Valuations divisorielles et connexité en codimension 1

Charef Beddani

Résumé.

L'objectif de cet article est de présenter quelques conjectures liées à l'étude des valuations divisorielles et la connexité en codimension 1, et de donner le lien entre ces conjectures et l'existence de certaines log-résolutions des singularités.

§ Introduction

En abordant l'étude de la comparaison des valuations divisorielles pour donner une approche géométrique au théorème d'Izumi [9], nous avons introduit dans l'article [1] la définition suivante : soient X= Spec R où R est un anneau local nœthérien intègre, \mathfrak{m} son idéal maximal et I un idéal de R. Nous notons $\pi_I:\overline{X}_I\longrightarrow X$ l'éclatement normalisé de X le long de I et $E_I=V(I\mathcal{O}_{\overline{X}_I})_{red}$ le sous-schéma réduit de \overline{X}_I associé au faisceau $I\mathcal{O}_{\overline{X}_I}$. Deux composantes irréductibles E_1, E_2 de E_I sont liées en codimension 1, s'il existe une suite finie $Y_1=E_1,Y_2,\ldots,Y_{s-1},Y_s=E_2$ de composantes irréductibles de E_I telle que pour tout $1\leq i\leq s-1$, la codimension de $Y_i\cap Y_{i+1}$ dans Y_i et dans Y_{i+1} est égale à 1. De même, deux valuations divisorielles de R centrées en \mathfrak{m} sont liées en codimension 1, s'il existe un idéal \mathfrak{m} -primaire I de R tel que le centre de ν_1 et le centre de ν_2 dans $E_I\subset\overline{X}_I$ sont liés en codimension 1.

En suivant les travaux de R. Hartshorne [2] concernant la connexité en codimension k, et ceux de M. Spivakovsky [10] sur les valuations divisorielles, nous proposons dans cet article les trois conjectures suivantes :

Received May 29, 2012.

Revised September 30, 2012.

²⁰¹⁰ Mathematics Subject Classification. 13A18, 14C20.

Key words and phrases. Valuations, diviseurs liés en codimension 1, logrésolutions des singularités.

32 C. Beddani

- (1) Soit $X = \operatorname{Spec}(R, \mathfrak{m})$ un schéma affine d'un anneau intègre, normal et complet. Pour toute paire (ν_1, ν_2) de valuations divisorielles de R centrées en \mathfrak{m} , il existe un idéal \mathfrak{m} -primaire I de R, tel que les centres de ν_1 et ν_2 dans $V(I\mathcal{O}_{X_I})_{red} \subset X_I$ sont liés en codimension 1.
- (2) Soit $X = \operatorname{Spec}(R, \mathfrak{m})$ un schéma affine d'un anneau intègre, normal et complet. Pour toute paire (ν_1, ν_2) de valuations divisorielles de R centrées en \mathfrak{m} , il existe un idéal \mathfrak{m} -primaire I de R, tel que les centres de ν_1 et ν_2 dans $E_I \subset \overline{X}_I$ sont liés en codimension 1.
- (3) Soient X un schéma intègre normal et x un point de X tel que l'anneau $\mathcal{O}_{X,x}$ est analytiquement irréductible. Le cône tangent $\mathcal{C}_{X,x}$ de X en x est connexe en codimension 1, (Cf. [2, Page 2]).

A l'aide du théorème principal de Zariski [3], nous démontrons que la conjecture 2 et la conjecture 3 sont vraies si la dimension de X est inférieure ou égale à 2, (Cf. Théorème 3.1). Puis nous montrons, quelque soit la dimension de X, que la conjecture 3 implique la conjecture 1 (Cf. Théorème 3.2).

Enfin, nous présentons le lien entre la deuxième conjecture et l'existence de certaines log-résolutions des singularités. Plus précisément, prenons I un idéal \mathfrak{m} -primaire d'un anneau nœthérien local (R,\mathfrak{m}) à singularité isolée telle que, pour tout sous-schéma fermé E de \overline{X}_I , il existe une résolution des singularités $\pi:Y\longrightarrow \overline{X}_I$ telle que $\pi^{-1}(E)$ soit un diviseur à croisements normaux. Le morphisme π est appelé une log-résolution de la paire (E,\overline{X}_I) . Dans ce cas là, nous signalons que pour tout couple (ν_1,ν_2) de valuations divisorielles associées à I, ν_1 et ν_2 sont liées en codimension 1.

Ce travail est un complément de l'article [1], en particulier : Corollaire 2.1, Corollaire 2.3 et la Proposition 3.1 ont déjà paru dans [1].

$\S 1$. Connexité en codimension k

Nous rappelons ici les définitions et les résultats de Hartshorne (Cf. [2]) qui nous permettront de donner quelques commentaires sur les conjectures proposées dans la troisième section.

