Advanced Studies in Pure Mathematics 62, 2012
Arrangements of Hyperplanes—Sapporo 2009
pp- 233-260

Solutions for some families of Fuchsian differential
equations free from accessory parameters in terms of
the integral of Euler type

Katsuhisa Mimachi

An ordinary differential equation of regular singular type defined
on the Riemann sphere is called the Fuchsian differential equation free
from accessory parameters or the rigid Fuchsian differential equation, if
the equation is determined by the set of local data on monodromy, in
particular, its spectral type. )

About two decades ago, Yokoyama [29] classified such equations
into eight types, I, II, II1, IV, T*, IT* TII*, and IV*, under some condi-
tions from the viewpoint of the differential equation of Okubo type [23]
(see also [8]). While the equation of type I is nothing but the gener-
alized hypergeometric equation ,,11 FE, and that of type I* the Jordan—
Pochhammer equation, the equations of the other types are new ones.
Concerning the latter cases, very little has been understood: a restric-
tion into one variable case of Appel’s Fj3 satisfies the equation IT* of rank
4, the function satisfying the equation IT of rank 4 is found in [16], and
the functions satisfying the equation III* of rank 5 and of rank 7, the
functions satisfying the equation IT* of rank 4 and of rank 6, and the
functions satisfying the equation II of rank 6 are found in [9].

The purpose of the present paper is to give solutions for the equa-
tions of types II, III, TV, II*, IIT*, and IV* in terms of the integral of
Fuler type.

In this paper, we frequantly use the symbol

e(A) = exp(2mv/—1A4)

for abbreviation.
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§1. Fuchsian differential equations free from accessory param-
eters

For a Fuchsian differential equation with regular singular points
{p1,...,pn, 00}, let
X+ 0 Fmy, A2, e 1,0 A2+ mya, ...
o Mgy Ny L Ay My,
with A\jx — A1 € Z (k # 1) be a set of characteristic exponents at p; for

j=1,...,N and co. Then (m;1,m,z2,.. yMjn,) is called the spectral
type at p; and

(m1,1,m1,2, cees M my s M21,M2 2, ..., M2 0y 5 -

Y MNI,MN2, - -3 TNy s Moo, 1, Moo,2, - - - 7moo,n<x,)

the spectral type of the equation. For instance, the spectral type of
the Gauss hypergeometric equation is, under some genericity condition,
(1,1;1,1; 1,1) and that of the generalized hypergeometric equation
n+18y s, under some genericity condition, (1,1,...,1;1,n; 1,1,...,1),
S—— N——
n+1 n+1

which is also denoted by (171 1,n; 171 or (17+1; 1,n; 17H1). Ac-
tually, the generalized hypergeometric differential equation .1 F, is

{az{ I1 (Qz—i-ﬁi—l)}—z{ 11 (0z+ai)}}F:0,

1<i<n 1<i<n+1

where 8, = zd/dz, and its characteristic exponents are

071_6171_6%"'71_571 at ZZO,

0, 1,...,n—1, Zﬁi— Z o; at Z—_—l,
1<i<n 1<i<n+1

a1, 02, ..., Gpy1 at 2z =o0.

Thus its spectral type is (1"*1; 1,n; 1**1) under the genericity condi-
tion
n+1

n
Bi—Bi¢Z, 1<i<j<n+1, > Bi—> o:i¢Z,
=1 i=1

o —oaj €2, 1<i<j<n+l,
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where 8,411 = 1.

Similarly, the spectral type of the Jordan—Pochhamer differential
equation

plp+1)

QEF™ — pQ' () F" D + =22 QM ()P —
— R(2)F" D 4 (u+ 1R (2)F2 —... =0,
where
Qlz)=(z—c)(z—c2) (2= cn),
R(2)/Q(z) = iaj/(z —¢j)
iz
is (1,n —1;1,n — 1;--- ;1,n — 1) under the condition

pu+o; ¢Z for j=1,...,n, and o+ - -+, ¢7Z,
since the characteristic exponents at z = ¢;,7 =1,...,n are
0,1,....,n -2, u+n—1+aj,
and those at z = oo are

—(p+1),...,—(p+n—=1),—(p+ag+ - +ap).

