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Resonance varieties and Dwyer-Fried invariants 

Alexander I. Suciu 

Abstract. 

The Dwyer-Fried invariants of a finite cell complex X are the 
subsets D~(X) of the Grassmannian of r-planes in H 1 (X, Q) which pa­
rametrize the regular Z'? -covers of X having finite Betti numbers up 
to degree i. In previous work, we showed that each D-invariant is con­
tained in the complement of a union of Schubert varieties associated 
to a certain subspace arrangement in H 1 (X,Q). Here, we identify a 
class of spaces for which this inclusion holds as equality. For such 
"straight" spaces X, all the data required to compute the D-invariants 
can be extracted from the resonance varieties associated to the coho­
mology ring H* (X, Q). In general, though, translated components in 
the characteristic varieties affect the answer. 
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§1. Introduction 

392 
396 

One of the most fruitful ideas to arise from arrangement theory is 
that of turning the cohomology ring of a space into a family of cochain 
complexes, parametrized by the cohomology group in degree 1, and ex­
tracting certain varieties from these data, as the loci where the cohomol­
ogy of those cochain complexes jumps. What makes these "resonance" 
varieties really useful is their close connection with a different kind of 
jumping loci: the "characteristic" varieties, which record the jumps in 
homology with coefficients in rank 1 local systems. 

In this paper, we use the geometry of the cohomology jump loci 
to study a classical problem in topology: determining which infinite 
covers of a space have finite Betti numbers. Restricting our attention 
to regular, free abelian covers of a fixed rank allows us to state the 
problem in terms of a suitable filtration on the rational Grassmannian. 
Under favorable circumstances, the finiteness of the Betti numbers of 
such covers is exclusively controlled by the incidence varieties to the 
resonance varieties of our given space. 

1.1. Cohomology jump loci and straightness 

Let X be a connected CW-complex with finite skeleta. To such a 
space, we associate two types of jump loci. The first are the resonance 
varieties Ri(X). These are homogeneous subvarieties of the affine space 
H 1 (X,C) =en, where n = b1 (X), and they are defined in terms of 
the cohomology algebra A = H*(X, C), as follows. For each a E A\ 
left-multiplication by a defines a cochain complex (A, ·a). Then 

(1) Ri(X) ={a E H 1 (X, q I H1(A, ·a) =f. 0, for some j:::; i}. 

The second type of jump loci we consider here are the character­
istic varieties Wi(X). These are Zariski closed subsets of the complex 
algebraic torus H 1 (X,1Cx)0 = Hom(n1 (X),1Cx)o = (ICx)n, defined as 
follows. Each character p: n 1 (X) -+ IC x gives rise to a rank 1 local 
system on X, call it Lp. Then 

(2) Wi(X) = {p E H 1 (X,1Cx)o I H1(X,£p) =f. 0, for some j:::; i}. 

One of our goals in this paper is to isolate a class of spaces for which 
the resonance and characteristic varieties have a rather simple nature, 
and are intimately related to each other. 
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We say that X is locally k-straight if, for each i ~ k, all components 
of Wi(X) passing through the origin 1 are algebraic subtori, and the 
tangent cone at 1 to Wi(X) equals Ri(X). If, moreover, all positive­
dimensional components of Wi(X) contain the origin, we say X is k­
straight. For locally straight spaces, the resonance varieties Ri(X) are 
finite unions of rationally defined linear subspaces. 

Examples of straight spaces include Riemann surfaces, tori, and knot 
complements. Under some further assumptions, the straightness prop­
erties behave well with respect to finite direct products and wedges. 

A related notion is Sullivan's k-formality. Using the tangent cone 
formula from [11], it is readily seen that 1-formal spaces are locally 1-
straight. In general though, 1-formality does not imply !-straightness, 
and the converse does not hold, either. 

1.2. Dwyer-Fried invariants 

The second goal of this paper is to analyze the homological finiteness 
properties of all regular, free abelian covers of a given space X, and relate 
these properties to the resonance varieties of X, under a straightness 
assumption. 

The connected, regular 7/I -covers X -+ X are parametrized by the 
Grassmannian of r-planes in the vector space H 1 (X, Q). Moving about 
this variety, and recording when all the Betti numbers b1(X), ... , bi(X) 
are finite defines subsets 

(3) 

which we call the Dwyer-Fried invariants of X. These sets depend only 
on the homotopy type of X. Consequently, if G is a finitely generated 
group, the sets O~(G) := O~(K(G, 1)) are well-defined. 

In [13], Dwyer arid Fried showed that the support varieties of the 
Alexander invariants of a finite cell complex X completely determine the 
0-sets of X. In [29] and [34], this foundational result was refined and 
reinterpreted in terms of the characteristic varieties of X, as follows. Let 
exp: H 1 (X, <C) -+ H 1 (X, !C x) be the coefficient homomorphism induced 
by the exponential map exp: !C -+ !C x . Then, 

We pursue this study here, by investigating the relationship between 
the Dwyer-Fried sets and the resonance varieties. Given a homogeneous 
variety V C lkn, let ar(V) C Grr(lkn) be the variety of r-planes incident 
to V. Our main result reads as follows. 
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Theorem 1.1. Let X be a connected CW-complex with finite k­
skeleton. 

(1) Suppose X is locally k-straight. Then, for all i ::; k and r 2': 1, 

(2) Suppose X is k-straight. Then, for all i ::; k and r 2': 1, 

As a consequence, if X is k-straight, then each set O~(X) with i ::; k 
is the complement of a finite union of special Schubert varieties in the 
Grassmannianofr-planesinQin, wheren = b1 (X). In particular, O~(X) 
is a Zariski open subset of Grr(Qin). 

1.3. Applications 

We illustrate our techniques with a broad variety of examples, com­
ing from low-dimensional topology, toric topology, algebraic geometry, 
and the theory of hyperplane arrangements. 

One class of spaces for which things work out very well are the 
toric complexes. Every simplicial complex K on n vertices determines a 
subcomplex TK of then-torus, with fundamental group the right-angled 
Artin group associated to the !-skeleton of K. It turns out that all 
toric complexes are straight (that is, k-straight, for all k). As shown by 
Papadima and Suciu in [26], the resonance varieties of a toric complex are 
unions of coordinate subspaces, which can be read off directly from the 
corresponding simplicial complex. This leads to some explicit formulas 
for the 0-sets of toric complexes and right-angled Artin groups. 

The characteristic varieties of (quasi-) Kahler manifolds are faifly 
well understood, due to work of Beauville, Green-Lazarsfeld, Simpson, 
Campana, and finally Arapura (1]. In particular, if X is a smooth, 
quasi-projective variety, then all the components of W 1 (X) are torsion­
translated subtori. Recent work of Dimca, Papadima, and Suciu [11] 
sheds light on the first resonance variety of such varieties: if X is also 
1-formal (e.g., if X is compact), then all the components of R.1 (X) are 
rationally defined linear subspaces. It follows that X is locally !-straight, 
and n;_(X) s;;; o-r(R1 (X,Q1)) 0 . In general, though, the inclusion can be 
strict. For instance, we prove in Theorem 10.11 the following: if W 1 (X) 
has a !-dimensional component not passing through 1, and R.1 (X} has 
no codimension-1 components, then O~(X) -1= o-2 (R.1 (X,QI)) 0 . 

Hyperplane arrangements have been the main driving force behind 
the development of the theory of cohomology jump loci, and still provide 
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a rich source of motivational examples for this theory. If A is an arrange­
ment of hyperplanes in c£' then its complement' X = c£ \ u H EA H' is 
a connected, smooth, quasi-projective variety. It turns out that X is 
also formal, locally straight, but not always straight. The first reso­
nance variety of the arrangement is completely understood, owing to 
work of Falk [17], Cohen, Libgober, Suciu, Yuzvinsky, and others, with 
the state of the art being the recent work of Falk, Pereira, and Yuzvinsky 
[19, 30, 36]. This allows for explicit computations of the Dwyer-Fried 
invariants of various classes of arrangements. For the deleted B3 ar­
rangement, though, the computation is much more subtle, due to the 
presence of a translated component in the first characteristic variety. 

1.4. Organization of the paper 

The paper is divided in roughly two parts. In the first part (§§2-6), 
we recall some of the basic theory of cohomology jump loci, and develop 
the notion of straightness. In the second part (§§7-11), we develop the 
Dwyer-Fried theory in the straight context, and apply it in a variety of 
settings. 

In §2 we define the Aomoto complex of a space X, and study it in 
more detail in the case when X admits a minimal cell structure. We 
use the Aomoto complex in §3 to define the resonance varieties, and 
establish some of the basic properties of these varieties. 

In §4 we define two types of tangent cones to a subvariety of (ex )n, 
and recall some of their features. In §5, we introduce the characteristic 
varieties, and review some pertinent facts about their tangent cones. 
Finally, in §6 we define and study the various notions of straightness, 
based on the geometry of the jump loci. 

We start § 7 with a review of the Dwyer-Fried invariants, and the way 
they relate to the characteristic varieties, after which we prove Theorem 
1.1. In §8, we discuss the relevance of formality in this setting. 

Finally, we show how our techniques work for three classes of spaces: 
toric complexes in §9, Kahler and quasi-Kahler manifolds in §10, and 
complements of hyperplane arrangements in §11. In each case, we ex­
plain what is known about the cohomology jump loci of those spaces, 
and use this knowledge to determine their straightness properties, and 
to compute some of their 0-invariants. 

§2. The Aomoto complex 

We start by recalling the definition of the (universal) Aomoto com­
plex associated to the cohomology ring of a space X. When X admits 
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a minimal cell structure, this cochain complex can be read off from the 
equivariant cellular chain complex of the universal abelian cover, xah. 

2.1. A cochain complex from the cohomology ring 

Let X be a connected CW -complex with finite k-skeleton, for some 
k ;:=: 1. Consider the cohomology algebra A= H*(X, C), with product 
operation given by the cup product of cohomology classes. For each 
a E A 1, we have a2 = 0, by graded-commutativity of the cup product. 

Definition 2.1. The Aomoto complex of A (with respect to a E A1) 
is the cochain complex of finite-dimensional, complex vector spaces, 

(5) 

with differentials given by left-multiplication by a. 

Here is an alternative interpretation. Pick a basis { e1, ... , en} for 
the complex vector space A1 = H 1(X, C), and let {x1, ... , Xn} be the 
Kronecker dual basis for A1 = H 1 (X, C). Identify the symmetric algebra 
Sym(A1) with the polynomial ringS= C[x1, ... , Xn]· 

Definition 2.2. The universal Aomoto complex of A is the cochain 
complex of free S-modules, 

(6) 

where the differentials are defined by di(u 0 1) = 2::?=1 eju 0 Xj for 
u E Ai, and then extended by S-linearity. 