Proposition 1.1. Soit X un schéma næthérien, et X_1, X_2, \ldots, X_n ses composantes irréductibles. Alors X est connexe, si et seulement si, pour tout couple (X_i, X_j) , il existe une suite finie

$$X_{i_1} = X_i, X_{i_2}, \dots, X_{i_{s-1}}, X_{i_s} = X_j$$

de composantes irréductibles de X, telle que pour tout r < s,

$$X_{i_r} \cap X_{i_{r+1}} \neq \emptyset.$$

Définition 1.1. [2, Page 2] Soit k un entier naturel. Un espace topologique næthérien X est dit connexe en codimension k si pour tout sous-ensemble fermé Y de X de codimension strictement supérieure à k, l'ensemble X-Y est connexe.

Proposition 1.2. [2, Proposition 1.1] Soient X un espace topologique næthérien et k un entier naturel. Les deux conditions suivantes sont équivalentes :

- (1) X est connexe en codimension k,
- (2) Pour tout couple (Y, Z) de composantes irréductibles de X, il existe une suite finie $Y = Y_1, Y_2, \ldots, Y_{s-1}, Y_s = Z$ de composantes irréductibles de X telle que pour tout $1 \le i \le s-1$, la codimension de $Y_i \cap Y_{i+1}$ dans X est inférieure ou égale à k.

§2. Diviseurs liés en codimension 1

Soient $X=\operatorname{Spec} R$ où R est un anneau local nœthérien intègre, \mathfrak{m} son idéal maximal, K son corps de fractions, et I un idéal de R. Nous notons $\pi_I:\overline{X}_I\longrightarrow X$ l'éclatement normalisé de X le long de I et $E_I=V(I\mathcal{O}_{\overline{X}_I})_{red}$ le sous-schéma réduit de \overline{X}_I associé au faisceau $I\mathcal{O}_{\overline{X}_I}$. Autrement dit,

$$V(I\mathcal{O}_{\overline{X}_I}) = \operatorname{Proj} \bigoplus_{n=0}^{+\infty} \overline{I^n} / I \cdot \overline{I^n}$$

Définition 2.1. Soient E_1 et E_2 deux composantes irréductibles de E_I . Nous disons que E_1 et E_2 sont liées en codimension 1, s'il existe une suite finie $Y_1 = E_1, Y_2, \ldots, Y_{s-1}, Y_s = E_2$ de composantes irréductibles de E_I , telle que pour tout $1 \le i \le s-1$, la codimension de $Y_i \cap Y_{i+1}$ dans Y_i et dans Y_{i+1} est égale à 1.

Remarque 2.1. Le schéma E_I est connexe en codimension 1, si et seulement si, il est connexe et tout couple (E_1, E_2) de composantes irréductibles de E_I sont liées en codimension 1.

Définition 2.2. Soient ν_1 et ν_2 deux valuations divisorielles de K centrées dans R en \mathfrak{m} . Nous disons que ν_1 et ν_2 sont liées en codimension 1, s'il existe un idéal \mathfrak{m} -primaire I de R, tel que le centre de ν_1 et le centre de ν_2 dans \overline{X}_I sont deux composantes irréductibles de E_I liés en

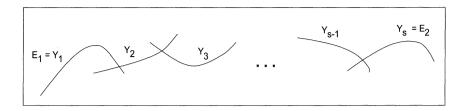


FIGURE 1

codimension 1. Nous admettons que toute valuation divisorielle ν de R centrée en \mathfrak{m} est liée en codimension 1 avec elle même.

Définition 2.3. Soit I un idéal d'un anneau R. Si $\overline{I} = I$, on dit que I est un idéal intégralement clos, et si pour tout entier $n \geq 1$, $\overline{I^n} = I^n$, on dit que I est un idéal normal.

Exemple 2.1. Soient R = k[x, y, z, t] l'anneau des polynômes à quatre variables sur un corps k, et I = (xy, zt). Nous avons :

$$I = (x, z) \cap (x, t) \cap (y, t) \cap (y, z).$$

Montrons que l'idéal I est normal. Soit n un entier naturel supérieur ou égal à 1, nous avons :

$$I^{n} = (x^{n}y^{n}, x^{n-1}y^{n-1}zt, \dots, x^{i}y^{i}z^{n-i}t^{n-i}, \dots, z^{n}t^{n}).$$

Prenons $x^{\alpha}y^{\beta}z^{\gamma}t^{\lambda}$ un monôme dans l'idéal

$$(x,z)^n \cap (x,t)^n \cap (y,t)^n \cap (y,z)^n$$
.