Yokoyama’s classification of the Fuchsian differential equations ac--
cessory parameter free is asserted as follows [29]:
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rank | # of singu- spectral type
larities on IP*
I (GHGF) n 3 1" :1,n—1;1"
T* (Pochhammer) n n—1 1L,n—1;1,n—1;
.3 ln—1
11 2n 3 1™, n; 1™, n;
I,n—1,n
Ir* 2n 4 1", ;1" n+ 15
1,2n—1;n,n
111 2n+11|3 17 o1+ 1
1,n,n
IIT* 2n+1 14 1" n+1;1%n+1;
1,2n;n,n+1
v 6 3 12,4;23,1%,2
v 6 4 12,4;17% 4;
12,4;2,4

‘We consider their solutions.

It is known that the function of the form

n n+1
(1.1) / [Tt Tt — tim)® = dty -+ dtn,
C =1 i=1

where tg = 1, t, 11 = z and C a suitable cycle, satisfies the generalized
hypergeometric equation ,11[E,, which is the equation of type 1. See,
for instance, [17, 18].

It is also known that the function of the form

n+1
(1.2) /C H(t — ¢j) L,

where {,11 = 2,041 = p+n and C a suitable cycle, satisfies the
Jordan—Pochhammer equation, which is the equation of type I*. See,
for instance, [28].

In the remaining sections, we give the solutions for all the equations
of types II, III, IV, IT* IIT*, and IV* in terms of the integral of Euler

type.

For our purpose, we apply the framework of the twisted homology
theory developed by Aomoto in these decades [1, 2]. We refer the reader
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to [3, 14, 19, 20, 21, 22] for more knowledge about the twisted homol-
ogy and its application to the integral representation of the solution to
differential equations.

§2. The equation of type II

In this section, let £, be the locally constant sheaf (the local system)
determined by a function

@1 u®) =t T 8 [T it
1<i<n  0<i<n
on
T,=C"\{t, —to=0} U U {t; =0} UUZ y{t; —tix1 =0},
where to = 1 and ¢,41 = 2 : the sheaf consisting of the local solutions of
dL = Lw for w = du(t)/u(t).

Let H,(T,, L) be the n-th homology group with coefficients in £,
HX¥(T,,L,) the n-th locally finite homology group with coefficients in
L.

After fixing the variable z to be a real number satisfying 0 < z < 1,
the bounded chambers in the real locus T of T =T, are

(O<ts<ts+1<~~~<tn<z,>

(2.2)
te <tg_q1---<ti <1

for 1 < s<n and
z<t, <1
(2.3) 0 <ty <tggpr < o0 <y,
te <tg_1---<t1 <1

for 1 < s < n. Thus it follows from Theorem 5 of [3] that dim HY (T,
L) = 2n under the condition

Acomty=- =ty = — Z Ak — Z M—1k €Z, 1<p<qg<n-1,
p<k<q p<k<g+l
)\oo:tp:m:tn = —MAon — Z )\k - Z )‘k—l,k ¢ Za 1< p<n
p<k<n p<k<n+l

Hereafter we denote the exponent of an irreducible component of the

——

divisor D = n=Y(D) by Ap, where 7 : (PL(C))™ — (P}(C))" is the
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minimal blow-up along the non-normally crossing loci of D. If Ap is an
integer, the irreducible component or the exponent itself is said to be
resonant. For instance, Aco=t,=...=t, ¢ 7 means that the exponent of
7 {oco =t, =--- =t,} is not resonant.

For each ¢ = 0,1, let +v; be a simple loop which starts and ends
at a base point z for 0 < z < 1 and surrounds only the singular
point 7 in counterclockwise direction. It corresponds to a generator of
m1(C\{0, 1}), and induces an action of w1 (C\{0,1}) on the family of the
homology group H¥(T,,L.) on C\{0,1}.

(¢ Naw]
[eymn

Yo Y1

Fig. 1.

Considering the action of 7 on the chambers (2.3) shows that the
multiplicity of holomorphic solutions around 0, which correspond to the
eigenvalue 1, is n; considering the action of 7y on the chambers (2.2)
shows that the eigenvalue

(24) 6( Z ()\k +)\k,k+1))

s<k<n

for each 1 < s < n is multiplicity free. Moreover, it is seen that the
chamber

0 <ty <tgyy <--- <ty <2z,
1<t <o <tgq <y

gives the eigenvector for the eigenvalue (2.4).

Similarly, considering the action of v; on the chambers (2.2) shows
that the multiplicity of the eigenvalue 1 is n — 1, considering the action
on the chambers (2.3) for 1 < s < n— 1 shows that the multlphclty of
the eigenvalue

e()\()n + >\'n,n+1)

is m — 1, and the action on the chamber (2.3) for s = n shows that the
multiplicity of the eigenvalue

e(or + Ao+ > Aeki1)

1<k<n
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is free.

