorphisms of Spr(Z,X,Δ) as

Auts Spr(Z,X,Δ) := im
[
Birck Src(Z,X,Δ) → Autk Spr(Z,X,Δ)

]
.

By Theorem 7, if KX +Δ is ample then Auts Spr(Z,X,Δ) is finite for
every lc center Z ⊂ X.

Let (Y,Δ) be lc and f : (X,ΔX) → (Y,Δ) a dlt model. Let Z ⊂ Y
be an lc center of (Y,Δ). As noted above, the source Src(Z,X,ΔX) of Z
depends only on (Y,Δ) but not on the choice of (X,ΔX). Thus we also
use Src(Z, Y,Δ) (resp. Spr(Z, Y,Δ)) to denote the source (resp. spring)
of Z.

Next we prove (1.5).

Proposition 19. Let f : (X,Δ) → Y be a crepant log structure and
Z ⊂ Y an lc center. Then the field extension k

(
Spr(Z,X,Δ)

)
/k(Z) is
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Galois and

Gal
(
Spr(Z,X,Δ)/Z

) ⊂ Auts Spr(Z,X,Δ).

Proof. We may localize at the generic point of Z. Thus we may
assume that Z is a point and then prove the following more precise
result.

Lemma 20. Let g : (X,Δ) → Y be a weak crepant log structure
over a field k. Assume that (X,Δ) is dlt and X is Q-factorial. Let
z ∈ Y be an lc center such that g−1(z) is connected (as a k(z)-scheme).
Then there is a unique smallest finite field extension K(z) ⊃ k(z) such
that the following hold.

(1) Every lc center of (Xk̄,Δk̄) that intersects g−1(z) is defined
over K(z).

(2) Let Wz̄ ⊂ Yk̄ be a minimal lc center contained in g−1(z). Then
K(z) = kch(Wz̄), the field of definition of Wz̄.

(3) K(z) ⊃ k(z) is a Galois extension.
(4) Let Wz be a minimal lc center contained in g−1(z). Then

Birck(z)
(
Wz,Diff∗

Wz
Δ
) → Gal

(
K(z))/k(z)

)
is surjective.

Proof. There are only finitely many lc centers and a conjugate of an
lc center is also an lc center. Thus the field of definition of any lc center
is a finite extension of k. Since K(z) is the composite of some of them,
it is finite over k(z).

Let Wz̄ ⊂ Xk̄ be a minimal lc center contained in g−1(z) and
kch(Wz̄) its field of definition. Let Di ⊂ 	Δ
 be the irreducible com-
ponents that contain Wz̄. Each Di is smooth at the generic point
of Wz̄, hence the k̄-irreducible component of Di that contains Wz̄ is
also defined over kch(Wz̄). Thus every lc center of (Xk̄,Δk̄) contain-
ing Wz̄ is also defined over kch(Wz̄). Therefore, any lc center that is
P1-linked to Wz̄ is defined over kch(Wz̄). By Theorem 10 this implies
that every lc center of (Xk̄,Δk̄) that intersects g−1(z) is defined over
kch(Wz̄), hence kch(Wz̄) ⊃ K(z). By construction, kch(Wz̄) ⊂ K(z),
thus kch(Wz̄) = K(z).

A conjugate of Wz̄ over k(z) is defined over the corresponding con-
jugate field of kch(Wz̄). By the above, every conjugate of the field of
kch(Wz̄) over k(z) is itself, hence kch(Wz̄) = K(z) is Galois over k(z).

Finally, in order to see (4), fix σ ∈ Gal
(
K(z)/k(z)

)
and let W σ

z̄ be
the corresponding conjugate of Wz̄. By Theorem 10, W σ

z̄ and Wz̄ are
P1-linked over K(z); fix one such P1-link. The union of the conjugates of
this P1-link over k(z) define an element of Birck(z)

(
Wz,Diff∗

Wz
Δ
)
which
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induces σ on K(z)/k(z). (The P1-link is not unique, hence the lift is not
unique. Thus in (4) we only claim surjectivity, not a splitting.) Q.E.D.

We also note the following direct consequence of Corollary 11.

Corollary 21 (Adjunction for sources). Let (X,D + Δ) be lc and
n : Dn → D the normalization. Let ZD ⊂ Dn be an lc center of(
Dn,DiffDn Δ

)
and ZX := n(ZD) its image in X. Then

(1) Src
(
ZD, Dn,DiffDn Δ

) cbir∼ Src
(
ZX ,X,D +Δ

)
and

(2) Spr
(
ZD, Dn,DiffDn Δ

) ∼= Spr
(
ZX ,X,D +Δ

)
. Q.E.D.