Nous pouvons supposer que $\alpha \leq \beta$ et $\gamma \leq \lambda$. Nous avons :

$$x^{\alpha}y^{\beta}z^{\gamma}t^{\lambda} \in (x,z)^n \Longrightarrow \alpha + \gamma \ge n.$$

Nous distinguons deux cas :

 $\frac{\underline{\mathrm{Si}\ \alpha > n}}{\underline{\mathrm{Si}\ \alpha \leq n}} : \mathrm{alors}\ x^{\alpha}y^{\beta}z^{\gamma}t^{\lambda} = (xy)^{n}x^{\alpha - n}y^{\beta - n}z^{\gamma}t^{\lambda},$ $\underline{\mathrm{Si}\ \alpha \leq n} : \mathrm{alors}\ x^{\alpha}y^{\beta}z^{\gamma}t^{\lambda} = (xy)^{\alpha}(zt)^{n - \alpha}y^{\beta - \alpha}z^{\alpha + \gamma - n}t^{\alpha + \lambda - n}.$

Dans les deux cas, nous obtenons : $x^{\alpha}y^{\beta}z^{\gamma}t^{\lambda} \in I^n$. Donc pour tout entier naturel n > 1, nous avons :

$$I^n = (x,z)^n \cap (x,t)^n \cap (y,t)^n \cap (y,z)^n.$$

Notons: $\mathfrak{p}_1 = (x, z), \, \mathfrak{p}_2 = (x, t), \, \mathfrak{p}_3 = (y, t), \, \mathfrak{p}_4 = (y, z).$

Pour tout $i \in \{1, 2, 3, 4\}$, soit ν_i la valuation de Rees associé à l'idéal \mathfrak{p}_i (pour savoir plus de détails sur ce type de valuations, nous envoyons le lecteur à voir [7], [8]).

Le fait que les idéaux $\mathfrak{p}_1, \mathfrak{p}_2, \mathfrak{p}_3, \mathfrak{p}_4$, sont normaux, implique d'après le théorème de valuations de Rees [7], [8] que :

$$\mathfrak{p}_1^n\cap\mathfrak{p}_2^n\cap\mathfrak{p}_3^n\cap\mathfrak{p}_4^n=\{f\in R\ |\ \forall i=1,2,3,4,\ \text{on a }:\ \nu_i(f)\geq n\}=\overline{I^n}$$

Ceci montre que l'idéal I est normal.

Le centre de l'éclatement, V(I), est une intersection complète, c'està-dire, l'idéal I est un idéal de hauteur égale à 2 dans l'anneau des polynômes R, engendré par deux éléments xy et zt. Donc G(I) est isomorphe à l'anneau des polynômes R/I[u,v] en deux variables u,v. Par suite

$$E_I = \operatorname{Proj} G(I) = \operatorname{Spec} R/I \times \mathbb{P}^1_k.$$

On peut aussi montrer cette dernière égalité avec la méthode suivante : Soient $X=\operatorname{Spec} R,\ B=k[u,v]$ et $W=\operatorname{Spec} B.$ Considèrons l'homomorphisme injectif d'anneaux $f:B\longrightarrow R$ qui envoie u sur xy et v sur zt. Soit $\widetilde{f}:X\longrightarrow W$ le morphisme correspondant des schémas affines. Ce morphisme est plat. En effet, on peut voir cela localement, en utilisant le critère local de platitude sur chaque point fermé Q de W, en constatant que les paramètres réguliers de l'anneau local B_Q forment une suite régulière dans l'anneau $R\otimes_B B_Q$. Soit $\rho:\widetilde{W}\longrightarrow W$ l'éclatement du plan à l'origine "O". Par $[3,\operatorname{Page} 322,\operatorname{Proposition} 1.12$ (c)], on obtient que

$$X_I \simeq \widetilde{W} \times_B X.$$

Considérons la restriction de cette égalité à l'ensemble $\{O\} \times_B V(I) = \{O\} \times_B \text{Spec } R/I.$ On obtient

$$E_I = \rho^{-1}(O) \times_B \operatorname{Spec} R/I \simeq \mathbb{P}^1_k \times_B \operatorname{Spec} R/I.$$

Finalement, puisque u et v s'annulent sur $\mathbb{P}^1_k = \rho^{-1}(O)$, nous avons $\mathbb{P}^1_k \times_B \operatorname{Spec} R/I = \mathbb{P}^1_k \times_k \operatorname{Spec} R/I$. Donc E_I a quatre composantes irréductibles.

Il est clair que toutes les composantes irréductibles de E_I sont liées en codimension 1 (Cf. Fig. 2). Par conséquent, toutes les valuations $\nu_1, \nu_2, \nu_3, \nu_4$ sont liées en codimension 1 deux à deux. Dans cet example, les valuations $\nu_1, \nu_2, \nu_3, \nu_4$ sont divisorielles, car l'anneau R est universellement caténaire (Cf. Théorème de la dimension [3], [6]).

