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§0. Introduction 

Basic problems related to lifting and reduction of etale covers of 
curves had been treated in the fundamental work of Grothendieck [4], 
which established unique liftability, as well as good reduction property 
for Galois covers with degrees not divisible by the residue characteristic 
p. This applies also to tame covers, say, of P 1 \ {0, 1, oo }, in which case 
Raynaud [16] proved a partial but yet unsurpassed result for Galois cov­
ers of degree divisible by p but not by p2 . Historically, there is another 
line of investigations started mainly by Shimura and Igusa. In [5], Igusa 
made a basic contribution to the case of P 1 \ {0, 1, oo} by geometric 
method, proving that the modular tower of levels not divisible by p (the 
Galois degrees can be divisible by p) has good reduction. The theory 
of Shimura curves [19, 20] provided extremely rich arithmetic systems 
of curves and source of further studies. In connection with fundamental 
groups, we just recall here the following; each tower obtained by reduc­
tion of modular or Shimura curves can be characterized, inside the tower 
of curves with prescribed tame ramifications, only by the complete split­
ting of "special F q2-rational points" [6, 8, 9, 10]. As for developments 
after 1980's related to the study of the algebraic fundamental groups of 
curves, we shall leave their descriptions to other articles of this Volume. 

Now, here, we take up the following question. Let p > 2, let F P be 
an algebraic closure ofF P = Zjp, and Ro = W[[F p]] be the ring of Witt 
vectors. Note that R0 does not contain the group f.Lp of p-th roots of 
unity. Let k0 be the quotient field of R0 , and Gko be the absolute Galois 
group Gko = Gal(k0 /ko). Let X be a proper smooth Ro-scheme whose 
fibers Xry = X Q9 ko and Xs = XQ9 Fp are geometrically irreducible 
curves. Pick an Ro-section x = (xry, Xs) E X(Ro). Then Gko acts on the 
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fundamental group 1r1 (X17 ® k0 , x17 ), and the (surjective) specialization 
homomorphism 

factors through the Gk0 -coinvariant of the group on the left, inducing 

Our questions and partial results are related to its kernel, Ker( 1/J). After 
some vain trials to find a non-trivial element in the kernel (first for the 
case of X = P 1 \ {0, 1, oo }, with 1r1 replaced by 1r{ame), I turned direction, 
inclining to think that the kernel may reduce to { 1}, and decided to pose 
this question in this article (instead of giving the content of my talk 
which is more or less direct consequences of my previous results [6, 10]). 
Whether Ker(1/l) = {1}, to be called question (Q1'), is equivalent to the 
following (Q1): is it true that a finite etale cover f'7 : y'7 -t x'7 has good 
reduction if one k0 -rational point x 17 of X 17 splits completely in Y17 (k0 )? 
It is almost obvious that these questions make sense only for a fixed base 
ring as "small" as Ro (§1.1, §4.1). These are questions on 2-dimensional 
absolute "surfaces", and not on relative curves. 

We add here a few remarks to avoid misunderstandings. We have 
just referred to complete splitting of one point, but it should be noted 
that (i) splitting is equivalent to p-adic unramifiedness in the fiber (be­
cause non-trivial finite extensions of k0 are totally ramified), and (ii) 
the complete splitting of one point means that of all points sufficiently 
nearby. As for (i), it may be more impressive to use the term like "p­
adically unramified", but this can also be confusing. As for (ii), it is 
sometimes more reasonable to look at the effect of complete splitting of 
one whole "disk". This is in fact so in the case of bigger base rings (§4.1), 
but for the case of small base rings, splitting of one point seems to be 
an appropriate starting point, in connection with the Galois action on 
fundamental groups with a given base point, and for rigidifying related 
covers. 

The main purpose of this article is to draw attention to the above 
(equivalent) questions; however, we shall also present partial results. We 
first prove that Ker( 1/J) does not have non-trivial pro-solvable quotients 
(Corollary 1-1 §1.4). Now let f : Y -t X denote the integral closure 
of X in the function field of Y17 , so that Y is a normal R0-scheme with 
f 17 : Y17 -t X 17 etale. We shall then prove that (Q1) is valid when the 
cover f is "locally realizable in a relatively 1-parameter space" (Theorem 
2 §1.5). This has some application to non-splitting of points in the "level 
p" covers of Shimura curves. 
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In §1, we pose the basic questions and present Theorems 1, 2 with 
their Corollaries. They will be proved in §2, 3. In §4, we discuss some 
related subjects, for example, the case of more general base rings, and the 
case of P 1 \ {0, 1, oo }. Examples will also be given to indicate that (i) if 
the question has general affirmative answer, it cannot be proved only by 
local methods (Example 1 §3.4), and that (ii) for a bigger base ring, even 
the complete splitting of one whole disk does not imply good reduction 
of covers (Example 2 §4.2). The local tools we use (for Theorem 2) 
consist of (a) a simple upper bound of the different exponent in the 
mixed characteristic case (Lemma A §3), and (b) a lower bound for 
elementwise relative discriminants, under the existence of a "splitting 
section" in some 2-dimensional local R 0-algebras. The global tools we 
use (for Theorem 1, etc.) are the abelian group schemes, as in Raynaud 
[16], and also the "associated differential". 

In §5, as an Appendix, we shall give a general definition of the 
associated differential w, which is a differential of multiple degree on the 
special fiber canonically associated to each non-etale cover f : Y --+ X. 
The special case of w related to Shimura curves was studied in e.g., [7], 
and now some other cases became relevant. 

The author wishes to express his hearty gratitude to A. Tamagawa 
for discussions and careful reading of the first draft. Despite (or rather, 
because of) some difference in viewpoints, discussions with him were very 
stimulating, and his remarks very helpful for revision of this article. 

§1. Questions and main results 

1.1. - Let R be a complete discrete valuation ring of mixed charac­
teristics ( 0, p) with quotient field k whose residue field is "" = F P (an 
algebraic closure of Fp)· It is either Ro = W[[Fp]] itself, or a finite to­
tally ramified extension of Ra. We denote by 1r a prime element of R, 
and by ord = ord7r the corresponding normalized additive valuation. As 
usual, write Spec(R) = {ry,s} (77 the generic point, s the closed point). 
Note that Spec(R) has no non-trivial connected finite etale covers. For 
any R-scheme Z, Z'l = Z Q9 k (resp. Zs = Z Q9 "") denotes its general 
(resp. special) fiber, and Z(R) (resp. Z'l(k)) denotes the set of sections 
Spec(R) --+ Z (resp. k-rational points of Z'l). We shall consider only 
proper flat R-schemes Z; hence Z'l, Zs are non-empty. The local ring 
and the maximal ideal at z E Z will be denoted by Oz,z, mz,Z respec­
tively. When Z is an integral scheme, its function field will be denoted 
by k(Z) (= k(Z'l) when Z/ R is flat). 

Let X be a proper smooth R-scheme whose fibers X'l, Xs are ge­
ometrically irreducible curves. We denote its function field by K = 
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k(X) = k(X17 ). Each x 17 E X 17 (k) uniquely determines its specialization 
X 8 E X 8 (K:) and the section x =(x17 , X 8 )E X(R). Given X 8 , such x 17 and 
x will be called a lifting of x 8 . The collection of all k-rational points of 
X 17 that lift a given point X 8 will becalled the disk above X 8 (denoted by 
Dsk(ry/xs)), or simply a disk. It carries p-adic topology. Let L be a fi­
nite extension of K, and let f : Y-+ X be the integral closure of X in L. 
We shall exclusively study the case where the general fiber f 17 : Y17 -+ X 17 

off is etale but f itself may not be so. 

1.2. - Assume temporarily that f is also etale. Then f 17 : Y17 -+ X 17 

is not only finite, etale and connected, but also satisfies an extra strong 
property; namely, all points x 17 of X 17 (k) split completely in Y17 (k). In 
fact, if x E X(R) denotes the closure of x 17 in X, then f- 1 (x) is finite 
and etale over Spec(R); hence it must be a disjoint union of copies of 
Spec( R); in particular, f;; 1 ( x 17 ) is a disjoint union of copies of Spec( k). 

