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Abstract.

We shall construct the quantized g-analogues -of the birational
Weyl group actions arising from nilpotent Poisson algebras, which
are conceptual generalizations, proposed by Noumi and Yamada,
of the Bicklund transformations for Painlevé equations. Consider
a quotient Ore domain of the lower nilpotent part of a quantized
universal enveloping algebra for any symmetrizable generalized Car-
tan matrix. Then non-integral powers of the image of the Chevalley
generators generate the quantized g-analogue of the birational Weyl
group action. Using the same method, we shall reconstruct the quan-
tized Backlund transformations of g-Painlevé equations constructed
by Hasegawa. We shall also prove that any subquotient integral do-
main of a quantized universal enveloping algebra of finite or affine
type is an Ore domain.
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§0. Introduction

The main theme of this article is a representation theoretic method
for quantizing discrete symmetries of Painlevé equations and isomon-
odromic deformations. Such discrete symmetries, often called Backlund
transformations, play central roles in the theory of Painlevé equations
and isomonodromic deformations. We could expect that this is the case
in quantum settings.

In this article the term “quantization” means canonical quantization
that replaces commutative Poisson algebras A°! with non-commutative
algebras A and Poisson algebra automorphisms of A° with algebra auto-
morphisms of A. If A% is an integral domain and Q(.A%) denotes the field
of fractions of A°, then a birational action of a group G on Spec A% is
identified with an algebra automorphism action of G on Q(A%). There-
fore if a classical symmetry is represented by a birational action of G
on a Poisson integral affine scheme, then its quantization should be an
algebra automorphism action of G on a non-commutative skew field.

Note that g-difference analogue (g-analogue for short) or g-difference
deformation (g-deformation) does not always mean quantization. In this
article we shall deal with four types of classical and quantum systems,
ordinary differential versions of classical systems and their quantizations,
and g-analogues of classical systems and their quantizations.

Sections 1 and 2 are devoted to summarizing preparatory results
on quantized universal enveloping algebras and localizations of non-
commutative rings. We shall show that a quantized universal envelop-
ing algebra of finite or affine type is an Ore domain (Theorem 2.14).
The ¢ = 1 cases were treated in [23] and [1]. Moreover we shall show
that their subquotient integral domains are also Ore domains (Corollary
2.15). In Section 3, we shall explain how to justify non-integral powers in
fields of fractions along the lines of the work [6] by Iohara and Malikov.

0.1. Quantized g-analogue of birational Weyl group actions

In Section 4, we shall construct a quantized g-analogue of the bira~
tional Weyl group action arising from a nilpotent Poisson algebra.

A series of works by Okamoto [19, 20, 21, 22] showed that the
Painlevé equations P1p, P, Pry, Pv, and Pyy have affine Weyl group
symmetries of type Agl), C’él), Agl), Agl) , and Dfll) respectively. Each of
the affine Weyl groups birationally acts on dependent variables and pa-
rameters of the corresponding Painlevé equation. Its birational actions
preserve the continuous flow generated by the Painlevé equation and are
called Bécklund transformations.
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In [14], Noumi and Yamada generalized the birational affine Weyl
group actions of type Agl), Agl), and Dfll) (the cases of Pry, Py, and
Pv1) to the Weyl group associated to an arbitrary generalized Cartan
matrix (GCM for short). If the size of GCM is equal to m, then the
Weyl group birationally acts on a 2m-dimensional space of m dependent
variables and m parameters. For each m 2 2, they also constructed a
system of differential equations with m dependent variables and m pa-
rameters on which the affine Weyl group of type Ag)_l acts as Backlund
transformations [15]. It is called a higher order Painlevé equation of

type Aﬁ})_l.
in [13]. _

In [17], Noumi and Yamada also proposed the further generalization
of the birational Weyl group action.

Fix an arbitrary GCM. Let g be the Kac-Moody algebra associated
to the GCM, b its Cartan subalgebra, and ny its upper and lower parts
([7])- The Kostant—Kirillov Poisson bracket { , } makes the symmetric
algebra S(n_) Poisson and hence n* = SpecS(n_) is regarded as a
Poisson scheme. Let J be an arbitrary Poisson prime ideal of S(n_)
and denote by Ag' = S(n_)/J the residue class ring modulo J°. Then
Ag! is a Poisson integral domain and hence Spec A is a Poisson integral
subscheme of n* . Denote by A = AS'®S(h) the tensor product algebra
of AS! and S(h). The Poisson structure of A§' uniquely extends to that
of A so that S(b) is Poisson-central in A°.

In [17], Noumi and Yamada constructed. a birational Weyl group
action on Spec A% = Spec A§' x h. They called A a nilpotent Pois-
son algebra. Spec.A§ and b are identified with the space of dependent
variables and that of parameters respectively.

Let us explain the quantized g-analogue of the above setting.

Let A = [a;j]i,jer be a symmetrizable GCM symmetrized by a family
{d; }icr of positive rational numbers. Denote by {a; };cr the set of simple
roots and by {a) };cr the set of simple coroots. Let d be the least
common denominator of {d;};c;. Set the base field F by F = Q(g'/%)
and ¢; € F by ¢; = ¢%.

Let U, be the quantized universal enveloping algebra of type A over
F, U? its Cartan subalgebra, and UZF its upper and lower parts ([11]).
Let J, be an arbitrary completely prime ideal of U, and denote by
Ago = Uy /J, the residue class ring modulo J,. Assume that Ay is
an Ore domain. For example, if A is of finite or affine type, then Ago
is always an Ore domain. See Corollary 2.15. For the construction of
examples for an arbitrary case, see Section 2.4.

Following this work, Nagoya constructed its quantization
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Denote by A, = Ag,0 ® U? the tensor product algebra of A, and
U?2. Then A, is also an Ore domain. Denote by Q(A,) the skew field of
fractions of A,. Let {f;}icr be the images in A, of the lower Chevalley
generators {Fi}ier of Uy . In particular, f; (i € I) satisfy the g-Serre
relations. Assume that f; £ 0 for all ¢ € I.

Denote by §; the action on Ug of the simple reflection s; € W for
i € I. The action of §; naturally extends to the action on Q(A,) so that
3; trivially acts on Ag .

In Section 4, we shall obtain the following results:

(1) For each ¢ € I, the conjugation action ~( fz.a'y) of the non-

Vv
ay

integral power f" ; on Q(Ay) formally given by v(f;* )z =

ff‘iv T fi_o“'v for z € Q(A,) is well-defined. (See Section 4.1.)
(2) For each ¢ € I, define the operator S; acting on Q(Ag) by

S = 3;0 'y(f;a"v) = ny(ff“'v) 0§ Then S; (i € I) satisfy the
defining relations of the Weyl group. In particular the braid
relations of S; (i € I) are derived from the Verma relations of

the Chevalley generators. (See the proof of Theorem 4.3.)

Thus we can construct a Weyl group action on Q(A,), which is the
quantized g-analogue of the birational Weyl group action arising from a
nilpotent Poisson algebra. For details, see Section 4.

0.2. Quantized birational Weyl group actions of Hasegawa

In Section 5, we shall reconstruct the quantized (g-analogue of) bi-
rational Weyl group actions of Hasegawa [4].

In [8], Kajiwara, Noumi, and Yamada introduced a g-analogue of
the fourth Painlevé equation Pry. It is called a g-Painlevé IV equation
gPrv. They also constructed a birational action of the affine Weyl group
of type Aél) preserving the discrete flow generated by ¢Pry.

Based on this work, in [4], Hasegawa constructed the quantized g-
analogue of the birational Weyl group action associated to an arbitrary
symmetrizable GCM.

Apparently Hasegawa’s quantized g-analogues are different from those
explained in the preceding subsection. But we can reconstruct the for-
mer by the same method as the latter.

We follow the notation and the assumptions on a GCM, roots, and
coroots, etc. in the preceding subsection. Assume that if ¢ £ j and
a;j # 0, then ¢;; = £1 and ¢;; = —¢;;, and otherwise ¢;; = 0.

Let B, be the associative algebra generated by {kgﬂ, fi}icr with
following defining relations:

kiky ' =k Mk =1, kiky = kiks,
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-1 —Qgj5 —€ij Q45
kifikit =q; 7 f5,  fifi=q; M fifi.

Note that the last formula is a sufficient condition for the g-Serre rela-
tion. Define the algebra U by U2 = F [{a'}ies], the Laurent polyno-
mial ring over F generated by {af'};c;. We identify a; with q?"v. Define
the algebra A, by A, = B, ® B, ® U, 2, the tensor product algebra of B,
By, and UQ. Then .Zq is an Ore domain and hence can be embedded in
the skew field of fractions Q(.Zq).

