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Arrangements, multiderivations, and adjoint 
quotient map of type ADE 

Masahiko Yoshinaga 

Abstract. 

The first part of this paper is a survey on algebra-geometric aspects 
of sheaves of logarithmic vector fields of hyperplane arrangements. In 
the second part we prove that the relative de Rham cohomology (of 
degree two) of ADE-type adjoint quotient map is naturally isomorphic 
to the module of certain multiderivations. The isomorphism is obtained 
by the Gauss-Manin derivative of the Kostant-Kirillov form. 

§1. Introduction 

We begin with an example to illustrate how the structure of the 
module of logarithmic vector fields D(A) is related to combinatorial 
problems of a hyperplane arrangement A. Let A be a collection { Hij I 
1 :::; i < j :::; n} of hyperplanes Hij = {(x1, ... , Xn) E :ocn I Xi- Xj = 
0} C :ocn, where lK is a fixed field. According to the field IK, several 
enumerative problems appear for the complement M(A) = :ocn \ UHij· 

(i) IflK = lF'q is a finite filed, then thecomplement M(A) is a finite 
set, of cardinality IM(A)I = q(q- 1)(q- 2) ... (q- n + 1). 

(ii) If lK = lR is the real numbers, then each connected compo­
nent of M(A) (the chamber) is expressed by the inequality 
Xi1 < Xi 2 < · · · < X in, where ( i1, ... , in) is a permutation of 
(1, ... , n). There are n! chambers. 

(iii) If lK =Cis the complex numbers, then M(A) is an affine com­
plex variety of dime= n. Using the fibration (x 1 , ..• , Xn) f-----7 

(x1 , ••. , Xn-l) and the Leray-Hirsch theorem, the Poincare 
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polynomial is computed as Li bi(M(A))ti = (1 + t)(l + 2t) ... 
(1 + (n- 1)t). 

The formulas in (i)-(iii) are similar in appearance. The general the­
ory of arrangements [23] tells us that these invariants are combinato­
rial. Namely, they are determined from the poset L(A) of subspaces · 
obtained as intersections. Computations of the characteristic polyno­
mial x(A, t) E Z[t] unify these enumerative problems. 

We also consider derivations 

n 

8p = "L:xfoi, 
i=1 

(oi = a~;) with p = 0, 1, ... , n- 1. These satisfy 

(1) 

for all i, j and the determinant of coefficients 

(2) 

is the product of defining equations. The properties (1) and (2) guaran­
tee that the module 

D(A) = {8 E Ders I 8(xi- Xj) E (xi- Xj), \t'i,j} 

is a free module overS= K[x1 , ... ,xn] with basis bo, ... ,bn-1 (this is 
Saito's criterion [25]). Remarkably, the decomposition of D(A) into a 
direct sum of rank one free modules implies the product formulas (i)-(iii) 
above (Terao's factorization theorem [38]). More generally, the algebraic 
structure of D(A) determines the characteristic polynomial x(A, t) by 
Solomon-Terao's formula [35] (see also §2.2 below). 

The graded 8-module D(A) can also be considered as a coherent 
sheaf D(A) on projective space pn- 1 . This fact enables us to employ 
algebro-geometric methods to study A. The structures of these sheaves 
contain information on A. 

The purpose of this paper is to survey algebro-geometric aspects of 
D(A) and give some related results. The paper is organized as follows. 
In §2, we start with recalling basic notions on logarithmic vector fields for 
a Cartier divisor. We also introduce the module D(A, m) of logarithmic 
vector fields for an arrangement with multiplicity (multiarrangements) 
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in §2.2. In general, the logarithmic vector fields for multiarrangements 
are much more difficult to analyze than simple arrangements. However, 
freeness of rank £ simple arrangements is closely related to freeness of 
rank £-1 multiarrangements. We will describe freeness criteria for these 
objects in §2.3-§2.4. In §2.5, we give a new necessary condition for a 3-
dimensional arrangement to be free, in terms of plane curves. In §3, we 
will review results on freeness of Coxeter multiarrangements. Coxeter 
arrangements are the best understood class of multiarrangements. In §4, 
we will give two applications of freeness of Coxeter multiarrangements. 
The first concerns the adjoint quotient map x : fJ -+ fJ/ /ad( G) of a 
simple Lie algebra fJ of ADE-type. To describe the relative de Rham 
cohomology of x, the module D(A, m) naturally appears. In the second 
application, we will give another proof for the freeness of An-Catalan 
arrangements, which was first proved by Edelman and Reiner [15]. 

Acknowledgements. The author deeply thanks Professor Kyoji Saito. 
Parts of this article (especially §4.1) were done under his supervision. 
This work was supported by JSPS Grant-in-Aid for Young Scientists (B) 
20740038. 

§2. Algebraic geometry of logarithmic vector fields 

2.1. Sheaf of logarithmic vector fields 

Let X be a smooth complex variety and D c X a Cartier divisor. 
Let U c X be an open subset of X. Suppose that there exists h E 

f(U,Ox) such that UnD = {h = 0}. Let o E f(U,/x) be a section 
of the tangent sheaf on an open subset U c X (i.e., a holomorphic 
vector field on X). The section o is said to be logarithmic tangent to 
D if oh E h · Ou. The sheaf of vector fields logarithmic tangent to D 
is denoted by Tx (-log D). The sheaves of logarithmic forms are also 
similarly defined as 

1 
D~(logD) ={wE hn~ I w /\ dh is holomorphic}. 

They were introduced by K. Saito in [25]. He proved that they are 
reflexive sheaves and if /x (-log D) (or D_k (log D)) is locally free then 
D~ (log D) = 1\P D_k (log D). We also note that if dim X = 2, Tx (-log D) 
is a locally free sheaf. 

Example 2.1. Let X= IP'~ = ProjCC[z0 ,z1 ,z2 ]. Using the Euler 
sequence {[21]) 
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we have the following. 

(1) If Do= {zo = 0} c lP'2. Then 7P2(-logDo) ~ Op2(1)2. 
(2) If D 1 = {z0 z1 = 0} C lP'2. Then Tpz(-logDI) ~ Op2(1)EBOp2. 
(3) If D2 = { zoz1z2 = 0} c lP'2. Then 7P2 (-log D2) ~ 0~2. 
(4) If D3 = {z5 + z[ + z~ = 0} c lP'2. Then 7P2(-logD3) ~ 

7P2 ( -1). (Sketch: E9d r(7P2 (-log D3)(d)) is generated by 8o = 
z2ch - z182, 81 = -z28o + zo82 and 82 = z18o - zo81 with a 
relation z0 80 + z181 + z282 = 0 this induces a resolution which 
is isomorphic to shifted Euler sequence.) 

The examples above, Tx (- log D) is always a uniform sheaf. How­
ever for "generic" divisors of higher degrees, we obtain "generic" sheaves. 
We can sometimes recover the original divisor D from the sheaf 
Tpn (- log D). (Dolgachev and Kapranov called this type of result a 
"Torelli-type" theorem in [14].) Let us recall two results in this direc­
tion. First one is due to Dolgachev and Kapranov, concerning the case 
of a union of generic hyperplanes. 