The fact that A is a cochain complex is verified as follows: 

n n 

di+1di(u01) = LLekeju0XjXk 
k=1j=1 

= L(ekej + ejek)u 0 XjXk = 0. 
j<k 

The relationship between the two definitions is given by the following 
well-known lemma. 

Lemma 2.3. The evaluation of the universal Aomoto complex A at 
an element a E A1 coincides with the Aomoto complex (A, a). 

Proof. Write a= 2::?=1 ajej E Al, and let eva: S--+ C be the ring 
morphism given by g H g(a1, ... , an)· The resulting cochain complex, 
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A( a) =A ®s C, has differentials di(a) := di ®ide given by 

n n 

(7) di(a)(u) = L eju ® eva(x1) = L eju · aj =a· u. 
j=l j=l 

Thus, A( a)= (A, a). Q.E.D. 

2.2. Minimality and the Aomoto complex 

As shown by Papadima and Suciu in [28], the universal Aomoto 
complex of H* (X, C) is functorially determined by the equivariant chain 
complex of the universal abelian cover xab, provided X admits a mini­
mal cell structure. 

More precisely, suppose X is a connected, finite-type CW-complex. 
We say the CW-structure on X is minimal if the number of i-cells of 
X equals the Betti number bi(X), for every i :::0: 0. Equivalently, the 
boundary maps in the cellular chain complex c. (X, Z) are all zero maps. 
In particular, the homology groups Hi(X, Z) are all torsion-free. 

Theorem 2.4 ([28]). Let X be a minimal OW-complex. Then the 
linearization of the cochain complex c•(xab, q coincides with the uni­
versal Aomoto complex of H*(X,C). 

Let us explain in more detail how this theorem works. Pick an iso­
morphism H 1 (X, Z) ~ zn, and identify qzn] with A= C[tr1, ... , t;lj. 
Next, filter A by powers of the maximal ideal I = (h - 1, ... , tn- 1), 
and identify the associated graded ring, gr(A), with the polynomial ring 
S = C[x1, ... , Xn], via the ring map ti- 1 f-7 Xi. 

The minimality hypothesis allows us to identify Ci(Xab, q with 
A®cHi(X, q and Ci(Xab, q with Ai®cA. Under these identifications, 
the boundary map of~1 : Ci+I(xab, q -7 Ci(xab, q dualizes to a map 
Ji: Ai ®c A -7 Ai+1 ®cA. Let gr(Ji): Ai ®c S -7 Ai+ 1 ®c S be the 
associated graded of Ji, and let gr(Ji) lin be its linear part. Theorem 2.4 
then provides an identification 

(8) 

for each i :::0: 0. 

Example 2.5. Let X = rn be the n-dimensional torus, with the 
standard product cell structure. Then X is a minimal cell complex, 
and C.(Xab, C) is the Koszul complex K(t1 - 1, ... , tn - 1) over the 
ring A. The cohomology ring H* (Tn, C) is the exterior algebra E on 
variables e1 , ... , en, and the universal Aomoto complex E ®c S is the 
Koszul complex K(x1 , ... , Xn) over the ringS. In this case, Theorem 2.4 
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simply says that the substitution ti - 1 1--t Xi takes one Koszul complex 
to the other. 

Example 2.6. Let Y = 8 1 V 8 2 , and identify 1r1 (Y) = Z, with 
generator t, and 1r2 (Y) = Z[t±1]. Given a polynomial f E Z[t], let 
r.p: 8 2 -t Y be a map representing f, and attach a 3-cell to Y along 
r.p to obtain a CW-complex Xt. For instance, if f(t) = t - 1, then 
Xt ~ 8 1 x 8 2 . More generally, Xt is minimal if and only if f(1) = 0, 
in which case H*(X1,Z) ~ H*(81 x 8 2 ,Z). 

Now identify 1r1 (Xt) = Z and C[Z] with A= C[t±1]. The chain 
complex C.(Xjb,C) can then be written as 

(9) A~A~A~A. 

Finally, identify gr(A) with 8 = C[x], and set g(x) = f(1 + x). 
Suppose f(1) = 0, so that Xt is minimal. Then, the linear term of g(x) 
is !'(1) · x, and so the universal Aomoto complex of H*(XJ, C) is 

(10) 8~8~8~8. 

§3. Resonance varieties 

In this section, we review the definition and basic properties of the 
resonance varieties of a space X, which measure the deviation from 
exactness of the Aomoto complexes associated to the cohomology ring 
H*(X,C). 

3.1. Jump loci for the Aomoto-Betti numbers 
As usual, let X be a connected CW-complex with finite k-skeleton. 

Denote by A the cohomology algebra H*(X, C). Computing the homol­
ogy of the Aomoto complexes (A, a) for various values of the parameter 
a E A 1 , and recording the resulting Betti numbers, carves out some very 
interesting subsets of the affine space A1 =en, where n = b1 (X). 

Definition 3.1. The resonance varieties of X are the sets 

n~(X) ={a E A1 I dime Hi(A, ·a)?: d}, 

defined for all integers 0 ::::; i S k and d > 0. 

The degree-1, depth-1 resonance variety is especially easy to de­
scribe: Ri(X) consists of those elements a E A1 for which there exists 
an element b E A 1 , not proportional to a, and such that b · a = 0. 

The terminology from Definition 3.1 is justified by the following 
well-known lemma. For completeness, we include a proof. 
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Lemma 3.2. The sets R~(X) are homogeneous algebraic subvari­
eties of the affine space A1 = H 1 (X,C). 

Proof. By definition, an element a E A1 belongs to R~(X) if and 
only ifrank tSi- 1 (a) +rank8i(a) ::::: ci -d, where ci = ci(X) is the number 
of i-cells of X. As a set, then, R~(X) can be written as the intersection 

n {a E A1 I rank8i- 1 (a)::::: r- 1 or rank8i(a)::::: s -1}. 
r+s=ci-d+l 

r,s;:::o 

Using this description, we may rewrite R~(X) as the zero-set of a sum 
of products of determinantal ideals, 

(11) n~(X) = v( L EpW-1 ). Eq(8i)). 
p+q=c;+ 1 +d-1 

Clearly, a E R~(X) if and only if .Aa E R~(X), for all .A E ex. Thus, 
R~(X) is a homogeneous variety. Q.E.D. 

Sometimes it will be more convenient to consider the projectivization 

R!t(X), viewed as a subvariety of lP'(A1 ) = <ClP'n-1 . 

The resonance varieties R~(X) are homotopy-type invariants ofthe 
space X. The following (folklore) result makes this more precise. 

Lemma 3.3. Suppose X ~ X'. There is then a linear isomor­
phism H 1 (X', q ~ H 1 (X, <C) which restricts to isomorphisms R~(X') ~ 
R~(X), for all i ::::: k and d > 0. 

Proof. Let f: X --+ X' be a homotopy equivalence. The induced 
homomorphism in cohomology, f*: H*(X', q--=+ H*(X, <C), defines iso­

morphisms (H*(X', <C), a)--=+ (H*(X, <C), f*(a)) between the respective 
Aomoto complexes, for all a E H 1 (X',<C). Hence, f*: H 1 (X',<C)--=+ 
H 1 (X, <C) restricts to isomorphisms R~(X') --=+ R~(X). Q.E.D. 

3.2. Discussion 
In each degree i 2: 0, the resonance varieties provide a descending 

filtration, 

(12) H 1 (X, <C)= Rt(X) ;:2 Rt (X) ;:2 R~(X) ;:2 · · · • 

Note that 0 E R~(X), ford:::; bi(X), but R~(X) = 0, ford> bi(X). 
In degree 0, we have R~(X) = {0}, and R~(X) = 0, ford> 1. In degree 
1, the varieties R~(X) depend only on the group G = 1r1 (X,x0 )-in 
fact, only on the cup-product map U: H 1 (G, <C)/\H1 (G, <C)--+ H 2 (G, <C). 
Accordingly, we will sometimes write R~(G) for R~(X). 
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Example 3.4. Let Tn be then-dimensional torus. Using the ex­
actness of the Koszul complex from Example 2.5, we see that R~(Tn) 
equals {0} if d ~ (7), and is empty, otherwise. 

Example 3.5. Let 89 be the compact, connected, orientable sur­
face of genus g > 1. With suitable identifications H 1 (89 , C) = C2Y 

and H 2 (S9 ,C) = C, the cup-product map U: H 1(S9 ,C) !\ H 1 (S9 ,C) ~ 
H 2 (S9 , C) is the standard symplectic form. A computation then shows 

{ 
C2Y if i = 1, d < 2g - 1, 

(13) R~(S9 ) = {0} if i = 1, dE {2g- 1, 2g}, or i E {0, 2}, d = 1, 

0 otherwise. 

One may extend the definition of resonance varieties to arbitrary 
fields lk, provided H 1 (X, Z) is torsion-free, if char lk = 2. The resulting 
varieties, R~(X, lk), behave well under field extensions: if lk <;;:; JK, then 
R~(X, lk) = R~(X, JK) nH1 (X, lk). In particular, R~(X, Q) is just the set 
of rational points on the integrally defined variety R~(X) = R~(X, C). 

3.3. Depth one resonance varieties 

Most important for us are the depth-1 resonance varieties, Rl (X), 
and their unions up to a fixed degree, Ri(X) = U~=o R{ (X). The latter 
varieties can be written as 

(14) Ri(X) ={a E A1 [ Hi(A, ·a) -1-0, for some j ~ i}. 

These sets provide an ascending filtration of the first cohomology group, 

For low values of n = b1 (X), the variety R 1 (X) is easy to describe. 

Proposition 3.6. If n ~ 1, then R 1 (X) = {0}. If n = 2, then 
R 1 (X) = C2 or {0}, according to whether the cup product vanishes on 
H 1 (X, q or not. 

For n ~ 3, the resonance variety R 1 (X) can be much more compli­
cated; in particular, it may have irreducible components which are not 
linear subspaces. The following example (a particular case of a more 
general construction described in [11]) illustrates this phenomenon. 

Example 3. 7. Let X = F(T2 , 3) be the configuration space of 3 
labeled points on the torus. The cohomology ring of X is the exterior 
algebra on generators a 1 , a2, a3, b1 , b2 , b3 in degree 1, modulo the ideal 
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((at- a2)(b1- b2), (at- a3)(b1- b3), (a2- a3)(b2- b3)). A calculation 
reveals that 

R 1(X) ={(a, b) E C6 I al + a2 + a3 = bl + b2 + b3 = alb2- a2bl = 0}. 