Define f;1, fiz € Bq@Bq by fi1 = fi®l and f;s = k:1®fz Note that
fi1 + fiz is the image of the coproduct of a lower Chevalley generator
in the quantized universal enveloping algebra. Identify f;; ® 1, fio ®
LI®I®a; € ,Zq with fi1, fio € By ® By, and a; € Ug respectively.
Define F; € Q(A,) by F; = a7 f;;' fia for i € I. Do not confuse these
F; with the lower Chevalley generators. Let A, be the subalgebra of
Q(.Zq) generated by {F;, afﬂ}ie 1. Note that a; is central in the field of
fractions Q(Aq) and

FFj = g > .

Therefore A, is also an Ore domain. We have Q(A,) C Q(A,). Denote
by §; the action on Ug of the simple reflection s; € W for i € I. Then we

. The action of §; extends to the action on Q(A,)

have §;(a;) = aja; ¥

by gz(FJ) = a?iij.
In Section 5, we shall obtain the following results:

(1) For each i € I, the conjugation action ~y ((fil + fig)"‘iv ) of
the non-integral power (f;1 + fiz)"‘iv on Q(Ay) formally given
by ((fz’l + fz‘2)a’y) z = (fi + ) 2(fi + fi) ™ for x €
Q(Ay) is well-defined (Section 5.1).

(2) For each i € I, define the operator S; acting on Q(Aq) by
Si =80y ((fil + fiz)#aiv) =7 ((fil + fi2)a"v> o 3;. Then
S; (i € I) satisfy the defining relations of the Weyl group. In

particular the braid relations of S; (¢ € I) are derived from the
Verma, relations of {f;1 + fiz}icr- (See Section 5.2.)

Thus we can construct a Weyl group action on Q(A,), which coincides
with Hasegawa’s quantized g-analogue of the birational Weyl group ac-
tion (Remark 5.3). For details, see Section 5.
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§1. Quantized universal enveloping algebras

In this section, we shall summarize widely known results on quan-
tized universal enveloping algebras. We shall mainly follow Lusztig’s
book [11].

1.1. Symmetrizable GCM and root datum

A matrix A = [a;;];cr with integer entries defined to be a generalized
Cartan matriz ( GCM for short) if it satisfies, for any 4, j € I, (1) a;; = 2,
(2) aij £ 0if ¢ # j, and (3) aj; = 0 if and only if a;; = 0. Let A
be a GCM. A is called indecomposable if, for any ¢ # j in I, there
exists a sequence G, 41,...,%s € I such that i = ig, @i, # 0 (k =
0,1,...,5—1), and is = j. If there exists a family {d;};cs of positive
rational numbers such that d;a;; = d;a;; for any i, j € I, then A is called
symmetrizable and symmetrized by {d;}ier. If A is a GCM symmetrized
by {d;}icr, then the transpose *A is a GCM symmetrized by {d; ' }ic;.

Let A = [a;;]icr be a symmetrizable GCM symmetrized by {d;}icr.
We say that A is of finite type (vesp. of affine type) if its principal mi-
nors are positive (resp. its proper principal minors are positive and its
determinant is equal to zero). All GCM’s of finite and affine type are
classified explicitly. For details, see Chapter 4 of [7].

Let X and Y be finitely generated free Z-modules and (,) : Y x X —
Z a perfect bilinear pairing. (X can be identified with Homz(Y,Z).) Let
{e Yier and {a; }ies be families of elements in Y and X respectively. A
root datum of type A is defined to consist of (Y, X, (,), {ay }ier, {ei }ier)
satisfying (o, @;) = a;; for any ¢,j € I. Then o) and o, are called a
coroot and a root respectively. The dual root datum of type *A is defined
to be (X> Y, < ) >a {ai}i617 {az\'/}ief)'

If {&) }ier (vesp. {a;}icr) is linearly independent in YV (resp. X),
then the root datum called Y -regular (resp. X-regular) and the sub-
module of Y (resp. X) generated by {a) }ier (resp. {a;}icr) is called
a coroot lattice (resp. a root lattice) and denoted by @ (resp. Q). We
set Xt ={A € X | (o),\) 2 0forallie} and call its elements
dominant. We set QT = 37, ; Z>qa.

1.2. Braid group and Weyl group

Let A = [a;5]i jer be a symmetrizable GCM.
The braid group B(A) of type A is the group generated by {s;}icr
with the following defining relations: for any i # j in I,

8iSj = 8;Si if a;a5; =0,

$;8j8; = §78;8; if a;5a5 = 1,
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5;8j8i85 = SjSiSij; if A35Q45 = 2,

5i575;5;5;8; = 8;5:5;8;5;8; if a;ja5; = 3.

These relations are called braid relations.

The Weyl group W (A) of type A is the group generated by {s; }ier
satisfying the braid relations together with s? = 1 for all i € I. When
A is indecomposable, W (A) is finite if and only if A is of finite type.

Denote by B the braid group of type A and by W the Weyl group

of type A.
For w € W, the length £(w) of w is the smallest integer p 2 0 such
that there exists 41,...,9, € I with w = s;, ---s;,. Then s;, ---s;, is

called a reduced express1on of w.

If 4, 8, and Sgf - 8¢ are reduced expressions of w € W, then
the equality s;, -+ 85, = sy e S holds in the braid group B. There-
fore the mapping from W to B sending w € W to the element of B
represented by a reduced expression of w is well-defined.

Let (Y, X, (,),{@) }icr, {ai}icr) be a root datum of type A. Then
the Weyl group W(A) actson Y and X by s;(y) = y—(y, i) fory € Y
and s;(z) = ¢ — (o, x)oy for x € X. Moreover we have (w(y),z) =
(y,w™(z)) forw e W(A),y €Y, and z € X.

If 54, - -+ 8, is a reduced expression in W, then s;,s;,_, - - si, (a}’l) €.
Zie[ Z;OCY;/ and SipSip_1 """ Siy (Oéil) c Ziel Zgoai.

Example 1.1. Assume that 4,5 € I and 7 # j.

(1) If (aij,a;:) = (0,0), then both sides of s;s; = s;5; are reduced
expressions and

{l(a;’) oy

b
sj(a)) = o

o) = o,

) si(a)) = of.

(2) If (aij, a,ji) = (—1, —1), then both sides of S$i8j8; = .8;8;8; are
reduce expressions and

o) = o, o) = of,
Si(Oé}/) = Oé,}/ + a;-/, Sj(Olz\-/) = az/ + Ol}/,
sisj(a)) = af, sjsi(af) = o
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(3) If (aij,a5) = (—1,—2), then both sides of s;5;8;5; = 5;5:5;5;
are reduce expressions and

o)) = af, o) = o,

si(ey) = af +aof, si(a)) =20 + o,
sjsi(a)) = 20 + o, sisj(a)) = af + o,
sjsisi(ay) = Y, sisjsi(a)) = af.

(4) I (aij,aj) = (—1,—3), then both sides of s;s;5;5;5;5; = 5;8;
5;8;8;s; are reduce expressions and

e)) = of, 1(e) = o,

sj(ey) = o +af, si(ay) =3 +a,
sjsi(e)) = 3oy + 20 sisj(a)) =20 +af,
sjs,s](az ) =2a) + oc] , sisjsi(a) = 3ay + 2a
sjsisjsi(af) = 3o + af, SzSJstg(% ) =0 +of
s;jsi88i8;(0y’) = o, sisjsis;si(ay) = aj.

These formulae shall be applied to the Verma relations.

1.3. Kac—Moody algebra

For details of Kac-Moody algebras, see Kac’s book [7].

Let A = [as;]i,jer be a symmetrizable GCM and (Y, X, (, ), {&) }ier,
{@;}ier) a root datum of type A. We set h = C®z Y and identify h*
with C®z X by (,).

The Kac-Moody (Lie) algebra g associated to the root datum is
defined to be the Lie algebra over C generated by E;, F; (i € I) and
H € b with following defining relations:

h is an Abelian Lie subalgebra of g;

[H,E;) = (H,a;)E;, [H,F;]=—{(H,o;)F; foriel Hch;
[Ei, Fj] = 6,07 fori,j eI,

ad(E;)' 7 E; =0, ad(F;)'"F; =0 ifi#j.

Here we set ad(X)Y = [X, Y], for example, ad(X)%Y = [X,[X, [X,Y]]].
The last two relations are called Serre relations.

Denote by n (resp. n_) the Lie subalgebra of g generated by {F; }ier
(resp. {F;}ier). We call ny the upper and lower parts of g and E; (resp.
F;) the Chevalley generators of ny (resp. n_). The Abelian subalgebra
b is called the Cartan subalgebra of g. We have the triangular decompo-
sition g = n_®hPdn, of g. Define the upper and lower Borel subalgebras
br by by =hdn,.
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We can define the Z-gradation of g by degF; = 1, degF; = —1
(¢t € I) and degH = 0 (H € b) and call it the principal gradation
of g. Denote by gi the degree-k part of g for £ € Z. Then we have
9= Djyez 9k, dimgr < 00, ny = P 9k, and h = go. The induced
Z-gradation U(g) = @z U(g)x is also called the principal gradation.
Define the principal gradations of U(ny) by U(ny) 1 = U(g)+xNU (ny)
for k € Z>.