Theorem 2.2. [14] Let m 2': 2n + 3 and A= {Hil, Hi2, ... , Hirn} 
(i = 1, 2} be arrangements of generic m hyperplanes Hik c lP'c in n­
dimensional projective space. We denote the union by UA = UHEA H. 
If 

For smooth divisors D C lP'n defined by a homogeneous polyno­
mial {f(z0 , ... , Zn) = 0}, Torelli-type results are related to the following 
property. 

Definition 2.3. The homogeneous polynomial f(z0 , ..• , zn) is said 
to be Thom-Sebastiani type if there exists a linear transformation A : 
cn+l --+ cn+l such that f(A(zo, ... , Zn)) = g(zo, ... , Zk)+h(zk+l, ... , Zn) 
for some 0 :::; k :::; n - 1. 

Theorem 2.4. [42, 43] 

(i) Let D1, D2 C lP'n be degree d smooth divisors which are not 
Thom-Sebastiani type. Then Tpn (-log D 1) ~ Tpn (-log D 2) if 
and only if D1 = D2. 

(ii) Let D 1 , D 2 C lP'2 be smooth cubic curves with non-zero }­
invariant j(Di)-=/:- 0. Then Tpn(-logDI) ~ 7'Pn(-logD2) if 
and only if D1 = D2. 
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2.2. Log vector fields for multiarrangements 

The main theme of this paper is logarithmic vector fields for ar­
rangements of hyperplanes. Freeness is one of the important properties 
for arrangements. Ziegler [55] showed that a free arrangement of rank 
£ induces several free multiarrangements of rank£- 1 (see §2.4). This 
means that freeness of multiarrangements will be necessary for that of 
simple arrangements. Recently, several results on free simple arrange­
ments have been generalized to free multiarrangements. 

Let V = ce be a complex vector space with coordinate (x1 , · · · , xe), 
A = {H1, ... , Hn} be an arrangement of hyperplanes. Let us denote 
by S = C[x1 , ... , xe] the polynomial ring and fix ai E V* a defining 

equation of Hi, i.e., Hi= ai1(0). We also put Q(A,m) = I1~=1 ar(Hi) 
and lml = l.:i m(Hi)· 

Definition 2.5. A multiarrangement is a pair (A, m) of an ar­
rangement A with a map m: A--+ Z~0 , called the multiplicity. 

An arrangement A can be identified with a multiarrangement with 
constant multiplicity m = 1, which is sometimes called a simple arrange­
ment. With this notation, the main object is the following module of 
S-derivations which has contact to each hyperplane of order m. 

Definition 2.6. Let (A, m) be a multiarrangement, and define 

D(A, m) = { o E Ders ioai E (ai)m(Hi), \fi}, 

and 

DP(A, m) = {wE ~ nv I dai 1\ w does not have pole along Hi, \fi}' 

The module D(A, m) is obviously a graded S-module. A multiar­
rangement (A, m) is said to be free with exponents ( e1 , ... , ee) if and 
only if D(A, m) is an S-free module and there exists a basis 81 , ... , Oe E 

D(A, m) such that det oi = ei. Here note that the degree deg o of 
a derivation o is the polynomial degree, in other words, deg( of) = 

deg o + deg f - 1 for a homogeneous polynomial f. An arrangement 
A is said to be free if (A, 1) is free. 

Let 81, ... , Oe E D(A, m). Then 81, · · · , Oe form aS-basis of D(A, m) 
if and only if 

8 8 
81 1\ · · · 1\ Oe = c · Q(A, m) ·- 1\ · · · 1\ -, 

8z1 8ze 

where c E C* is a non-zero constant (Saito's criterion [25]). From Saito's 
criterion, we also obtain that if a multiarrangement (A, m) is free with 

exponents (e1 , ... , ee), then lml = 2.:;=1 ei. 
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The Euler vector field BE = 2:::~= 1 x/)i is always contained in D(A). 
Thus it is natural to define D0 (A) := D(A)/S ·BE. Since Do(A) is a 
graded 8-module, it determines a coherent sheaf D 0 (A) on lP'e-1 . On the 
other hand, an arrangement A defines a Cartier divisor UA = U H C 

lP'e- 1 . The logarithmic sheaf Jw,e-1 ( -log(UA)) determined by the divisor 
(UA) is related to D 0 (A) by the following formula. 

Jw,e-1 ( -log(UA)) ~ Do(A)[+1]. 

From the sheaf D(A), we can reconstruct the graded module D(A) as 
global sections r *(p£-I, D(A)) := EBdEZ r(p£-I, D(A)). More generally, 
we have the following. 

Proposition 2. 7. Let (A, m) be a multiarrangement. Then the 
natural map 

is an isomorphism. 

Proof. We prove the surjectivity. Since U~=1 Ui = lP'e- 1 , where 
Ui = {zi =f. 0} C lP'e-1, is an affine open covering, any element of the 
right hand side ~ E r * (lP'e-1, fiv (A, m)) can be expressed as 

w 

Q 

with 'Q E flP(A, m). Using the fact that Sis a UFD, it is easily seen 
that w is a regular differential form. Assume that Zi and aH are linearly 
independent. Taking the wedge with daH, daH 1\ ~ does not have pole 
along H. So daH 1\ _Qw = daH 1\ :;'' . Hence daH 1\ _Qw E flP(A, m). 

z,'Q 
Q.E.D. 

Combining the above proposition with a sheaf theoretic property of 
reflexive sheaves, we can prove that flP(A, m) is determined by !11(A, m) 
in general. 

Proposition 2.8. Assume that !11(A1,m1) ~ !11(A2,m2). Then 
!1P(A1,ml) ~ !1P(A2,m2). 

Proof. Let us denote £P = OP(A, m). Let 
U := lP'e-1 \ UH,H'EA,H#H; (H n H') be the complement to the union of 
codimension ~ 2 strata. We denote the inclusion map i : U '---t lP'e-1 . 

The restriction i* £P is locally free. Hence we have i* £P = ft i* £ 1 . 

Since £P is reflexive, hence normal, we have £P = i*(i*(£P)). Thus 
£P = i*(Ni*(£1 )). (See [17, §1] for basic properties ofreflexive sheaves.) 



Arrangements and multiderivations 529 

Thus £Pis determined by £ 1 . Then by Proposition 2.7, we obtain the 
graded module DP(A, m) from its sheafification. Q.E.D. 

The following result shows that D(A) determines the characteristic poly­
nomial x(A, t). Corollary 2.10 is known as Terao's factorization theorem. 