Next, to know the eigenvalues of the action of voo = 74 171_ 1 and
their multiplicities, we change the variables ¢; into t;l for 1 <i<n.
Then we have

ASC o
u(t) = pAnndt (to _ tn))\(]'n H £ H (ti+1 . ti)A”‘“,

1<i<n 0<i<n
where
A ==X = i — Adi, l<isn-—1,
A == — An—1n — Anntl — Aon

with t,,41 = 27! and to = 1. After fixing the variable =1 to be a real
number satisfying 0 < z7! < 1, the bounded chambers are

0<ty <tg1<--<tp<zl
te <ts_1---<ti1 <1

for 1 <s<nand

<ty <1
0 <ty <tgpr <- <tn,
ts <ts—q1---<t1 <1

for 1 < s < n. Hence, the multiplicity of the eigenvalue

e(_)‘n,n—kl)

is free and that of

e(~Aon = Asmts = D e+ Aeps1), 1<s<n
s<k<n

s n.

Consequently, the spectral type turns out to be (1%, n;n,n—1,1; 1™, n)
under the conditions

Z M+ Aopr1) €2, (1<s<1<mn),
s<h<l
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which is for the separation of the eigenvalues at 0,

Mot +Xon+ Y ki €7,

1<k<n

)\On + )\n,n-l-l ¢ Zv
Aot + Z Mo kt1 ¢ Z,

1<k<n—1
which is for the separation of the eigenvalues at 1, and
dont Y e+Meo1p) £2Z, 1<s<m,
s<k<n

> Okt Mo1p) €2, 1<s<l<n,

s<k<l—1

which is for the separation of the eigenvalues at co.
As a result, we have
Theorem 2.1. The function of the form

/ (tn . to))‘(’" H t;\i H (ti _ ti+l))\¢,i+1 dti - - dt,,
c 1<i<n  0<i<n

where tg = 1,t,11 = z and C a suitable cycle, satisfies the equation of
type II, whose rank is 2n.

§3. The equation of type II1

In this section, let £, be the locally constant sheaf determined by a
function

BD  ult)=(ta—to) [T 6 IT 6t
1<i<n—1 0<i<n

on
T, =C"\U{ty, —to=0} U U {t;=0} U Ul g{t; —ti1 =0},

where tg = 1 and ¢, 11 = 2.

For a fixed variable z such that 0 < z < 1, the bounded chambers
in the real locus Tg of T = T, are

(3.2) 0 <ty <top1 <~ <ty < 2
te <tg_1:--<ti1 <1
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for1<s<n-—1and
z<thp <1
(3.3) 0<ts <tspr <+ <tp,
ts <tsg—1--<t1 <1
for 1 < s < n (Remark that the latter one for s = n means (z < t, <
S <t < 1),
Thus dim HY (T}, £,) = 2n — 1 under the condition

Aoomtymmty == 3 = > Mg €2, 1<p<qg<n-—1,
p<k<gq p<k<q+1
Aco=t,=-=t, = —Aon — Z Ak — Z Me—1k €$Z, 1<p<n.
p<k<n p<k<n+1

Considering the action of vy on the cycles (3.2) for 1 < s <n—1
and (3.3) for 1 < s < n as in Section 2, it is seen that the multiplicity
of the eigenvalue

6( Z ()\k -+ /\k,k+1) -+ /\n,n+l)
s<k<n-1

for each 1 < s <n — 1 is free and the multiplicity of the eigenvalue 1 is
n.

Similarly, as for the action of 1, the multiplicity of the eigenvalue
1is n — 1, the multiplicity of the eigenvalue

e()‘On + >\'n.,n—|-1)

is n — 1, and the multiplicity of the eigenvalue

e(Ao1 + Aon + Z A k1)
1<k<n
is free.

As for the multiplicities of the eigenvalues of the action of v, we
consider

u(t) = An,nd1 (to — tn))\()n H tf‘i H (tivs — ti))\i,Hl’

1<i<n 0<i<n
where

AT == — N1 — Aditet, 1<i<n—1,

)\2,0 = _)‘On - An—l,n - >\n,n+1
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with t,41 = 27! and tg = 1. This shows that the multiplicity of the
eigenvalue

e(—Aon — Z Ak + Akom1,6) — Anmin — Anntl)

s<k<n-—1

for each 1 < s < n is free, and the multiplicity of the eigenvalue

e(_>‘n,n+1)

isn—1.