Hence, R 1(X) is isomorphic to Q = V(a1b2- a2b1), a smooth quadric 
hypersurface in C4 . (The projectivization of Q is the image of the Segre 
embedding of ClP'1 x ClP'1 in ClP'3 .) 

The depth-1 resonance varieties of a product or a wedge of two spaces 
can be expressed in terms of the resonance varieties of the factors. Start 
with a product X = xl X x2, where both xl and x2 have finite k­
skeleton, and identify H 1(X,q = H 1(X1,C) x H 1(X2,C). 

Proposition 3.8 ([29]). For alliS k, 

Ri(Xt x X2) = U Rf(XI) x R'f_(X2). 
p+q=i 

Corollary 3.9. We have Ri(Xl X X2) = up+q=i RP(Xt) X Rq(X2), 
for alliS k. 

Example 3.10. For a Riemann surface of genus g > 1, formula (13) 
yields R 0 (S9 ) = {0} and Ri(S9 ) = C2Y, for all i;::: 1. For a product of 
two such surfaces, Corollary 3.9 now gives 

{
{0} if i = 0, 

(16) Ri(Sg X Sh) = C2Y X {0} u {0} X C2h if i = 1, 

C2(g+h) if i ;::: 2. 

Next, consider a wedge X = X1 V X2, and identify H 1(X,C) = 
H 1 (Xt,C) x H 1 (X2,C). 

Proposition 3.11 ([29]). Suppose X1 and X2 have positive first 
Betti numbers. Then 

if i = 1, 

if 1 <is k. 

Corollary 3.12. Let X = X 1 V X2, where Xt and X2 have positive 
first Betti numbers. Then Ri(X) = H 1 (X,C), for all1 siS k. 

§4. Tangent cones to affine varieties 

We now discuss two versions of the tangent cone to a subvariety of 
the complex algebraic torus (Cx)n. 
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4.1. The tangent cone 

We start by reviewing a well-known notion in algebraic geometry 
(see [20, pp. 251-256]). Let W c (rCx)n be a Zariski closed subset, 
defined by an ideal I in the Laurent polynomial ring A = CC[tt 1 , ... , t;1]. 

Picking a finite generating set for I, and multiplying these generators 
with suitable monomials if necessary, we see that W may also be defined 
by the ideal In R in the polynomial ring R = CC[h, ... , tn]· 

Now consider the polynomial ring S = CC[z1 , ... , Zn], and let J be 
the ideal generated by the polynomials 

(17) g(z1, ... , Zn) = f(zl + 1, ... , Zn + 1), 

for all f E I n R. Finally, let in( J) be the ideal in S generated by the 
initial forms of all non-zero elements from J. 

Definition 4.1. The tangent cone of W at 1 is the algebraic subset 
TC1 (W) c en defined by the initial ideal in( J) c S. 

The tangent cone TC1 (W) is a homogeneous subvariety of en, de­
pending only on the analytic germ of W at the identity. In particular, 
TC1(W) of 0 if and only if 1 E W. Moreover, TC1 commutes with 
finite unions, but not necessarily with intersections. Explicit equations 
for the tangent cone to a variety can be found using the Grabner basis 
algorithm described in [14, Proposition 15.28]. 

4.2. The exponential tangent cone 

A competing notion of tangent cone was introduced by Dimca, Pa­
padima and Suciu in [11], and further studied in [29] and [34]. 

Definition 4.2. The exponential tangent cone of W at 1 is the 
homogeneous subvariety Tl (W) of en' defined by 

Tl(W) = {z E en I exp(.\z) E w, for all A E e}. 

The exponential tangent cone T1 (W) depends only on the analytic 
germ of W at the identity. In particular, T1 (W) of 0 if and only if 
1 E W. Moreover, T1 commutes with finite unions, as well as arbitrary 
intersections. The most important property of this construction is given 
in the following result from [11] (see [34] for full details). 

Theorem 4.3 ( [11]). The exponential tangent cone T1 (W) is a finite 
union of rationally defined linear subspaces of en. 

These subspaces can be described explicitly. By the above remarks, 
we may assume W = V(f), where f is a non-zero Laurent polynomial 
with f(1) = 0. Write f = L:aES Cat~ 1 • • • t~n, where Sis a finite subset of 



Resonance varieties and Dwyer-Pried invariants 371 

zn, and Ca E c \ {0} for each a= (al, ... 'an) E s. We say a partition 
p = (Pl I · · · I Pq) of the support S is admissible if LaEp; Ca = 0, for 
all 1 ~ i ~ q. For each such partition, let L(p) be the rational linear 
subspace consisting of all points x E Qn for which the dot product 
(a- b)· x vanishes, for all a, bE Pi and all1 ~ i ~ q. Then 

(18) Tl (W) = u L(p) ® c, 
p 

where the union is taken over all (maximal) admissible partitions of S. 

4.3. Relating the two tangent cones 

The next lemma (first noted in [11]) records a general relationship 
between the two kinds of tangent cones discussed here. For completeness, 
we include a proof, along the lines of the proof given in [29], though 
slightly modified to· fit the definition of TC1 given here. 

Lemma 4.4 ([11, 29]). For every Zariski closed subset W C (Cx)n, 
we have T1 (W) ~ TC1 (W). 

Proof. Without loss of generality, we may assume 1 E W. Let f E 

R be a non-zero polynomial in I= I(W), let g E S be the polynomial 
defined by ( 17), and let go = in(g). We then have 

j(e>.zl' ... 'e>.zn) = j(1 + AZl + O(.X2), ... '1 + AZn + O(.X2)) 

= g(.Xz1 + O(.X2), ... , AZn + O(.X2)) 

= 9o(.Xzl, ... , .Xzn) +higher order terms. 

Now suppose z E T1(W), that it to say, f(e>.z 1 , ... ,e>.zn) = 0, for 
all .X E C. The above calculation shows that g0 (.Xz) = 0, for all .X; in 
particular, g0 (z) = 0. We conclude that z E TC1(W). Q.E.D. 

If W is an algebraic subtorus of (ex )n, then T1 (W) = TC1 (W), and 
both coincide with the tangent space at the origin, T1 (W). In general, 
though, the inclusion from Lemma 4.4 can be strict, even when 1 is a 
smooth point of W. Here is an example illustrating this phenomenon. 

Example 4.5. Let W be the hypersurface in (Cx)3 with equation 
h + t2 + ta- t1t2- hta- t2ta = 0. Then T1(W) is a union of 3 lines 
in C3 , given by the equations Z1 = Z2 + Z3 = 0, Z2 = Z1 + Z3 = 0, and 
Za = Zl + Z2 = 0. On the other hand, TCl (W) is a plane in C3 ' with 
equation z1 + z2 + z3 = 0. Hence, TC1(W) strictly contains T1(W). 
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§5. Characteristic varieties 

In this section, we briefly review the characteristic varieties of a 
space, and their relation to the resonance varieties. 

5.1. Jump loci for twisted homology 

Let X be a connected CW-complex with finite k-skeleton, k 2": 1. 
Without loss of generality, we may assume X has a single 0-cell, call 
it x0 . Let G = n1 (X,x0 ) be the fundamental group of X, and let 
G = Hom(G,ex) be the group of complex characters of G. Clearly, 

G = Gab, where Gab = H 1 (X, Z) is the abelianization of G. Thus, the 
universal coefficient theorem allows us to identify 

(19) 

Each character p: G-+ ex determines a rank 1local system £p on 
our space X. Computing the homology groups of X with coefficients in 
such local systems leads to a natural filtration of the character group. 

Definition 5.1. The characteristic varieties ofX are the sets 

V~(X) = {p E H 1 (x,ex) I dimcHi(X,£p) 2": d}, 

defined for all 0 :::; i :::; k and all d > 0. 

Clearly, 1 E V~(X) if and only if d :::; bi(X). In degree 0, we have 
VP(X) = {1} and V~(X) = 0, ford> 1. In degree 1, the sets V~(X) 
depend only on the group G = n 1 (X,x0 )-in fact, only on its maximal 
met abelian quotient, G / G". 

The jump loci V~(X) are Zariski closed subsets of the algebraic group 
H 1 (X,ex); moreover, these varieties are homotopy-type invariants of 
X. For details and further references, see [34]. 

5.2. Depth one characteristic varieties 

Most important for us are the depth one characteristic varieties, 
Vi(X), and their unions up to a fixed degree, Vi(X) = U~=o Vf(X). 
These varieties yield an ascending filtration of the character group, 

(20) {1} = V0 (X) ~ V1 (X) ~ ... ~ Vk(X) ~ H 1 (X, ex). 

Let G0 = H 1 (X,ex)o be the identity component of the charac­
ter group G. Writing n = b1 (X), we may identify G0 with the com­
plex algebraic torus (ex)n. Set W~(X) = V~(X) n G0 , and Wi(X) = 
U~=o Wf (X). We then have 

(21) 
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Example 5.2. Let L be an n-component link in 8 3 , with comple­
ment X. Using a basis for H 1 (X, Z) = zn given by (oriented) meridians, 
we may identify H 1 (X,Cx) = (Cx)n. Then 

(22) 

where !:::J.L = !:::J.L(tt, ... , tn) is the Alexander polynomial of the link. For 
details and references, see [33]. 

As shown in [29] (see also [34]), the characteristic varieties satisfy 
product and wedge formulas similar to those satisfied by the resonance 
varieties. 

Proposition 5.3. Let X1 and X2 be connected OW-complexes with 
finite k-skeleton, and fix an integer 1 ::=:; i ::=:; k. Then 

(1) wi(xl x x2) = up+q=i wP(Xt) x wq(x2)· 
(2) Suppose, moreover, that b1 (X1 ) > 0 and b1 (X2 ) > 0. Then 

Wi(Xt V X2) = H 1 (Xt V X2,Cx)0 . 

5.3. Characteristic subspace arrangements 
As before, let X be a connected OW-complex with finite k-skeleton. 

Set n = bt(X), and identify H 1 (X,C) = c_n and H 1 (X,Cx)o = (Cx)n. 
Applying Theorem 4.3 to the characteristic varieties Wi(X) s;;: (ex )n 
leads to the following definition. 

Definition 5.4. For each i ::=:; k, the i-th characteristic arrangement 
of X, denoted Ci(X), is the subspace arrangement in H 1 (X, Q) whose 
complexified union is the exponential tangent cone to Wi(X): 

Tt(Wi(X)) = u L 0 c. 
LEC;(X) 

We thus have a sequence C0 (X), C1 (X), ... ,Ck(X) of rational sub­
space arrangements, all lying in the same affine space H 1 (X, Q) = Qn. 
As noted in [34, Lemma 6. 7], these subspace arrangements depend only 
on the homotopy type of X. 