Conversely, start with X as in §1.1 and a connected finite etale 
cover f 17 : Y17 -+ X 17 , and suppose that there exists a non-empty subset 
Sy;x(k) c:;: X 17 (k) such that all points x 17 of Sy;x(k) split completely 
in Y17 (k). In which cases can we conclude that f : Y -+ X itself is 
etale? The first thing to be noted is: we can conclude so when either 
Y17 /X17 has potential good reduction (§2.1), or if Sy;x(k) is large in 
some sense (Proposition 2 (§4.1), Corollary 2-4 (§1.5)). But for the 
general base ring R (outside the case of potential good reduction), the 
splitting assumption for a finite non-empty set Sy;x(k) cannot imply 
the etaleness of f. This is simply because if we take any ramified and 
not potentially unramified cover f, take any finite subset S of X 17 (k), 
and replace k by k' = k(f- 1 (x 17 ); x 17 E S), then f remains ramified and 
the splitting condition for Sy;x(k) =Swill be trivially satisfied. Such 
an example is made at the cost of expanding the base ring. But when 
we fix the base ring as, say, R0 = W[[F p]] (the ring of Witt vectors) with 
p > 2, or a little more generally, impose the condition ordp < p~ 1, then 
I found no counterexamples to the following question, and am inclined 
to think that the answer may be affirmative. 

Question (Ql). Assume that ordp < p ~ 1, and let f: Y-+ X be 
as in §1.1. Suppose that at least one point x 17 of X 17 (k) splits completely 
in Y17 ( k). Then is f necessarily etale? 

When we assert that (Q1) has an affirmative answer for some spec­
ified class off, we shall say that the assertion (Q1Sp) holds (specifying 
the class each time). 
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Note that the formulation fits well with forming towers and with 
taking the Galois closure; the answer to (Q1) is positive if and only if 
(Q1Sp) holds for those L/K having no proper intermediate subfields, and 
if and only if (Q1Sp) holds for Galois extensions L/ K. By the purity of 
branch locus, f is etale if and only if the discrete valuation of K defined 
by the generic point of the special fiber Xs of X is unramified in L. 
Note also that if there exists a point Xs E X(K) such that f is etale at 
all points of f- 1 (x 8 ), then f is etale on Y. For x =(x77 , Xs) E X(R), the 
splitting of x 77 in Y77 (k) implies that f- 1 (x) consists of distinct irreducible 
components each isomorphic to Spec( R). But f-1 ( x) may possibly be 
connected; two distinct irreducible components may specialize to the 
same point of f- 1(x 8 ). The goal is to show, for some specified classes of 
f, that f-1 (x) must be totally disconnected, which implies the etaleness 
of f. 

But before giving these, we shall reformulate (Q1) in terms of fun­
damental groups. 

1.3. - Let k be an algebraic closure of the quotient field k of R, write 
xk =X ®k, and let 'ifl := 7r1(Xk, Xry) be the algebraic (profinite) funda­
mental group of xk with a given k-rational base point Xry E Xry(k). The 
absolute Galois group Gk = Gal(k/k) acts on 1r1 in the usual manner. 
Let (1r1 )ck denote the Gk-coinvariant, i.e., the largest quotient on which 
Gk acts trivially. The fundamental group of the geometric special fiber 
7r1(Xs,xs) with base point X 8 (the specialization of x 77 ) is also a canon­
ical quotient of 1r1 which factors through (1r1 )ck, inducing a surjective 
homomorphism 

(1.3.1) 

One sees easily (cf. §2.1) that (Q1) is equivalent to 

Question (Ql'). Assume that ordp < p- 1. Then, is 7/J an iso­
morphism? 

If not, what is the meaning of the difference (i.e., Ker(7j;))? 

1.4. - Theorem 1. Notations being as in §1.1, let G denote the 
Galois group of the Galois closure of L / K. The assertion ( Q 1 Sp) holds 
for the following classes of G; either G is solvable, or more generally the 
order of each composition factor of G is either equal to p or not divisible 
by p. 

This will be proved in two ways; (i) by using a global abelian R-group 
scheme argument as in Raynaud [16] (§2.3), (ii) by a more elementary 
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treatment of normal relative curves which makes it clear why a local 
counterexample cannot extend to a global one (§4.1). 

Corollary 1-1. Let ordp < p-1. Then Ker('l,b) has no non-trivial 
prosolvable quotient, or more strongly, if a finite simple group G appears 
as its quotient, then G must be non-cyclic and with order divisible by p. 

1.5. -We shall give another type ofresults on (Q1Sp). Let f: Y--+ X 
be as in §1.1, so that f is etale on the general fiber. Let Ys E Ys(K;) be 
any point on the special fiber. Let us call f a cover in a 1-parameter 
space at Ys, if the vertical component in the tangent space at Ys is at 
most 1-dimensional; 

(1.5.1) dimKer(Tys(Ys)--+ TxJXs)):::; 1 

(xs = f(Ys)), or equivalently, putting (0', m') = (Oys,Ys' ffiy 3 ,YJ and 
(O,m) = (Ox 8 ,X31 ffix 8 ,XJ, if 

(1.5.2) dim"(m' /(mO' + m'2 )) :::; 1. 

This is also equivalent to that the K;-algebra 0' jmO' is generated by one 
element, or (by Krull-Azumaya's lemma) to that the 0/\-algebra 0'/\ is 
generated by a single element (A the completion). 

Consider the case where Ys extends to a section y = (yTJ, Ys) E 

Y(R). Then, the local ring Oys,Y is regular if and only if the prime ideal 
corresponding toy is principal (say, (t'), which gives mys,Y = (t',1r)), 
and when this is also satisfied, f is a cover in a 1-parameter space at y81 

because 7r E ffixa.X \ m;s,Y· 

Theorem 2. Notations being as in §1.1 and (Q1), denote by X8 

and x = (xry, x 8 ) the specialization of Xry and the corresponding section in 
X(R), respectively. The assertion (Q1Sp) holds for the following classes 
of j; either each section y = (yry, Ys) E Y(R) above x is locally defined 
by a single equation, or more generally, f is a cover in a 1-parameter 
space at each point Ys above X8 • 

This is obtained by combining an estimate from below of the p­
adic order of elementwise discriminants using this splitting of f- 1 ( xTJ), 
with an estimate from above of the order of the discriminant itself. The 
geometric assumption confirms that the discriminant is equal to the 
greatest common divisor of elementwise discriminants (§3). 

Corollary 2-1. (Q1Sp) holds when Y is a regular scheme. 

Corollary 2-2. Let W--+ X be a proper smooth relatively 1-dimen­
sional X -scheme, and suppose that f : Y --+ X can be obtained from an 
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integral closed subscheme T c W which is finite and flat over X, by 
a "small modification", i.e., by the normalization J.L : Y ---+ T which is 
assumed to be unramified ("net") at each point of Y. Then (Q1Sp) has 
an affirmative answer for such Y /X. 

The special case where W = X XR Z, with some proper smooth 
relatively 1-dimensional R-scheme Z and where T C X XR Z is the 
"graph" of an algebraic correspondence, will be applied in the following. 

We have also tried to find a counterexample for (Q1). For this aim, 
we have especially looked at Shimura curve analogues of the modular 
curve of level p usually called X 0 (p) which has bad reduction. Let F be 
a totally real number field and B a quaternion algebra over F in which 
all but one archimedean primes are ramified. Shimura [19] constructed 
and studied a canonical tower of curves over abelian extensions ofF, the 
Shimura curves associated to B of all levels. If jJ is any non-archimedean 
prime divisor of F not dividing the discriminant of B, we obtain from 
(the levels coprime with jJ-part of) his system a jJ-canonical system of 
triples of relative curves (cf. [8, 9] and [10](the author's notes 2008)): 

(1.5.3) {X~ X0 (p) LX'} 

over o~2 ). Here, Op is the jJ-adic completion of the ring of integers of 

F, o~2 ) is its unique quadratic unramified extension, X, X' are proper 

smooth relative curves over o~2 ) that are mutually conjugate over Op, and 
Xo(!J) is the normalization of the Heeke correspondence T(!J) c X x (2J 

Op 

X' (which is formal locally a closed immersion; cf [8]). Moreover, (1.5.3) 
is a CR-system, i.e., the special fiber T(!J)s consists of two irreducible 
components II, II' meeting transversely above each F q2-rational point of 
Xs (q = N(p)), and the component II (resp. II') is the graph of the q-th 
power morphism Xs ---+X~ (resp. X~ ---+ X 8 ). 