Therefore, the spectral type is (1" !, n;1,n — 1,n — 1;1%,n — 1)
under the condition

Z (M +Aeog1) F A1 €24, 1<s<n—1,
s<k<n—1

Z <>\k+)\k’k+1)¢Z, 1<s<l<n—-1,
s<k<l—1

which is for the separation of the eigenvalues at 0,

Aot + Ao + Z Mek+1 € Z,
1<k<n

)\On + >\n,n+1 ¢ Z,

Dot Y ek £ Z,
1<k<n—1
which is for the separation of the eigenvalues at 1, and

)\O,n + Z ()\k: + )\k,k+1) + As—l,s ¢ Z, 1 S S S n,

s<k<n-—1
Z ()\k'{')\kfl,k)%Z, 1<s<l<n,
s<k<i—1

which is for the separation of the eigenvalues at co.
Finally we reach the following.
Theorem 3.1. The function of the form

/(tn—tO)AO" IT & TI &=t dty - dtn,
C

I<i<n—1  0<i<n
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where to = 1,1p+1 = z and C a suitable cycle, salisfies the equation of
type III, whose rank is 2n — 1.

It is worthwhile to note that the function (3.1) can be obtained from
(2.1) by the specialization A, = 0.

84. The equation of type IV

In this section, let £, be the locally constant sheaf determined by a
function

(4.1) u(t) = H tf‘i H (ti _ to))\oi H (ti _ti+1)>\i,i+1

i=1,2  i=1,3,4 i=1,2,3,4
on
T,=CY\UZ, {t; =0} UUjm134{ti—=1=0} U, {t; —tis1 =0},
where tg = 1 and t5 = z.
For a fixed z such that 0 < z < 1, the bounded chambers in the real

locus Tgr of T' =T, are

0<t2<t3<t4<z,)
b)

0<t; <ty <tz <ty <2),
O<t<to<u<u<a (TG0

z<t4<t3<1,>
b

z2<ty <tz <ty <t; <1
( 4 3 2 ! )’ (0<t1<t2<t3

z <ty <tz <1, Pty <1,
0<tz<ts ’ <0<t1<t2<t3<t4>’
to<ti <1

z <ty <1,
and 0 <ty <tz <ty
to <t1 <1

Thus dim HX (T}, £,) = 7 under the condition
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Aoomtymmty == 3 Me— > Mp¢2Z, 1<p<qg<2
p<k<q p<k<g+1
Moomtymrmty == D dok— . M-k ¢Z, 3<p<q<4
p<k<q p<k<q+l
>\oo:t1:~~:tq = — Z )‘k - Z >\Ok:
1<k<2 3<k<gq
- Y Mk €Z, 3<g<4,
1<k<g+1
)‘oozt2='--=tq =-—Xy— Z Aok — Z )\k—l,k ¢ Z, 3<qg<4
3<k<gq 2<k<g+1

As for the action of v, the multiplicities of the eigenvalues

6()\1+/\2+ Z Ak7k+1)7 e(/\2-|— Z )\k,k+1)

1<k<4 2<k<4

are both multiplicity free, and the multiplicity of the eigenvalue 1 is 5;
as for the action of 7;, the multiplicities of the eigenvalues

e( Z (Ao + A1) e(Roa+ Ags), 1
k=34
are all 2, and the multiplicity of the eigenvalue
e( D Mokt D M)

k=1,3,4 1<k<4

is free.

As for the action of v, we consider the function

A ) L
u(t) = Z)\45 H tz ¢ H (1 — t,L‘)AOl H (ti-‘;—l — ti))\”H‘l,

1<i<4 i=1,3,4 1=1,2,3,4

where
\oo =X = Aim1i = Aditr, i=1,2,
' =Agi = A1 — Aiirt, i=3,4,
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with t5 = 27! and #g = 1. It is seen that the multiplicity of each of the

eigenvalues
6(“/\04 — )\34 — )\45) and 6(—)\45)

is 2, and the multiplicity of each of the eigenvalues

e(=A1 — Ay — Z Aok — Z Noe+1)

k=1,3,4 1<k<4
e(—Ag — E Aok — g Akk+1)s
k=34 1<k<4
and e(—Xo3 — Aoa — g Akk+1)
2<k<4

is free.
Thus the spectral type is (511;2221;22111) under some genericity
condition.