5.4. Tangent cone and resonance 
Of great importance in the theory of cohomology jumping loci is the 

relationship between characteristic and resonance varieties, based on the 
tangent cone construction. A foundational result in this direction is the 
following theorem of Libgober [21]. 

Theorem 5.5 ([21]). The tangent cone at 1 to W~(X) is included 
in R~(X), for all i::::; k and d > 0. 
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Since tangent cones commute with finite unions, we get: 

(23) 

For many spaces of interest, inclusion (23) holds as an equality. In 
general, though, the inclusion is strict. 

Example 5.6. Let M be the 3-dimensional Heisenberg nilmanifold. 
It is easily seen that W 1 (M) = {1}; hence, TC1 (W1 (M)) = {0}. On the 
other hand, R 1 (M) = C2 , since the cup product vanishes on H 1 (M,C). 

§6. Straight spaces 

We now delineate a class of spaces for which the characteristic and 
resonance varieties have a simple nature, and are intimately related to 
each other via the tangent cone constructions discussed in §4. 

6.1. Straightness 

As before, let X be a connected CW-complex with finite k-skeleton. 
For each i ::::; k, consider the following conditions on the varieties Wi(X) 
and Ri(X): 

(a) All components of Wi(X) passing through the origin are alge­
braic subtori. 

(b) TC1 (Wi(X)) = Ri(X). 
(c) All components of Wi(X) not passing through the origin are 

a-dimensional. 

Definition 6.1. We say X is locally k-straight if conditions (a) and 
(b) hold, for each i::::; k. If these conditions hold for all k:::: 1, we say X 
is a locally straight space. 

Definition 6.2. We say X is k-straight if conditions (a), (b), and 
(c) hold, for each i::::; k. If these conditions hold for all k:::: 1, we say X 
is a straight space. 

Clearly, the k-straightness property depends only on the homotopy 
type of a given space. In view of this observation, we may declare a 
group G to be k-straight if there is a classifying space K(G, 1) which is 
k-straight; in particular, such a group G must be of type Fk, i.e., have 
a K(G, 1) with finite k-skeleton. Note that a space is 1-straight if and 
only if its fundamental group is 1-straight. Similar considerations apply 
to local straightness. 

The straightness conditions are quite stringent, and thus easily vio­
lated. Here are a few examples when this happens, all for k = 1. 
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Example 6.3. The closed three-link chain L (the link 6~ from Rolf­
sen's tables) has Alexander polynomial D..L = h +t2+t3-t1t2-t1t3-t2t3. 
Let X= S 3 \ L be the link complement. By (22), the characteristic va­
riety W = W 1(X) has equation D..L = 0. On the other hand, we know 
from Example 4.5 that T 1 (W) =/= TC1 (W). Thus, W is not an algebraic 
torus, and so X is not locally 1'-straight: condition (a) fails. 

Example 6.4. The Heisenberg nilmanifold M from Example 5.6 is 
not locally 1-straight: condition (a) is met, but not condition (b). 

Example 6.5. Let G = (x1, x2 I xix2 = x2xi) be the group from 
[29, Example 6.4]. Then W 1(G) = {1} U {(h, t2) E (Cx)2 I h = -1}, 
and R 1 (G) = {0}. Thus, G is locally 1-straight, but not 1-straight: 
conditions (a) and (b) are met, but not condition (c). 

Nevertheless, as we will see below, there is an abundance of inter­
esting spaces which are, to a degree on another, straight. 

6.2. Examples and discussion 

To start with, let us consider the case when the first characteristic 
variety W 1 (X) is as big as it can be. 

Lemma 6.6. Let X be a finite-type CW-complex. Suppose that 
W1 (X) = H 1 (X,Cx)0 . Then X is straight. 

Proof. Our assumption forces Wi(X) = H 1 (X,Cx)0 , for all i;:::: 1. 
Straightness conditions (a) and (c) are automatically met, while condi­
tion (b) follows from (23). Q.E.D. 

Examples of spaces satisfying the hypothesis of the above lemma 
include the Riemann surfaces S9 with g ;:::: 2. 

Lemma 6. 7. Let X be a CW-complex with finite k-skeleton, k 2:: 1. 
Suppose that Wk(X) is finite, and Rk(X) = {0}. Then X is k-straight. 

Proof. Since Wk(X) is finite, conditions (a) and (c) are trivially 
satisfied. By formula (23), we have TC1 (Wi(X)) ~ Ri(X) = {0}, for 
all i :::; k. Since 1 E Wi(X), equality must hold, i.e., condition (b) is 
satisfied. Q.E.D. 

Examples of spaces satisfying the hypothesis of the above lemma 
include the tori Tn; these spaces are, in fact, straight. 

Evidently, all spaces X with b1 (X) = 0 are straight. Next, we deal 
with the case b1 (X) = 1. The following example shows that not all finite 
CW-complexes with.first Betti number 1 are (locally) straight. 
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Example 6.8. Let f be a polynomial in Z[t] with f(l) = 0, and 
let X f = (81 V 8 2 ) Ucp e3 be the corresponding minimal CW-complex 
constructed in Example 2.6. A calculation with the equivariant chain 
complex (9) shows that W 1 (XJ) = {1} and W 2 (Xt) = V(f); clearly, 
both these sets are finite subsets of H 1 (X, ex) = ex . 

An analogous calculation with the universal Aomoto cochain com­
plex (10) shows that R 1 (X1) = {0}, yet R 2 (X f) = {0} only if f'(l) # 0, 
but R 2(Xt) = e, otherwise. Therefore, Xf is always 1-straight, but 

(24) X f is locally 2-straight {::::=:} f' (1) # 0. 

Applying a similar reasoning to cell complexes of the form X f = 
(81 V Sk) Ucp ek+l, with attaching maps corresponding to polynomials 
f E Z[t] with f(l) = f'(l) = 0, we obtain the following result. 

Proposition 6.9. For each k ~ 2, there is a minimal CW-complex 
which has the integral homology of 8 1 X sk and which is (k -I)-straight, 
but not locally k-straight. 

Nevertheless, we have the following positive result, guaranteeing 
straightness in a certain range for spaces with first Betti number 1. 

Proposition 6.10. Let X be a CW-complex with finite k-skeleton. 
Assume b1 (X) == 1. Then, 

(1) 
(2) 

X is !-straight. 
If, moreover, bi(X) = 0 for 1 < i :.::; k, then X is k-straight. 

Proof. As noted in Proposition 3.6, the fact that b1 (X) = 1 im­
plies R 1 (X) = {0}. Identify H 1 (X,ex) =ex. By formula (23), we 
have TC1 (W1 (X)) = {0}. Hence, W 1 (X) is a proper subvariety of ex; 
consequently, it is a finite set. Part (1) now follows from Lemma 6.7. 

For Part (2), note that Ri(X) = {0}, for all i :.::; k. As above, we 
conclude that Wk(X) is finite, and hence X is k-straight. Q.E.D. 

Corollary 6.11. Let K be a smoothly embedded d-sphere in sd+2 , 

and let X = Sd+ 2 \ K be its complement. Then 

(1) Rk(X) = {0} and Wk(X) is finite, for all k ~ 1. 
(2) X is straight. 

Proof. The knot complement has the homotopy type of a (d +I)­
dimensional CW-complex, with the integral homology of 8 1 . The desired 
conclusions follow from Proposition 6.10 and its proof. Q.E.D. 

For a knot Kin 8 3 , the variety W 1 (X) c ex consists of 1, together 
with all the roots of the Alexander polynomial, D..K (these roots are 
always different from 1). 
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6.3. Products and wedges 

We now look at how the straightness properties behave with respect 
to (finite) products and wedges of spaces. 

Proposition 6.12. Let X1 and X 2 be OW-complexes with finite k­
skeleta and positive first Betti numbers. Then the space X= X 1 V X 2 is 
k-straight. 

Proof. Follows from Proposition 5.3(2) and Lemma 6.6. Q.E.D. 

In particular, a wedge of knot complements is straight. 

Proposition 6.13. Let X 1 and X 2 be two OW-complexes. 

(1) If X1 and X2 are locally k-straight, then so is X1 x X2. 
(2) If X1 and X2 are 1-straight, then so is X1 X X2. 

Proof. Both assertions follow from the product formulas for reso­
nance and characteristic varieties (Proposition 5.3(1) and Corollary 3.9, 
respectively). Q.E.D. 

Proposition 6.14. Let X 1 and X2 be OW-complexes with finite 
k-skeleton. Suppose Rk (Xj) = {0} and Wk (Xj) is finite, for j = 1, 2. 
Then xl X x2 is k-straight. 

Proof. From Lemma 6.7, we know that both X 1 and X 2 are k­
straight. Now, Corollary 3.9 gives that Rk(X1 x X 2 ) = {0}, while 
Proposition 5.3(1) gives that Wk(X1 x X 2 ) is finite. Hence, again by 
Lemma 6.7, xl X x2 is k-straight. Q.E.D. 

In particular, a product of knot complements is straight. In general, 
though, a product of straight spaces need not be straight. 

Example 6.15. Let K be a knot in 8 3 , with Alexander polynomial 
/:).K not equal to 1 (for instance, the trefoil knot), and let X be its 
complement. Let Y = yn 8 1 be a wedge of n circles, with n 2: 2. By 
Corollary 6.11 and Proposition 6.12, both X andY are straight. 

By Proposition 6.13(2), the product X x Y is 1-straight. Never­
theless, X x Y is not 2-straight. Indeed, the variety W 2 (X x Y) has 
irreducible components of the form {p} x (Cx)n, where p runs through 
the roots of f).K. As these components do not pass through the origin, 
straightness condition (c) fails for X x Y in degree i = 2. 

6.4. Rationality properties 

Before proceeding, let us. give an alternative characterization of 
straightness. As usual, let X be a connected CW-complex with finite 
k-skeleton, and let exp: H 1 (X, C) ~ H 1 (X, C x) 0 be the exponential 
map (or rather, its corestriction to its image). 
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Theorem 6.16. A space X as above is locally k-straight if and only 
if the following equalities hold, for all i ::::; k: 

(a) Wi(X) = ( U exp(L l8l q) U Zi 
LEC;(X) 

((3) Ri(X) = U L l8l C, 
LEC;(X) 

for some algebraic subsets Zi c H 1 (X, ex )0 not containing the .origin. 
The space X is k-straight if and only if, in addition, the sets Zi are 

finite. 