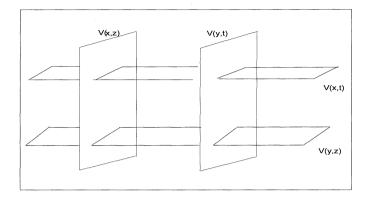


FIGURE 2

Exemple 2.2. Soit

$$X = \operatorname{Spec} \ \frac{\mathbb{C}[x, y, z, w]}{(xz, xw, yz, yw)}.$$

Alors X a deux composantes irréductibles :

$$X_1 = \text{Spec } \frac{\mathbb{C}[x, y, z, w]}{(x, y)}$$

et

36

$$X_2 = \operatorname{Spec} \frac{\mathbb{C}[x, y, z, w]}{(z, w)}.$$

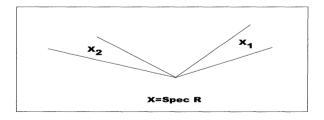


FIGURE 3

Donc X n'est pas connexe en codimension 1.

A présent, nous allons montrer que l'anneau $R = \mathcal{O}_X(X)$ ne possède pas la propriété (S_2) de Serre, et pour cela, il suffit de trouver un élément

 $f \in R$ tel que l'anneau R/(f) ne possède pas la propriété (S_1) de Serre. Soient X, Y, Z, W les images naturelles de x, y, z, x dans R, et $\overline{X}, \overline{Y}, \overline{Z}, \overline{W}$ les images naturelles de X, Y, Z, W dans l'anneau A = R/(X+Z). Nous remarquons que $X^2 = X(X+Z) = 0$ dans A, donc l'anneau A n'est pas réduit. Comme un anneau réduit est un anneau qui possède les propriétés (S_1) et (R_0) , pour montrer que A ne possède pas la propriété S_1 il suffit de montrer qu'il possède la propriété R_0 , c'est-à-dire : $\forall \mathfrak{p} \in \text{Min}(\text{Ass }_A A) : \mathfrak{p} A_{\mathfrak{p}} = (0)$. Nous avons :

$$\begin{aligned} & \operatorname{Min}(\operatorname{Ass}_A A) = \{\mathfrak{p}_1 = ((x,y,z)/I)/(X+Z), \mathfrak{p}_2 = ((x,z,w)/I)/(X+Z)\}, \\ & \text{où } I = (xz,xw,yz,yw). \text{ Soit } h/g \in \mathfrak{p}_1 A_{\mathfrak{p}_1}, \text{ nous avons :} \end{aligned}$$

$$\begin{split} h \in \mathfrak{p}_1 &\Rightarrow \exists h_1, h_2, h_3 \in A \ tel \ que \ h = h_1 \overline{X} + h_2 \overline{Y} + h_3 \overline{Z} \\ &\Rightarrow \overline{W}h = h_3 \overline{W} \overline{Z}, \ \operatorname{car} \ \overline{W} \overline{X} = \overline{W} \overline{Y} = 0 \\ &\Rightarrow \overline{W}h = -h_3 \overline{W} \overline{X} = 0, \ \operatorname{car} \ \overline{Z} = -\overline{X} \\ &\Rightarrow h = 0 \ \operatorname{dans} \ A_{\mathfrak{p}_1}. \end{split}$$

Ceci montre que $\mathfrak{p}_1 A_{\mathfrak{p}_1} = (0)$. De façon analogue, nous obtenons $\mathfrak{p}_2 A_{\mathfrak{p}_2} = (0)$. Par conséquent, l'anneau A ne possède pas la propriété S_1 . Ce qui implique que l'anneau R ne possède pas la propriété S_2 . Cet exemple montre que la propriété (S_2) de Serre pour l'anneau R est importante pour avoir la connexité en codimension 1 et pour cela dans les trois conjecture que nous allons proposé dans la section suivante, nous supposons que R est normal.

Rappelons ici, le théorème principal de Zariski, qui s'énonce comme suit :

Théorème 2.1 (Théorème principal de Zariski, [3]). Soit $f: Y \longrightarrow X$ un morphisme projectif de schémas næthériens, tel que $f^{\sharp}: \mathcal{O}_X \longrightarrow f_*\mathcal{O}_Y$ est un isomorphisme. Alors pour tout point $x \in X$, le fibre Y_x est connexe.

Lemme 2.1. [3, Corollaire 4.4.3] Soient X un schéma normal et localement næthérien, et $f: Y \longrightarrow X$ un morphisme birationnel propre. Alors $f^{\sharp}: \mathcal{O}_X \longrightarrow f_*\mathcal{O}_Y$ est un isomorphisme.

Il est important de noter que le schéma Y dans le lemme 2.1 n'est pas supposé normal. Ci-dessous, on va appliquer ce lemme à l'éclatement normalisé (resp. non-normalisé) du spectre d'un anneau normal le long de son idéal maximal.

Corollaire 2.1. [1, Corollaire 2.8] Soient (R, \mathfrak{m}) un anneau intègre de Nagata [5, page 231, Chapitre 12, Section 31] normal et de dimension

38 C. Beddani

égale à 2, I un idéal \mathfrak{m} -primaire de R, et E_1 , E_2 deux composantes irréductibles de E_I . Alors E_1 et E_2 sont liées en codimension 1.