Assume that the root datum is Y-regular and X-regular. Denote by
g’ the derived Lie algebra [g, g] of the Kac-Moody algebra g. Then g’ is
a finite dimensional Lie algebra (resp. a central extension of a (possibly
twisted) loop algebra of a finite dimensional simple Lie algebra) if and
only if A is of finite type (resp. of affine type). Then g is called a Kac~
Moody algebra of finite type (resp. a Kac—Moody algebra of affine type
or an affine Lie algebra for short). These lead to the following result.

Lemma 1.2. Assume that the GCM A is of finite or affine type.
Then {dimgg}rez is bounded, namely there exists a positive integer
N such that dimgy < N for all k E Z. Define the positive integers

C'(N) (k € Zxo) by (TT52,(1 —t’)) =Y o C’IEN)tk. Then we have
dimU(ng)ar < OV for k € Zs,.

1.4. ¢-Binomial theorem

We define g-numbers, g-factorials, g-binomial coefficients, and ¢-
shifted factorials as follows:

q —q
[ZL’]q = —q———F for n € Z,
= H[k]q for n € Z3,
k=1
z [#lglr —1]g---[x—k+ 1]
= for k € Z>y,
Mq [k],! 20
(@) =1+ 2)1+¢%z) - (1+** V) forke Ly,

(2)g.00 = (L 4+ 2)(1 + ¢*)(1 + gz*) ﬁ 1+ ¢**x).

Note that our g-shifted factorials are different from usual ones defined
by (z;9)x = Hﬁ;é(l —g*z). Then we can prove the following lemma by
induction on n.



298 G. Kuroki

Lemma 1.3 (g-binomial theorem). Assume that x,y are elements
of an Q(q)-algebra satisfying yx = q?xy. Then, forn=0,1,2,...,

(z+y)" =3 ¢ m zhy
k=0 q

— qu(n—k) n xkyn—k _ qu(n—k) n xn_kyk_
k k
k=0 q k=0 q

Moreover, if x is invertible, then, for n =0,1,2,...,

(7'Y)g,00 _ ("2 ') g,00 s

(@2 Y)goo  (7W)g00

?

(@ +y)" =2"(@ 7 yY)gn = 2"

where the infinite products cancel out except finite factors.

1.5. Quantized universal enveloping algebra

Let A = [a4;]i,jer be a symmetrizable GCM symmetrized by {d;}icr
and (Y, X, (,), {o }ier, {ei }icr) a root datum of type A. Let d be the
least common denominator of {d;},c;. We set the base field F by F =
Q(¢/?) and ¢; € F by ¢; = ¢*. Then we have d;o) € d~'Y and
we extend naturally the perfect bilinear pairing (,) : ¥ x X — Z to
():1d Y x X — d"Z.

Then the quantized universal enveloping algebra U, = Uy(g) asso-
ciated to the root datum is defined to be the associative algebra over
the base field F generated by E;, Fy, ¢* for i € I and A € d~'Y with
following defining relations:

=1, =g ¢ for \,pedy;
P Eiq = ¢ E;, PFq =M F foriel, AedlY;

K- K !
EiFj — FjEi = 5ij[a;/]qi = (5”—————_z1— for i,j S I;
qi — q;
1—aiy 1
— Q45 —Qij— oo .
> (—1>’“{ k ]} BEEE; " =0 ifi#j;
k=0 qi
104 1— qis
S 0] RRRTT <0 iy,
k=0 94

where we set K; = ¢{'* = g%, The last two relations are called g-Serre
relations. (For this definition, see Corollary 33.1.5 in [11].) In particular,
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we have K;E;K; ' = ¢/ E; and K, F;K;* = q; “9F; for i,j € I. By
induction on m,n € Z>, we can prove the following formula:

min{m,n} v
(m) pa(n) (n-k) [of = (M —k) = (n—k)] _(m—p)
ESVESY = E F E:
' ' ' [ k qi ’ ,

k=0
(1.1)

min{m,n
B glm) _ {Z : Em) [—aiv —(m -—kk) —(n- k)} FH),
k=0 4
where we set E{™ = E™/[m],,! and F{™ = F""/[n],,!. (See Corollary
3.1.9 in [11].)

Denote by U, = Uy(ny) (vesp. Uy = Uy(n_), UQ = U,(h)) the sub-
algebra of U, = U,(g) generated by {F;}icr (resp. {F;}ier, {¢*}rea-1y)-
We call U;t the upper and lower parts of U, and E;, F; the upper and -
lower Chevalley generators respectively. The commutative subalgebra
Ug is called the Cartan subalgebra of U;. We have the triangular decom-
position U, = Uy @ U2 @ U of U,. Note that U are determined by
the symmetrized GCM only and their structure does not depend on the
choice of a root datum. Define the upper and lower Borel subalgebras
U,(b+) to be the subalgebra of U, = U,(g) generated by UL = U,(n)
and U = Ug(h). Then we have Uy (by) 2 U @ UE = UF @ UL. We say
that U, is of finite type (resp. of affine type or affine for short) if A is of
finite type (resp. of affine type).

We can define the Z-gradation of U, by degE; = 1, deg F; = —1
(i €1I) and degg* =0 (A € d~'Y) and call it the principal gradation of
U,. Denote by (U,)i the degree-k part of U, for k € Z. Then we have
U; = @Dz Uk- Define the principal gradations of qu by (U,;t)ik =
(Ug)+k NUFE for k € Zz,. Then we have U = @5 (UE) £k

We can regard U, (resp. U(;t, Ul? ) as a g-deformation of the universal
enveloping algebra U(g), (resp. U(ny), U(h)) of a Kac—Moody algebra
g (resp. its upper and lower parts n.y, its Cartan subalgebra b).

Define the local ring A; by A; = {f(¢*/%) € F = Q(¢%/?) | f is
regular at ¢%/¢ = 1} = Q(¢"/%) N Q[[¢"/¢ — 1]]. We regard C as an
algebra over A; by acting ¢'/¢ on C as 1 and denote the algebra C over
A; by C;. Assume that {y;,...,ynm} is a Z-free basis of d~1Y. Set
(z)g = (1 —¢%)/(1 — q). Then we have the following results. For the
proof, see Sections 3.3 and 3.4 of [5], for example.

Lemma 1.4. Let Uy, be the subalgebra of U, over A, generated by
{Ei, FYier and {(yu)q, a7 })L,. Let US, (resp. U, ) be the subalgebra
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of Uf over Ay (resp. U; ) generated by {Ei}ier (resp. {Filier) and
UA the subalgebra of U0 over Ay generated by {q¥, (yﬂ)q}u 1. Set
(Ui )k = (UE)k NUa, forkEZ ‘
(1)  The multiplication gives an isomorphism U, ®a,UQ, @4, U5 =
Ua, of Ai-modules.
(2) (U‘Lt);c are free Ai-modules and Ui = @?;O(Ug:l)ik‘
() UL = M(Wi)gs---> (Um)g:q¥,...,q7¥™] properly contains

Al[ j:yl qin].
(4) T ®a, UAI =U,, F®a, Uy =UZE, F®a, (UL )k = (UE)k, and
]F®A1 UAI UO

(5) €1 ®, Un, = U(@), €1 @, UE = Ulns), Cr ®4, (U =
U(nj:)k, and C; ®a, UA?1 = U(f))
(6) dimn«‘(U;:):{:k = rankAl (U&tl):tk = dim@ U(ni)ik fOT‘ ke Zgo.

In particular, we obtain the following results.

Lemma 1.5. Let A be a symmetrizable GCM. A quantized universal
enveloping algebra U, of type A is always an integral domain. If A is of

finite or affine type, then dimF(U,;':);c < C,(CN) for k € Z3,, where N and

C’,(CN) are given in Lemma 1.2.