Proof. Suppose X is locally k-straight, and fix an index i::::; k. By 
hypothesis (a) from Definition 6.2, the variety Wi(X) admits a decom­
position into irreducible components of the form 

(25) Wi(X) = U Tr:x U Zi, 
aEA 

for some algebraic subtori Ta = exp(Pa l8l C) and some algebraic sets Zi 
with lrf:_ Zi. Hence, 

(26) T1(Wi(X)) = U Pa l8l C. 
aEA 

On the other hand, by the definition of characteristic subspace ar­
rangements, we also have r1(Wi(X)) = ULEc,(x) L l8l C. By uniqueness 
of decomposition into irreducible components, the arrangement {Pa}aEA 

must coincide with Ci(X). Consequently, equation (25) yields (a). 
Equation (25) also implies r1(Wi(X)) = TC1(Wi(X)). Hypothesis 

{b) then gives r1(Wi(X)) = Ri(X), which is precisely condition ((3). 
Conversely, condition (a) implies (a) and conditions (a) and ((3) 

together imply (b). 
Finally, hypothesis (c) is satisfied if and only if the sets Z1 , ... , Zk 

are all finite. Q.E.D. 

Corollary 6.17. Let X be a locally k-straight space. Then, for all 
i::::; k, 

(1) r1(Wi(X)) = TC1(Wi(X)) = Ri(X). 
(2) Ri(X, Q) = ULEC;(X) L. 

In particular, the resonance varieties Ri(X) are unions of rationally 
defined subspaces. 
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The next example (adapted from [11]) illustrates how this rationality 
property may be used to detect non-straightness. 

Example 6.18. Consider the group G with generators x1, x2, x 3 , x4 
and relators r1 = [x1, x2], rz = [x1, x4][x;-2, x3], r3 = [x;-\ x3][x2, x4]. 
Direct computation shows that 

Evidently, this variety splits into two linear subspaces defined over IR, 
but not over Q. Thus, G is not (locally) 1-straight. 

§7. The Dwyer-Fried invariants 

In this section, we recall the definition of the Dwyer-Fried sets, and 
the way these sets relate to the characteristic varieties of a space. 

7.1. Betti numbers of free abelian covers 

As before, let X be a connected CW-complex with finite k-skeleton, 
and let G = n1(X,x0 ). Denote by n = b1(X) the first Betti number of 
X. (We may as well assume n > 0, otherwise the whole theory is empty 
of content.) Fix an integer r between 1 and n, and consider the regular 
covers of X, with group of deck-transformations ·;z,r·. 

Each such cover, xv -+ X, is determined by an epimorphism v: G...., 
zr. The induced homomorphism in cohomology, v* : H 1 (ZT' Q) y 

H 1 ( G, «]), defines an r-dimensional subspace, Pv = im(v*), in the ra­
tional vector space H 1 ( G, Q) = Qn. Conversely, each r-dimensional 
subspace P C Qn can be written as P = Pv, for some epimorphism 
v : G ...., zr, and thus defines a regular zr -cover of X. 

To recap, the regular zr -covers of X are parametrized by the Grass­
mannian of r-planes in H 1 (X, Q), via the correspondence 

{zr-covers xv-+ X}+---+ {r-planes Pv := im(v*) in H 1 (X, Q) }. 

Moving about the rational Grassmannian and recording how the 
Betti numbers of the corresponding covers vary leads to the following 
definition. 

Definition 7.1. The Dwyer-Fried invariants of X are the subsets 

Set n = b1 (X). For a fixed r between 1 and n, these sets form a 
descending filtration of the Grassmannian of r-planes in H 1 (X, Q) = Qn, 

(28) 
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If r > n, we adopt the convention that Grr(Qn) = 0 and define D~(X) = 
0 in this range. 

As noted in [34], the D-sets are homotopy-type invariants. More 
precisely, if f: X -7 Y is a homotopy equivalence, the induced isomor­
phism in cohomology, f*: H 1 (Y, Q) -7 H 1(X, Q), defines isomorphisms 
J:: Grr(H1 (Y, Q)) -7 Grr(H1 (X, Q)), which send each subset D~(Y) 
bijectively onto D~(X). 

Example 7.2. Let Tn be the n-dimensional torus. Since every 
connected cover of Tn is homotopy equivalent to a k-torus, for some 
0:::; k:::; n, we conclude that D~(Tn) = Grr(Qn), for all i ~ 0 and r ~ 1. 

7.2. Dwyer-Fried invariants and characteristic varieties 

The next theorem reduces the computation of the D-sets to a more 
standard computation in algebraic geometry. The theorem was proved 
by Dwyer and Fried in [13], using the support loci for the Alexander in­
variants, and was recast in a slightly more general context by Papadima 
and Suciu in [29], using the characteristic varieties. We state this result 
in the form most convenient for our purposes, namely, the one estab­
lished in [34]. 

Theorem 7.3 ([13, 29, 34]). For all i:::; k and 1 :::; r:::; n, 

In other words, an r-plane P c Qn belongs to n~(X) if and only if 
the algebraic torus T = exp(P 0 q intersects the characteristic variety 
W = Wi(X) only in finitely many points. When this happens, the 
exponential tangent cone r 1 (T n W) equals {0}, forcing P n L = {0}, 
for every subspace L C Qn in the characteristic subspace arrangement 
Ci(X). As in [34, Theorem 7.1], we obtain the following "upper bound" 
for the Dwyer-Fried invariants of X: 

(29) n~(X) ~ ( u { p E Grr(H1(X, Q)) I p n L i= {0}}) c 
LEC,(X) 

7.3. The incidence correspondence 

The right side of ( 29) may be reinterpreted in terms of the classical 
incidence correspondence from algebraic geometry. 

Let V be a homogeneous variety in tn. Consider the locus of r­
planes in tn meeting V, 

(30) 
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This set is a Zariski closed subset of the Grassmannian Grr(lkn), called 
the variety of incident r-planes to V. 

Particularly manageable is the case when V is a non-zero linear 
subspace L C tn. The corresponding incidence variety, ar(L), is known 
as the special Schubert variety defined by L. If L has codimension d in 
lkn, then ar(L) has codimension d- r + 1 in Grr(lkn). 

Theorem 7.4 ([34]). Let X be a OW-complex with finite k-skeleton. 
Then 

D~(X) ~ Grr(H1 (X, Q)) \ U ar(L), 
LEC;(X) 

for all i :::;; k and r ::::: 1. 

In other words, each Dwyer-Fried set D~(X) is contained in the 
complement to the variety of incident r-planes to the i-th characteristic 
arrangement of X. 

7.4. Straightness and the Dwyer-Fried invariants 

Under a (local) straightness assumption, the bound from Theorem 
7.4 can be expressed in terms of simpler, purely cohomological data. 
The next result proves Theorem 1.1, part (1) from the Introduction. 

Corollary 7.5. Suppose X is locally k-straight. Then, for all i :::;; k 
and r::::: 1, 

D~(X) ~ Grr(H 1(X, Q)) \ ar(Ri(X, Q)). 

Proof. By Corollary 6.17, we have T1 (Wi(X)) = Ri(X). Hence, 
ULEC;(X) L = ni(X, Q), and the desired conclusion follows from Theo­
rem 7.4. Q.E.D. 

Under a more stringent straightness assumption, the above inclusion 
holds as an equality. The next result proves Theorem 1.1, part (2) from 
the Introduction. 

Theorem 7.6. Suppose X is k-straight. Then, for all i :::;; k and 
r::::: 1, 

D~(X) = Grr(H1(X, Q)) \ ar(Ri(X, Q)). 

Proof. By Theorem 7.3, we have 

(31) D~(X) = {PI exp(P 0 C) n Wi(X) is finite}. 

Since X is k-straight, Theorem 6.16, part (a) yields 

(32) n~(X) = {pIp n L = {0}, for all L E Ci(X) }. 

By Theorem 6.16, part ((3), the right side of (32) is the complement to 
ar(Ri(X, Q)), and we are done. Q.E.D. 
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Particularly interesting is the case when all the components ofRi(X) 
have the same codimension, say, r. In this situation, D~(X) is the com­
plement of the rational Chow divisor of Ri(X, Q). 

The previous theorem yields a noteworthy qualitative result about 
the Dwyer-Fried sets of straight spaces, in arbitrary ranks r ~ 1. 

Corollary 7.7. Let X beak-straight space. Then each set D~(X) 
is the complement of a finite union of special Schubert varieties in the 
Grassmannian ofr-planes in H 1 (X, Q). In particular, D~(X) is a Zaris­
ki open set in Grr(H1 (X,Q)). 

The straightness hypothesis is crucial for Theorem 7.6 to hold. The 
next example shows the necessity of condition (c) from Definition 6.2. 

Example 7.8. Let G be the group from Example 6.5. Recall we 
have W 1 (G) = {1} u {t E ucx)2 I tl = -1}, but R 1 (G) = {0}. Thus, 
D~(G) = 0, yet 0"2(R1 (G,Q)) 0 = {pt}. 

§8. The influence of formality 

An important property that bridges the gap between the tangent 
cone to a characteristic variety and the corresponding resonance variety 
is that of formality. 

8.1. Formality 
As before, let X be connected CW-complex with finite 1-skeleton. 

In [35], Sullivan constructs an algebra APL(X, Q) of polynomial differ­
ential forms on X with coefficients in Q, and provides it with a natural 
commutative differential graded algebra (cdga) structure. 

Let H* (X, Q) be the rational cohomology algebra of X, endowed 
with the zero differential. The space X is said to be formal if there is a 
zig-zag of cdga morphisms connecting APL(X, Q) to H*(X, Q), with each 
such morphism inducing an isomorphism in cohomology. The space X is 
merely k-formal (for some k ~ 1) if each of these morphisms induces an 
isomorphism in degrees up to k, and a monomorphism in degree k + 1. 

Examples of formal spaces include rational cohomology tori, sur­
faces, compact connected Lie groups, as well as their classifying spaces. 
On the other hand, the only nilmanifolds which are formal are tori. For­
mality is preserved under wedges and products of spaces, and connected 
sums of manifolds. 

The 1-minimality property of a space X depends only on its funda­
mental group, G = 1r1 (X, x0 ). Alternatively, a finitely generated group 
G is 1-formal if and only if its Malcev Lie algebra admits a quadratic 
presentation. Examples of 1-formal groups include free groups and free 
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abelian groups of finite rank, surface groups, and groups with first Betti 
number equal to 0 or 1. The 1-formality property is preserved under 
free products and direct products. 

8.2. The tangent cone formula 

The main connection between the formality property and the coho­
mology jump loci is provided by the following theorem from [11]. For 
more details and references, we refer to the recent survey [27]. 