§5. Applications to slc pairs

22 (Normalization of slc pairs). Let (X,Δ) be a semi log canonical
pair. Let π : X̄ → X denote the normalization of X, Δ̄ the divisorial
part of π−1(Δ) and D̄ ⊂ X̄ the conductor of π. Since X is seminormal,
D̄ is reduced. X has an ordinary node at a codimension 1 singular point,
thus interchanging the two preimages of the node gives an involution τ
of the normalization n : D̄n → D̄. This gives an injection

{
slc pairs (X,Δ)

}
↪→

{
lc pairs

(
X̄, D̄ + Δ̄

)
plus an involution τ of D̄n

}
. (22.1)

For many purposes, it is important to understand the image of this
map. That is, we would like to know which quadruples

(
X̄, D̄ + Δ̄, τ

)
correspond to an slc pair (X,Δ). An easy condition to derive is that τ is
an involution not just of the variety D̄n but of the lc pair

(
D̄n,DiffD̄n Δ̄

)
.

Thus we obtain a refined version of the map

{
slc pairs (X,Δ)

}
↪→

⎧⎨
⎩

lc pairs
(
X̄, D̄ + Δ̄

)
plus an involution τ
of

(
D̄n,DiffD̄n Δ̄

)
⎫⎬
⎭ . (22.2)

For surfaces, the above constructions are discussed in [Kol92, Sec.12].
The higher dimensional generalizations are straightforward; see [Kol13,
Chap.5].

There are three major issues involved in trying to prove that the
map (22.2) is surjective.

22.3.1. Does τ generate a finite equivalence relation?
The normalization n : D̄n → D̄ → X̄ and τ generate an equivalence

relation R(τ), called the gluing relation, on the points of X̄ by declaring
n(p) ∼ n(τ(p)) for every p ∈ D̄n. It is easy to see (cf. [Kol12]) that R(τ)
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is a set-theoretic, pro-finite, algebraic equivalence relation. That is, one
can give R(τ) by countably many subschemes

{
Ri ⊂ X̄ × X̄ : i ∈ I}

such that ∪iRi(K) ⊂ X̄(K)× X̄(K) is an equivalence relation on X̄(K)
for every algebraically closed field K and the coordinate projections
induce finite morphisms

π1 : Ri → X̄ and π2 : Ri → X̄.

(One can make the Ri unique if we choose them irreducible, reduced
and assume that none of them contains another.)

It is clear that if X exists then every equivalence class of R(τ) is
contained in a fiber of π : X̄ → X. In particular, if X exists then the
R(τ)-equivalence classes are finite. Equivalently, I is a finite set.

In general the R(τ)-equivalence classes need not be finite. Moreover,
non-finiteness can appear in high codimension. This is the question that
we will study here using the sources of lc centers, especially their Galois
property (1.5).

A closely related example is given by [BT09]: there is a smooth
curve D of genus ≥ 2 and a finite relation R0 ⊂ D ×D such that both
projections R0 ⇒ D are étale yet R0 generates a non-finite equivalence
relation.

22.3.2. Constructing (X,Δ) from
(
X̄, D̄ + Δ̄, τ

)
.

Following the method of [Kol12], it is proved in [Kol13, Chap.5],
that if the R(τ)-equivalence classes are finite, then (X,Δ) exists.

22.3.3. Is KX +Δ a Q-Cartier divisor?
The answer turns out to be yes, see [Kol13, Chap.5], but my proof,

using Poincaré residue maps and Theorem 7, is somewhat indirect.

As a consequence we obtain that (22.2) is one-to-one for pairs with
ample log canonical class.

Theorem 23. Taking the normalization gives a one-to-one cor-
respondence between the following two sets, where X, X̄ are projective
schemes over a field.
⎧⎨
⎩

slc pairs (X,Δ)
such that

KX +Δ is ample

⎫⎬
⎭ ∼=

⎧⎨
⎩

lc pairs
(
X̄, D̄ + Δ̄

)
such that

KX̄ + D̄ + Δ̄ is ample plus an
involution τ of

(
D̄n,DiffD̄n Δ̄

)
⎫⎬
⎭ .

This can be extended to the relative case as follows.
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Theorem 24. Let S be a scheme which is essentially of finite type
over a field. Taking the normalization gives a one-to-one correspondence
between the following two sets.

(1) Slc pairs (X,Δ) such that X/S is proper and KX +Δ is ample
on the generic fiber of W → S for every lc center W ⊂ X.

(2) Lc pairs
(
X̄, D̄+Δ̄

)
such that X̄/S is proper and KX̄ + D̄+Δ̄

is ample on the generic fiber of W̄ → S for every lc center
W̄ ⊂ X̄, plus an involution τ of

(
D̄n,DiffD̄n Δ̄

)
.

Furthermore, the cases when KX + Δ is ample on X/S correspond to
the cases when KX̄ + D̄ + Δ̄ is ample on X̄/S.

As we noted in (22.3), the following result implies Theorem 23.

Proposition 25. Let
(
X̄, D̄+Δ̄

)
be an lc pair and τ an involution

of
(
D̄n,DiffD̄n Δ̄

)
.

Assume that X is proper over a base scheme S that is essentially of
finite type over a field. Assume furthermore that KX̄ + D̄ + Δ̄ is ample
on the generic fiber of W̄ → S for every lc center W̄ ⊂ X̄.

Then the gluing relation R(τ), defined in (22.3.1), is finite.

This in turn will be derived from Theorem 28 on the gluing relation
R(τ) which applies whether KX̄ + D̄ + Δ̄ is ample or not.