Démonstration. Le fait que R est un anneau de Nagata entraîne que \overline{X}_I est de type fini sur X, et donc l'application $\pi_I: \overline{X}_I \longrightarrow X = \operatorname{Spec} R$ est un morphisme birationnel propre, et comme R est un anneau nœthérien normal, le morphisme naturel $\pi_I^{\sharp}: \mathcal{O}_X \longrightarrow (\pi_I)_* \mathcal{O}_{\overline{X}_I}$ est un isomorphisme (Cf. Lemme 2.1). Donc d'après le théorème principal de Zariski (Cf. Théorème 2.1), le diviseur exceptionnel E_I est connexe. Ceci implique que pour toutes composantes irréductibles E_1 et E_2 de E_I , il existe une suite finie

$$Y_1 = E_1, Y_2, \dots, Y_{s-1}, Y_s = E_2$$

de composantes irréductibles de E_I , telle que pour tout $1 \le i \le s-1$, nous avons :

$$Y_i \cap Y_{i+1} \neq \emptyset$$

(Cf. Proposition 1.1). Comme la dimension de R est égale à 2, cela revient à dire que la codimension de $Y_i \cap Y_{i+1}$ dans Y_{i+1} est égale à 1. Donc les deux composantes irréductibles E_1 et E_2 sont liées en codimension 1. Q.E.D.

De façon analogue, on démontre le corollaire suivant :

Corollaire 2.2. Soient (R, \mathfrak{m}) un anneau næthérien local et normal, et $f: Y \longrightarrow \operatorname{Spec} R$ l'éclatement de $\operatorname{Spec} R$ le long de l'idéal maximal \mathfrak{m} . Alors pour toutes composantes irréductibles E_1 et E_2 de $Y_{\mathfrak{m}} = f^{-1}\{\mathfrak{m}\}$, il existe une suite finie

$$Y_1 = E_1, Y_2, \dots, Y_{s-1}, Y_s = E_2$$

de composantes irréductibles de $f^{-1}\{\mathfrak{m}\}$, telle que pour tout $1 \leq i \leq s-1$, $Y_i \cap Y_{i+1} \neq \emptyset$.

Corollaire 2.3. [1, Corollaire 2.9] Soient (R, \mathfrak{m}) un anneau de Nagata normal et de dimension inférieure ou égale à 2, et ν_1 et ν_2 deux valuations divisorielles de R centrées en \mathfrak{m} . Alors ν_1 et ν_2 sont liées en codimension 1.

§3. Problèmes

Nous proposons dans cette section trois conjectures concernant la connexité en codimension 1 (Cf. Conjecture 1, Conjecture 2 et Conjecture 3).

Notation 3.1. Pour tout point x d'un schéma X, nous notons :

$$\mathcal{C}_{X,x} = \operatorname{Spec} \bigoplus_{n=0}^{+\infty} \mathfrak{m}_{X,x}^n / \mathfrak{m}_{X,x}^{n+1}$$

et

$$\mathbb{P}(\mathcal{C}_{X,x}) = \operatorname{Proj} \bigoplus_{n=0}^{+\infty} \mathfrak{m}_{X,x}^n / \mathfrak{m}_{X,x}^{n+1},$$

où $\mathfrak{m}_{X,x}$ est l'idéal maximal de l'anneau $\mathcal{O}_{X,x}$. Le schéma $\mathcal{C}_{X,x}$ (resp. $\mathbb{P}(\mathcal{C}_{X,x})$) est appelé le cône tangent (resp. le cône tangent projectivisé) de X au point x.

Les conjectures que nous allons étudier s'énoncent comme suit :

Conjecture 1. Soit $X = \operatorname{Spec}(R, \mathfrak{m})$ un schéma affine d'un anneau intègre, normal et complet. Pour toute paire (ν_1, ν_2) de valuations divisorielles de R centrées en \mathfrak{m} , il existe un idéal \mathfrak{m} -primaire I de R, tel que les centres de ν_1 et ν_2 dans $V(I\mathcal{O}_X)_{red} \subset X_I$ sont liés en codimension 1.

Conjecture 2. Soit $X = \operatorname{Spec}(R, \mathfrak{m})$ un schéma affine d'un anneau intègre, normal et complet. Pour toute paire (ν_1, ν_2) de valuations divisorielles de R centrées en \mathfrak{m} , il existe un idéal \mathfrak{m} -primaire I de R, tel que les centres de ν_1 et ν_2 dans $E_I \subset \overline{X}_I$ sont liés en codimension 1.

Conjecture 3. Soient X un schéma intègre et normal, et x un point de X tel que l'anneau $\mathcal{O}_{X,x}$ est analytiquement irréductible. Le cône tangent $\mathcal{C}_{X,x}$ de X en x est connexe en codimension 1.