Theorem 8.1 ([11]). Let X be a 1-forrrial space. For each d > 
0, the exponential map exp: H 1 (X, C) -+ H 1 (X, ex) restricts to an 
isomorphism of analytic germs, exp: (R~(X), 0) ~ (VJ(X), 1). Thus, 
the following "tangent cone formula" holds: 

As a consequence, the irreducible components ofR~(X) are all ratio­
nally defined subspaces, while the components of VJ (X) passing through 
the origin are all rational subtori of the form exp( L), with L running 
through the irreducible components of R~(X). The next corollary is 
immediate. 

Corollary 8.2. Every 1-formal space is locally 1-straight. 

In general, though, 1-formal spaces need not be 1-straight, as we 
shall see in Example 11.8. Conversely, 1-straight spaces need not be 
1-formal, as we shall see in Example 10.9. 

8.3. Formality and the Dwyer-Fried invariants 

The formality of a space has definite implications on the nature of 
its 0-invariants, and their relationship to the resonance varieties. 

Corollary 8.3. If X is 1-formal, then n;(x) ~ Ur(R1 (X,Q)) 0 , for 
all r 2:: 1. 

Proof. Follows from Corollaries 7.5 and 8.2. Q.E.D. 

Corollary 8.4. Let X be a 1-formal space. Suppose all positive-
dimensional components of W 1 (X) pass through 1. Then: 

(1) X is !-straight. 
(2) n;(x) = Ur(R1 (X,Q))0 , for all r 2:: 1. 

Proof. Part (1) follows from Corollary 8.2 and the additional hy­
pothesis. Part (2) now follows from Theorem 7.6 (with k = 1). Q.E.D. 
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The hypothesis on the components of W 1 (X) is really needed in this 
corollary. Indeed, if X is the presentation 2-complex for the group G 
from Examples 6.5 and 7.8, then H*(X, Q) ~ H*(T2 , Q), and so X is for­
mal. Yet, as we know, X is not 1-straight, and O~(X) =1- a 2 (R1 (X,Q)) 0 . 

We shall see another instance of this phenomenon in Example 11.8. 

8.4. The case of infinite cyclic covers 

In the case when r = 1, Theorem 7.3 has the following consequence. 

Corollary 8.5 ([29]). Let v: 7r1 (X) --» Z be an epimorphism, and 
let iJ E H 1(X, Z) c H 1 (X, C) be the corresponding cohomology class. 
If the exponential map restricts to an isomorphism of analytic germs, 
(Ri(X), 0) ~ (Vl(X), 1), for all i ~ k, then 

L bi(Xv) < 00 ~ i} ~ nk(X). 
iS,.k 

Using Theorem 8.1 together with Corollary 8.5, we obtain the fol­
lowing immediate consequence. 

Corollary 8.6. Suppose G is a 1-formal group. Then 

In other words, if xv --+ X is a regular, infinite cyclic cover of a 
1-formal space, then b1 (Xv) is finite if and only if the corresponding 
cohomology class, iJ E H 1 (X, Z), is non-resonant. 

§9. Toric complexes 

In this section, we illustrate our techniques on a class of OW-com­
plexes that are carved out of an n-torus in a manner prescribed by a 
simplicial complex on n vertices. Such "toric" complexes are minimal, 
formal, and straight-thus, ideal from our point of view. 

9.1. Toric complexes and right-angled Artin groups 

Let rn be then-torus, endowed with the standard cell decomposi­
tion, and with basepoint * the unique 0-cell. For a simplex a E [n], let 
ra c rn be the cellular subcomplex ra = {X E rn I Xi = * if i ¢-. a}. 

Definition 9.1. Let K be a simplicial complex on n vertices. The 
associated toric complex, TK, is the union of all ra, with a running 
through the simplices of K. 
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The k-cells of TK are in one-to-one correspondence with the (k -I)­
simplices of K. Since the toric complex is a subcomplex ofTn, all bound­
ary maps in C. (TK, Z) vanish; thus, TK is a minimal cell complex. Ev­
idently, Hk(TK,Z) is isomorphic to C~~{(K,Z), the free abelian group 
on the ( k - 1 )-simplices of K. 

Denote by V be the set of 0-cells of K, and byE the set of 1-cells of 
K. The fundamental group of the toric complex TK is then the right­
angled Artin group associated to the graph r = KC 1), 

(33) Gr = (v E V I vw = wv if { v, w} E E). 

Groups of this sort interpolate between Gr = zn in case r is a complete 
graph, and Gr = Fn in case r is a discrete graph. 

The toric complex construction behaves well with respect to simpli­
cial joins: TK*K' = TK x TK'· Consequently, Gr*r' = Gr x Gr'· 

A classifying space for the group GK is the toric complex Tt:.., where 
.6. = D.K is the flag complex of K, i.e., the maximal simplicial complex 
with 1-skeleton equal to the graph r = K(1). 

Finally, it is known from the work of Notbohm and Ray [24] that all 
toric complexes are formal spaces. In particular, all right-angled Artin 
groups are 1-formal, a fact also proved in [25]. 

9.2. Cohomology jump loci 

As noted above, H1 (TK, Z) = zn, with generators indexed by the 
vertex set V = [n]. Thus, we may identify H 1 (TK, q with the vec­
tor space cv = en' and H 1 (TK' c X) with the algebraic torus ( c X) v = 
(Cx)n. For each subset W ~ V, let cw be the respective coordinate sub­
space, and let (Cx)w = exp(Cw) be the respective algebraic subtorus. 

Theorem 9.2 ([26]). With notation as above, 

Rd.(TK) = C 0 u w and V~(TK) = U(Cx)w, 
w w 

where, in both cases, the union is taken over all subsets W c V for which 

LuEKv\wdimcHi-1-lul(lkKw(a),C);:::: d. 

In the above, Kw denotes the simplicial subcomplex induced by 
K on W, and lkL(a) denotes the link of a simplex a in a subcomplex 
L~K. 

In homological degree 1, the resonance formula from Theorem 9.2 
takes a simpler form, already noted in [25]. Namely, R 1 (Gr) = Uw cw, 
where the union is taken over all (maximal) subsets W C V for which 
the induced graph rw is disconnected. In particular, the codimension 
of the resonance variety R 1 ( Gr) equals the connectivity of the graph r. 
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Corollary 9.3. All toric complexes TK are straight spaces. 

Proof. By the above theorem, each resonance variety Ri(TK) is 
the union of a coordinate subspace arrangement, and each characteristic 
variety Vi(TK) is the union of the corresponding arrangement of coor­
dinate subtori. Consequently, all components of Vi (TK) are algebraic 
subtori, and TC 1 (Vi(TK)) = Ri(TK)· Q.E.D. 

9.3. 0-invariants 

In their landmark paper [3], Bestvina and Brady studied the geo­
metric finiteness properties of certain subgroups of right-angled Artin 
groups Gr, arising as kernels of "diagonal" homomorphisms Gr __, Z. 
In [26], Papadima and Suciu computed the homology of such subgroups, 
and, more generally, the homology of regular Z-covers of toric com­
plexes. In a related vein, Denham [8] investigated the homology of covers 
of toric complexes TK corresponding to "coordinate" homomorphisms 
1r1(TK) __, zr. 

The study of homological finiteness properties of regular, free abelian 
covers of toric complexes was pursued in [29], where a general formula 
for the Dwyer-Fried sets of such complexes was given. In our setting, 
this result may be restated as follows. 

Theorem 9.4 ([29]). Let TK be a toric complex. Then 

for all k, r 2 1. In particular, Of (TK) = R k (TK, Q) 0 • 

Proof. Follows from Theorem 7.6 and Corollary 9.3. Q.E.D. 

As a consequence, all the 0-invariants of a toric complex TK are 
Zariski open subsets of the Grassmannian Grr(Qn). 

When combined with Theorem 9.2 and the discussion following it, 
Theorem 9.4 allows us to compute very explicitly the Dwyer-Fried sets 
of toric complexes. Let us provide one such computation. 

Corollary 9.5. Let r be a finite simple graph, and let "' be the 
connectivity of r. Then n~ ( Gr) = 0, for all r 2 "'+ 1. 

Proof. Recall that codimR1 (Gr) ="'·Thus, codimur(R1 (Gr)) = 
"'- r + 1. The desired conclusion follows from Theorem 9.4. Q.E.D. 

In particular, if r is disconnected, then n~ ( Gr) = 0, for all r 2 1. 

Example 9.6. Let r be a tree on n 2 3 vertices. Label the non­
terminal vertices as v1, ... , v 8 , and the terminal vertices as v s+ 1 , .. .,, Vn. 
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The cut sets of r are all singletons, consisting of the non-terminal ver­
tices. Thus, the resonance variety RJ ( Gr, Q) is the union of the coordi­
nate hyperplanes Lj = {z E Qn I Zj = 0}, with 1 ~ j ~ s. Hence, 

(34) 
if r = 1, 

if r ~ 2. 

§10. Kahler and quasi-Kahler manifolds 

We now discuss the cohomology jumping loci and the Dwyer-Fried 
invariants of Kahler and quasi-Kahler manifolds. 

10.1. Cohomology ring and formality 

Let M be a compact, connected, complex manifold of complex di­
mension m. Such a manifold is called a Kahler manifold if it admits a 
Hermitian metric h for which the imaginary part w = r;s(h) is a closed 
2-form. The class of Kahler manifolds, includes smooth, complex pro­
jective varieties, such as Riemann surfaces. This class is closed under 
finite direct products and finite covers. 

Hodge theory provides two sets of data on the cohomology ring of M. 
The first data, known as the Hodge decomposition on Hi(M, C), depend 
only on the complex structure on M. The second data, known as the 
Lefschetz isomorphism and the Lefschetz decomposition on Hi(M,IR), 
depend only on the choice of a Kahler class [w] E H 1,1 (M,q. 

These data impose strong conditions on the possible Betti numbers 
bi = bi ( M), beyond the symmetry property bi = b2m-i imposed by 
Poincare duality. For example, the odd Betti numbers b2i+1 must be 
even, and increasing in the range 2i + 1 ~ m, while the even Betti 
numbers b2i must be increasing in the range 2i ~ m. 

Another constraint on the topology of compact Kahler manifolds was 
established by Deligne, Griffiths, Morgan, and Sullivan in [7]. For such 
a manifold M, let d be the exterior derivative, J the complex structure, 
and de = J- 1dJ. Then the following holds: If ry is a form which is closed 
for both d and de, and exact for either d or de, then ry is exact for dde. 
As a consequence, all compact Kahler manifolds are formal. 