As for ramifications, unless B ':":' M 2 (Q) and unless the level of X is 
too small, ]'7, f~ are etale, because the corresponding discrete subgroups 
of PSL2 (R) are cocompact and torsion-free. On the special fiber, fs, f~ 
involve inseparable morphisms and hence j, f' cannot be etale. Al­
though a basic property of these CR-systems is that the fundamental 
groups of the special fiber and the general fiber are strictly isomorphic, 
here, we shall forget this aspect and lift the base scheme to the comple­
tion R of the maximal unramified extension of Op· The Galois group of 
the Galois closure of L/K in this case is either PGL2(Fq) or PSL2(Fq), 
and L/ K corresponds to the Borel subgroup (index q + 1). 

As a direct consequence of Corollary 2-2 we obtain 
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Corollary 2-3. When ordp < p - 1, no point of Xry(k) splits 
completely in X0 (p)ry(k); in other words, (Q1Sp) holds for the cover 
f: Xo(P)-+ X. 

Theorems 1,2 tell us that in order to find a counterexample, we need 
to look at coverings with non-solvable Galois groups of the Galois closure 
which are not defined locally by a single equation in two variables (at 
the crucial points). 

The following weaker form of (Q1) is a direct consequence of Theo­
rem 2. 

Corollary 2-4. Let the ring R and f : Y-+ X be as in §1.1, and 
assume ord p < p - 1. Suppose f is not etale. Then there exists a finite 
subset L;s of X 8 (ti:) satisfying the following: Let L;ry denote the set of all 
liftings of L;s to points of Xry(k). Then no point of Xry(k) \ L;ry splits 
completely in Yry ( k). 

(A weaker form for the general case of the base ring R will be given in 
§4.1) 

Proof. The two dimensional normal scheme Y is regular outside a 
finite set I;~ of points of Ys(ti:). (Indeed, by localization one can make 
each prime ideal of height 1 in the algebra of sections of O(Y) principal. 
The rest is obvious.) Let I;s be the projection of I;~ to Xs(ti:), and let 
Xs E Xs(ti:) \ L; 8 • Then each point Ys E f- 1 (xs) is regular on Y. If Xry 
(with the specialization Xs) were splitting completely in Yry(k), then as 
we have seen above, f must be a cover in a 1-parameter space at y8 ; 

hence by our assumption ord p < p - 1 and by Theorem 2, f must be 
etale, contrary to our assumption. Q.E.D. 

§2. Proof of Theorem 1 and other basic statements 

2.1. ~ Notations being as in §1.1, the finite etale cover fry : Yry -+ 
X ry corresponding to the function field extension L I K is said to have 
potential good reduction, if there exists a finite extension k' I k such that 
the cover f' : Y' -+X' obtained by taking the integral closures of X in 
the field extension Lk' I Kk' is etale. Recall that this is equivalent to the 
unramifiedness in Lk' I Kk' of the discrete valuation v' of Kk' defined 
by the generic point of X~, and that in this case, extension of v' in Lk' 
is unique. First we shall prove 

Proposition 1. The assertion (Q1Sp) holds when fry : Yry -+ Xry 
has potential good reduction. 
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Proof. We may assume that L I K is Galois. Let v be the discrete 
valuation of K defined by the generic point of X 8 . By assumption there 
exists a finite extension k' lk, which we may also assume Galois, such 
that the extension v' of v to Kk' is unramified in Lk' I Kk'. By applying 
the purity of branch locus and Zariski's connectedness theorem to the 
integral closures Y' I X' of X in Lk' I Kk', we see that the extension of 
v' to Lk' is unique; hence the extension of v to Lk' is also unique. But 
Lk' I K being Galois, this implies that Lk' I K is linearly disjoint with 
the v-adic completion of K. Hence can take the maximal unramified 
subfield L* IK in Lk'IK. It is clear that L*k' = Lk'. Every Xry E Xry(k) 
splits completely in Yry* ( k), Y* being the integral closure of X in L *; 
hence if Xry splits completely also in Yry(k) and if L* #- L, then it must 
split in a non-trivial subextension of k' lk, a contradiction. Therefore, 
L* = L; hence f: Y--+ X must be etale. Q.E.D. 

2.2. - We shall show that (Q1) and (Q1') are equivalent. Each k­
rational point Xry E Xry(k) defines a splitting s: Gk --+ 1r1 (Xry, xry) of the 
exact sequence 

(2.2.1) 

This splitting defines a subtower of connected finite etale covers of Xry 
having one projective system of k-rational points above Xry· If N denotes 
the kernel of the projection 1r1 (Xk,x)--+ 1r1 (X/,;,x)ck, then the semi­
direct product s(Gk) · N is the smallest normal subgroup of 1r1 (Xry, xry) 
containing s ( G k). This corresponds to the tower of all connected finite 
etale covers of Xry in which Xry splits completely. 

2.3. - Proof of Theorem 1. Let Ll K be the function fields of 
Yry I Xry. We may assume L I K to be Galois with degree n, with either 
n -=/=. O(modp) or n = p. The first case reduces to Proposition 1 by 
Abhyankar's lemma. When n = p, let J be the (proper smooth) abelian 
scheme over R obtained as the Jacobian of X, and ¢ : X --+ J be 
the canonical morphism which maps x to the origin OJ of J. Since 
the covering fry is abelian, there exists a k-isogeny Fry : Ary --+ Jry of 
abelian varieties over k such that Yry = Xry x J~ Ary ( cf. [17]; the descent 
argument to k is easy). Being isogenous to an abelian variety having 
good reduction, Ary also has good reduction, i.e., extends to a proper 
smooth abelian scheme A over R, and Fry extends to an R-morphism 
F : A --+ J of abelian schemes. Put Y* = X x J A, and let f* : Y* --+ X 
be the projection. If x = (xry, x 8 ) E X(R) denotes the unique extension 
of Xry, then (f*)- 1 (x), as R-scheme, is isomorphic to F- 1 (0J) which is a 
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finite commutative group scheme of order p on R. But (J*)- 1 (x) has [L: 
K] distinct sections, and hence p-1 (OJ) has as many distinct R-sections. 
Therefore, by the classification of finite commutative group schemes of 
order p over R [14, 15], this must be etale over R when ordp < p- 1. 
Therefore, (!*) - 1 ( x) is etale over R, which means f* : Y* --+ X etale 
above Xsi hence etale everywhere, and this must be the integral closure 
Y of X in L. Q.E.D. 

§3. Proof of Theorem 2 and its corollaries 

3.1. - We start with a lemma which is basic and elementary but does 
not seem to be well-known. 

Lemma A. Let ( K, v) be a complete discrete valuation field of 
mixed characteristics (O,p), and (L, V) be any finite extension. Let 
:D (VI v) be the different ideal. Then 

(3.1.1) ordv:D(VIv) ~ e- 1 + ordv(n*). 

Here, ordv is the normalized additive form of V, e is the ramification 
index, n = [L : K], and n* = nl fs, fs being the degree of the separable 
part of the residue field extension. 

Remark. When the residue field extension is separable, this can 
be found in a classical literature, e.g. [2]. Deeper results for separable 
residue extension case (resp. more general case) are exposed in [18] 
(resp. [1]). But even the fact that a simple upper bound exists in the 
mixed characteristic case does not seem to be singled out explicitly in 
the literatures that the author has met. 

Corollary A. Let (K, v) be a discrete valuation field of mixed 
characteristics (O,p), and L be any finite extension. Let A be the valu­
ation ring of (K, v), B be its integral closure in L, and D(BIA) be the 
discriminant of B I A which is an integral ideal of A. Then 

(3.1.2) ordvD(BIA) ~ L nv (ordvnt- + 1- -}-), 
V/v V 

where V runs over all distinct extensions of v to L and nv, nt-, ev are 
as in Lemma A for the completion Lv I Kv. 

Proof of Lemma A. (i) (Reduction to n = p cases) Let 1:}3 denote 
the valuation ideal for (L, V), and put 

(3.1.3) 
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The lemma is equivalent to that ~(VI v) divides ~'(VI v). A point is that 
(not only~ but also) ~~ satisfies the transitivity condition for towers; 

(3.1.4) 

for any extensions VziVI/v. This is obvious from the definition of 
~'(V lv ). So, when Ll K is a tower of subextensions, it suffices to prove 
the inequality for each step of the tower. Since it is obviously satisfied 
for tamely ramified extensions, and since L I K always possesses the max­
imal tamely ramified subextension (including the case where inseparable 
residue field extensions are allowed; cf. e.g. [2]), it suffices to prove it 
in the wildly totally ramified case. Moreover, since the equality ~ = ~1 

holds in the tame cases, we see that if L I K is wildly totally ramified 
and K' I K is tamely ramified, the inequality for LK' I K' will imply that 
for LIK. 