Theorem 2.9. [35] Denote by H(DP(A), x) E Z[[x]][x-1] the Hilbert 
series of the graded module DP(A). Define 

e 
(3) il>(A;x,y) = LH(DP(A),x)yP. 

p=O 

Then 

(4) x(A, t) = lim il>(A; x, t(1- x)- 1). 
x-+1 

Corollary 2.10. [38] Suppose that A is a free arrangement with 
exponents (e1 , ... , ee). Then 

e 
(5) x(A, t) = IJ (t- ei)· 

i=1 

The notion of freeness has a geometric interpretation. It is equiva-
- e -

lent to a splitting D(A) = E9i=1 0( -ei) of the sheaf D(A). Then the 
formula (5) indicates that the characteristic polynomial is related to the 
Chern polynomial Ct ( £) = c0 ( £) + c1 ( £)t + . . . (recall that Ct ( 0( -e)) = 
1- et) [32]. Indeed, for locally free arrangements, Mustata and Schenck 
gave a beautiful formula connecting x(A, t) and the Chern polynomial. 

Theorem 2.11. [20] If D(A) is a locally free sheaf on lP'£- 1 , then 

(6) - e 1 Ct(Do(A)) = t- Xo(A, 1/t), 

where xo(A, t) = x(A, t)j(t- 1). 

Note that in the case £ ~ 3, the local freeness is always satisfied. 
Thus the Chern polynomial is essentially equivalent to x(A, t) and com­
binatorially computable [28]. 

2.3. Characterizing freeness 

A vector bundle on lP'1 is always a direct sum of line bundles ( Grothen­
dieck). The splitting of vector bundles on lP'n ( n 2: 2) is also a well studied 
subject, e.g., see [21]. There are several criterion to be split. The next 
result is known as Horrocks' criterion. 
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Theorem 2.12. Let E be a rank r holomorphic vector bundle on 
]pm ( n 2:: 2). The following conditions are equivalent. 

(i) E = EB~=l OJP'n ( di) for some d1, ... , dr E Z. 
(ii) Hi(IP'n, E(d)) = 0 for \/1::; i::; n- 1 and 'v'd E Z. 

(iii) (If n 2:: 3) :JH C IP'n a hyperplane such that the restriction 

splits as EIH = EB~=l OH(di)· 

Yuzvinsky [52, 53, 54] developed sheaf theory on the intersection 
lattice L(A) and gave a cohomological criterion for an arrangement A 
to be free which is similar to Theorem 2.12 (ii). As an application he 
proved that the set of free arrangements form a Zariski open subset 
in the moduli space of all arrangements having the fixed combinatorial 
type. 

Here we describe a criterion similar to Theorem 2.12 (iii). We begin 
with recalling Ziegler's restriction [55]. 

Choose a hyperplane H E A and coordinate (z1 , ... , zc) such that 
H = {zc = 0}. Define a submodule Dtf (A) of D(A) as follows: 

Dt/ (A) := { 6 E D(A) I 6zc = 0}. 

Lemma 2.13. D(A) = S · eE EB Dtf (A). 

Proof. Let 6 E D(A). The assertion is obvious from 6 = ( li~,) eE+ 
(6- 0~'eE). Q.E.D. 

The arrangement A determines the restricted arrangement A H = 
{ H n H' I H' E A, H' -=f. H} on H. The restricted arrangement A H 
possesses a natural multiplicity 

---+ z 
f----7 ~{H' E A 1 x = HnH'}. 

Ziegler [55] proved that the freeness of A implies that of (AH, mH). 

Theorem 2.14. [55] 

(1) If 6 E Dtf (A), then 6lze=O E D(AH, mH). 
(2) If A is free with exponents (1, e2 , ... , ec), then (AH, mH) is 

free with exponents ( e2 , ... , ec). 

Corollary 2.15. A is free with exponents (1, e2 , ... , ec) if and only 
if the following are satisfied. 

• (AH,mH) is free with exponents (e2, ... ,ec). 
• The restriction induces the surjection Dtf (A) ---+ D (A H, m H). 
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Using Corollary 2.15, we can establish a Horrocks' type criterion 
for freeness. Namely, we will characterize freeness by using the freeness 
of the restriction D(AH, mH). We first consider the case £ = 3. By 
analyzing the Hilbert series of these graded modules using the restriction 
map and Solomon-Terao's formula (Theorem 2.9), we have the following. 

Theorem 2.16. [51] If£ = 3, then the cokernel of the restriction 
map is finite dimensional. Furthermore, suppose that exp(AH, mH) = 

(e1,e2), then 

Corollary 2.17. [51] Suppose£= 3. Then the following conditions 
are equivalent. 

• A is free with exponents (1, e2 , e3 ). 

• x(A, t) = (t- 1)(t- e2)(t- e3 ) and there exists H E A such 
that exp(AH,mH) = (e2,e3). 

Remark 2.18. Recently a higher dimensional version of Corollary 
2.17 has been obtained by Schulze [31]. 

The characterization in the case £ ~ 4 is the following. 

Theorem 2.19. [50] Suppose £ ~ 4. Then an arrangement A is 
free with exponents (1, e2 , ... , ec) if and only if there exists H E A such 
that 

(a) (AH,mH) is free with exponents (e2 , ... ,ec), and 
(b) the localization Ax = { H E A I x E H} is free for any x E 

H \ {0}. 

2.4. Freeness for multiarrangements 

The notion of multiarrangement is a natural generalization of simple 
arrangement. For a 2-dimensional simple arrangement A, it is easy to 
construct explicit basis of D(A). However, for the case of multiarrange­
ments, describing an explicit basis for D(A, m) is difficult even for£= 2. 
Wakamiko [44] gave an explicit basis for D(A, m) with £ = 2, IAI = 3. 
Wakefield and Yuzvinsky [46] computed the exponents for £ = 2 and 
generic A. Both results show that the exponents tend to (ll';'l J, ll';'ll ), 
where lml = LHEAm(H). 

Remark 2.20. The above mentioned results remind the author re­
sults of Dolgachev and Kapranov (cf. §2.1) and Schenck [29] on stability 
of 'fw,n ( -log(UA)). It seems natural to ask whether for generic A with 
£ = 3, D(A, m) is a stable rank 3 vector bundle on lP'2 . 
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Recently several results on D(A) has been generalized to multiar­
rangements. Abe, Terao and Wakefield [3] proved that Solomon-Terao's 
formula (4) (and (3)) gives a polynomial x((A, m), t) for any multiar­
rangement (A, m). The polynomial x((A, m), t) is called the character­
istic polynomial of a multiarrangement (A, m), which is a basic tool for 
proving non-freeness for multiarrangements. 

Another important result on free multiarrangements is the Addition­
Deletion Theorem [4]. Let (A, m) be a multiarrangement. Choose a 
hyperplane H0 E A with m(H0 ) > 0. One can associate two multiar­
rangements to (A, m, H 0 ) as follows. 

• The deletion (A', m'): A'= A and the multiplicity m': A' --t 
Z;?:o is defined by 

{ 
m(H) 

m'(H) = m(H) -1 
if H -=f. Ho, 
if H = Ha. 

• The restriction (A", m*): A"= {H n Ho I HE A, H -=f. Ha}. 
Let X E A". Then X has codimension two. Thus the multi­
arrangement Ax = { H E A I H ::> X} with the multiplicity 
miAx is free. We can choose the basis Bx, '1/Jx, fh, ... , 8g with 
Bx t{. aHa· Ders and '1/Jx E aHa· Ders. Define the multiplicity 
m*: A" --t Z;?:o by m*(X) = degBx. 