At this stage, we impose a resonace condition
(4.2) Mymtamtg=ta=1 + 3= Ao1 + A2 + A2z + Aoz + Aza + Aoa + 3= 0.

As a result, a subspace which is invariant with respect to the action of
the monodromy group emerges; it consists of the regularizable cycles, it
has a spectral data (411;222;21111), and it gives the solution space of
the equation of type IV. We proceed to that point.

First, it is important to note that the resonance (4.2) leads to the
nontriviality of the kernel of the map ¢« : Hy(T, L) — HJ(T,L). The
dimension of the kernel is one, and thus the dimension of the image is
6. The image Im. is called the space of regularizable cycles. (See [19].)

Secondly, the chambers

0<t2<t3<t4<z,>

0 <ty <ty<ts<ty<z),
( ! 2 3 4 Z) < 1<t <o

are regularizable even if the resonance condition (4.2) is imposed, and
give the eigenvectors with the eigenvalues

e +det D Aeksr), Qo+t D Aerr),

1<k<4 2<k<4

with respect to the action of v9. Thus the spectral type at 0 of the space
of regularizable cycles must be (114).
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On the other hand, the chamber
(Z<t4<t3<t2<t1<].)

cannot be regularizable under the resonance condition (4.2). Thus (222)
is the specral type at 1 of the space of regularizable cycles.

Moreover, if we consider

uty =2 JT 67 I a=t* [ (e =t

1<i<4 i=1,3,4 i=1,2,3,4

for 0 < 271 < 1, it is seen that the chambers

(O<t1<t2<t3<t4<271), (

0<ts <ty<zl
and ’
1<t <ty

O<t2<t?,<t4<2_17
1<ty ’

are regularizable, even if the resonance condition (4.2) is imposed. Hence,
either the eigenspace with the eigenvalue e(—Xgqy — Azq — Ayg5) or that
with e(—\45) becomes one dimensional space. It means that spectral
type at oo is (11112).

Therefore, the spectral type of the space of regularizable cycles turns
out to be (114;222;11112).

1,1,5 at 0 1,1,4 at 0
1,2,2,2 atl — (IV) 2,2,2 at 1
1,1,1,2,2 at oo 1,1,1,1,2 atoo

Consequently, we have

Theorem 4.1. The function of the form
/ IT e II -t I Gt —ticn) oot dty---ds,
Ciz1,2 4=1,34 i=1,2,3,4
where
Aot + A2+ Az + Aoz +Azg +HAos +3=0, to=1, t5=xz2

and C a suitable cycle, satisfies the equation of type IV, whose rank is
6.
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Remark. The spectral type of the function ¢ which is obtained from
the integral in the case III of rank 5 multiplied by (1 — 2) 04 = (1 —t4)*04
is (311;221;2111), and the characteristic exponent corresponding to the
solution around 1 whose multiplicity is free is g1 + A2 + A2z + Aoz +
Az4+Aos + 3. Euler transfrom of ¢ under (4.2) is nothing but the integral
in Theorem 4.1.

85. The equation of type IV*

In this section, let £, be the locally constant sheaf determined by a
function

(51) u(t) = (t2 - C))\28 H {tf\l (t,’ - to))\m (ti - ti+1)>\i,i+1}
i=1,2
on
T, = (C2\{t2 —C= O}U
U2, (=0 u{ti—to=0}U{t; —tis1=01}),
where tg = 1 and t3 = 2.

After fixing the variable z and parameter c to be real numbers sat-
isfying 0 < z < ¢ < 1, the bounded chambers in the real locus T of
T =T, are

(0<t1<t2<2), (0<t2<z,t2<t1<1),
(0 <ty <toy, z <ty <c), (z<ta<e ta <ty <1),
(0 <ty <tg, c<ta <1), (e<ta <ty <1).

Thus dim HY(T,, £,) = 6 under the condition

Acomti=t; = —A2¢ — Z Mk + Aok + Ak et1) € Z,
1<k<2

Aoo=t; = —A1 — Ao1 — A2 ¢ Z,
Aoo=t; = —A2 — Aoz — A2e — A12 — Aoz & Z.
The eigenvalues of the action of vy are
e(Ar + A2+ A2+ A2s),  e(Aa + Aes),

each with multiplicity free, and 1 with multiplicity 4; the action of -,

are
e(A2e + Az3)
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with multiplicity 2, and 1 with multiplicity 4. To know the eigenvalues
of the action of v and 7o, fix z and cto be 0 < ¢ < 1 < 2z < co. Then
it turns out that the eigenvalues of the action of v, are

e(Aoz + A23), e(Ao1 + Aoz + A1z + A23),

_each with multiplicity free, and 1 with multiplicity 4; those of the action
of oo are

e(— Z (Aoi F X+ Xiir1) — Aze)s e(—Ao2 — A2 — Aaz — Age),
i=1,2

each with multiplicity free, and e{A23) with multiplicity 4.