Proof. Assume that a,b € U, are non-zero. Then there exist A, p €
d~'Y such that ¢*a,bg* € Uy @ Flg¥,...,q*"] @ UF. Let {uf}2, be
A;-free bases of Ulgtl. Set “2 = (y1)yt -+ (yna)4™ for p = (pa,..., um) €
(Zzo)™ Then {up},e(zy,)m is an As-free basis of A1[(y1)g, .- -, (Yar)q)-
Note that Fg¥',...,q¥"] =F[(y1)q,- .-, (yar)q)- Because of Lemma 1.4
(1) and (4), we can uniquely write g*a and bg* in the following forms:
gra = Er,#,scrusu ud us, bgt = Zr#sdrmsu u ul (erps, drps €
F = Q(¢"/¢)), where only finitely many ¢, , s and dr,u,s are non-zero.
Since any ¢ € F* is uniquely expressed as ¢ = (¢ — 1)7%¢ with k €
Z and ¢ € A (ie. ¢ € Ay and é1) # 0), we set ord(c) = k and
ord(0) = —oo. Setting I = max{ord(cs . )} and m = max{ord(ds )},
we have (¢ —1)'¢*a, (g—1)"bg" € Uy, ®a, A1[(¥1)g, - - (Yn1) gl ®a, Uy, -
Moreover their images in C; ®a, Ua, = U(g) are non-zero and hence
their product in U(g) is non-zero. Therefore (¢ — 1)™*!g*abg* # 0,
namely ab # 0. This means that U, is an integral domain. The second
statement immediately follows from Lemma 1.4 (6). Q.E.D.

If the root datum is Y-regular and X-regular, then the highest
weight integral representations of g are deformed to those of U,. For
details, see Chapter 33 of [11] and Section 3.4 of [5].
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We can define the coproduct A : U, — U, ® U, (an algebra homo-
morphism), the counit € : U; — F (an algebra homomorphism), and the
antipode S : U; — U, (an anti-algebra automorphism) by

AE)=FQK +1®E; foriel,
AF)=F,®1+ K '®F foriel,

Al = ®¢* for xed 'Y,

e(E) =0, e(F)=0, e(¢)=1 foriclI, Aed'Y,

S(F;) = —E;K ', S(F,) = -KF;, S(¢")=q *foricI, \ed Y.
These give a Hopf algebra structure on Uj,.

Remark 1.6. The above definition of a Hopf algebra structure on
U, is different from that in Lusztig’s book [11]. Denote by AL, el and
ST the coproduct, the counit, and the antipode of [11] respectively. We
can uniquely define the involutive algebra automorphism w of U; by
w(E;) = Fy, w(F;) = By, w(g) = ¢ *fori € I, A € d”'Y. Then the
Hopf algebra structure of [11] is related to ours by Al = (wRw)oAow,

el =gow,and SL =wo Sow.

Example 1.7 (affine gl case). Assume m € Zyy and set I =
{0,1,...,m — 1}. Let Y be the free Z-module generated by {e;}/>,,
¢, and d. Let X be the dual lattice of Y. Define the non-degenerate
symmetric bilinear form (,) : Y xY — Z by (&,&5) = 65, (¢,d) = 1,
and (g;,¢) = (&4,d) = (¢,¢) = (d,d) = 0. We can identify X with Y’

by (,). Weset a) =a; =¢;—¢gigfori=1,....m—1,af =ay=
¢ — €1 + &m. Define the matrix AL | by ALY | = [a;;] = (@, ;)i jes-
If m = 2, then agop = a11 = 2 and agy = a9 = —2. If m 2 3, then

Q5 = 25” - 5i+1,j - 6j+1,i — 51'06‘7771_1 — 5j05i,m-1~ Thus A'En 1 is a
symmetric GCM and (Y, X, (, ), {o) }ier, {@: }icr) is a Y-regular and X-
regular root datum of type A,(}l)_l. The Kac-Moody algebra associated
to the root datum can be identified with the affine Lie algebra gl,, =
gl (C[t,t71]) @ Cc @ Ctd/dt by

Eo =tEm1, Fo=1t"Eim,

Ei = E¢7i+1, F‘z = Ei+1,i for i = 1, cee, M — 1,

e =F5E; fori=1,...,m, d=td/dt,
where E;; (i, = 1,...,m) are unit matrices. We set all d; = 1. The

quantized universal enveloping algebra associated to the root datum is
called the gquantized universal enveloping algebra of gl,,, and denoted by

Uq (é\lm)
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Example 1.8 (affine sl,, and psl,, cases). Assume m € Z3, and

set I ={0,1,...,m—1}. Let Afn 1 = laijlijer be the symmetric GCM
given above. We set all d; = 1. Let Y be the free Z-module generated
by {ay}77! ¢, and d. Set af =c—aY — -+ —ay,_;. Let X be the

dual lattice of Y. Deﬁne the non-degenerate symmetric bilinear form
(,): YXY_)ZbY( ) g)_azm (c,d):1,and(a2’,c)=(a}/,d)=
(¢,¢) = (d,d) =0fori=1,. — 1. Identifying X with a sublattice
of h = (C®ZYby (,), we haveY G X. Define a; € X for j € I
by <012/,C¥j> = Qij, <C,C¥j> = 0, (d,aj) = 050 for i,5 € I. Then (Y,X,
(), {a) }ier, {@i}ier) is a Y-regular and X-regular root datum of type
ASL)_ 1- The Kac-Moody algebra associated to the root datum can be
identified with the affine Lie algebra sl, = sln, (C[t,t™1]) ® Cc & Ctd/dt
by

Eoy =tEm1, Fo =t Eip,

Ei=F i, Fi=E4,; fori=1,...,m—1,
af =Ey; —Eip1541 fori=1,...,m-—1,

ay =c— Ei1 + By, d=td/dt.

The quantized universal enveloping algebra associated to the root datum
is called the quantized universal enveloping algebra of sl,, and denoted
by Ug(sly,). Associating to the dual root datum (X,Y,(,),{}ier,

{0y }Yier), we define the quantized universal enveloping algebra Uy (psl,, ).

1.6. Adjoint action
For an arbitrary Hopf algebra H, the adjoint action ad : H — End H
is defined by ad(z)y = >, z1)y¥S(z(2)) for z,y € H, where A(z) =
2 (z) T(1) ® T(2) (the Swedler notation).
In a quantized universal enveloping algebra U,, we have
ad(Ei)z = EigK; ' —xE;K; ' foriecl, z €U,
ad(F))z = Fyx — K 'K F; forie I, z €U,

ad(gMz = ¢*zqg™> forAed Y,z e Us.
Setting t = F; ® 1 and y = K{l ® F, we have yr = ¢?zy. Using the

g-binomial theorem, we obtain A(F, qu(" k) 7] F;”_kKi_ F

n
and hence (1 ® S)(A(F)) Z 1)kgF Dim k] ‘Fz."_kKi_’c ® KF
k=0

i
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FF. We conclude that

ad(Fy)"z = ad(F[)z = Y _(~1)kqf" m FrFR R KERY.
k=0 qi

In particular, we have

(1.2) ad(Fz)"F] — Z(_l)kqf(n~1+aij) I:::I ﬂn_ijFik'
k=0 qi

Hence the g-Serre relations for F; (i € I) are rewritten as ad(F;)' %7 F; =
0 for ¢ # j. Similar results hold for E; (i € I). The following lemma is
equivalent to Formula (14) of [6].

Lemma 1.9 ([6]). Assume that x € U, and K; 'zK; = ¢¢x. Then

o
Frg = Z q§k+a)(n—k) [Z’] ad(ﬂ)k(x)l;vin——k forn € ng
k=0 g

k3

where the left-hand side is a finite sum with respect to k = 0,1,...,n.
In particular, if i # j in I, then

k

%

—aij :
FZnF\J — Z q§k+aij)(n—k) [n:| a.d(Fi)k(Fj)Fin_k fO’I" ne ZzO
k=0 i

The first formula of this lemma is proved by induction on nn. The case
for n = 1 leads to the cases for any n € Z~g. The second immediately
follows from the g-Serre relations.

The following example can be found as Formula (24) of [6].

Example 1.10 ([6]). If a;; = —1, then

F'Fy = g "FyF* + [n]g, ad(F)(Fy)F* — 1
:.[1 - n]tijFi" + [”]tiiFjP;n_l'

1.7. Verma relations

Let A = [ai;]; jer be a symmetrizable GCM symmetrized by {d; }ier
and (Y, X, (,),{o }ier, {@i}icr) a Y-regular and X-regular root datum
of type A.

Denote by W the Weyl group of type A and by s; (¢ € I) its genera-
tors. Denote by U, the lower part of the quantized universal enveloping
algebra associated to the root datum and by F; (i € I) its Chevalley
generators. Let A € XT.
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Assume that s;,8;, -+, is a reduced expression in W. We set

kp€Zforp=1,2,...,n by

n

kp = (Sinsin—l e S'ip+1 (ax,)’ >\>'

For examples, k, = (o), A), kn—1 = (si,(0,_,), A}, kn—2 = (8:,5i,_,
(e _,),A), and so on. Since s;, - - - 54,,, Si, is also a reduced expression,
Sin " Sippi (@) € ey Loy . Therefore ky € Zyg for p=1,2,...,n.
Assume that s;, s, - -+ 55, is another reduced expression with s;, s;,

“+ 8, = 8,85, 85, We similarly set [, € Zforp=1,2,...,n by

lP = (Sjn Sjn—1 """ Sipt1 (Ol}i,), )‘>
Then we have the following identity in U, :

(1.3) FLEg - B = FLF - Fy

Furthermore the sequence ((i1, k1), (42, k2), - - ., (in, kn)) is equal to the
sequence ((j1,01), (42,12), -, (Jn,In)) up to permutation of order. In
order to prove these results, it is sufficient to show them for each pair of
reduced expressions in Example 1.1. For the proof, see Section 39.3 of
[11] and Lemma 2 of [2]. These results are called Verma relations.