The following theorem generalizes the classical Addition-Deletion The­
orem [37] to multiarrangements. 

Theorem 2.21. [4] With the notations above, any two of the fol-
lowing statements imply the third: 

(i) (A,m) is free with exponents (d1 , ... ,dg). 
(ii) (A', m') is free with exponents ( d1 , ... , dg - 1). 

(iii) (A",m*) is free with exponents (d1 , ... ,dg_ 1 ). 

Using Theorem 2.21, one can construct a lot of free multiarrange­
ments inductively. 

2.5. Free arrangements and intersection of plane curves 

In this section we consider a 3-dimensional free arrangement A with 
exponents (1,e1,e2). Choose HoE A. Then the deconing dH0 A is an 
affine line arrangement in C 2 . Freeness of A imposes strong conditions on 
the positions of intersections £2(A) := {LnL' E C 2 I£, L' c dHoA, L f 
£'}and their multiplicities. Let p,(p) := ~{L E dHaA I L 3 p}- 1. 

Theorem 2.22. Assume that A is free. With notation as above, 
there exist plane curves 0 1, 0 2 C C2 with degrees e1 and e2 respectively 
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such that C1 n C2 = L2(A) and the intersection multiplicity is 

Remark 2.23. If A is a fiber-type arrangement, we can find easily 
such c1 and c2 as union of lines. 

Proof. Choose coordinates (z0 ,z1 ,z2 ) so that H0 = {zo = 0}. We 
can choose a basis (]E, 51,52 E D(A) such that 51z0 = 52 z0 = 0 (see 
Lemma 2.13). Let a = a1z1 + a2z2 be a linear form such that the line 
{a = 0} C C2 is not parallel to any line L E dH0 A. By definition 
5ia E C[z1, z2] is a polynomial of degree ei. Note that 

u·a = a E \L.. -¢::::=} • 
x 0 t rr2 { 5i (p) = 0 or 
' p 5i (p) 1s parallel to {a = 0}. 

If P rf:- ULEdHoA L, 51(P) and 52(P) are linearly independent. If p E L 
and p rf:- L2(A), 51(P) and 52(P) span the tangent space TpL. In any case, 
either 51 (p )a i- 0 or 52 (p )a i- 0. Hence 51 (p )a = 52 (p )a = 0 precisely 
when p E L2(dH0 A). Fix p E L2(A) and choose the coordinate (z1, z2) 
such that p = (0, 0) and {z1 = 0} E dH0 A. Let Q be the product of 
defining equations which contain p. Then 

form a basis of D(dH0 Ap)· It is easily seen that multp(r]1a,r]2a) 
dimC[[z1, z2]]/(771a, r]2a) = J.L(p). Germs of 5i at p is expressed as 
5i = fi17J1 + fi27J2 with det = fuh2 - h2h1 is contained in the unit 
C[[z1, z2W. Thus intersection multiplicity is 

Q.E.D. 

Remark 2.24. Although there exists a free arrangement which has 
non-vanishing homotopy group 1r2 (M(A)), [16], it is challenging to see 
the homotopy types of free arrangements. 

2.6. An example of a non-free arrangement 

Factorization of the characteristic polynomial (Corollary 2.10) is a 
necessary combinatorial condition for an arrangement to be free. How­
ever the converse is not true. Indeed, there are non-free arrangements 
which have factored characteristic polynomials. 
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Example 2.25. (Stanley's example [23]) Let A= {Ho, H1, ... , H5} 
be an arrangement of7 planes in IE.3 defined as Figure 1 (real lines). The 
characteristic polynomial is X (A, t) = ( t - 1) ( t - 3) 2 . How ever A is not 
free. We shall give three proofs. 

Fig. 1. A= {H0 , ... , H5} 

First note that by 2.10, if A is free, then the exponents should be 
(1,3,3). 

( 1) Consider another hyperplane K (dotted line). The extended 
arrangement A U { K} is of fiber-type and hence free with exponents 
(1, 2, 5) (also easily proved by using Addition-Deletion Theorem 2.21). 
Hence D(AU {K}) has degree 2 element b which is linearly independent 
from the Euler vector field Be. By definition, b E D(A). However this 
contradicts the fact that D(A) does not have a basis element of degree 
:<; 2 other than 8 E. 

(2) Consider the restriction to H 0 . Then (AHa, mHo) is free with 
exponents (1, 5). From Corollary 2.17, A is not free. 

(3) Consider the deconing dH0 A with respect to H0 . If A is free, 
then by Theorem 2.22, the intersections satisfy L(dH0 A) = C1 n C2, 
where Ci is a cubic curve. We may assume that C1 does not have H 1 

as a component. Then H 1 n C1 consists of five points. This contradicts 
Bezout theorem. 

§3. Coxeter multiarrangements 

Coxeter multiarrangements are a well-studied class of multiarrange­
ments. Using the notion of primitive derivation, we can construct a basis 
for several Coxeter multiarrangements. Here we give a brief review. 
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The importance of the primitive derivation was first realized by K. 
Saito [27] in the context of singularity theory. K. Saito's theory of prim­
itive forms reveals that the parameter space B of semi-universal defor­
mation X ---+ B of an isolated singularity 0 E X 0 possesses rich geo­
metric structures [26, 19]. On the other hand, Grothendieck-Brieskorn­
Slodowy's theory [11] shows that for simple singularities, the semi-univers­
al family can be described in terms of Lie theory. In particular, the 
parameter space B can be canonically identified with the Weyl group 
quotient b/W of an ADE-type Cartan subalgebra b (see also §4.1). In 
[27], Saito describes the flat structure for any finite reflection group 
W "" V in purely invariant theoretic way by using the primitive deriva­
tion. Later Terao [40, 41] pulled back the theory to V via the natural 
projection 1r : V ---+ V /W and proved freeness of Coxeter multiarrange­
ments with constant multiplicity. 

In this section, we will describe the structure of D(.A, m) for a Cox­
eter arrangement .A based on [40, 41, 49, 6]. 

Let V be an £-dimensional Euclidean space over ITt with inner prod­
uct I : V x V ---+ R Fix a coordinate (x1, · · · , xe) and put S = 

S(V*) 0JR C = C[x1 , ... , xe]. Let W C O(V, I) be a finite irreducible 
reflection group with the Coxeter number h. Let .A be the correspond­
ing Coxeter arrangement, i.e., the collection of all reflecting hyperplanes 
of W. Fix a defining linear form aH E V* for each hyperplane HE .A. 