Therefore, the specral type of the space of regularizable cycle is
(411;42;411;411) under the conditions:

Z (A + Appy1) € Z, Ak + Ak k1 € Z, k=1,2,
k=12

which is for the separation of the eigenvalues at 0,
A2e + A23 ¢ Z,

which is for the separation of the eigenvalues at c,

> ok +Mepr1) €2, Aokt epr1 €2, k=1,2,
k=1,2

which is for the separation of the eigenvalues at 1, and

Age + Z (A +Xok + Appr1) €Z, Agc+ A2+ Z (Ak + Aok) ¢ Z,
k=12 k=1,

Ao+ o2+ Aoc+ A2+ A3 €7, Ao+ Aoz + Aae + A2 € Z,

A+ Ao ¢ Z, A3 ¢Z,
which is for the separation of the eigenvalues at oo.
The combination of these facts leads to
Theorem 5.1. The function of the form
/(t2 —o* ] {tji (t: — to)™ (t; —ti+1)’\@"i+l} dtydts,
c i=1,2

where tg = 1,t3 = z and C a suitable cycle, satisfies the equation of type
IV*, whose rank is 6.
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§6. The equation of type IIT*

In this section, let £, be the locally constant sheaf determined by a
function

(6.1)  u(t) = (t1 — )™ (tn — to) o H N H (t; — tipp) oert

1<i<n 1<i<n

on
T, =C"\{ti—c=0}U{t,—to =0 UU; {{ti=0}U{t; —tix1 =0}},

where t,+1 = z and tg = 1. After fixing the variable z and parameter ¢
to be real numbers satisfying 0 < z < ¢ < 1, the bounded chambers in
the real locus T of T'= T, are

0<ty<tei1<--<ty<2,
ts <ts_1--<t1 <c

for1 <s<nand

z<ty, <1
0<ts <top1<-<tn,
ts <ts_1---<t1 <c

for 1 <s<mnand
(z <tp, < <t <ec).

Thus dim HY(T;, £,) = 2n + 1 under the condition

Aoomtimrmty = ~Me— D h+Mepn) €2, 1<g<n—1,

1<k<gq
Asomtimmty = =M —Aon = D Ak + Meki1) € Z,
1<k<n
Moomty=rmty == O b+ Xeo1k) = Agqn1 2, 2<p<g<n—1,
p<k<q
Aoomtymmty = —Aon = 3 Mk +Xo1k) = Anmi1 2, 2<p<n.
p<k<n

The eigenvalues of the action of vy are

e( Z M+ Apkt1)), 1<s<n

s<k<n
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with multiplicity free and 1 with multiplicity n + 1; the action of v, are

eMe+ > Mokt

1<k<n

with multiplicity free and 1 with multiplicity 2n; the eigenvalues of the
action of ; are
e()‘On + /\n,n+1)

with multiplicity n and 1 with multiplicity n + 1.

The eigenvalues of the action of v, is derived from

u(t)
= Mottt (¢ — )Mo (g — )Mo H t?? H (tigr — t:) i,
1<i<n  0<i<n
where
—A1 — Are — A1z, =1,
AT = —Ai = Aim1i — Aijir1, | 2<i<n—1,

—Aon — Ap — >\n—1,n - /\n,n+17 t=mn,

with t,,1 = 27! and ¢y = 1. This shows the eigenvalues of the action of
Yoo Are

e(=don —Ae = D Ok + Mepr1))s

1<k<n

e(—Xon — Z Ak + Ak—1,k) = Annt1), 2<s<m,

s<k<n

each with multiplicity free, and e(—\, n41) with multiplicity n + 1.
Thus, the spectral type is (1", n+ 1;n,n+ 1;1,2n;1™,n+ 1) under
the conditions :

> Mkt Mer) €2, 1<s<l<n,
s<k<l—1

which is for the separation of the eigenvalues at 0,

Ate + Z Meket1 € Z,

1<k<n
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which is for the separation of the eigenvalues at c,