Example 1.11 (Verma relations). Assume that ¢,7 € I and ¢ # j.
Let k and I be arbitrary non-negative integers. Then Example 1.1 leads
to the following formulae of the Chevalley generators of U, :

(1)  FfF} = F}FF if (aij,a5) = (0,0);
(2) F/FYFF = FFFFYFL S (i, a5) = (-1, -1);
(3) Fz’ijZkHFikHF} — F}Fik'HFjZkHFik if (aij7 aji) — (_1’ _2);
(4) FF F]$k+l Fizk+l FJ$k+2l Fik+l F} _ sz Fik+l F93k+21 Fi2k+l Fj3k+l Fkif
(aij’aji) = (“—1’ ”‘3)' .
These formulae shall be used in the construction of the quantized bira-
tional Weyl group actions.

Remark 1.12. For B1,..., 8, € ;.1 Z>o0, denote by Fﬁl .. -Ff:‘
the mapping from X7 to U, sending A to Fi(lﬁ 1A} -~-Fi<f A We in-
troduce the formal symbols §; (i € I) satisfying the braid relations and
5 lFf 15 = Fjs"(ﬁ ). Then the Verma identity (1.3) can be formally
rewritten in the following form:

aV 2 \2 \ v \/
n

: (o2 (P o (o o
a. 11y, "’2‘..“’, n __ &. I1 3. 12‘.."’. J
s“Fz-1 leFiz Sanin = shFj1 8J2Fj2 s]nan
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\2
This means that §¢Fiai (i € I) formally satisfy the braid relations. More-
—aY —aV
over, if we have §2 = 1 and F, % Fio‘z = 1, then we obtain, at least
formally,
4 A\ \2 \
sF s FY =@ =1,

\2
This means that §;F,* (i € I) formally satisfy the defining relations of
the Weyl group. If we can justify the above heuristic consideration, then
we can construct the braid or Weyl group representations.

§2. Localizations of non-commutative rings

In this section, we shall summarize results on localizations of non-
commutative rings necessary to quantize birational actions. Most of the
proofs omitted below can be found, for examples, in Chapter 10 of [3]
and Chapter 2 of [12].

2.1. Localization at an Ore subset

Let A be a (possibly non-commutative) ring. A is called an integral
domain (or a domain for short) if A # 0 and the products of non-zero
elements of A are always non-zero. A proper two-sided ideal I of A is
called completely prime if A/I is an integral domain. We say that A
is left Noetherian if there is no infinite properly ascending chain of left
ideals of A. A right Noetherian ring is similarly defined.

A subset S of A is called multiplicative if S contains 1 and is closed
with respect to multiplication. Let A be an integral domain and § its
multiplicative subset. We say that S satisfies the left (resp. right) Ore
condition if Sa N As # 0 (resp. aS N sA # () for any a € A and s € S.
A multiplicative subset satisfying the left (resp. right) Ore condition is
called a left (resp. right) Ore subset for short. A left and right Ore subset
is simply called an Ore subset.

Assume that S is a left Ore subset of A. Then we can define the
ring S~1A as follows. As a set, S™'A is defined to be the quotient set
(S x A)/~; where the equivalence relation ~ is defined by (s, a) ~ (s/,a’)
4> there exists u, 4’ € A such that us = u's’ € S and ua = v'a’. Denote
by s\a the element of S~1A represented by (s,a) € S x A. We can define
the ring structure of S™1A by

(s\a)(s'\a') = (s"s)\(a"d’), s'a=ad"s, d" € A, " €5,
s\a+s'\a = (us)\(va+v'a"), us=u's, v’ €A, ues.

Identifying @ € A with 1\a € S~ A, we can embed A into S™'A. Then
the ring S~'A contains A as a subring and satisfies that any element
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of S is invertible in S7'A and S7'A = {sla=s\a|s€ S,a€ A}.
Furthermore S~'A has the following universality: for any ring B and
any ring homomorphism f : A — B with the property that f(s) is
invertible in B for any s € S, there exists a unique ring homomorphism
¢ : ST'A — B with ¢|4 = f. In particular S~ A is uniquely, up to
isomorphism, determined by A and S. We call S~! A the left localization
of A at S. If S is an Ore subset, then the left localization at S can be
identified with the right one, namely S™'A = {as™'|s€ S,a € A}.

Lemma 2.1. Let A be an integral domain generated by {a;};cs
over a field F and S its multiplicative subset generated by {s;}icr. Then
we have the following results:

(1) IfSanAs;#0 foranyac A and i € I, then S is a left Ore
subset of A.

(2) Assume that for any i € I, j € J, and n € Z~g, there exists
N € Zso with sNa; € As?. Then for any i € I, a € A, and
n € Zso, there exists N € Zsqo with sNa € As?. Therefore S
s a left Ore subset of A.

Proof. (1) Take i1,...,i, € I. By induction on n, let us show that
SanAf;, - fiy # 0 for any a € A. The case of n = 1 is just the the
assumption. Assume that it holds for n — 1. Then there exist t € S and
b€ A with ta = bf;_,--- fi,. By the case of n = 1, there exist c € A
and u € S with ub = c¢f;,,. Then ut € S and uta =cfi, --- fi,-

(2) Fix any i € I. Let A be the subset of A consisting of the
elements a € A such that for any n € Z~q there exists N € Z~o with
sNa € As?. Tt is sufficient for the proof of the first statement to show
that A is a subalgebra of A. Take any a,b € A. For any n € Zsg,
there exists M, N € Zsq such that sMa € As? and s¥b € As?. Then
sV +b) € As? and hence a + b € A. There exists L € Zsq such
that sfa € As)Y. Then sFab € AsNb C As? and hence ab € A. We have
shown that A is a subalgebra of A. The second statement follows from
(1). Q.E.D.

Example 2.2 (the inverse of F;). Consider a quantized universal
enveloping algebra U, and its lower part U, . Let J be any subset
of I and S; the multiplicative subset generated by {Fj;};cs. Using
Formula (1.1), Fig} = ¢} "™/ F, (A € d~1Y’), and the g-Serre relations
of {Fi}ics, we can find that both (U;,S;) and (Ug,Sy) satisfy the
assumption of Lemma, 2.1 (2). Therefore Sy is a left Ore subset of U,
and U,. The anti-algebra involution given by E; — E;, F; +— F; (i € I)
and ¢* — ¢~ (A € d7'Y) proves that S is also a right Ore subset
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of U; and U,. By the universality of STt 7 Uy, we can regard SJ_qu_
as a subalgebra of S;'U,. For J = {21, ..,ir}, we denote S;'U, by
U,[F?! F 1 and ST 1U by Ug [F;; F!

Using the inverse of F;, we can state the following generalization of
Lemma 1.9 for negative integral powers of F;.

Lemma 2.3. Assume thatz € U,, K] '2K; = ¢¢z, and ad(F;)*z =
0 for sufficiently large k. Then we have the following formula in U, [F;']:

g = Z gt M ad(F)*(@)FP ™ forn €2,

qi
where the left-hand side is a finite sum. In particular, ifi # j in I, then

—aij;

mn (k"'”‘w)(n k) n-—k
I'F; = F; F; orn € Z.
> [kL ad(F)F (F)FP™" f

Proof. The second formula immediately follows from the first for-
mula and the ¢-Serre relations. By Lemma 1.9, we can assume that
n is negative. By induction on N € Z~g, we can obtain the following
formula:

N-1
F $ — Z( 1 k —(k+1)(k+a) d(F) ( ) k+1)
k=0

+ g VTR ad(F)N (@) F N

Since ad(F;)¥(z) = 0 for sufficiently large k and [ ]q = (~1)*, the first
formula for n = —1 has been proved. This leads to the first formulae for
all negative n by induction on —n. Q.E.D.

2.2. Ore domains

An integral domain A is called a left (resp. right) Ore domain if
Aan Ab # 0 (resp. aA NbA # 0) for any non-zero a,b € A. In other
words, an integral domain A is a left (resp. right) Ore domain if and
only if A~ {0} is a left (resp. right) Ore subset. A left and right Ore
domain is simply called an Ore domain.

Assume that A is an Ore domain. Let K be the localization of A at
A~ {0}. Then K is a skew field and K = {s'a |a,s € A, s #0} =
{as7!|a,s € A, s#0}. We call K the (skew) field of fractions of A
and denote K by Q(A).
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Lemma 2.4 (2.1.15 of [12]). A left (resp. right) Noetherian do-
main is a left (resp. right) Ore domain. In particular a left and right
Noetherian domain is an Ore domain.