It is proved by Chevalley [13] that the invariant ring sw is a poly­
nomial ring sw = C[P1 , ... , Pe] with P 1 , ... , Pe are homogeneous gen­
erators. Suppose that deg P 1 s; · · · s; deg Pe. Then it is known that 
deg P 1 = 2 < deg P2 s; · · · s; deg Pe-l < deg Pe = h. Note that we may 
choose P1 (x) = I(x,x). Then a~; (i = 1, ... ,£) can be considered as a 
rational vector field on V with order one poles along H E .A. Indeed by 
using the fact 

b. := det --" ~ aH, (ap.) II 
EJxj i,j=l, ... ,e REA 

we may define the action of the differential operator a~; to f E S by 

8Pc ) OXl 
8P, 
OX2 

a~, . 
OX£ 

Obviously, we have ~~; = 1 and ~~ = 0 for i -=1- j. 
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Definition 3.1. We denote D = at£ and call it the primitive 
derivation. 

Since deg Pi < deg Pi' for i :::; C- 1, the primitive derivation D is 
uniquely determined up to nonzero constant multiple independent of the 
choice of the generators P 1 , ... , Pi'. 

Next we define the affine connection \7. 

Definition 3.2. For a given rational vector field c5 = I:;;=l fi 8~i 
and a rational differential k-form w = I:;i1, ... ,ik gi 1 , .•• ,ikdXi1 , ..• ,ik (where 
dXi 1 , ... ,ik = dxi 1 1\ · · · 1\ dxik ), define 'V0w by 

'Vow= L c5(git, ... ,ik)dxit, ... ,ik· 
it, ... ,ik 

Let m : A--+ {0, 1} be a map. The differentiation \7 D by the prim­
itive derivation changes the degree by h. This action connects D(A, m) 
with D(A, 2k + m) and 0 1 (A, 2k- m). 

Theorem 3.3. Fix notation as above, and let k be a positive integer. 

(1) The map 

<I>k: D(A, m)(kh) --+ fl 1 (A, 2k- m) 

gives an S -isomorphism of graded modules. 
(2) The map 

wk : D(A, m)( -kh) --+ D(A, 2k + m) 

gives an S -isomorphism of graded modules. 

Corollary 3.4. For a {0, 1 }-valued multiplicity m : A-+ {0, 1} and 
an integer k > 0, the following conditions are equivalent. 

• (A, m) is free with exponents (e1 , ... , e£). 
• (A, 2k + m) is free with exponents (kh + e1 , ... , kh + e£). 
• (A,2k-m) is free with exponents (kh-e 1 , ... ,kh-e£). 

If m = 0, then (A, m) is free with exponents (0, ... , 0). Hence 
(A, 2k) is free with exponents (kh, kh, ... , kh). If m = 1, then (A, m) 
is free with exponents ( e1 , ... , ef'), where ei = deg Pi - 1 (by [25, 27]). 
Hence (A, 2k + 1) is free with exponents (e1 + kh, ... , ee + kh). In 
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particular, Coxeter multiarrangements with constant multiplicities are 
free [40]. 

The primitive derivation acts on W-invariant forms. The following 
will be used in the next section. 

Theorem 3.5. [41] With notation as above, the set ofW-invariant 
derivations D(A, 2k + 1) w is a free sw -module. Furthermore, if k > 0, 

V' __Q_D(A, 2k + 1)w c D(A, 2k -1)w, 
8Pi 

V' a D(A, 2k + 1)w = D(A, 2k- 1)w. 
7iPi 

Remark 3.6. Recently Theorem 3.3 and Corollary 3.4 are general­
ized form: A---+ { -1, 0, +1} by Abe [1]. 

§4. Applications of freeness of D(A, m) 

In this section we will describe two applications of freeness of 
D(A,m). 

4.1. Relative de Rham cohomology of adjoint quotient 
maps 

Let g be a simple Lie algebra of type ADE over <C. The categorical 
quotient map X : g ---+ B := g/ /G of the adjoint group action on g 
is called the adjoint quotient map. The purpose of this section is to 
investigate the 0 B-module structure of the relative de Rham cohomology 
H2 (0~) (see below the definition of 0~) of x: g---+ B through an action 
of vector fields DerB on B (the GauB-Manin connection). 

The study of the relative de Rham cohomology for an affine mor­
phism goes back to E. Brieskorn [10] who proved the coherence of relative 
de Rham cohomology for any polynomial map f : en ---+ <C with isolated 
critical point 0 E en (and M. Sebastiani proved Oc-freeness of rank 
p,, where p, is the Milnor number of f). Further, K. Saito proved the 
freeness for the semi-universal deformation F : X ---+ B := <C~" of an 
isolated hypersurface singularity defined by f. More precisely, he gave 
an isomorphism between a certain submodule of vector fields DerB on 
B and Hn(Ox;B). The isomorphism is given by the following corre­
spondence, we first fix a special cohomology class ( called a primitive 
form, then for given vector field 8 E DerB take a lift up 8 E Derx 
of the vector field on the total space X, and differentiate ( by 8, we 
have a new cohomology class LJ(, where £ is the Lie derivative. On 
the other hand, the semi-universal deformation of a simple singularity is 
constructed by using the adjoint quotient map x of type ADE [11, 33]. 
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Indeed, if we restrict the map x to a certain affine subspace X C fJ, 
we have the semi-universal deformation of a simple singularity. In this 
case H. Yamada [48] showed that the restriction of the Kostant-Kirillov 
form ( to X becomes the primitive form which generates the relative 
de Rham cohomology H2 (0~/B) by differentiation by means of vector 
fields 8 E Der B . 

Let us introduce some notation. Let fJ a simple Lie algebra over C 
(later we will restrict fJ to ADE-type). Let fJ = ~ EB EBaE.P fJa, (<PC~*) 
a Cartan decomposition with respect to a Cartan algebra ~ with £ = 
dim~, G the adjoint group of fJ and T the maximal torus of G with Lie 
algebra ~· We denote by W the Weyl group Na(T)/T . The classical 
Chevalley's restriction theorem states that the restriction p: C[fJ] --+ C[~] 
of polynomial functions induces an isomorphism 

(7) 

of algebras of invariants. We also denote C[~] = S and sw = 
C[P1, ... , Pi] as in §3. The categorical quotient of the adjoint action 
is B = fJ/ /G ~ ~/ /W ~ Spec sw. We call the quotient map x : fJ--+ B 
the adjoint quotient map as mentioned above. The construction is sum­
marized in the following diagram. 
(8) 

V=~ 

fJ 
.J. 

~ ~/W = B = fJ/ /G 

C[fJ] 
t 

, S P Sw =C[B] =C[fJ] 0 . 

Definition 4.1. Define the relative de Rham complex n~ for the 
adjoint quotient map x : fJ --+ B by 

• n; n; 
0= --,;----"----

X x*f!1 1\ n•-1 .... ~ dn· 1\ n•-1. 
B g L..-•=1 .r, Hg 

By the formula d(P · w) = dP 1\ w + P · dw, the differential dx 
0~ --+ 0,~+ 1 is a sw -module homomorphism. Hence the cohomology 
group Hk(f!~) possesses sw-module structure. 

Let D C B be the set of critical points of the quotient map n : ~ --+ 
B. It is proved in [25] that n induces an isomorphism 

D(A)w ~ DerB(-logD). 