3.1. Commentaires

Tout d'abord, rappelons le résultat suivant (Cf. [4, Theorem 9.7]) : si R est un anneau nœthérien et I un idéal de R, alors la dimension de l'anneau $G(I) = \bigoplus_{n \geq 0} I^n/I^{n+1}$ est égale à la dimension maximale de $R_{\mathfrak{p}}$ lorsque \mathfrak{p} parcourt les idéaux maximaux de R contenant I. En particulier si R est local, nous avons :

$$\dim G(I) = \dim R.$$

D'autre part, si $A=\bigoplus_{n\geq 0}A_n$ est un anneau nœthérien gradué, il n'est pas évident de passer de la dimension de Spec A à celle de Proj A. Par contre dans le cas où l'anneau A_0 est artinien, nous avons toujours l'égalité :

(1)
$$\dim \operatorname{Proj} A = \dim \operatorname{Spec} A - 1.$$

C. Beddani

Il y a une correspondance bijective naturelle entre les composantes irréductibles de Proj A et celles de Spec A. Autrement dit, nous pouvons écrire Proj A et Spec A sous la forme :

$$\operatorname{Proj} A = \bigcup_{i=1}^{s} E_i$$

et

40

Spec
$$A = \bigcup_{i=1}^{s} F_i$$

tel que:

$$\dim E_i = \dim F_i - 1,$$

où E_1, E_2, \ldots, E_s (resp. F_1, F_2, \ldots, F_s) sont les composantes irréductibles de Proj A (resp. Spec A), et que $E_i = \mathbb{P}(F_i)$. En particulier, si nous prenons :

$$A = \bigoplus_{n=0}^{+\infty} \mathfrak{m}_{X,x}^n / \mathfrak{m}_{X,x}^{n+1},$$

nous obtenons:

$$\dim \mathbb{P}(\mathcal{C}_{X,x}) = \dim \mathcal{C}_{X,x} - 1.$$

Théorème 3.1. Si la dimension de X est inférieure ou égale à 2, alors la conjecture 2 et la conjecture 3 sont vraies.

 $D\'{e}monstration$. Le fait que les anneaux complets sont des anneaux de Nagata, implique d'après le Corollaire 2.3 que la deuxième conjecture est vraie. Reste maintenant à démontrer que la troisième conjecture est également vraie. Soit x un point de X tel que l'anneau $R = \mathcal{O}_{X,x}$ est analytiquement irréductible. Si dim R = 1, alors dim $\mathcal{C}_{X,x} = 1$, ce qui entraı̂ne que $\mathcal{C}_{X,x}$ est connexe en codimension 1, car tout espace topologique de dimension k connexe est connexe en codimension r quelque soit $r \geq k$. Supposons maintenant que dim R = 2. Pour démontrer que $\mathcal{C}_{X,\xi}$ est connexe en codimension 1, il faut et il suffit de démontrer que pour tout couple (E'_1,E'_2) de composantes irréductibles de $\mathcal{C}_{X,\xi}$, il existe une suite finie

$$F_{i_1} = E'_1, F_{i_2}, \dots, F_{i_{l-1}}, F_{i_l} = E'_2$$

de composantes irréductibles de $\mathcal{C}_{X,x}$ telle que pour tout $1 \leq r \leq l-1$, la codimension de $F_{i_r} \cap F_{i_{r+1}}$ dans $\mathcal{C}_{X,x}$ est inférieure ou égale à 1. Soient E_1, E_2, \ldots, E_s (resp. F_1, F_2, \ldots, F_s) les composantes irréductibles de $\mathbb{P}(\mathcal{C}_{X,x})$ (resp. $\mathcal{C}_{X,x}$), tel que pour tout $i \in \{1, 2, \ldots, s\}$, nous avons :

 $E_i = \mathbb{P}(F_i)$. D'après le Corollaire 2.2, les diviseurs E_1 et E_2 sont liés en codimension 1. Donc il existe une suite finie

$$E_{i_1} = E_1, E_{i_2}, \dots, E_{i_{l-1}}, E_{i_l} = E_2$$

de composantes irréductibles de $\mathbb{P}(\mathcal{C}_{X,x})$ telle que pour tout $1 \leq r \leq l-1$, la codimension de $E_{i_r} \cap E_{i_{r+1}}$ dans $E_{i_{r+1}}$ est égale à 1. Par suite,

$$\dim(E_{i_r} \cap E_{i_{r+1}}) = 0.$$

Pour tout $1 \le r \le l-1$, soit \mathfrak{q}_{i_r} un l'idéal premier homogène qui définit la composante E_{i_r} . Nous avons :

$$E_{i_r} \cap E_{i_{r+1}} = \operatorname{Proj} \frac{G(\mathfrak{m}_{X,x})}{\mathfrak{q}_{i_r} + \mathfrak{q}_{i_{r+1}}}$$

et

$$F_{i_r} \cap F_{i_{r+1}} = \operatorname{Spec} \frac{G(\mathfrak{m}_{X,x})}{\mathfrak{q}_{i_r} + \mathfrak{q}_{i_{r+1}}}.$$

En utilisant l'équation (1), nous obtenons :

$$\dim(F_{i_r} \cap F_{i_{r+1}}) = 1 + \dim(E_{i_r} \cap E_{i_{r+1}})$$

= 1.