Now let M be the Galois closure of Ll K and Ktr be the maximal 
tamely ramified subextension in M. As we have seen above, it suffices 
to prove the inequality for the extension L.Ktr I Ktr. But M I Ktr is 
a Galois extension whose Galois group is a p-group P, and being a p­

group, for each subgroup Po of P, there exists an increasing sequence 
of subgroups, starting with P0 ending with P, with index = p for each 
adjacent subgroups. Hence the extension L.Ktr I Ktr has a filtration by 
extensions of degree p. Thus the proof is reduced to the case of n = p. 

(iia) (The case n = e = p) Let Dv C Dv be the valuation rings 
and II be a prime element of V. Then Dv = Dv[II]. Therefore, if 
f(X) = Irr(II, K, X) denotes the monic irreducible polynomial giving 
the equation for II over K, then ~(VIv) = (!'(II)). Write f(X) = 
2:o<i< aixp-i (ai E Dv, ao = 1). Then f'(II) is the sum of (p-

- _p 

i)aiiip-i-1 over 0 :::; i :::; p- 1. Since the additive order ordv of these 
terms are mutually distinct mod p, 

(3.1.5) 

(3.1.6) 

as desired. 

ordv~(VIv) = Mino:::;i:<::;p-1 (ordv((p- i)aiiip-i-1)) 

:::; ordv(piiP-1) = ordvn* + p- 1, 

(iib)(The case n = p and e = 1) Here we shall use the symbols 
L, w, etc, for the residue field of L, the residue class of w E Dv, etc. 
In this case, L I K is a purely inseparable extension with prime degree 
p; hence L = K(w) with some w such that GJP E k, tj. KP. Let wE Dv 
be a lifting of w, so that Dv = Dv[w]; hence ~(VIv) = (f'(w)) where 
f(X) = Irr(w, K, X) = 2:o::;i:<:;p aixp-i. Note that iii = 0 (1 < i < 
p- 1). Put 

(3.1.7) v = Min(ordvp, ordv((p- i)ai), (1:::; i:::; p- 1)), 
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so that 0 < v :::; ordvP· Let 1f E K be a prime element of v and express 
f'(w) as 

(3.1.8) 

with bi E Dv, (b0, ... ,bp-d -1- (0, ... ,0). Then since wP- 1 , .. ,w,1 are 
linearly independent over K, we have 

(3.1.9) ordv(f'(w)) = v:::; ordvP = ordvp = ordvn* + e ~ 1, 

as desired. Q.E.D. 

3.2. - We shall also need the following 

Lemma B. Let R be a complete discrete valuation ring of mixed 
characteristics (O,p) with prime element 1r such that "' = Rl1r is al­
gebraically closed. Let (A, m) be a 2-dimensional regular local domain 
dominating (R,1r), and let K be the quotient field of A. Let LIK be a 
finite field extension of degree n, and B be the integral closure of A, so 
that B is a semi-local ring with maximal ideals denoted by m 1, ... , mr. 
Suppose that there exists an R-homomorphism ¢ : A --+ R that extends 
to n distinct R-homomorphisms 

(3.2.1) 

where the index j indicates that the maximal ideal of B defined as the 

kernel of the composite ¢Y) = ¢Ji) (mod 1r) is ffiJ. For each b E B, let 
DLjK(b) E A denote its discriminant. Then 

(3.2.2) 
r 

ord7f(¢(DL;K(b))) 2': L dj(dJ ~ 1) 
j=l 

for any bE B. 

Proof of Lemma B. Let M I K be the Galois closure of L I K, G be 
the Galois group, and C be the integral closure of B in M. Then ¢ 
extends to an R-homomorphism C--+ R, because by assumption and by 
the definition of M it extends at least to a k-homomorphism C c>9 k --+ 
k, but the image of C is integral over R; hence it is R itself. Pick 
one such extension ¢c,1 : C --+ R, and denote by ¢c,1 the composite 
with the reduction map R --+ "'· Let mc, 1 be the maximal ideal of C 
corresponding to the kernel of ¢c, 1 . The Galois group G acts on C and 
acts simply transitively ¢c --+ ¢cog (g E G) on all extensions ¢c of¢ to 
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C. 1 The distinct extensions of¢ to B thus correspond, via ¢c,1 oglE +---+ 
gH with the right coset space G I H, where H = Gal( MIL). Let I denote 
the stabilizer of mc, 1 in G. (Note that elements of I act trivially also on 
Clmc, 1 = "'-) Note that ¢c,l o giB and ¢c,l o g'IB belong to the same 
maximal ideal of B if and only if suitable H-conjugates of ¢ 0 ,1 o g and 
¢ 0 ,1 o g' belong to the same maximal ideal of C, and hence if and only 
if IgH = Ig'H. Thus, {mjh::::j::::r correspond bijectively with I\ GIH, 
and dj is the number of elements of G I H contained in this double coset. 
Note that n = (G: H)= 2.:.:j=1 dj. 

Now, by definition, 

(3.2.3) 

hence 

II 
aH,THEG/H 

aH#TH 

((Jb- Tb) E A; 

(3.2.4) cp(DLjK(b)) = c/Jc,l(DLjK(b)) = ± II 

(3.2.5) = 0 (mod II 

aH,THEGjH 
aH#TH 

aH,THEG/H 
aH#TH, IaH=ITH 

where mod refers to divisibility in R. But when I(} H = IT H, (Jb- Tb = 
((}b)- i((Jb) E mc, 1 with some i E I; hence ¢c,1((Jb- Tb) E 1rR for any 
such (}, T. Therefore, the product inside the mod sign is divisible by 

This proves Lemma B. Q.E.D. 

3.3. - By combining Lemmas A and B, we obtain the following theo­
rem, of which Theorem 2 (§1.5) is a direct consequence (apply Theorem 

C to A= D~s,x' B = D~8 ,Y ). 
Theorem C. Let (R, 1r) be as in Lemma B, and let A = R[[t]] be 

the ring of formal power series in one variable over R. Let B be the 
integral closure of A in a finite extension £ of the quotient field .R of A, 
and put n = [£ : .R]. Assume: 

1 Recall that for any Galois extension R' / R of a normal ring R and a prime 
ideal p of R, the Galois group acts transitively on the set of all prime ideals of 
R' lying over p; cf. e.g. [13]. 
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(i)for any prime ideal q of A with height 1 other than (1r), the dis­
crete valuation of Jt defined by the localization at q is unramified in £; 

(ii) the R-homomorphism ¢0 : A --+ R defined by t c-+ 0 extends to n 
distinct homomorphisms B --+ R; 

(iii) ordp < p- 1; 
(iv) the A -algebra B is generated by a single element. 

Then B =A. 

Proof. Note first that B is a complete normal local domain. By 
assumption (ii) we have, by Lemma B (for A complete; hence r = 1, d1 = 
n), 

(3.3.1) ordn¢o(D,e;.db)) 2" n(n- 1) for any bE B. 

By assumption (iv), B = A[bo] with some b0 E B; hence D(B/A) is 
a principal A-ideal generated by D,e;~(b0 ). By abuse of notations, we 
use the symbol D(B/A) "'D,e;~(b0 ) also for any generator, determined 
up to Ax-multiples (denoted by rv). Therefore, ordn¢o(D(B/A)) > 
n(n- 1), i.e., 

(3.3.2) D(B/A) E (t, 1rn(n-l)). 

On the other hand, A is a unique factorization domain and by assump­
tion (i), D(B/A) cannot be divisible by any prime of A other than that 
rv 7r; hence 

(3.3.3) 

with 

(3.3.4) 8:;: n(n- 1). 