Thus for 8 E D(A) w, we may differentiate the Kostant-Kirillov form 
( by 8 and obtain a relative 2-form \7 6( (which has poles along D in 
general). 
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After Yamada's result, it was naturally conjectured that H2 (!1~) is 
a free sw -module of rank £. 

Theorem 4.2. Let g a simple Lie algebra of type ADE, with a 
Cartan subalgebra ~ and the W eyl group W. Let A be the corresponding 
Weyl arrangement on ~. The map D (A) w 3 8 1----t \7 8( induces a 
natural isomorphism 

of sw -modules. 

The rest of this section is devoted to a proof of this theorem. 
We first recall a result due to J. Vey [47], which is an analogue of 

Weyl's unitary trick. 

Theorem 4.3. Let G be a connected reductive algebraic group over 
C with a linear action on a finite dimensional C-vector space E. Let 
OE; be the de Rham complex of holomorphic differential forms on E 
and r the ideal of n· generated by differentials d/1, dfz, ... 'dfr, where 
/1, fz, · · · , fr are G-invariant homogeneous polynomials on E. Then the 
morphism 

is a quasi-isomorphism. 

By this, we can compute cohomology of n~ by using the complex 

n~,· I CL:i dPi A n;-l )G of G-invariant relative forms. Next we shall 

describe n~,·. 
Broer [12] considered a generalization of Chevalley's restriction theo­

rem (7) in the following setting. Let M be a finite dimensional G-module 
and Mor(g, M) (resp. Morc(g, M)) the space of polynomial (resp. G­
equivariant polynomial) morphisms of g into M. It is isomorphic to 
C[g]l8l M (resp. (C[g]l8l M)G). For any G-module M the restriction 
map p induces a homomorphism 

PM: Morc(g, M)--+ Morw(~, MT). 

Since the union of all Cartan subalgebras is Zariski dense in g, PM is 
injective for all M. If M = C is a trivial G-module, PM is bijective 
because of Chevalley's theorem. However it is not necessarily bijective 
in general. Broer [12] proved that 

Theorem 4.4. Let M be a G-module. Restriction induces an iso­
morphism 

PM: More (g,M) ~ Morw (~,MT) 
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if and only if the weights 2o: (a: E <I> is a root of g) do not occur as 
T -weights in M. (We shall call M small if it satisfies this assumption.) 

We need this theorem to describe the set of G-invariant differential 
forms n;·0 on g below. By definition the set of all differential p-forms 

• p p 
on g IS n~ = <C[g]0 1\ g*. Thus we apply Theorem 4.4 for M =/\ g*. If 
p = 1, since g ~ g* by Killing form, the T-weights of g* are nothing but 
the roots of g, so g* is small. Thus we have an isomorphism 

PI : D~,G ~ (<C[~]0 ~*)W ~ D~'w. 

It follows from a result of Solomon [34] that 

(9) 

Thus we conclude that G-invariant 1-forms n~·0 on g are nothing but 
the pull back x*Dk of 1-forms on B. In particular, D~,c = 0, we have 

(10) 

From the classification of simple root systems, it is easily seen that 
2 . 

M =/\ g* is small if and only if g is of type ADE, since the set of 
2 

weights of 1\ g* is 

{0} U <I> U {a:+ ,BJo:, ,8 E <I>, a:"# ,8}. 

2 2 2 
Furthermore, (/\ g*)T ~/\ ~* 0 (/\ ~_t_ )T is a direct sum decomposi-

tion of W-submodules. From (9), we obtain, 

Proposition 4.5. Let g be a simple Lie algebra of type ADE. Then 

(11) 

(12) 

By Proposition 4.5, we can identify G-invariant relative 2-forms n~.a 

with the submodule (<C[~] 0 (~ ~_t_ )T) w of n~·0 . Now we define two 

submodules 1ix c 1i~ C n~·0 which are related to H2 (D~). 

Definition 4.6. 

(13) 1i ·= {w E 0 2•0 1 d w E "dP. 1\ 0 2•0 } X' X g ~ ' B ' 
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where C[g] 0 = C[P1, · · · ,P£]. 

By (10) and definition above, 

(15) 

and obviously 1ix C 1i~. Later it will be proved that 1ix ~ 1i~. 
Let ea Ega (a E <I>) be non-zero root vectors such that J([ea, e_aJ, h) 

= a(h) (for all a E <I>, h E b), where I(•, •) is the Killing form, and 
2 

e~ E g~ be the dual basis. Then each element of (C[b] ® (/\ bj_ )T) w can 
be expressed in the form 

w = L fa· e~ !\ e':_a E ( C[b*] ® (~ b_if) W 

aE<I>+ 

Since w is W-invariant, if we apply the simple reflection sa E W with 
respect to a root a E q,+ tow we have sa! a =-fa· Hence fa is divisible 
by a. 

Next let us recall the definition of the Kostant-Kirillov form. The 
Kostant-Kirillov form ( is a symplectic form on the (co )adjoint orbit 
G · x c g of x E g. Let Y,Z E g. Then [Y,x] = ftlt=Oad(etx)x E 
Tx(G · x). For two tangent vectors [Y, x], [Z, x] E Tx(G · x), the 2-form ( 
is given by the formula 

(([Y, x], [Z, x]) = I(x, [Y, Z]), 

where [Y, Z] is the bracket in g. 

Proposition 4.7. By restricting the Kostant-Kirillov form (to b, 
we have the following expression 

(16) 

Proof. LethE b \U Ha. We compute (([ea, h], [e,s, h]) in two ways. 
First, using the property [h, ea] = a(h)ea, we have (([ea, h], [e,s, h}) = 
a(h)f3(h)((ea, e,s). On the other hand, using the definition of (, we 
have (([ea, h], [e,s, h]) = I(h, [ea, e,s]). Note that it is non-zero only if 
f3 = -a, and in this case, we have I(h, [ea, e_a]) = a( h). Hence we 
have ((ea, e_a) = a(~), which implies (16). Q.E.D. 
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The generic fiber of x : g ~ B is isomorphic to GjT, which is 
homotopy equivalent to the flag manifold of G. We recall the Borel­
Hirzebruch description of the de Rham cohomology of G jT in degree 2 
[9]. A G-invariant differential form on G/T can be seen as a G-invariant 

• section of the vector bundle 1\ T* ( G jT). Hence the evaluation at the 
base point [T] E G jT induces an isomorphism 

(17) A: Ddfr ~(A T('r](GjT)) T ~(A ~_L) T. 

For degree 2, the above map induces the isomorphism ndfr ~ (/\2 ~_[_ )T = 
ffiaE!r>+ (gaEB£1-a). Using the map A, we .can show that H 2 (GjT, C)~~-

Theorem 4.8. [9] 

w: ~ --+ 

h f---t L a( h)· A- 1 (e~ 1\ e:.a) 
a Eel> 

induces an isomorphism of C-vector spaces ~ ~ H 2 (GjT, C). In par­
ticular, w(h) is closed, 

(18) La( h)· dA- 1 (e~ 1\ e:.a) = 0. 
aE!P 

Next we consider the relative de Rham cohomology for the projec­
tion 

pr: ~ x GjT ~ ~-

We may consider G acts Ori each fiber of pr from the left. Since n~r ~ 
q~]0 n~/T• the set of G-invariant relative 2-forms n~r is described by 
the following isomorphism 

(19) 

By definition and Theorem 4.8, 

H 2 (n;r) ~ C[~]0 H 2 (D(c;r)) ~ C[~] 0 ~ ~ DeriJ . 