Par conséquent, la codimension de $F_{i_r} \cap F_{i_{r+1}}$ dans $\mathcal{C}_{X,x}$ est inférieure ou égale à 1. Donc $\mathcal{C}_{X,x}$ est connexe en codimension 1. Ceci achève la démonstration. Q.E.D.

Nous allons montrer que la conjecture 3 est plus forte que la conjecture 1, et pour cela nous aurons besoin du lemme suivant :

Lemme 3.1. [1, Lemme 3.4] Soient (R, \mathfrak{m}) un anneau local, I un idéal \mathfrak{m} -primaire de R, $\pi: X_I \longrightarrow \operatorname{Spec} R$ l'éclatement de $\operatorname{Spec} R$ le long de I, et soit \mathcal{H} un faisceau d'idéaux de \mathcal{O}_{X_I} tel que $V(\mathcal{H}) \subset V(I\mathcal{O}_{X_I})$. Alors le morphisme composé de π et de l'éclatement de X_I le long de \mathcal{H} est un éclatement de $\operatorname{Spec} R$ le long d'un idéal \mathfrak{m} -primaire.

Théorème 3.2. La conjecture 3 implique la conjecture 1.

 $D\acute{e}monstration$. Supposons que pour tout schéma Y intègre et normal, et pour tout point y de Y tel que l'anneau $\mathcal{O}_{Y,y}$ est analytiquement irréductible, le cône tangent $\mathcal{C}_{Y,y}$ est connexe en codimension 1. Soient (R,\mathfrak{m}) un anneau intègre normal et complet, et ν_1,ν_2 deux valuations divisorielles centrées en \mathfrak{m} , alors il existe un idéal \mathfrak{m} -primaire I de R, tel que les centres des valuations ν_1,ν_2 ont codimension 1 dans \overline{X}_I . Notons E_1 (resp. E_2) le centre de ν_1 (resp. ν_2) dans \overline{X}_I . Comme R est

anneau normal de Nagata, le diviseur exceptionnel E_I est connexe (Cf. Théorème 2.1). Il existe donc une suite finie

$$Y_1 = E_1, Y_2, \dots, Y_{s-1}, Y_s = E_2$$

de composantes irréductibles de E_I , telle que pour tout $1 \le i \le s - 1$, $Y_i \cap Y_{i+1} \ne \emptyset$. Soit x_i un point de $Y_i \cap Y_{i+1}$.

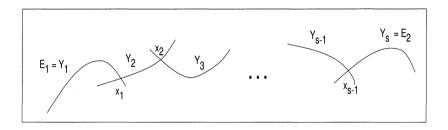


Figure 4

Notons $\varphi: Y \longrightarrow \overline{X}_I$ l'éclatement de \overline{X}_I le long de $\{x_1, x_2, \ldots, x_{s-1}\}$. Par hypothèse, pour tout $i \in \{1, 2, \ldots, s-1\}$, le cône tangent $C_{\overline{X}_I, x_i}$ est connexe en codimension 1, car les anneaux $\mathcal{O}_{\overline{X}_I, x_i}$ sont analytiquement irréductibles. Soit Z_i la transformée stricte de Y_i dans Y. Nous allons montrer que les diviseurs Z_1 et Z_s sont liés en codimension 1, et pour cela il suffit de montrer que pour tout $i \in \{1, 2, \ldots, s-1\}$, les diviseurs Z_i et Z_{i+1} sont liés en codimension 1. Fixons $i \in \{1, 2, \ldots, s-1\}$. Nous avons :

$$Z_i \supseteq \mathbb{P}(\mathcal{C}_{Y_i,x_i}) \subseteq \mathbb{P}(\mathcal{C}_{\overline{X}_I,x_i})$$

et

$$Z_{i+1} \supseteq \mathbb{P}(\mathcal{C}_{Y_{i+1},x_i}) \subseteq \mathbb{P}(\mathcal{C}_{\overline{X}_{I},x_i}).$$

Prenons F_i, F_{i+1} (resp. D_i, D_{i+1}) deux composantes irréductibles de $\mathbb{P}(\mathcal{C}_{Y_i,x_i})$ (resp. $\mathbb{P}(\mathcal{C}_{\overline{X}_I,x_i})$) telles que $F_i \subseteq D_i$ et $F_{i+1} \subseteq D_{i+1}$. Nous avons :

$$F_i \subseteq D_i \cap Z_i$$

et

$$F_{i+1} \subseteq D_{i+1} \cap Z_{i+1}$$
.

Le fait que pour tout $j \in \{i, i+1\}$ la dimension de F_j est égale à dim R-2, entraı̂ne que la codimension de $D_j \cap Z_j$ dans D_j est égale à 1. Donc Z_i et D_i (resp. Z_{i+1} et D_{i+1}) sont liés en codimension 1.