Now, on the other hand, if A(n) denotes the discrete valuation ring 
obtained by localization at ( 1r), and if we put B( n) = B ®A A ( n) which 
is nothing but the integral closure of A ( n) in £, then 

(3.3.5) 

hence by Corollary A of Lemma A, we have (noting that n~ is a factor 
of np) 

(3.3.6) 
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where p runs over all extensions of (1r) to B(n), np is the local degree 
and ep is the ramification index; hence by (3.3.4), 

(3.3.7) 

But since n is the sum of local degrees n = I;P/(n) np, we have 

(3.3.8) 

hence by (3.3.7) 

(3.3.9) 

or equivalently, 

(3.3.10) 

L np(np- 1):::; n(n- 1); 
P/(n) 

We now appeal to the following small sublemma: 

(Sublemma) Let p be a prime number > 2, and a, m be integers 
satisfying 1 :::; a :::; p- 2 and 2 :::; m. Then 

(3.3.11) a.ordpm + 1 :::; m - 1. 

To verify this, first note that the inequality holds for ordpm = 0 
because m ;:::: 2, and also for ordpm = 1 because then a+ 1 :::; p- 1 :::; 
m- 1. So let b := ordpm;:::: 2. Then m;:::: pb; hence 

(3.3.12) m- 1 ;:::: pb- 1 ;:::: (p- 1)b + b(p- 1) > 1 + b(p- 1) > 1 + ab. 

Now returning to the proof of Theorem C, by applying this (3.3.11) 
tom= np, a= ordnp, we obtain (for np > 1) 

(3.3.13) 

hence by (3.3.10) and (3.3.13), 
(3.3.14) 

L np (ordnnp + 1):::; L np(np- 1):::; L np (ordnnp + 1- e1 ). 
pj(n) pj(n) pj(n) P 
nv>l nv>l nv>l 



236 Y. Ihara 

This can be satisfied only when the sum is empty, i.e., when there is no 
pI ( 1T) with np > 1. Therefore, np = 1 holds for all pI ( 1r); in particular, 
PI(K) must be unramified. Together with the assumption (i), this means 
that all primes of A of height 1 are unramified in B. Since A is regular 
and B is normal, this implies that B I A is etale (purity of branch loci; 
cf. e.g. [13]). Since "" is algebraically closed and the local ring A is 
complete, this means that B = A. Q.E.D. 

Remark. The readers may (reasonably) wonder, on looking at the 
above inequality (3.3.14), why "the ep = 1" case should look more con­
tradictory than the case where ep is close to oo; especially whether even 
an unramified extension should lead, absurdly, to a contradiction. But 
this is not the case. In Theorem C, we consider an integral extension of 
completed local rings where the degree does not contain any contribu­
tions from unramified extensions. 

3.4. - We note that if Theorem C holds without the assumption (iv), 
then it will give (Q1) an affirmative answer, together with a local proof. 
Indeed, (iv) corresponds to the assumption in Theorem 2 that f be a 
cover in a 1-parameter space (at the specializations of splitting sections). 
But the fact is that the assumption (iv) cannot be dropped. In this 
subsection, we shall first show this by an example. It is cyclic of degree 
p. Recall that there is no counterexample to (Q1) for such extensions 
(Theorem 1), so this local counterexample should not extend to a global 
extension. We shall proceed to give an explanation of this situation, and 
give an alternative proof of Theorem 1 which does not (at least directly) 
rely on classification of finite commutative group schemes of order p. 

For simplicity, let ordp = 1, i.e., R = W[[Fp]] (p > 2). Put R' = 
R[t.Lp]· As is well-known, R' (in fact, Zp[f.Lp]) contains a prime element 1r1 

defined by 1r1p-l = -p (up to f.Lp- 1-multiples), which is useful because 
it is an eigenvector of the ~ = Gal(k(t.Lp)lk) action corresponding to 
the Teichmiiller lifting. As in Theorem C, let A = R[[t]], and Jt be its 
quotient field. Put A' = A[1r'] = R'[[t]]. An element of A' congruent 
to 1 (mod 1r1) is a p-th power if and only if it is 1 (mod 1r'P). Let exp* 
denote the truncated exponential series up to degree p - 1. 

Example 1. Let Jt' = Jt(1r1). The Kummer extension £' = 
Jt'(exp*(K't) 11P) over Jt' of degree p descends (uniquely) to a cyclic ex­
tension £1 Jt of degree p. The integral closure B of A in £ satisfies the 
assumptions (i)(ii)(iii) but not the conclusion of Theorem C, because 
B # A. In fact, the discrete valuation of Jt defined by the prime ideal 
(p) of A is ramified in £, with ramification index p. Accordingly, B does 
not satisfy (iv). 
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In general, for each a = a(t) E A, let ga = exp*(wr') E A'. This 
is not a p-th power if and only if a =;E. 0 (modp). This being assumed, 

the Kummer extension £~ = .it' (g~/P) descends uniquely to a cyclic ex­
tension £a/ R of degree p, and every cyclic extension £/ R of degree p is 
obtained this way. The point is that the class of ga in the multiplica­
tive group A'x/(A'X)P is again a~'::" Gal(.it'/.it)-eigenvector with the 
correct eigenvalue, i.e., 5 E ~ which maps ( to (r (( E /Jp) raises this 
class also to its r-th power. The discrete valuation of R defined by (p) is 

ramified in £a· (In fact, the equation for g~/P - 1 over .it' is Eisenstein; 
hence the ramification index is p for £~/.it' and hence also for £a j .it.) It 
is potentially unramified if and only if a= a(O) (modp). All primes of 
A of height 1 other than (p) are unramified in £a (because the residue 
class of ga is non-zero). Finally, the prime (t) splits completely in the 
integral closure Ba of A in £a if and only if a(O) = 0 (modp), hence in 
particular if a = t. 

Now let f: Y-+ X be as in §1.1 for R = W[[Fp]] (p > 2). Suppose 
that the function field extension L j K is cyclic with degree p. We shall 
give a direct proof for potential unramifiedness of f, which is the main 
content of Theorem 1. 

Let v be the discrete valuation of K defined by the generic point 
of the special fiber X 8 • Let V be an extension of v to L, and suppose 
that Vjv is ramified. Note that the extension Vjv is then unique. We 
shall denote by * the residue class of * (elements, fields, etc.), and by *' 
the adjunction of /Jp to *; for example, K' = K(fJp), K' = K, X~ '=" Xs 
(canonically). 

(Claims.) (i) There exists g E K' such that L' = K'(g 11P) and 
g = 1; 

(ii) a:= (g- 1)/w' E K' = R is independent of the choice of such 
gas in (i); 

(iii) a is holomorphic everywhere on Xs and hence is a constant E "'; 

(iv) V is potentially unramified in L j K. 

(Proof of the Claims.) (i) By Kummer theory, there exists g E 

K' with L' = K' (g11P) and we may replace g by a multiple of any 
element of (K'x)P. Since L' = LK' with L/K abelian, the class of gin 
the multiplicative group K'x /(K'X)P must be a ~-eigenvector with the 
correct eigenvalues; i.e., if 5 E ~ raises each primitive p-th root of unity 
to its r-th power, then it also raises the class of g to its r-th power. The 
point in the following is that there exists 5 with which r =;E. 1 (modp). 
Since ~ leaves the valuation V' invariant and acts trivially on the residue 
field K', this first shows that the V' -adic order of g must be divisible 
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by p and hence we may assume it is 0; and then that the residue class g 
must be a p-th power in K'x and hence we may assume it is 1. 

(ii) If we replace g by g' = ghP with h = 1, i.e., h = 1 + n'ho with 
ordv'(ho) :=:: 0, then hP = 1 (modn'P). Hence g' = g (modn'P), whence 
(ii). 

(iii) Since Yr1/ X'l, and hence also Y;/ X~ is etale, the divisor of g 

must be a p-th power; (g) = DP on the curve X~. (Note that the k'­
rationality of DP implies that of D.) Since g = 1, the specialization 
Ds =Don Xs is trivial; Ds = (1). (The poles and the zeros cancel with 
each other after specialization.) For any divisor D' on X~, we denote 
(as usual) by L(D') the k'-linear space of rational functions F on K' 
satisfying (F) · D' :=:: 1, and by £(D') its dimension. We use the suffix 
s to denote the specialization, and use similar notations for divisors on 
X 8 • If Dv' denotes the valuation ring of v', then there is a reduction 
map from L(D') n Dv' (which is a free R'-module of rank £(D')) into 
L(D~). It is not generally surjective, but it is so when £(D') = £(D~). 