The isomorphism is given by 

Theorem 4.9. 

10w: DeriJ 

(20) 
f---t (10 w)8 = L (8a) · A- 1 (e~ 1\ e:.a) 

aE!P 
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induces a <C[~]-module isomorphism Der~ ~ H 2 (n;r), where 8a is the 
differentiation of a function a by a vector field 8. 

We define a submodule 1-lpr c n~c?;T) X~ as 

1-lpr := { ~ (8a) ·A -l(e~ 1\ e"'__a) E n~c?;T)x~ 18 E Der~}. 
F th d 't' o2,G _ ffi oi,G 1\ oj d o2,G rv rom e ecompos1 lOll ~\G/T)x~ - . w HG/T H~ an upr = 

•+J=2 
<C[~] ® n'?:J7r, we may consider 

(21) 

Let x 1 , · · · , xe be a coordinate system of ~, then 1-lpr has another ex­
pression as in ( 14): 

(22) 1-lpr = { w E n~~G I dw 1\ dxl 1\ ... 1\ dxe = 0 in n~~J?x ~)} . 

To study the relative de Rham cohomology of x : g ---+ B, we consider 
the following diagram 

(G/T) X~ ~ 
(23) pr ..(.. 

~ ~ 

g 

+x 
B 

f------7 ad(g )h 
+ 

f------7 h ) 
More precisely, from diagram (23), there is a natural homomorphism 

which is injective because we have realized these cohomology groups as 
subspaces of absolute differential forms (see (15) and (21)). We consider 
the image of H2 (0~) in H 2 (n;r) ~ Der~. Note that if we define a W 
action on G jT x ~ by 

w · (g[T], h)= (gn;~/, ad(nw)h), 

where nw E Nc(T) is a representative of w E W = Nc(T)/T, then 
obviously if is a W-invariant map and the pull back of differential form 
(resp. relative cohomology class) on g by if becomes a W-invariant 
differential form (resp. W-invariant cohomology class). 

(24) -*'JJ 'JJW 
7r TLx C TLpr . 
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Now recall two expressions of relative 2-forms (12) in Proposition 
4.5 and (19), we have a diagram: 
(25) 

f22,GxW 
pr 

10.X.}I 
c n~~c 

.}I 

( C[IJ*l 0 (~ IJ_[Y) w 
2 

C C[(J*j0(/\(J_l_)T. 

We compute the map (1 0 A.) o if* o p2, 1 • 

Lemma4.10. Themap(10A.)oif*op2, 1 : (q~*]0(J_~.L)T)w--+ 

( C[~*] 0 (7 ~.L )T) w can be expressed as 

L afa · e~ 1\ e~"' f-----+- L a 3 fa· e~ 1\ e~a· 
aE~+ aE~+ 

Proof. The derivation of if is given by 

(dif)([T],h) : T([T],h)(G/T X~) --+ Th9 
111 111 

9/~ EB ~ 9 

Indeed 

- d I (dif)([r],h)(Xl,Xz) = -d ad(exp(tXl))(h+tXz) = [X1,h] +Xz. 
t t=O 

In particular 9/~ EB ~ 3 (ea, 0) f-----+ -a(h)ea E 9a· Hence we have 

Q.E.D. 

Example 4.11. From Proposition 4-7 and the preceding lemma, the 
pull back of the Kostant-Kirillov form ( is 

if*(()= L a· r1 (e~ 1\ e~a)· 
aE~+ 

Using the Euler vector field() E := 2:::=1 Xi D~;, it is expressed as if* ( () = 

(10 w)(BE)· 
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As a corollary of Lemma 4.10, we can characterize the image of the 
map 7f*: 0~,0-+ O~~GxW. 

Corollary 4.12. 

(1®.\)o7r*(0~'0 ) = { L Fa· e~ 1\ e*_a I Fa can be divisible by a 3 }w 
aE<P+ 

Proof. If :LaE<P+ Fa · e~ 1\ e"'_a is contained in the left hand side 
above, Fa have to be divisible by a 3 from the preceding lemma. Con­
versely, if Fa is divisible by a 3 for all a E <I>+, it is the image of 

Q.E.D. 

Here it is possible to characterize the image of 7f*. We have a dia­
gram deduced from (25), 

(26) 
C Hpr 

.p 
c Der~. 

Combining (20) and Corollary 4.12, we have 

Theorem 4.13. (1 ® w)- 1 o 7f* induces an isomorphism 

Proof. For any o E Derf, since 

d ( (1 ® w )o) A dP1 A · · · A dPe Q · d ( (1 ® w )o) 1\ dx1 1\ · · · 1\ dxe 

0, 

(1 ® w )o E 7f*H~ if and only if oa is divisible by a 3 for all a E <I>+. 

Now we are in a position to prove our main result. 

Theorem 4.14. (1 ® w)- 1 o 7f* induces an isomorphism 

1-lx ~ D(A, 5)w. 

Hence H2 (0~) is a free IC[B]-module of rank£. 

Q.E.D. 
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Proof. Suppose ryE Hx and put Jf*ry = LaE<I>(oa) · >.- 1 (e~ 1\ e"_") 
for o E D(A, 3) w, then by definition there exist "71, · · · , 'rf£ E r2~,G such 
that 

£ 

dry = L dPi (\ 'r/i. 
i=l 

~ 

Applying the operator d and multiplying by dP1 1\ · · · 1\ dPi 1\ · · · 1\ dPc, 

dP1 1\ · · · 1\ dPi 1\ · · · 1\ d?c 1\ dryi = 0. 

Hence 'r/i E H~ for all i = 1, ···,£and Jf*ryi = LaE<I>(oia) ·>-- 1 (e~/\e"_") 
for some oi E D(A, 3) w. Using (18), we have 

L L 8~ (oa)dPi (\ r1 (e~ (\ e"_a) 
aE<I> i ~ 

L L (Cv' a~i o)a) dPi (\ r1 (e~ (\ e"_a), 
aE<I> i 

and oi = \7 ...fLo. By Theorem 3.5, ryE Hx if and only if o E D(A,5)w. 
8Pi 

Q.E.D. 

4.2. Freeness of An-Catalan arrangements 

As another application, we prove that Catalan arrangements of type 
A are free. 

Let ( Xl' ... 'Xn' z) be a coordinate of en+ 1 . (The cone of) Catalan 
arrangement Catn is defined by 

z x IT ((xi- Xj)(xi- Xj- z)(xi- Xj + z)) = 0. 
l:Si<j:Sn 

The terminology "Catalan arrangement" comes from the fact that the 
number of chambers divided by 2n! is equal to n-th Catalan number. See 
[7] for more combinatorial aspects of Catn· (Note that the definition of 
Catn in this article is the coning of that of [7].) 