Example 2.5. The following are left and right Noetherian domains
(Chapter 1 of [12]):

(1) the skew polynomial ring R[z; o, §] associated to a left and right
Noetherian domain R, an algebra automorphism ¢ of R, and
a o-derivation & of R (6{ab) = 6(a)b + o{a)é(b) for a,b € R),
defined to be the ring generated by a¢ € R and z with defining
relations: (a) R is a subring of R|z;0,d], (b) za = o(a)z+6(a)
for a € R;

(2) the skew Laurent polynomial ring R[z,z™ ;o] associated to a
left and right Noetherian domain R and an algebra automor-
phism ¢ of R, defined to be the ring generated by ¢ € R and
x*! with defining relations: (a) R is a subring of R[z,z~}; 0],
(b) za=oc(a)z fora € R, (c) zz~ ! =271z =1;

(3) the Weyl algebras over a filed I of characteristic 0 generated
by 21,...,%n,01,...,0, with defining relations: z;x; = z;2;,
6@‘63' = 8j37;, and 8i113j - .’L’jai = 5z‘j;

(4) the universal enveloping algebra U(g) of any finite dimensional
Lie algebra g over a field.

Let F be a field and ¢;; € FX for 4,5 = 1,...,n. Assume that ¢; = 1
and gj; = qigl. From the first and second examples above, we obtain,
by induction on n, the following examples of left and right Noetherian
domains respectively:

1

(5) the g-polynomial ring over F defined to be the algebra over F
generated by xi,...,7, with defining relations z;z; = ¢;;1;7;
for any 1, j;
(6) = the g-Laurent polynomial ring over F defined to be the alge-
bra over F generated by xlil, ..., xE! with defining relations
xz-_lari = :c,»x;l =1 for any ¢ and z;2; = ¢;;2,x; for any 1, j.
All of these examples are Ore domains.

In the next subsection, we shall deal with Ore domains which are
not always left and right Noetherian.

2.3. Tempered domains

Let A be an associative algebra over a field F and {F, A}, a family
of F-vector subspaces of A. Set Ay = 0 for k € Z.y. We say that
{FrLA}Y2, is a filtration of Aif FpA C RAC FobAC -+, Upeo FxA =
A, 1 € FyA, and FrAFA C FpA for any k,l. Let {FpA}32, be a
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filtration of A. Set gry A = FyA/Fy_1A and gr A = @, gr, A. Then
gr A has a natural graded algebra structure. If gr A is an integral domain
(resp. left Noetherian, right Noetherian), then A is so.

Definition 2.6 (tempered domain). An associative algebra A over
a field F has a slowly increasing filtration if there exists a filtration
{FuA}2 , of A such that limsupy(dimp F,A)}/* < 1. This is equiv-
alent to the condition that dimpgr, A < oo for all k£ and limsup,
(dimp gr;, A)Y/* < 1. See Remark 2.8 (1) below. An associative algebra
with slowly increasing filtration is called a tempered algebra for short. In
addition, if A is an integral domain, then A is called a tempered domain.

From the definition we can immediately obtain the following result.

Lemma 2.7. Assume that A is a tempered domain over a field.
Then subalgebras of A and quotient integral domains of A are also tem-
pered domains.

Remark 2.8. Let {ax}72, be a sequence of complex numbers and
p the convergence radius of the power series Y o o axz®. The Cauchy—
Hadamard theorem says limsupy, |ax|'/* = p~!. The absolute conver-
gence of Y7o a is equivalent to the condition that, for sufficiently large
ko, the infinite product [Tro. ko (1+ayg) is absolutely convergent to a non-
zero complex number. Therefore the following conditions are mutually
equivalent:
(a) limsupy |ax]*/* < 1.
(b) There exists a holomorphic function in |z] < 1 such that its
Maclaurin expansion is equal to Z,;“;O arz®.
(c) For sufficiently large ko, the infinite product [];Z, (1 + axz¥)
is absolutely and uniformly convergent in wide sense to a non-
vanishing holomorphic function in |z] < 1.

These observations lead to the following results:

1) limsup, |ax|’* £ 1 implies Limsup,, |ag+ a1 + - - - +ax|/* < 1.
k k
2) Fix N € Z. Then limsup,, |ax|*/* £ 1 is equivalent to limsup
k k
|aki1/(k+N) § 1.
(3) Assume that |ag| £ 1 for all k. For any positive integer

N, define the sequence {b,(CN)},;";O of complex numbers by the
Maclaurin expansion (JTpe (1 — akzk))_N =%, bV 2 in
|z| < 1. Then limsup,, |bg|'/* < 1.

(4) Set ¢ = Zf:o a;by_;. Then limsupy |ax|”/* £ 1 and limsup,,
|bg|/* < 1 implies lim supy, |cx|'/* < 1.
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Rocha—Caridi and Wallach found the following criterion of Ore do-
mains (Lemma 1.2 of [23]) to prove that the universal enveloping algebras
of affine (or Euclidean) Lie algebras are Ore domains.

Lemma 2.9 ([23]). A tempered domain over o field is always an
Ore domain.

Proof. Let A be an integral domain over a field F and {F A}, an
arbitrary increasing filtration of A. Assume that A is not an Ore domain.
Then there exist r € Zx»y and non-zero a,b € F, A such that AaNAb=0
or aANbA = 0. Assume that AaN Ab = 0. Set aj, = dimy F A and take
ko € Z>( so that ag, = 1. Since (FgA)a+(FyA)b C FrirA and (FpA)an
(FrA)b = 0, we have agy, = dimp Fy1 A = dim((FgA)a ® (FyA)b) =

2ar, and hence agy4pr = 2Pag, = 2P, ie. a,lgggf’;z > 2Y/r > 1 for all

P € Z3,. This leads to limsup a,lg/(k"ko) > 1 and hence Remark 2.8 (2)

shows lim supy, a,lc/ ¥ > 1. Therefore A is not tempered. When aANbA =
0, similarly A is not. We complete the proof of the lemma. Q.E.D.

Example 2.10. Let A be a g-Laurent polynomial ring over a field.
(See Example 2.5.) Then A is a tempered domain. Therefore its subal-
gebras and quotient integral domains are also tempered domains. Fur-
thermore all of these are Ore domains.

Remark 2.8 (4) immediately lead to the following result.

Lemma 2.11. For any tempered algebras A and B over a field F,
the tensor product algebra AQ B over F is also tempered. Therefore, if A
is a tempered domain and B is o q-polynomial or q-Laurent polynomial
ring, then A ® B is also a tempered domain.

Theorem 2.12. The following algebras are tempered domains:

(1)  the universal enveloping algebras U(ny) of the upper and lower
parts ny of o Kac—Moody algebra of finite or affine type (The-
orem 1.10 of [23]),

(2)  the upper and lower parts qu of a quantized universal envelop-
ing algebra of finite or affine type.

Therefore these are Ore domains.

Proof. Denote U(ny) or UF by A. Let us define a filtration of A
by using principal gradations. Set FyA = @f:o Umy)y; if A=U(ny)
and FrA = @ (UF)si if A= UZ. Then {F, A} is a filtration of A.
Because of U(n_) and U, are of finite or affine type, from Lemma 1.2
and Lemma 1.5 together with Remark 2.8 (3), we obtain that {Fy A},
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is slowly increasing. This means that A is a tempered domain. Therefore
Lemma 2.9 completes the proof. Q.E.D.

In [1], Berman and Cox showed that the universal enveloping al-
gebras of Kac-Moody Lie algebras of affine type, as well as those of
toroidal Lie algebras, are tempered domains. Using an associative al-
gebra version of Lemma 1.4 (a) in [1], we shall show that quantized
universal enveloping algebras of affine type are also tempered domains.

Lemma 2.13. Let A be a domain over a field and AT and A° its
subalgebras. Assume that A* and A° have a slowly increasing filtration
denoted by {F;A*}32, and {F;A°}$2, respectively. Assume that these
satisfy the following conditions:

(a) The multiplication gives an isomorphism A~ ® A @ AT = A

of vector spaces.

(b) F;A°F,A- = FA"F;A° and F AYF,A® = F,A°F, A* for

any j, k,l,m.

(€) FeA*RA™ c Yool B A~ F,AFw AT for any k, L.

Then A 1is also a tempered domain and hence an Ore domain.

Proof. Using the above conditions, we can define a filtration {F;A}{2,
of Aby FIA = 3, 1oy FiATF;A°FR AT, From Remark 2.8 (4) we
obtain that {F;A}{2, is slowly increasing and hence A is a tempered
domain. Therefore Lemma 2.9 completes the proof. Q.E.D.