Now, we shall show that a, as a rational function on Xs, is holomor­
phic at any given point (which we write like a divisor here as) P8 • For 
this purpose, pick any point Q of X~(k') such that Qs -=/= P8 • Let gx > 0 
denote the common genus of X'l and Xs, and take any n > 2gx- 2, so 
that (by Riemann-Roch, noting that deg(D) = 0 and that Ds = (1)): 

£(QnD) = £(Q~Ds) = £(Q~) = n- gx + 1 > 0; 

Hence L(QnD) n Dv' maps surjectively to L(Q~) which contains the 
constant 1; hence there exists h E L( Qn D) such that h = 1. Replace g 
by g' = ghP, so that (g') = (D(h))P :=:: Q-np; hence the only pole of g' 
on X~ is at Q. Therefore, (g'- 1)/n' is finite at every generalization of 
Ps on X'; hence it must be finite at Ps; in other words, a must be finite 
at P8 • Since Ps was an arbitrary point of Xs(K:), a must be a constant. 
This settles (iii). 

(iv) Now pick any X 8 E Xs(K:), let t be a local parameter at X 8 , 

and identify the complete local ring D~ x with A = R[[t]]. Then as 
shown above, the extension £ of the fraci~ion field ~ of A corresponding 
to L must be of the form£ = £a, with some a = a(t) E A. But since 
ga = exp*(n'a), we obtain 

(3.4.1) a= (ga- 1)/n' = a(t) (modp). 

Therefore, by claim (iii), we obtain a(t) = a(O)(modp); hence the dis­
crete valuation (p) is potentially unramified in £, and hence also in 
L. Q.E.D. 
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§4. Other related subjects 

4.1. - Over general base rings. Let R and f : Y --+ X be 
as in §1.1. So far, we discussed the question whether the complete 
splitting of one point of X1J(k) in Y1J(k) implies etaleness off, under the 
assumption ordp < p- 1. This question stands on a narrow unstable 
spot, and so we are trying to find natural generalizations. One direction 
for consideration is, to remove the assumption on R and see how the 
situation changes; this we shall discuss in the present and the following 
subsection. Another direction is related to the consideration of Xjp (for 
p-I= 2) or X/4 (for p = 2) instead of Xs = Xj1r, of relevant infinitesimal 
automorphisms, and questions related to the regularity of Y. These 
are mutually related, and certainly also related to whether R had been 
chosen to be the minimal base ring for X. This direction requires further 
studies and will not be discussed here. 

The situation changes drastically if we change R so as to contain 
flv. To see this, it suffices to look at any isogeny >. : E' --+ E of (proper 
smooth models over R of) elliptic curves having ordinary reduction, 
with As inseparable of degree (say) p. This cover can possess a complete 
splitting k-rational point only if each point of Ker(A) is k-rational, and 
this imposes flv c R. This also makes the cover Galois. Now this 
being assumed, we see that each disk on E1J ( k) contains both splitting 
(completely in E~ ( k)) points and non-splitting points. Indeed the k­
rational torsion points (and points in their small neighborhood) give 
splitting points, but on the other hand, the induced isogeny of formal 
groups R --+ R cannot be surjective; hence non-splitting points certainly 
exist inside the same disk. 

What we can show, in the case of general base ring R, is the follow­
ing: 

Proposition 2. Let R and f : Y --+ X be as in §1.1. Suppose 
f is not etale. Then there exists a finite subset L 8 of X 8 (K:) such that 
every disk Dsk(TJ/Xs) with X 8 tf_ L 8 contains a point which does not split 
completely in Y1J ( k). If Y is regular, then this holds with L 8 = ¢. 

For isogenies A : E' --+ E of elliptic curves, we can take L 8 = ¢, 
because E' is regular. An example of higher genus case, where we need 
a non-empty exceptional set L 8 , will be given in §4.2. 

Proof. As in the proof of Corollary 2-4, we remove from Xs(K:) the 
(finite) set L 8 consisting of projections of all points of Ys ( K:) that are 
not regular on Y. Let X 8 tf_ L 8 and Ys E f- 1 (x 8 ), so that Ys is regular 
on Y. As noted earlier, f not being etale, there exists Ys E f- 1 (xs) at 
which f is not etale. Choose such a point Ys· If Ys does not extend 
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to any section in Y(R), then it implies that no k-rational point x 11 in 
the disk corresponding to X 8 can split completely in Y11 (k). So, suppose 
that Ys extends to a section y = (y11 , Ys) E Y(R), and put i(y) = x = 
(x 11 , x 8 ) E X(R). In the same disk we shall find a non-splitting point. 
Since the local rings B = Dy8 ,Y, A = Dxs,X are regular, each section 
y (resp. x) is defined by a single equation T = 0 (resp. t = 0). Since 
the maximal ideal of R is generated by ( 1r), the maximal ideals of B, A 
have the generators mB = (T,1r), ffiA = (t,1r), respectively. Hence Bj1r 
is also regular; hence Ys is smooth on Y8 , lying on just one irreducible 
component II of Ys of multiplicity one. Since i is not etale at Ys and 
hence also on the generic point of II, is : II --+ X 8 must be inseparable. 
Therefore, by completion we obtain BA = R[[T]] -:J AA = R[[t]] which is 
a finite integral extension, where 

(4.1.1) t = F(T) = L anTn, 
n;>-0 

with a0 = 0 (because the section T = 0 lies above t = 0), an = 0 (mod 1r) 
for all n with ( n, p) = 1 (because of the inseparability mentioned above); 
but not all the coefficients are divisible by 1r. Let m be the smallest 
positive integer such that am "¥:- 0 (mod 1r). Now take, say, t 0 = 1r, and 
decompose the power series F(T)- t0 into the product of an Eisenstein 
polynomial E(T) of degree m and a unit of Bx. Then since E(T) is 
irreducible over k, the R-section of X defined by t = t 0 cannot extend 
to an R-section of Y through Ys· Hence it cannot split completely in 
Y11 (k). Q.E.D. 

4.2. - Kummer covers of degree p and their global invariants 

Let us study in more detail the following case; /Lp C R, i 11 is cyclic 
with degree p, and is is purely inseparable. Then Y8 is irreducible, 
reduced, and has some cuspidal singularities. In this case, the "safety" 
exceptional set E 8 in Proposition 2 will not be chosen in connection with 
irregular points as in its proof, but from a different reason. By using the 
"associated invariant differential", we can give an upper bound of the 
cardinality of E 8 for this case: 

(4.2.1) 

To show this, let f.L : Ys* --+ Y8 be the normalization. Then the p-th 
power (Fp-)isomorphism <PP maps Xs onto Y8*; 

(4.2.2) 

( 4.2.3) 
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Let (Q;, Q8 , Ps) be a triple of corresponding points of (Y8*, Ys, X 8 ). 

Their completed local rings and inclusion relations can be expressed as 

( 4.2.4) 

As in [17](IV-1), call n = nQs the conductor exponent, i.e., the small­
est non-negative integer satisfying B =:> Tni\:[[T]], and put b = bQs = 

dim(I\:[[T]]IB). Call M = MQs the collection of all such m' EN that B 
contains a power series starting with rm', which forms a submonoid of 
N. Note that b = IN\ Ml and n- 1 is the largest element of N \ M. 
Clearly, M contains p, and some other element of 0 (modp), of which 
let m = mQs be the smallest. Since M contains the monoid (p, m) 
generated by p and m, we have 

(4.2.5) 

where the equality holds if and only if M = (p, m). We are going to 
show that 

( 4.2.6) 

( 4.2.7) 2(gx- 1) = 2)mQs- 1). 
Qs 

Let L I K be the corresponding function field extension. By our 
assumption J.Lp c R, LIK is a Kummer extension, L = K(g 11P) with 
some g E Kx determined up to (Kx )P-multiples. In our case where 
an inseparable residue extension arises, we can choose g such that g = 
gxs i=- 0, oo. There are two cases; 

(Case 1) g11P generates L; 
(Case 2) One can choose such g that satisfies g = 1 (mod JrdP), with 

some d < (ord7rp)I(P- 1) (choose d to be as large as possible). 
Let us mainly consider Case 1. Then the differential w1 = dg I g is 

independent of the choice of g. By the etaleness of frp the order of g 
at each point of Xs must be divisible by p; hence dglg cannot have any 
poles on Xs; i.e., w1 is a differential of the first kind on Xs (invariant by 
the Cartier operator, being of dlog-type). 