>\On + )‘n,n+1 ¢ Z»

which is for the separation of the eigenvalues at 1, and

Ate + Aon + Z Mg+ Mepgi) + M € Z,

1<k<n—1
Aon + Z (M + A1) € Z, 2<s<n,
s<k<n
Are + Z (M + Ak kr1) + A1, £ Z, 2<s5<n,
1<k<s—2

which is for the separation of the eigenvalues at co.
It means
Theorem 6.1. The function of the form
/ (1 —ee(tn —to)or T 6% J] @ —tir) ost2dty - di,
¢ 1<i<n  1<i<n

where tg = 1,t,41 = z and C a suitable cycle, satisfies the equation of
type III*, whose rank is 2n + 1.

§7. The equation of type II*

In this section, let £, be the locally constant sheaf determined by a
function

(7D ult)= (- (ta—to)* [ 4 [] i~
1<i<n—-1 1<i<n

on
T, =C\{t1—c=0}U{t,—to = 03U} {t; =0 JUUT, {t;—t; 1 =07},

where t,4+; = z and {y = 1.

After fixing the variable z and parameter ¢ to be real numbers sat-
isfying 0 < z < ¢ < 1, the bounded chambers in the real locus Tr of
T =T, are

0 <ty <tep1 <--<tp<2,
ts <tsg_1---<ti1 <c
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for1<s<n-—1and

z2<ty, <1
0<ts <tgyr <+ <tp,
ts <ts_q1--<t1 <c

for 1 <s<nand
(z<ty, <---<t1<c).

Thus dim H¥(T}, £,) = 2n under the condition

)\oo=t1=~~=tq =—A1c — Z ()‘k + )‘k,k+1) ¢ Za 1<g<n-— 17

1<k<gq
Aoomtizmty = —AMe = don = Y e+ Mept1) = Anmir € Z,
1<k<n—1
Aoomtymrmty == D (e Mem1k) = g1 £ Z,
p<k<gq

2<p<gsn-—1,

/\ooztp=~~=tn = _>\On - Z ()\k + Ak—l,k) - )\n—l,n - )\n,n—l-l ¢ Z;
p<k<n—1 .

2<p<mn.

The eigenvalues of the action of vy are
eQnntit D, Akt ki), 1<s<n—1
s<k<n-—1

with multiplicity free and 1 with multiplicity n + 1; the action of v, are

e(A1e + Z Ak + Ak k1))

1<k<n

with multiplicity free and 1 with multiplicity 2n — 1; the eigenvalues of
the action of v; are
e(>\0n + )\n7n+1)

with multiplicity n, and 1 with multiplicity 7.
The eigenvalues of the action of v, is derived from
u(t)

— C>\1cz>\n,n+1 (C_l _ tl))\lc (tO _ tn)AOn H tz)‘zoo H (ti+1 _ ti)M’H'l,
1<i<n 0<i<n
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where
—A1 — Ae — A2, =1,
A = —Xi = Aim1d — Adit1, 2<i<n—1,
_)\On — )\n—l,n - An,n~|—17 i = n,

with t,,1 = 27! and t¢ = 1. This shows the eigenvalues of the action of
Yoo L€

e(—don —Ae— Y e+ Aeki1) = Anni),

1<k<n
e(_)\On - Z (Ak + Ak—l,k) - )\n—l,n - An,n-i—l)) 2<s< n,
s<k<n-—1

each with multiplicity free, and e(—Ap 1) with multiplicity n.

Thus, the spectral type is (1”1, n + 1;1,2n — 1;n,n;1",n) under
the condition

Anmgr Y Qe+ Xeppr) ¢2, 1<s<n-1,

s<k<n—1

> Okt Mki) €2, 1<s<l<n-—1,

s<k<l-—1

which is for the separation of the eigenvalues at 0,

Mt Y. M1 €2,

1<k<n—1
which is for the separation of the eigenvalues at c,

/\On + >\n,n+1 ¢ Z,
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which is for the separation of the eigenvalues at 1, and

MetAon+ Y wFAeer) ¢ 2,
1<k<n—1

Aon + Z Ak + A1) + Ape1n € Z, 2 <s<n,

s<k<n—1

Are + Z Ak + Akkr1) +Aso1 € Z, 2<s<n,
1<k<s—2

Z Ak + Xe—1,k) ¢ Z, 2<s< <,
s<k<l—1
which is for the separation of the eigenvalues at co.