Definition 26. Let Y be a normal scheme and R = ∪i∈IRi ⊂ Y ×Y
a set-theoretic, pro-finite, algebraic equivalence relation where the Ri are
irreducible.

R is called a groupoid if every Ri is the graph of an isomorphism
between two irreducible components of Y .

Let Y j ⊂ Y be an irreducible component. The restriction of R to
Y j is Rj := R ∩ (

Y j × Y j
)
. If R is a groupoid then one can identify Rj

with a subgroup of Aut(Y j) called the stabilizer of Y j in R.

We are now ready to formulate and prove a structure theorem for
gluing relations. Roughly speaking, we prove that for every lc center
W̄ ⊂ X̄ there is a “canonically” defined finite cover p : W̃ → W̄ such
that (p× p)−1

(
R(τ)∩ (W̄ × W̄ )

)
is a groupoid and the stabilizer action

W is compatible with p∗
(
KX̄ + D̄+ Δ̄

)
. The compatibility condition is

somewhat delicate to state. Thus I give the actual construction of W̃
and then specify the compatibility condition for that particular case.

Notation 27. Let (X,Δ) be lc. Let S∗
i (X,Δ) be the union of all

≤ i-dimensional lc centers of
(
X,Δ

)
and set Si(X,Δ) := S∗

i (X,Δ) \
S∗
i−1(X,Δ). Let Z0

ij ⊂ Si(X,Δ) be the irreducible components. The

closure Zij of Z0
ij is an lc center of

(
X,Δ

)
, hence it has a spring pij :



46 J. Kollár

Spr(Zij ,X,Δ) → Zij . Set Spr(Z
0
ij ,X,Δ) := p−1

ij Z0
ij and

Spri
(
X,Δ

)
:= �j Spr(Z

0
ij ,X,Δ).

Let pi : Spri
(
X,Δ

) → Si(X,Δ) be the induced morphism. Then pi is
finite, surjective and universally open since Si(X,Δ) is normal. Further-
more, pi is Galois over every Zij by Proposition 19.

Theorem 28. Let
(
X,D + Δ

)
be an lc pair, τ an involution of(

Dn,DiffDn Δ
)
and R(τ) ⊂ X ×X the corresponding equivalence rela-

tion as in (22.3.1). Let pi : Spri
(
X,D +Δ

) → Si be as above. Then

(1) (pi × pi)
−1

(
R(τ) ∩ (Si(X,Δ) × Si(X,Δ))

)
is a groupoid on

Spri
(
X,D +Δ

)
.

(2) For every irreducible component Z0
ij ⊂ Si(X,Δ), the stabilizer

of its spring Spr(Z0
ij ,X,D+Δ) ⊂ Spri

(
X,D+Δ

)
is a subgroup

of the source-automorphism group Auts Spr(Zij ,X,D +Δ).

Proof. We need to describe how the generators of R(τ) pull back to
the spring Spri

(
X,D +Δ

)
.

First, the preimage of the diagonal of Z0
ij×Z0

ij is a group Γ(Gij) and

Gij = Gal
(
Spr(Zij ,X,D+Δ)/Zij

)
is a subgroup of Auts Spr(Zij ,X,D+

Δ) by Proposition 19.
Second, let Zijk ⊂ Dn be an irreducible component of the preimage

of Zij . Then Zijk is an lc center of
(
Dn,DiffDn Δ

)
and

Src
(
Zijk, D

n,DiffDn Δ
) cbir∼ Src

(
Zij ,X,D +Δ

)
by Corollary 21. Thus, for each ijk, the isomorphism τ : Dn ∼= Dn lifts
to isomorphisms

τijkl : Spr(Z
0
ij ,X,D +Δ) ∼= Spr(Z0

il,X,D +Δ).

Given ijk, the value of l is determined by Zil := n
(
τ(Zijk)

)
, but the

lifting is defined only up to left and right multiplication by elements of
Gij and Gil.

Thus (pi×pi)
−1

(
R(τ)∩ (Si(X,Δ)×Si(X,Δ))

)
is the groupoid gen-

erated by the Gij and the τijkl, hence the stabilizer of Spr(Z
0
ij ,X,D+Δ)

is generated by the groups τ−1
ijklGilτijkl. The latter are all subgroups of

Auts Spr(Zij ,X,D +Δ). Q.E.D.

29 (Proof of Proposition 25). Since Spri(X,D+Δ) has finitely many
irreducible components, the groupoid is finite iff the stabilizer of each
Spr(Z0

ij ,X,D + Δ) is finite. By Theorem 28 this holds if the groups
Auts Spr(Zij ,X,D +Δ) are finite.
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The automorphism group of a variety Z̃ over a base scheme S injects
into the automorphism group of the generic fiber Z̃gen.

By assumption, KX̄ + D̄+ Δ̄ is ample on the generic fiber of Zij →
S, thus Theorem 7 implies that each Auts Spr(Zij ,X,D + Δ) is finite.

Q.E.D.
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Société Mathématique de France, 1992, Papers from the Second
Summer Seminar on Algebraic Geometry held at the University
of Utah, Salt Lake City, Utah, August 1991, Astérisque No. 211
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