Now, given (Q;, Q8 , Ps), by an argument similar to that in §3.4, 
we may change g and assume that g E 0p8 ,X with g = 1 (mod ffip"'x ); 
hence g 11P E OQs,Y; hence g11P E B, where we use T = fliP. Let 
m' = mQs be the smallest positive integer not divisible by p such that 

the term rm' appears in the series of g11P in B c 1\:[[T]], or equivalently, 
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such that fm' appears in the series of g in h:[[~] = Oj', x . This means 
that the order of dg; hence that of w1 at Ps is equal t~'rr{Qs - 1; 

( 4.2.8) 

(4.2.9) 

ordQs (wl) 

2(gx- 1) = deg(wl) 

m'Q -1 s , 

By their definitions, we also have 

(4.2.10) 

Now, since f'l : Y'l -+ X'l is etale with deg f'l = p, the invariance of 
the arithmetic genus for the two fibers of Y gives p(gx - 1) + 1 

gx + I:Qs bQs, i.e., 

(4.2.11) (p -1)(gx -1) = L bQ 8 • 

Qs 

From (4.2.9)(4.2.10), we obtain 

(4.2.12) 2(p-1)(gx -1) = L(p-1)(m0s -1) 2 L(p-1)(mQs -1); 

and by (4.2.5) and (4.2.11), 

( 4.2.13) L(P- 1)(mQ8 - 1) 2' 2 L bQ 8 = 2(p- 1)(gx- 1). 

Therefore, all "2" involved must be equalities, and we have 

(4.2.14) 

( 4.2.15) 

ffiQ 8 , 26Qs = (p- 1)(mQ8 - 1), 

(p, mQJ, nQs = 26Qs· 

We have also proved the equalities ( 4.2.6)( 4.2. 7). 
NOW let us show that if mQ s < p, then the disk ( c x1) ( k)) above 

P8 contains a non-splitting point. By the definition of m' = m0s, g = 
g(t) E Oj', x = R[[t]] can be expressed as g(t) = 1 + cG(t) (modtm'+1), 

8, 

with some c E Rx and a monic polynomial G(t) of degree m' whose 
lower degree coefficients are all divisible by 1r. It is easy to see that 
there exists t 0 E 1r R such that ord1r G ( t 0 ) = m'. (Indeed, for each fixed 
zero T of G(t) in a finite extension of R, the inequality ord(t0 - T) > 1 
for t 0 E 1r R can hold on at most one residue class mod n 2 .) For such 
t0 , we have g(t0 ) - 1 rJ. nm'+l R; hence g(t0 ) - 1 rJ. nP R, which implies 
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that g(to) cannot be a p-th power element of Rx. Hence the point of 
X,1 ( k) defined by t = to cannot split completely in Yry ( k). Now if H 
denotes the number of points Qs satisfying m0s ;:::: p + 1, then (4.2.7) 
gives H :<:; 2(gx ~ 1)/p, as desired. 

In Case 2, the invariant differential on X 8 is w1 = da, where a = 
((g ~ 1)/JTdP), and a11P is a generator of L. In this case, w1 is killed by 
the Cartier operator, being an exact differential. 

Example 2 (p = gx = 3). Let "' = F3 , R = W[["']][f.L3 ], and k be 
the quotient field of R. Choose i E R with i 2 = ~ 1. Let X c P 2 = 
{ ( x : y : z)} be the smooth plane quartic 

(4.2.16) 

over R. Then P' = (i : i : 1) and P" = ( ~i : ~i : 1) are points of 
inflexion on Xry = X Q9 k, with the tangent lines £' : z + ix = 0, !!" : 
z ~ ix = 0, respectively. Moreover, Xry n I!'\ {P'} = Xry n /!" \ {P"} = 
{P},P = (0: 1: 0). Thus, thefunctiong = (z+ix)j(z~ix) E K = k(X) 
has divisor 

(g) = ( P' I P" ) 3. 

The cover f: Y--+ X corresponding to L = K(g 113 ) is cyclic of order 3, 
with /ry etale and fs purely inseparable. The differential w1 = dgjg on 
the reduced curve Xs over "' has the divisor 

Hence Ys has a unique cuspidal singularity Q. above P., with mQs = 5 
and OQ 8 = 4. It is easy to see that all points on the disk Dsk(Ps) c 
Xry(k) split completely in Yry(k). Thus, the exceptional set~. in Propo­
sition 2 is really necessary. 

Incidentally, the curve Xs has p-rank= 3 = gx, all points are points 
of inflexion, i.e., meet the tangent line with the order of contact ;:::: 3, 
which is equal to 4 (the Weierstrass point) if and only if the point lies on 
z = 0 (Ps being one of such). In connection with the abelian argument 
in §2.3, we note the following. The canonical map ¢ : X --+ J into the 
Jacobian with ¢(P) =OJ induces a mapping from the disk Dsk(Ps) into 
the disk neighborhood Dsk(OJ) of OJ, but in the present example, this 
local image cannot generate Dsk(OJ) (intuitively, the image of the curve 
disk has the highest possible contact with the hyperplane corresponding 
to w1 ; it is too much like a straight line to be able to generate the whole 
disk Dsk(OJ) ). 
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4.3. - P 1 - {0, 1, oo }. The questions and results discussed so far 
should naturally be generalized to the case of tame covers. Here, we 
shall only formulate the case of X= P 1 - {0, 1, oo }, the projective t-line 
X = P 1 over R, minus 3 sections defined by t = 0, 1, oo (as usual, to 
be called cusps). Actually, the question arose from the consideration of 
this case. Let the base ring R be as in §1.1, K = k(t) be the function 
field of X, L/ K be a finite extension, and]: Y---+ X (resp. f: Y---+ X) 
be the integral closures in L of X (r_esp. X). Assume that f 11 is etale, 
and that the ramification indices of f 11 above each cusp are not divisible 
by p. 

Question (Q2). Assume ordp < p- 1. Let x = (x 11 , X 8 ) E X(R) 
be such that x is either a cuspidal section, i.e., x 11 = 0, 1, or oo, or is dis­
joint from them, i.e., X 8 i= 0, 1, oo. Suppose that the following conditions 
are satisfied for each closed point y11 E Y 17 above x 11 ; (i) y11 is k-rational; 
(ii) when x is cuspidal, each y11 moreover has a local parameter T such 
that ord1r(Te /tx)ly" = 0, where e = e(y11 jx11 ) is the ramification index 
and tx is a "good" local parameter at x 11 , i.e., its reduction serves also 
as a local parameter at X 8 . 

Then, is f necessarily etale? 
-+ 

Let b be either a tangential base point, e.g., 01, or a k-rational point 
x 11 E X 17 (k) such that X 8 i= 0, 1, oo. Consider the quotient 1rl(Xx;, b) of 
the fundamental group 1r1 (Xx;, b) defined by the condition that the ram­
ification indices above cusps are not divisible by p. The absolute Galois 
group Gk = Gal(k/k) acts on this group, and we obtain a canonical 
surjective homomorphism 

(4.3.1) 

from the Gk-coinvariant of 1rl(Xx;, b) onto the tame fundamental group 
-+ 

ofXs = P~-{0, 1, oo }. When b =01, 1rl(Xx;, b)ck can be identified natu-
rally with the Galois group Gal(M/ K), where M is the maximal Galois 
extension contained in k{ {t}} = UN>lk((t11N)) (the field of Puiseux 
series over k) which is unramified outside cusps and such that the rami­
fication indices above cusps are not divisible by p. It is easy to see that 
(Q2) is equivalent to: 

Question (Q2'). Assume ordp < p- 1. Then, is '1/Jx,b an 
isomorphism? 

For each positive integer N =j:. 0 (modp), we have the Fermat cover 
f N : Y N ---+ X of level N defined by the function field extension 
k(t 11N, (1- t) 11N) of K. The cover fN is abelian, with Galois group 
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( Z / N) 2 , the ramification index above each cusp is exactly N, and is 
etale on Y N· By using the Fermat covers fN for all N oj. 0 (modp), it 
is easy to deduce the following: 

(i) If the equivalent questions (Ql){Ql ') have affirmative answers, 
then so do (Q2){Q2'). 