A manifold X is said to be a quasi-Kiihler manifold if there is a 
compact Kahler manifold X and a normal-crossings divisor D such that 
X = X \ D. The class of quasi-Kahler manifolds includes smooth, 
irreducible, quasi-projective complex varieties, such as complements of 
plane algebraic curves. 
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Each quasi-Kahler manifold X inherits a mixed Hodge structure 
from its compactification X. If X is a smooth, quasi-projective vari­
ety with vanishing degree 1 weight filtration on H 1 (X,C), then X is 
1-formal. This happens, for instance, when X admits a non-singular 
compactification X with b1 (X) = 0, e.g., when X is the complement 
of a hypersurface in ClP'm. In general, though, smooth, quasi-projective 
varieties need not be 1-formal. For a detailed treatment of the subject, 
we refer to Morgan [22]. 

10.2. Characteristic varieties 

Foundational results on the structure of the cohomology support 
loci for local systems on smooth projective varieties, and more gener­
ally, on compact Kahler manifolds were obtained by Beauville, Green­
Lazarsfeld, Simpson, and Campana. A further, wide-ranging generaliza­
tion was obtained by Arapura in [1]. 

Theorem 10.1 ( [1]). Let X = X\ D, where X is a compact Kahler 
manifold and D is a normal-crossings divisor. If either D = 0 or 
b1 (X) = 0, then each characteristic variety V~(X) is a finite union of 
unitary translates of algebraic subtori of H 1 (X,Cx). 

In other words, for each i 2: 0 and d > 0, the characteristic variety 
V~(X) admits a decomposition into irreducible components of the form 
W = p · T, with 

• direction subtorus T = dir(W), a connected algebraic subgroup 
of the character torus 0°, where G = 1r1 (X); 

• translation factor p: G---+ Sl, a unitary character of G. 

In degree 1 and depth 1, the condition that b1 (X) = 0 if D # 0 may 
be lifted. Furthermore, each positive-dimensional component of Vi (X) 
is of the form p · T, with p a torsion character. 

In the quasi-projective setting, more can be said. The next theorem 
summarizes several recent results in this direction: the first two parts 
are from [10], the third part is from [4] and [2], while the last part is 
from [9] and [2]. 

Theorem 10.2 ([9, 10, 4, 2]). Let X be a smooth, quasi-projective 
variety. Then: 

(1) IfW andW' are two distinct components ofV1 (X), then either 
dir(W) = dir(W'), or T1 dir(W) n T1 dir(W') = {0}. 

(2) For each pair of distinct components, W and W', the intersec­
tion W n W' is a finite set of torsion characters. 

(3) The isolated points in V1 (X) are also torsion characters. 
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(4) If W = pT, with dimT = 1 and p -1- 1, then T is not a 
component of V1 (X). 

10.3. Resonance varieties 

In the presence of 1-formality, the quasi-Kahler condition also im­
poses stringent conditions on the degree 1 resonance varieties. 

Theorem 10.3 ([11]). Let X be a !-formal, quasi-Kiihler mani­
fold, and let {La} be the collection of positive-dimensional, irreducible 
components of Ri( X). Then: 

(1) Each La is a linear subspace of H 1 (X, q of dimension at least 
2c(a) + 2, for some c(a) E {0, 1}. 

(2) The restriction of the cup-product map H 1 (X, C)/\H1 (X, q ---+ 
H 2 (X, q to La 1\ La has rank c(a). 

(3) If a -1- (3, then La n Lf3 = {0}. 
(4) R~(X) = {0} U Ua:d:S:dimLa-da) La. 

Remark 10.4. Suppose X is a smooth quasi-projective variety with 
W1 (H1 (X, C))= 0. Then, as mentioned in §10.1, X is 1-formal. In this 
situation, each subspace La is isotropic, i.e., e(a) = 0. 

Remark 10.5. Suppose M is a compact Kahler manifold. Then of 
course M is formal, and Theorem 10.3 again applies. In this situation, 
each subspace La has dimension 2g(a), for some g(a) ::::0: 2, and the 
restriction of the cup-product map to La 1\ La has rank e(a) = 1. 

It is now a straightforward exercise to enumerate the possibilities 
for the first resonance variety of a Kahler manifold M, at least for low 
values of n = b1 (M): 

• If n = 0 or 2, then R 1(M) = {0}. 
• If n = 4, then R 1 (M) = {0} or C4 . 

• If n = 6, then R 1(M) = {0}, C4 , or C 6 . 

• If n = 8, then R 1 (M) = {0}, C 4 , C 6 , C8 , or R 1 (M) consists 
of two transverse, 4-dimensional subspaces. 

Using the computations from Examples 3.4 and 3.10, it is readily 
seen that all these possibilities can be realized by manifolds of the form 
M = Sg or M = Sg X sh, with Sg and sh Riemann surfaces of suitable 
genera g, h ::::0: 0. 

10.4. Straightness 

We now discuss in detail the straightness properties of Kahler and 
quasi-Kahler manifolds, and how these properties relate to 1-formality. 

Proposition 10.6. Let X be a !-formal, quasi-Kiihler manifold (for 
instance, a compact Kahler manifold). Then: 
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(1) X is locally !-straight. 
(2) X is !-straight if and only if W 1 (X) contains no positive­

dimensional translated subtori. 

Proof. Part (1) follows from Corollary 8.2, using only the !-formal-
ity assumption, while part (2) follows from Theorem 10.1. Q.E.D. 

In general, quasi-Kahler manifolds may fail to be locally 1-straight, 
as illustrated in Example 10.7 below. Perhaps more surprisingly, com­
pact Kahler manifolds may fail to be 1-straight; for a concrete example, 
we refer to [34]. 

Example 10.7. Let X be the complex Heisenberg manifold, i.e., 
the total space of the ex-bundle over ex X ex with Euler number 1. 
Then X is a smooth, quasi-projective variety with V1 (X) = {1}, yet 
R 1 (X) = e 2 . Thus, the tangent cone formula fails in this instance, and 
so X is neither 1-formal, nor locally 1-straight. 

Let (Y, 0) be a quasi-homogeneous isolated surface singularity. Then 
X = Y \ {0} is a smooth, quasi-projective variety which supports a 
"good" ex-action, with orbit space a smooth projective curve. More­
over, X deform-retracts onto the singularity link, which is a closed, 
smooth, orientable 3-manifold. 

Proposition 10.8. Suppose the curve Xjex has genus g > 1. Then 
X is straight, yet X is not 1-formal. 

Proof. According to formula (14) from [12], we have V1 (X) = 
H 1 (X,ex). Hence, by Lemma 6.6, X is straight. The fact that X 
is not 1-formal follows from [12, Proposition 7.1]. Q.E.D. 

We illustrate this result with a concrete family of examples. 

Example 10.9. Let X be the total space of the ex-bundle over 
the Riemann surface of genus g, with Euler number -1. Then X is 
homotopy equivalent to the Brieskorn manifold :E(2, 2g + 1, 2(2g + 1)). 
Assume now g > 1; then clearly X fits into the setup of Proposition 
10.8. Hence, X is straight, but not 1-formal. 

10.5. Dwyer-Fried invariants 

We conclude this section with a discussion of the 0-invariants of 
(quasi-) Kahler manifolds, and the extent to which these invariants are 
determined by the resonance varieties. 

Theorem 10.10. Let X be a 1-formal, quasi-Kiihler manifold (for 
instance, a compact Kahler manifold}. Then: 
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(1) OHX) = n\x, Ql) 0 and o;(x) <;;; Clr(R1 (X, Q)) 0 ' for r;::: 2. 
(2) If W 1 (X) contains no positive-dimensional translated subtori, 

then o;(X) = crr(R1 (X, Q) )0 , for all r ;::: 1. 

Proof. Part (1). Using only the !-formality assumption, the two 
statements follow from Corollaries 8.6 and 8.3, respectively. 

Part (2). In view of Theorem 10.1, the hypothesis is equivalent 
to W 1 (X) containing no positive-dimensional component not passing 
through 1. The conclusion follows from Corollary 8.4. Q.E.D. 

In general, though, the inclusion o;(X) <;;; crr(R1 (X,Q)) 0 can be 
strict, provided 2 ::; r ::; b1(X). The next theorem identifies a fairly 
broad class of smooth, quasi-projective varieties for which this is the 
case. An explicit example will be given at the end of Section 11. 

Theorem 10.11. Let X be a 1-formal, smooth, quasi-projective 
variety. Suppose 

( 1) W1 (X) has a !-dimensional component not passing through 1; 
(2) R 1 (X) has no codimension-1 components. 

Then O~(X) is strictly contained in cr2 (R1 (X,Q)) 0 . 

Proof. Set n = b1 (X), and identify H = H 1 (X, Q) with Qn. By 
assumption (1), the characteristic variety W 1(X) c (CX)n has a com­
ponent of the form W = p · T, with 

• T = exp(J! Q9 C), where J! is a !-dimensional subspace in H; 
• p = exp(27riq), where q is a vector in H \ J!. 

We claim that the line J! is not contained in the resonance variety 
R 1 (X, Q). For, if it were, the !-dimensional algebraic torus T would be 
contained in W 1 (X). But we know from Theorem 10.2(4) that Tis not 
a component of W 1 (X). Hence, there would exist a component W' with 
T ~ W'. Therefore, 

dir(W) = T of. W' = dir(W'), and 

T1 ( dir(W)) n T1 ( dir(W')) = J! ® C # {0}. 

This contradicts Theorem 10.2(1), thereby establishing the claim. 
In view of the above, and of assumption (2), the resonance variety 

R 1 (X,JR.) has codimension at least 2 in Hllt = H 1 (X,JR.). Therefore, the 
set 

is a proper subvariety of Gr2 (HJ!t). Hence, there is a non-zero vector 
r 0 E JR.n, and an open cone U containing r 0 , such that, for all r E U, the 
plane P spanned by rand J! intersects R 1 (X,JR.) only at 0. 
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Let 1r: lRn\ {0} -+ JRIP'n-1 be the projection map. Clearly, 1r(Zn\ {0}) 
is a dense subset of JRIP'n- 1 . Thus, 1r ( q + .zn) is also dense, and so 
intersects 1r(U). Hence, there is a lattice point). E zn such that 1r(q+.X) 
belongs to 1r(U). The rational vector q0 := q +>.then belongs to U. 

Let Po be the 2-dimensional subspace of H spanned by C and qo. 
By construction, P0 nR1 (X,Q) = {0}, and so PoE u2 (R1 (X,«:,Jn) 0 . On 
the other hand, the algebraic torus T0 = exp(Po Q9 q contains both 
exp(£ Q9 q = T and exp(27riq0 ) = p; therefore, T0 :::) pT. Consequently, 
dim(T0 n W 1 (X)) > 0, showing that Po c:f. O§(X). Q.E.D. 