Puisque le cône tangent projectivisé $\mathbb{P}(\mathcal{C}_{\overline{X}_I,x_i})$ est connexe en codimension 1, les diviseurs D_i et D_{i+1} sont liés en codimension 1. Ceci montre bien que pour tout $i \geq 1$, les diviseurs Z_i et Z_{i+1} sont liés en codimension 1 (Cf. FIGURE 5).

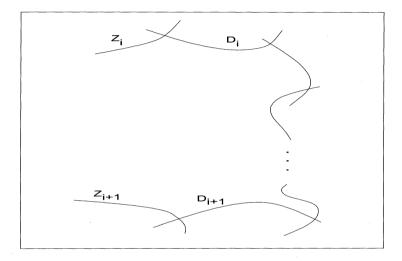


Figure 5

Par conséquent les diviseurs Z_1 et Z_s sont liés en codimension 1. Comme Z_1 et Z_s sont respectivement les centres de ν_1 et ν_2 dans Y, pour finir la démonstration, il suffit de démontrer que le schéma Y est un éclatement de X le long d'un idéal \mathfrak{m} -primaire J de R.

Par construction, Y est un éclatement de \overline{X}_I le long d'un faisceau \mathcal{H} tel que $V(\mathcal{H}) = \{x_1, x_2, ..., x_n\}$. D'après le Lemme 3.1, on obtient que Y est un éclatement normalisé de X le long d'un idéal \mathfrak{m} -primaire J de R, et les centres de ν_1 et ν_2 dans Y sont liés en codimension 1. Q.E.D.

Définition 3.1. Soient X un schéma intègre et E un sous-schéma fermé de X. Nous disons que la paire (E,X) admet une log-résolution, s'il existe une résolution des singularités $\pi:Y\longrightarrow X$ telle que le diviseur $\pi^{-1}(E)$ est à croisements normaux simples et pour tout point régulier x de X tel que le diviseur E est à croisements normaux, le morphisme π est un isomorphisme au-dessus de x.

Dans ce qui suit, nous rappelons les deux résultats mentionnés dans l'article [1] qui visualisent la relation entre la connexité en codimension 1 et l'existence de certaines log-résolutions des singularités.

Proposition 3.1. [1, Proposition 3.5] Soient (R, \mathfrak{m}) un anneau nœthérien local à singularité isolée et I un idéal \mathfrak{m} -primaire de R tel que la paire (E_I, \overline{X}_I) admet une log-résolution. Alors toute paire (ν_1, ν_2) de valuations divisorielles de Rees associées à I, ν_1 et ν_2 sont liées en codimension 1.

Corollaire 3.1. [1, Corollaire 3.7], Soit (R, \mathfrak{m}) un anneau de Nagata a singularité isolée tel que tout schéma Y de type fini sur R admet une log-résolution. Alors tout couple (ν_1, ν_2) de valuations divisorielles centrées dans R en \mathfrak{m} , ν_1 et ν_2 sont liées en codimension 1.

Remerciements: Je remercie Mark Spivakovsky de m'avoir suggéré l'idée de ce travail, et pour les remarques qui m'ont aidé à apporter certaines précisions à cet article, et je remercie aussi le referee pour ses suggestions qui m'ont permis d'améliorer la rédaction de cet article.

Références

- [1] C. Beddani, Comparaison des valuations divisorielles, Astérisque, **323** (2009), 17–31.
- [2] R. Hartshorne, Complete intersections and connectedness, Amer. J. Math., 84 (1962), 497–508.
- [3] Q. Liu, Algebraic Geometry and Arithmetic Curves, Oxf. Grad. Texts Math., 6, Oxford Univ. Press, New York, 2002.
- [4] M. Herrmann, S. Ikeda and U. Orbanz, Equimultiplicity and Blowing Up, An Algebraic Study. With an Appendix by B. Moonen, Springer-Verlag, 1988.
- [5] H. Matsumura, Commutative Algebra, Benjamin, New York, 1970.
- [6] H. Matsumura, Commutative Ring Theory, Cambridge Stud. Adv. Math., 8, Cambridge Univ. Press, Cambridge, 1986.
- [7] D. Rees, Valuations associated with a local ring. I, Proc. London Math. Soc. (3), 5 (1955), 108–128.
- [8] D. Rees, Valuations associated with ideals. II, J. London Math. Soc., 31 (1956), 221–228.
- [9] D. Rees, Izumi's theorem, In: Commutative Algebra, Math. Sci. Res. Inst. Publ., 15, Springer-Verlag, 1989.
- [10] M. Spivakovsky, Valuations, the linear Artin approximation theorem and convergence of formal functions, In: Algebra and Geometry, Álxebra, 54, Univ. Santiago de Compostela, Santiago de Compostela, 1990.

Taibah University College of Science Department of Mathematics Madinah - Saudi Arabia

E-mail address: cabeddani@taibahu.edu.sa