Theorem 4.15. The Catalan arrangement Catn is free with expo­
nents (0,1,n+ 1,n+2, ... ,2n-1). 

Remark 4.16. This result was first proved by Edelman and Reiner 
[15] using Addition-Deletion Theorem 2.21. It can be also proved by 
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using the freeness of D(A, 3) and Theorem 2.19. We give another proof 
which is also based on the freeness of D(A, 3). However, instead of using 
Theorem 2.19, we will directly show the existence of basis of D(Catn) by 
invariant theoretic arguments. 

Lemma 4.17. For non-negative integers p, i?: 0, define a symmet-
P+l p+l 

ric polynomial Fp i(xl, x2) of two variables by Fp i := x 1 -x2 • (x1 -
, 1 Xl-X2 

x 2 ) 2i. Then 

IC[x1, x2] 62 = E9 C · Fp,i· 
p,i?O 

Proof. Let F(x1 , x2) be a homogeneous symmetric polynomial. We 
will prove F is expressed a linear combination { Fp,i} by induction on 
deg F. If deg F = 1, then F = x1 + x2 = F1,0· Consider the case 
degF?: 2. If F(x,x) = 0, then we have F = (x1- x2? · G(x1,x2) with 
G symmetric. Thus by inductive hypothesis, G is a linear combination of 
{Fp,i}, and so is F. Suppose F(x, x) = axn =J 0. Consider G(x1, x2) = 

F- n~l Fn,O· Then G(x, x) = 0, and is reduced to the previous case. 
Thus IC[x1,x2]62 is spanned by {Fp,i}. By computing the Hilbert series, 
we have (note that deg Fp,i = p + 2i) 

We conclude that {Fp,i} forms a basis. Q.E.D. 

Let S = IC[x1, ... , Xn]· We consider a subgroup 62 X 6n-2 C 6n 
which acts {x1,x2} and {x3, ... ,xn} respectively. 

Lemma 4.18. 

Proof. The inclusion :2 is clear. For the reverse inclusion, we first 
note that 

s62 X6n-2 = C[xl, x2]62 Q9 C[x3, ... 'Xn]6n-2. 

As is well known, S6 n is generated by x1 + · · · + x~ (k ?: 0) as a C­
algebra. Thus 

Q.E.D. 

Combining Lemma 4.17 and 4.18, we have. 
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Lemma 4.19. 

M. Yoshinaga 

SI52XI5n-2 = L Sl5n • Fp,i· 
p,i'2_0 

Now we prove Theorem 4.15. Denote H 0 = {z = 0} and O:ij 

Xi- Xj· The restriction (AHo,mH0 ) is equal to (An_ 1,3). From the 
result of §3, (AHa, mHo) is free with exponents (0, n+ 1, ... , 2n -1). We 
can choose basis 7]1 , ... , T)n E D(AHo, mH0 ) 15 n from 6n-invariant vector 
fields. By definition, TJi(X1- X2) = (x1- X2) 3 Gi, and Gi E S 152 X 15n- 2 • 

By Lemma 4.19, there exist symmetric polynomials Bf',. E S15 n such 
that 

(27) Gi = L Bf''T" . Fp,T· 
p,,.:::_o 

With Bf',. and 6n-invariant vector field JP = 2:::~= 1 xfoi, let us define 

(28) - ·- '""""" 2T+2Bp,T s: TJi .- TJi- L_. Z i Up+1· 
p,,.:::_o 

Then rfi, ... 'iln and eE = 2:::~=1 XiOi + ZOz form a basis of D(Catn)· 
Indeed, they are linearly independent over C[x1, ... , Xn, z] (since 7)/S 
are independent), and 

7)i0:12 

TJ(X1- x2)- L z2,.+2 Bf',.(xf+l- x~+1) 
p,,.:::_o 

(x1- x2) 3Gi- L z2,.+2Bf',.(xf+l- x~+ 1 ). 
p,,.:::_o 

The last polynomial is divisible by z2 - o:i2 . Indeed, put z = ±a12 in 
the last formula, we have from (27) 

(x1- x2) 3Gi- L (x1- x2) 2,.+2 Bf',.(xf+l- x~+ 1 ) 
p,,.:::_o 

(x1 - x2) 3 (ai -L (x1 - x2) 2,. Bf',. xf+1 - x~+ 1 ) 
p,,.:::_o X1- X2 

(x1 - x2)3 (ai -L Bf',. Fp,,.) 
p,,.:::_o 

0. 
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Since r[i is 6n-invariant, Tfiajk is divisible by OOjk(a;k- z 2) for any j, k. 
This completes the proof. 

§5. Concluding remarks and open problems 

One of the central problems in the theory of hyperplane arrange­
ments is to decide to what extent the structure of an arrangement is 
determined by the combinatorics of the arrangement. 

Problem 5.1. Let A1 and A 2 be central arrangements in oc£. As­
sume that L(A1) c:= L(A2). Does the freeness of A1 imply the freeness 
of A2? 

The above (by Terao [39]) is a long standing problem, even for the 
case £ = 3, since the beginning of this area. Note that several variants 
of this problem are known to have counter examples: 

• A 1 and A 2 are multiarrangements ([55]), 
• A1 and A2 are defined over different fields ([56]), 
• A 1 and A 2 are line-conic arrangements ([30]). 

There are several characterizations for 3-arrangements to be free 
via Ziegler's restriction map (§2.3 and see [2] for recent developments). 
However the author does not know the answer to the following. 

Problem 5.2. Does the converse to Theorem 2.22 hold? 

As in §4.1 the modules of multiderivations naturally appear in the 
study of relative de Rham cohomology groups for the adjoint quotient 
map x: g--+ ~jW. However the idea of the proof of Theorem 4.2 works 
only for the type ADE and the cohomology of degree 2. 

Problem 5.3. Study the structure of the relative de Rham coho­
mology group Hk(Dx) as sw -module. 

The structures of H 2 (Dx) for non simply laced cases are expected to be 
related with the module of derivations with a non constant multiplicity. 
Similarly higher degree cases are expected to be related with the module 
of higher derivations Dk (A, m) defined in [3]. 

Postnikov and Stanley [24] observed curious properties of the charac­
teristic polynomials that for some truncated affine Weyl arrangements, 
the all roots of the characteristic polynomial have the same real part 
("Riemann hypothesis"). By Solomon-Terao's formula (Theorem 2.9), 
the characteristic polynomial is determined by the module D(A). It 
would be natural to expect curious behaviours of the characteristic poly­
nomial reflect the structure of D(A). The following question posed by 
Athanasiadis ([7, Question 6.5]) is still challenging. 
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Problem 5.4. Are there any natural algebraic structures of D(A) 
which cause Riemann hypothesis? 

For instance, is the "functional equation" ([24, (9.12)]) deduced from 
the self duality (up to degree shift) D 0 (A) ~ D 0 (A)[-d]v of certain 
module? 
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