§11. Hyperplane arrangements 

We conclude with a class of spaces exhibiting a strong interplay be­
tween the resonance varieties and the finiteness properties of free abelian 
covers. These spaces, obtained by deleting a finite number of hyper­
planes from a complex affine space, are minimal, formal, and locally 
straight, but not always straight. 

11.1. Cohomology jump loci 

Let A be an arrangement of hyperplanes in c£. To start with, we will 
assume that all hyperplanes in A pass through the origin; non-central 
arrangements can be handled much the same way, using standard coning 
and deconing constructions. 

Let X= X(A) be the complement of the union of the hyperplanes 
comprising A. Then X can be viewed as the complement of a normal­
crossing divisor in a suitably blown-up CIP'£. In particular, X has the 
homotopy type of an £-dimensional OW-complex. Moreover, this OW­
complex can be chosen to be minimal (Dimca-Papadima, Randell). 

Let G = G(A) be the fundamental group of the complement. Its 
abelianization, Gab, is the free abelian group of rank n = IAI. Thus, 
we may identify the character group G with the complex algebraic torus 
(CX)n. Let V~(A) = V~(X(A)) be the characteristic varieties of the 
arrangement. By Arapura's work [1], these varieties consist of subtori of 
(Cx )n, possibly translated by unitary characters, together with a finite 
number of isolated unitary characters. 

The cohomology ring A= H*(X(A), Z) was computed by Brieskorn 
in the early 1970s, building on pioneering work of Arnol'd on the coho­
mology ring of the braid arrangement. It follows from Brieskorn's work 
that the space X is formal; in particular, the fundamental group of X is 
1-formal. In 1980, Orlik and Solomon gave a simple description of the 
ring A, solely in terms of the intersection lattice L(A), i.e., the poset of 
all intersections of A, ordered by reverse inclusion. 



Resonance varieties and Dwyer-Fried invariants 393 

The resonance varieties R~(A) = R~(X(A)) were first defined and 
studied by Falk in [17]. Identifying H 1(X,q with en, we may view 
the resonance varieties of A as homogeneous subvarieties of en. It is 
known from work of Yuzvinsky that these varieties actually lie in the 
hyperplane {X E en I 2:::~=1 Xi = 0}. Moreover, it follows from [15] that 
resonance "propagates" for the Orlik-Solomon algebra. More precisely, 
if i ~ k ~ C, then Rt (A) r:;; R~(A); in particular, Rk(A) = R~(A). 

11.2. Straightness 

As above, let X = X(A) be an arrangement complement. Using 
work of Esnault, Schechtman, and Viehweg [16], one can show that 
the exponential map, exp: H 1 (X, C) --c> H 1 (X, ex), induces an isomor­
phism of analytic germs from (R~(X), 0) to (V~(X), 1), for all i 2: 0 and 
d > 0. We then have 

(35) TC1 (V~(A)) = R~(A), for all d > 0. 

In particular, all the resonance varieties R~(A) are finite unions of ra­
tionally defined linear subspaces. 

The tangent cone formula (35) was first proved in degree i = 1 (using 
different methods) by Cohen and Suciu [6] and Libgober [21], and was 
generalized to the higher-degree jump loci by Cohen and Orlik [5]. 

Proposition 11.1. Let A be a hyperplane arrangement in ce, with 
complement X. 

( 1) X is locally straight. 
(2) X is k-straight if and only if Vk (X) contains no positive-di­

mensional translated tori. 

Proof. For part (1), we must verify the two properties from Defi­
nition 6.1. Property (a) follows at once from Arapura's theorem 10.1, 
while property (b) follows from the tangent cone formula ( 35). 

For part (2), we must verify the additional property (c) from Defi-
nition 6.2. The conclusion follows again from Theorem 10.1. Q.E.D. 

As first noted in [31], there do exist arrangements A for which V1 (A) 
contains positive-dimensional translated components. By Proposition 
11.1, such arrangements are not 1-straight. We will come back to this 
point in Example 11.8. 

11.3. Dwyer-Fried invariants 

Let us define the Dwyer-Fried invariants of an arrangement A as 
O~(A) = O~(X(A)). Suppose A consists of n hyperplanes in ce. For 
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each 1 ~ r ~ n, there is then a filtration 

The next result establishes a comparison between the terms of this 
filtration and the incidence varieties to the resonance varieties of A. 

Theorem 11.2. Let A be an arrangement of n hyperplanes, and fix 
an integer k 2: 1. Then, 

(1) O~(A) ~ Grr(Qn) \ ar(Rk(A, Q)), for all r 2: 1. 

(2) Ol(A) = QIP'n-l \ R 1 (A, Q). 
(3) IfVk(A) contains no positive-dimensional translated tori, then 

O~(A) = Grr(Qn) \ ar(Rk(A, Q)), for all r 2: 1. 

Proof. Part (1) follows from Proposition 11.1(1) and Corollary 7.5. 
Part (2) follows from the !-formality of the complement of A and 

Corollary 8.6. 
Part (3) follows from Proposition 11.1(2) and Theorem 7.6. Q.E.D. 

In other words, each Dwyer-Fried invariant O~(A) is included in the 
complement of a union of special Schubert varieties of the form ar(L), 
where L runs through the components of Rk(A, Q), with the inclusion 
being an equality when Vk(A) = UL exp(L 0 C). 

Remark 11.3. In [18], Falk gives a decomposition of the resonance 
variety R 1 (A) into combinatorial pieces and shows that, projectively, 
each of these pieces is the ruled variety corresponding to an intersection 
of special Schubert varieties in special position in the Grassmannian 
of lines in projective space. It would be interesting to see if Falk's 
description sheds additional light on the Dwyer-Fried invariants O~(A). 

11.4. Resonance varieties of line arrangements 

For the rest of this section, we will concentrate on the resonance 
varieties R 1 (A) = R 1 (G(A)) and their relation to the Dwyer-Fried in­
variants O~(A) = O~(G(A)). We start with a briefreview of the former. 

By the Lefschetz-type theorem of Hamm and Le, taking a generic 
two-dimensional section does not change the group of the arrangement. 
Thus, we may assume A = { £1, ... , Cn} is an affine line arrangement in 
C2 , for which no two lines are parallel. 

The variety R 1 (A) is a union of linear subspaces in en. Each sub­
space has dimension at least 2, and each pair of subspaces meets trans­
versely at 0. The simplest components of R 1(A) are the local compo­
nents: to an intersection point VJ = njEJ .ej of multiplicity IJI 2: 3, there 
corresponds a subspace LJ of dimension IJI- 1, given by equations of 
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the form L:jEJ Xj = 0, and Xi = 0 if i ~ J. The remaining components 
correspond to certain "neighborly partitions" of sub-arrangements of A. 

If IAI :::; 5, then all components of R 1(A) are local. For IAI ~ 6, 
though, the resonance variety R 1(A) may have non-local components. 

Example 11.4. Let A be the braid arrangement, with defining 
polynomial Q(A) = zozlz2(zo-zl)(zo-z2)(zl -z2). Take a generic plane 
section, and label the corresponding lines as 6, 2, 4, 3, 5, 1. The variety 
R 1 (A) c C6 has 4 local components, corresponding to the triple points 
124, 135, 236,456, and one non-local component, Lrr = { x1 + x2 + x3 = 
x1 - X6 = x2 - X5 = X3 - X4 = 0}, corresponding to the neighborly 
partition II= (16125134). 

For an arbitrary arrangement A, work of Falk, Pereira, and Yuzvin­
sky [19, 30, 36] shows that any non-local component in R 1(A) has di­
mension either 2 or 3. 

11.5. 0-invariants of line arrangements 
We are in a position now where we can compute explicitly the 

Dwyer-Fried invariants of some line arrangements. We start with a 
simple example. 

Example 11.5. Let A be the arrangement with defining polyno­
mial Q(A) = ZQZ1Z2(Zl - Z2)· The variety R 1(A) c C4 has a single 
component, namely, the 2-plane L ={xI x1 + x2 + X3 = X4 = 0}, while 
V 1 (A) = exp(L). Using Theorem 11.2, we obtain 

if r = 1, 

if r = 2, 

if r ~ 3. 

Here, the Grassmannian Gr2(Q4) is the hypersurface in lP'(/\ 2 Q4) with 
equation P12P34- P13P24 + P23P14 = 0, while the Schubert variety u2(L) 
is the 3-fold in Gr2(Q4) cut out by the hyperplane P12 - P13 + P23 = 0. 

Proposition 11.6. Let A be an arrangement of n lines in C2 , and 
let m be the maximum multiplicity of its intersection points. 

(1) Ifm = 2, then O~(A) = Grr(Qn), for all r ~ 1. 
(2) If m ~ 3, then O~(A) = 0, for all r ~ n- m + 2. 

Proof. If A has only double points, then G(A) = zn, by a well­
known theorem of Zariski. Assertion (1) follows from Example 7.2. 

Now suppose A has an intersection point of multiplicity m ~ 3. 
ThenR1(A) has a (local) component L of dimension m- 1. The cor­
responding Schubert variety, ur(L), has codimension n- m + 2- r. 
Assertion (2) follows from Theorem 11.2(1). Q.E.D. 
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Proposition 11.7. Let A be an arrangement of n lines in C2 • Sup­
pose A has 1 or 2 lines which contain all the intersection points of mul­
tiplicity 3 and higher. Then O~(A) = ar(R1(A, Q)) 0 , for alll ::::; r::::; n. 

Proof. As shown by Nazir and Raza in [23], the characteristic va­
riety V1 (A) of such an arrangement has no translated components. The 
conclusion follows from Theorem 11.2(3). Q.E.D. 

In general, though, the "resonance upper bound" for the Dwyer­
Fried invariants of arrangements is not attained. We illustrate this claim 
with the smallest possible example. 

Example 11.8. Let A be the deleted B3 arrangement, with defining 
polynomial Q(A) = ZoZl(z5- zr)(z5- z~)(zr- z~). The jump loci of 
A were computed in [32]. Briefly, the resonance variety R 1 (A) c C8 

contains 7 local components, corresponding to 6 triple points and one 
quadruple point, and 5 non-local components, corresponding to braid 
sub-arrangements. In particular, codim R 1(A) = 5. 

In addition to the 12 subtori arising from the subspaces in R 1 (A), 
the characteristic variety V1 (A) c (Cx)8 also contains a component of 
the form p · T, where Tis a !-dimensional algebraic subtorus, and pis 
a root of unity of ·order 2. 

Let X = X(A) be complement of the arrangement. Then X is 
formal, yet not 1-straight. Moreover, the hypothesis of Theorem 10.11 
are satisfied for X. We conclude that O§(A) is strictly contained in 
a2(R1 (A)) 0 . 
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