Theorem 2.14. The following algebras are tempered domains:
(1) the universal enveloping algebra U(g) of a Kac—-Moody algebra
of finite or affine type (part of Proposition 1.7 of [1]),
(2) o quantized universal enveloping algebra U, of finite or affine
type.
Therefore these are Ore domains.

Proof. Since U(g) and U, are integral domains, it is sufficient for
the proof to construct slowly increasing filtrations of U(g) and U,.

First we assume that A = U(g), a Kac-Moody algebra of finite or
affine type. Set A* = U(ni) and A° = U(h). Using the principal
gradations of U(ny.), we can define the increasing filtrations {FkAi}f:O
of A* by F,A* = @F ,U(ni)sr. Then we can find from the proof of
Theorem 2.12 that {Fy AT}, are slowly increasing. Let {y1,...,ym}
a basis of h. Define the degree by degy; = 1fori=1,..., M. Let FxA°
be the subspace of A° = U(h) = C[yi,...,yn] spanned by the elements
of degree < k. Then {F,A°}$2 , is a slowly increasing filtration of A°.
These satisfies the conditions (a), (b), and (c) of Lemma 2.13. Therefore
A =U(g) is a tempered domain.
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Second we assume that A = U,, the quantized universal enveloping
algebra associated to a root datum (Y, Z, (, ), {) }ier, {®:}ier) of finite
or affine type. Using the principal gradations of qu, we can define
the filtrations {FrA*}$2 ) of A* by FrA* = @ ((UF)1r. Then we
can find from the proof of Theorem 2.12 that {Fy,A*}2 , are slowly
increasing. Let {y1,...,ynm} be a Z-free basis of d"'Y. Define the
degree by degqt¥: = 1for i = 1,..., M. Let F;,A? be the subspace of
A® = U? = Flg*¥* ..., ¢*¥™] consisting of the elements of degree < k.
Then {F, A%} is a slowly increasing filtration of A°. These satisfies
the conditions (a), (b), and (c¢) of Lemma 2.13. Therefore A = U, is a
tempered domain. Q.E.D.

From Lemma 2.7 and the above theorem, we immediately obtain
the following.

Corollary 2.15. Let A be the universal enveloping algebra U(g) of
a Kac-Moody algebra of finite or affine type or a quantized universal
enveloping algebra Uy of finite or affine type. Assume that B is a sub-
algebra of A and I is a completely prime ideal of B. Then B/I is a
tempered domain and hence an Ore domain.

2.4. Truncated ¢-Serre relations

In this subsection, we shall explain a method for constructing quo-
tient tempered domains of U(n_) and U, for any symmetrizable GCM.

First let us consider the case of ¢ = 1.

Let A = {ai;}: jer be a symmetrizable GCM symmetrized by {d; }icr1,
(Y, X, (,),{e) }ier, {ai}ier) a root datum of type A, and g the Kac-
Moody algebra associated to the root datum. Denote by n_ (resp. b.)
the lower part (resp. the lower Borel subalgebra) of g. Let {y1,...,ynm}
be a basis of h = C ®z Y. Assume that if ¢ # j and a;; # 0, then
€;; = £1 and €;; = —¢;;, otherwise ¢;; = 0.

Define the algebra B to be the associative algebra over C generated
by f; (i € I) and h € b with defining relations:

U(h) = S(h) is a subalgebra of B;

[h, fi] = —(h,au) f; forie€l, heb;

[fi, fJ] = —ei]-d,-a,-j for i,j cl.
The last relations are sufficient conditions of Serre relations for {f;}icr
and called truncated Serre relations. Sending F; to f; for each ¢ € I, we
can regard B as a quotient algebra of U(b_).

Define the degree by degf; = degh = 1 for i € I and h € b.
Let FiB be the subspace of B spanned by the elements of degree <
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k. Then {FpB}32, is a slowly increasing filtration of B and grB =
EB;;O:O FyB/Fy_1B is isomorphic to the commutative polynomial ring
generated by f; (4 € I) and y, (w0 = 1,...,M). Therefore B is a tem-
pered domain. By Lemma 2.11, B®V is also a tempered domain for any
positive integer N.

We can define the algebra homomorphism ¢y : U(n_) — B®N by
on(F;) = le,\rzl fiv, where f;, = 12-1) @ F; @ 19 -¥)_ Denote the
image of ¢y by Ny. Then Ny is also a tempered domain and hence an
Ore domain. Denote N1 by A for short.

Second let us consider a g-analogue of the above construction.

Let d be the least common denominator of {d;}ic;. Set the base
field F by F = Q(¢'/?) and ¢; € F by ¢; = ¢%. Let U, be the quantized
universal enveloping algebra associated to the root datum. Denote by
Uy (resp. Uy(b_)) the lower part (resp. the lower Borel subalgebra) of
Uy. Let {y1,...,ym} be a Z-free basis of d~1Y.

Define the algebra B, to be the associative algebra over IF generated
by f; (i € I) and ¢* (A € d~'Y) with defining relations:

Ug is a subalgebra of By;
Cfigr=qg P f foriel, Aed Y,
fifi=q; P fif; fori,jel.

The last relations are sufficient conditions of g-Serre relations for { f; }icr
and called truncated q-Serre relations. Sending F; to f; for each ¢ € I,
we can regard B, as a quotient algebra of U,(b_). Denote the image of
K, = qfiv in By by k.

Then B, is a subalgebra of a g-Laurent polynomial ring over I gener-
ated by f; (i € I) and ¢¥* (1 =1,..., M) and hence a tempered domain.
By Lemma 2.11, B;@N is also a tempered domain for any positive integer
N.

We can define the algebra homomorphism Ax : U; — U(?N by
Ay =idy, =1, Ay = (A1 ®1)oAfor v = 2,...,N. Then we
have An(F;) = 3, Fiv, where F;, = (K;1)®0~D g F; @ 190V-v),
Therefore we can define the algebra homomorphism ¢g N : Uy — Bq®N
by ¢q.n (Fi) = SN i, where fi, = (k7 )®C D £;0190=) Denote
the image of ¢q,n by Ny n. Then M, v is also a tempered domain and
hence an Ore domain. Denote N, ; by A, for short.
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§3. Non-integral powers

3.1. Evaluation mapping between fields of fractions

Let F be any base field. Let A be a tempered domain over F. Set
A= AQFxy,...,x0m] = Alz1,...,2pm]. Then A is also a tempered
domain over F. Denote by K the field of fractions of A and by K that
of A. Using the universality of K, we can regard K as a subfield of K.

A’ = AlzF, ... 2E!] is also a tempered domain. We can identifies the
field of fractions of A’ with K.
For ¢ = (c1,...,cur) € FM | we define the evaluation algebra homo-

morphism ev, : A — A at ¢ by ev.(f) = f(c) = f(c1,...,cm) € A for
fe A:A[azl,...,xM].

Any element f of K can be represented as f = g~ 1h for some g, h €
A with g # 0. Fix ¢ € FM. Assume that g,h,g',h’ € A, g(c),¢'(c) # 0,
and g~'h = ¢g'"lh/. Since A is an Ore domain, there exist non-zero
u,u’ € A such that ug = v'g’. Then uh = ugg~'h = ug'g"'h =
u'h’. We have u(c)g(c) = v/(c)¢'(u) and u(c)h(c) = v'(c)h’(c). There-
fore g(c)"'h(c) = (u(c)g(c))"'u(c)h(c) = (u'(e)g'(c)) " W ()W (c) =
g'(c)7'W(c) in K. This means that if f € K can be represented as
f = g~ 'h for some g,h € A with g(c) # 0, then ev.(f) = f(¢) =
g(c)7h(c) € K is well-defined and does not dépend on the choice of g
and h.

Let C be a subset of FM with the following Zariski dense property:

(D) For every a € Flz1,...,zun], if a(c) = 0 for all ¢ € C, then

a=0inF[zy,...,zm]

For example, for any infinite subset C; of F, the direct product C} C
FM has the property (D). For every f € A = A ® Flz1,...,2uM], if
eve(f) = f(¢) = 0 for all ¢ € C, then f = 0 in A Immediately we
obtain the following result.

Lemma 3.1. Let g h € A, g # 0, and f = g~ 'h. Assume that
there exit a subset C' of F™ with the property (D) such that g(c) # 0 for
allce C. Ifeve(f) = f(c) =0 for allc € C, then f =0 in K.

Let C be a subset of F¥ with the property (D). Then, for any non-
zero b € Flz1,..., 2], the subset Chrg = {c € C | b(c) # 0} of C also
has the property (D). In fact, for every a € F[z1,...,z0], if a(c) = 0 for
all ¢ € Cyo, then a(c)b(c) = 0 for all ¢ € C. Therefore ab = 0 and hence
a=0inF[z1,...,zp]. It follows that, for any non-zero g1,...,gn € A,
the subset Cy,. . gvz0 ={c € C|gi(c)#0foralli=1,...,N} of C
also has the property (D). From this we can obtain the following result.