(ii) Theorem 1 is valid also in this case. 
(iii) Theorem 2 remains valid if the given splitting point Xry E Xry(k) 

is such that X 8 -/= 0, 1, oo. When Xry E {0, 1, oo}, say Xry = 0, it remains 
valid under the following modification: 

Replace f : Y ---+ X by the integral closures f' : Y' ---+ X' in 
L(t11N)/K(t11N) (so that X'= P 1 - {0,/JN,oo}), N being the least 
common multiple of ramification indices above t = 0 in Lj K. Assume 
that f' is a cover in a !-parameter space at each point of Y~ above 
0. Then, under the assumptions ordp < p- 1 and k(f~- 1 (0)) = k, it 
follows that f is etale. 

§5. Appendix: The associated differential 

5.1. -Let R, 'If, k be as in §1.1. When the special fiber fs of the cover 
f : Y---+ X (cf. §1.1) contains (potential) inseparability of degree, say 
q which is a power of p, we can canonically construct a certain rational 
differential of degree q- 1 on a finite separable cover of X 8 • The idea 
goes back to [7]. (The author has not heard that something similar 
has appeared in a different language since then.) Although delicate 
phenomena are of codimension 2, the definition itself is !-dimensional, 
local. 

Thus, take any complete discrete valuation field K containing k and 
extending the valuation of k, such that 

(i) Kjk is absolutely unramified, i.e., 7r serves also as a prime element 
ofK; 

(ii) the residue field lK is a finitely generated !-dimensional extension 

of""· 
Since "" is perfect, lK is separably generated over ,.,, and since lK is 

!-dimensional, the only purely inseparable extensions of lK are JK:l/pn, 
and [JK1/Pn : JK] = pn (n = 1, 2, ... ). Let (()) denote the valuation ring 
of K, and r2 = nl[]l, the module of continuous differentials, which is a 
principal (())-module. The reduction 0 = r2 18il[]llK can be identified with 
nlR, the module of differentials of JK. 

Let lL/K be a finite extension, with the valuation ring(())', the mod­
ule of continuous differentials n', and let i : n ---+ n' be the (())-module 
homomorphism induced from the inclusion (()) C (())'. Let D be the "dif­
ferent", i.e., the (())'-ideal defined by (())'i(r2) = Dr2'. First let us consider 
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the case where the ramification index e = 1 and ijiK is purely insep­
arable, i = Jl(l/q. Then D = n"<OJ' with some positive integer v, and 
the associated differential w, which is a non-zero element of n:(q-l), is 
defined as follows. 

Pick any (En such that 0 =<OJ(. Note that n-"i(() E 0', tf. nO'. 
Hence n-"i(() defines a non-zero element of 0' = niL· The q-th power 
map i--+ lK induces an equivariant morphism<[> : niL --+ nlR, which is an 
Fv-module isomorphism; hence ( := <I>(n-"i(()) is a non-zero element 
of nlR. Now define 

(5.1.1) 

The point is that this w is independent of the choice of (. This is 
because if( is replaced by g( (g E <OJ, g i= 0), then the numerator and 
the denominator in (5.1.1) are both multiplied by gq. The differential w 
depends only on the choice of the initial prime element 1r of R. Thus in 
the absolutely canonical sense, it is determined up to h;x-multiples. 

If the ramification index e in lL/lK is not equal to 1, then for a suitable 
constant field extension k' /k, lLk' /lKk' will have the ramification index 
equal to 1. This is due to Epp [3]. (The assumption in [3] is that JLv=, 
which in this case is h;, be separably algebraic over h;.) If e = 1 but 
ijiK is not purely inseparable, then by replacing lK by the maximal 
unramified subextension JK* in lL we can define the differential w which 
will be a differential of degree q* ~ 1 on JK*, where q* = [i : JK*]. 

Finally, if e = 1 with ijiK purely inseparable, and if we make further 
constant field extension k' /k, then (e = 1 holds also for lLk' /lKk' trivially, 
and) lLk' /lKk' is again purely inseparable with the same degree, and the 
differential w for lLk' /lKk' is the same as that for ijiK. Here, note that 
the different D for lLk' /lL and lKk' /lK have the common generators as 
that of k' /k, and hence D for lLk' /lKk' and lL/lK also have common 
genenitors. Thus, 

Any ramified and not potentially unramified extension lL of lK gives 
rise canonically to an associated differential of degree q ~ 1 ( q some power 
of p) on a finite separable extension ]!{* of lK. 

(Transitivity) When we have a tower lK C lL C M of finite exten­
sions each with ramification index 1, we have the following transitivity 
relation, which follows directly from the definitions: 

(5.1.2) 

Here, JK*, JK** are the maximal unramified subextensions of lK in lL, M, 
respectively, so that JLJK** is the maximal unramified subextension of 
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lL in M. Thus, L/lK* and lLlK** /lK** are purely inseparable with the 
same degree (denote by q), and so is M/lLlK** (the degree denoted by 
q'). Each suffix in w indicates the relavant extension; 

(5.1.3) 

is induced from the q-th power morphism of the base fields, and i : 
n!K* -7 n!K** is induced from the base field inclusion. 

This can be applied, for example, to a Galois extension M/lK for 
various intermediate fields lL. 

(An explicit description) Let [JL : JK] = [JL : JK] = q, with L/lK 
purely inseparable. Take x E lK such that x rj_ JKP, which implies JL = 
JK(x1fq). Take yElL such that y = x1fq, which implies([])'= O[y]; hence 
V = (f'(y)), where 
(5.1.4) 

q 

f(y) = L aiyq-i = 0 (ai E 0, a0 = 1, ai = 0(1-s; i < q),aq = -x) 
i=O 

is the monic irreducible equation for y over JK. Write 
(5.1.5) 

q-l 
j' (y) = 1rv L biyq-i-l (bi E 0, (bo, · · · , bq-d -=f. (0, · · · , 0)). 

i=O 

Then by 

q-l q 
(5.1.6) 1rv L biyq-i-ldy + (L(dai/dx)yq-i)dx = 0, 

i=O i=O 

and by the above formulas for ai we obtain 

(5.1. 7) 

hence 

(5.1.8) 

q-l q-l 
( = <I>(L bifiq-i- 1dy) = L b'fxq-i-1dx; 

i=O i=O 

(dx)®(q-l) 
w= . "'q-l bq-q-i-l 

Ui=O iX 

In the two extreme cases where (b0 , · · · bq_l) = ( *, 0, · · · , 0) (resp. 

(0,···0,*)), we have w = w~(q-1), with w1 = dx/x (resp. w1 = dx). 
The examples corresponding to Case 1 (resp. Case 2) in §4.2 are of this 
sort. 
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(The case of CR systems of Shimura curves) Let 

(5.1.9) {X~ Xo(P) LX'} 

be the system ofrelative curves as in §1.5, and K c L :=> K' be the corre­
sponding function fields. The special fiber of X 0 (p) has two components 
II, II', with the properties that the projections II ---+ Xs, II' ---+ X~ are 
isomorphisms and II' ---+ Xso II ---+ X~ are purely inseparable with de­
gree q. The generic points of X 8 , II, II', X~ define discrete valuations of 
K, L, L, K', respectively. The completions with respect to these valua­
tions yield 

(5.1.10) Kx c Lrr' '::::"' Kx' ,, 
8 s 

Kx '::::"' Lrr :=> K'x_,, 
s s 

where the non-isomorphic inclusions are of degree q with purely insep­
arable residue extensions. We thus obtain a pair (w, w') of differentials 
of degree q- 1 on (Xs, X~). They are holomorphic and the divisors are 

(5.1.11) (w) = (S1· · · SH) 2 , (w') = (S~ · · · Sk-?; 

(H = (q- 1)(gx- 1)) 

where S1, · · · SH (resp. S~, · · · Sk-) are the projections of IInii' c Xo(P )s 
on Xs (resp. X~). Moreover, the two extensions have the common dif­
ferent exponent v, and the local equation for X 0 (p) at each intersection 
is of the form uv = 1rv with this v. Therefore, X 0 (p) is regular if and 
only if v = 1. In particular, it is regular when q = p and ord p = 1 ( cf. 
[7]). This pair of differentials is closely related to the first infinitesimal 
lifting of the special fiber of the triple (5.1.9) [11, 12]. 

I mention this old work, because the lifting of inseparable covers to 
etale covers does not seem to have been studied so much, and believe 
that the associated differential is at least closely related to this subject. 
I might also add that when the covering system has a non-compact 
automorphism group, as in the case of Shimura curves, the associated 
differential is the invariant of the whole system. There is also a system of 
curves over "' having non-compact automorphism group and an invariant 
differential for which we do not know yet anything about its liftability 
to characteristic 0. 
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