Finally, we obtain

Theorem 7.1. The function of the form

/ (=) et —to)n [T & T -t dty - dta,
C

1<i<n—1  1<i<n

where tg = 1,t,+1 = z and C a suitable cycle, salisfies the equation of

type IT*, whose rank is 2n.

68. Supplements

Apart from the viewpoint of Okubo equations, Oshima recently
studies the Fuchsian differential equations free from accessory parame-
ters [24, 25, 26]. He demonstrates that there exist quite many examples

of such equations; indeed, the cardinality of them is described
following tables: '

in the

# of irreducible rigid Fuchsian differential systems with 3 singularities

on P!

order |23 (4|56 | 7|8 |9 |10 | 11 | 12 13

14

# 11113|5|13|201]45|74]| 142|212 | 421 | 588 | 1004

# of irreducible rigid Fuchsian differential systems

order [2 34| 5|61 7|8} 9 10 | 11 | 12 13

14

# 1126|1128 44|96 | 157 | 306 | 441 | 857 | 1117

2032
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On the other hand, in addition to Oshima’s work, we refer the reader
to the works by Katz [13], Simpson [27] Dettweiler and Reiter [5, 6],
Kostov [15], Gleizer [7], and Crawley—Boavey and Shaw [4], who study
intimately related topics from the viewpoint of rigid local systems (See
also [10, 11, 12, 30]).

Finally, for our convenience, we illustrate the diagrams to express
the integrands u(t) treated in the present paper. Here o———o means
(a — b)*=> up to a constant factor. a b

I (Generalized hypergeometric function) :

0 0 0 0 0
1— b — tg— tg — -+ —tn1 — b, —2
' ? ’ 1"t at 0
1,n at 1
1™t at oo
I* (Pochhammmer function):
c 0 1,n~1 azo
| ,T— at c;
02\\15 .
. 1,n—1 atec,
/ 1,n—1 atoo
Cn
II:
0 0 0 0 0
. | | !
/
1— ) — tg— tg — === — b1 — 1y,
\Z
1", n at 0

Iln—1n atl
1", n at co
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Ir*:
0 0 0 0
I !
/
c—ti—tg—t3— - —tp—1 —typ
\Z
11 n+1 at0
n,n at 1
1,2n -1 at ¢
1" n at oo
IIT :
0 0 0 0
I !
1— b — tg— tg— oo _tn—l——tn<z
1" 1 n at 0
IL,n—1,n—1 atl
1"n—1 at co
ITT* .
0 0 0 0 0
. | |
c—ti—tag—tg—— - —tn_l—tn/
\Z
1", n+1 at0
n,n+1 at 1
1,2n at ¢
1" n+1 atoo
IvV:
0 0 1 1 12,4 at0
] ] 25 a1
1—t1—t2—t3—t4——2 14,2 at co

(with the resonance around t; =to =3 =14 = 1)
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IAVA
0 0 1 1,1,4 at0
| [/ 1,1,4 atl
l— 1ty — it — ¢ 2,4 atc
1,1,4 atoo

z

This diagram is very useful in several situations. In fact, when we
find our integrands, it played a crucial role.

The integrands u(t) in the case II of rank 4 and that of rank 6,
written in subsections 5.5 and 5.10 of [9], are depicted as

| Lol
1 1
l—tl—t2< and 1—t1—t2——t3<2-

z

It is easy to guess that u(t) for type II of rank 2n might be

Lol |
1
1 — by — by — g — oo —tn—l—'——tn<z :

The integrands u(t) in the case IT* of rank 4 and that of rank 6, written
in subsections 5.2 and 5.7 of [9], are depicted as

/ and ¢ — t] — fg — 13 .
™~ o

z

C—‘_tl—tg

Tt is easy to guess that u(¢) for type IT* of rank 2n might be
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0 0 0 0

. P

c— 1ty —tg——tg— - ——tn—l—tn\

Similarly, the integrands u(t) in the case IIT* of rank 5 and that of rank
7, written in subsections 5.4 and 5.9 of [9],

0 0 0 0 0

R .
< and ottty O
z

~

z

lead to the integrand

0 0 0 0 0

| 1
¢c— 1ty — tg — tg— ------ —tp —t

~
BN

z

for type IIT* of rank 2n + 1. Furthermore, considering the fact that the
integrand in the case II is obtained from the integrand in the case IT*
by the specialization ¢ = 1, the integrand in the case IIT of rank 2n + 1
might be ‘

R |
1
e
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