Lemma 3.2. Let C be a subset of FM with the property (D). Take
any f, f' € K. By the definition of the field of fractions I, there exist
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g, h,g b, g" b uv € A such that g,¢',9",u # 0, f = g 'h, f =
g7, ff = (¢"9)"h"R, and f + f' = (ug)"'(uh + k). Then
the subset C' = Cg g g uzo of C satisfies the property (D) and that
eve(f)eve(f') = eve(ff) and eve(f) + eve(f') = eve(f + f') for all
ceC.

We shall use these results to justify the conjugation actions of non-
integral powers in Section 3.2.

3.2. Non-integral powers in fields of fractions

In this subsection, we shall justify the conjugation actions of non-
integral powers along the lines of the work [6] by Iohara and Malikov.

Let F be any base field. Let A be a tempered domain over F with
generators f; (¢ € I) and defining relations Rx({f;}icr) = 0 (A € A),
where Ry (A € A) are elements of the tensor algebra T(V) of V =
@, Ffi. That is, A is the quotient algebra of T(V)) modulo the two-
sided ideal generated by {Rx}xea. The polynomial ring Alz] = AQF(x]
of one variable over A is also a tempered domain over F. We can regard
the field of fractions Q(A) as a subfield of Q(A[z]).

Agsume that a non-zero element ¢ in A, a countable family {c,}52,
of mutually distinct elements in F, and an infinite subset I' of Z>, satisfy
the following condition: B

(*) For any ¢ € I, there exists ¢; € Q(A[z]) such that, for all
n €T, eve, (¢;) = di(cn) € Q(A) is well-defined and g" f,9™" =
di(cn)-

For any A € A and k € T', we have Rx({¢;(cn)}icr) = Rax({9" fig™ " }ier)
= ¢"Ra({fi}ier)g™* = 0 in Q(A). By Lemma 3.1, Rx({¢s(21)}icr) =0
in Q(A[z]). Therefore we can define the algebra homomorphism 7, :
Alz] = Q(A[z]) by vg,2(fi) = ¢i(x) for i € I and 74 () = z. Using the
universality of the field of fractions Q(A[z]), we can extend vy, to the
algebra automorphism of Q(A[z]). We call v, 5 the conjugation action
of non-integral power of g on Q(A[z]).

Assume that Flz] is identified with a subalgebra of the polynomial
algebra Flzi?, ..., xﬁl of M-variables over F. Then we can also define
the algebra automorphism 74, of Q(A[z1,...,2Mm]) by Ve,2(fi) = ¢i(x)
for i€ I and vgo(zy) =z, for p=1,..., M.

If ¢, = n, then ~v,, is denoted by v(¢*). If ¢, = ¢" and z is
identified with ¢*, then 7, , is denoted by v(g*).
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§4. Quantized g-analogues of birational Weyl group actions

In this section, we shall construct quantized ¢g-analogues of the bi-
rational Weyl group actions arising from nilpotent Poisson algebras pro-
posed by Noumi and Yamada [17].

Let A = [a;;] be a symmetrizable GCM symmetrized by {d; };es. Let
Agq0 be a quotient tempered domain of the lower part U, 4 of a universal
enveloping algebra U, of type A. Then A, ¢ is generated by the images
{fi}tier of the lower Chevalley generators {F;},c;. If A is of finite or
affine type, then any quotient integral domain of U, is a tempered
domain. See Corollary 2.15. In order to construct the examples for
arbitrary cases, see Section 2.4.

4.1. Non-integral power of f;
Fix ¢ € I and assume that f; # 0. Lemma 2.3 leads to the following
formulae:

—ag;
n

finfjfi_n _ q£k+aij)(n—k) l:k] ad(fi)k(fj)fi_k forneZifi 75 7,
qi

k=0
where ad(f;)*(f;) denotes the image of ad(F;)*(F;) € U in Ago:
k . k
ad(£)*(f;) = 3 (~1)"q}¢ ‘”““)[ ] FEVEfy
qdi

v

v=0
For j € I, define ¢;;{x) € Q(A[x]) by

S g ek g (@) ad(F) PSR i # G,
ij(x) = %=0
fi lfl:]a

where a;;,x(z) € Flz, z7!] for k € Z3, are given by

[; 0], [2; ~1]g, - - - [25 —k + 1], zqy —x g "
aiji(x) = . [qk] ] & [ZUQV]qi = -
qi* qi — g;

Then there exist g;; € Ag 0 and hy;j(x) € Agolz, z7"] such that ¢;;(z) =
gi‘jlhij(x). Therefore ¢;;(¢™) is well-defined and ff; f7™ = ¢:;(gP*) for
all j € I and n € Z.

Let (Y, X, (,),{e) }ier, {ai}icr) be a root datum of type A and
{v1,...,ym} a Z-free basis of d™'Y. Let A, be the tensor product
algebra Az o ® Uy = Agolg®¥',...,¢*¥™]. Note that ¢* (A € d71Y)
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commute f; (j € I) in A,. Takeany X € Y. Identifying x with ¢} = ¢%*,
we regard F[z] as a subalgebra of Ug . Using the result of Section 3.2,
we can define the algebra automorphism v (f?) of Q(Aq) by v(f)(f;) =
$ij(q}) for j € I and y(f})(g*) = g* for p € d~'Y. More explicitly we
have

—agj

ZZWWWME]meMHkﬁ#%

qi

i ifi = 4.

(4.1) ’Y(f)\ (fJ

Note that the right-hand side is a Laurent polynomial in ¢.

For the ¢ = 1 cases, we have the same construction as the above. Let
Ag be a quotient tempered domain of the universal enveloping algebra of
the lower part n_ of a Kac-Moody algebra g of type A. Then Ay is gen-
erated by the images {f;}icr of the lower Chevalley generators {F;}c;.
Let A be the tensor product algebra Ag @ U(h) = Ao[y1,...,yu). Then
we can define the algebra automorphism ~(f7) of Q(A) by v(f)(h) =
for h € h and the g — 1 limit of (4.1):

(4.2) YIIS) = Z(z)ad(fi)k(fj)f[k if i # j,

k=0
f’i le:J)

where ad(X)(Y) = [X,Y] and (}) = AA=1)--- (A — k + 1)/k!. The
left-hand side of (4.2) is a polynomial in A.

Remark 4.1. Formula (4.2) (resp. (4.1)) can be regarded as a quan-
tization (resp. quantized g-analogue) of Formula (1.9) in [17] proposed
by Noumi and Yamada.

Simply Formula (4.2) is the ¢ — 1 limit of Formula (4.1). Note that
the ¢ — 1 limit is not a classical limit because (4.2) is a formula in a
non-commutative algebra.

Let us explain how to obtain Formula (1.9) in [17] as the classical
limit of Formula (4.2). We replace f; by A~1p; and A by A~1); and define
adp by adp(X)(Y) = A '[X,Y], where h denotes the Planck constant.
Assume that ¢ # j. Then Formula (4.2) is equivalent to
(4.3)

—aij
-1 (i —B) (N — (k=
Al M)y = Y AT A B DM g )

k=0
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The classical limit of A~1[X,Y] should be the Poisson bracket {X,Y}.
Thus, as the classical limit of (4.3), we can obtain Formula (1.9) in [17]:

—ai; 1

L\ F
silo) = 3 5 (3] adpleten, (0 = XV},

k=0

4.2. Quantization of birational Weyl group actions

In the previous subsection, we have constructed the conjugation ac-
tion (f}) of a non-integral powers f; on the field of fractions Q(A,),
where ¢ € I, A € Y, and A, is the tensor product algebra of a quo-
tient tempered domain A, of U, and the Cartan subalgebra U(? of
Uy. We denote by f; the image of F; in Ay o. We identify A, with the
Laurent polynomial ring A, o[, ..., ¢%¥*], where {y1,...,ym} is a
Z-free basis of d~1Y. Note that ¢* () € d~'Y) commute f; in A,.

The Weyl group W = (s;|¢ € I} acts on Y. (See Section 1.2.) This
action naturally extends to those on d™'Y and UJ = @, c4-1y F¢*. In
this subsection, we denote by w the action of w € W on Ug regarded as
a subalgebra of A,:

50" = ¢V, 5N =A—- (N ay)ay foriel, Aed™'Y.

The action w of w € W on Ug is extended to the action on A, by
W(f;) = f; for i € I. The induced action of @ on Q(A,) is also denoted
by w.

Lemma 4.2. Foranyi,j€l and A €Y, V(fk)osz — 3 oy(fsl(x))

on Q(A,).
Proof. Take any k € I and pu € d~'Y. Then we have

(£} 0 8l fe) = (I (Fr) = @ik (a}),
507 ) () = 5:(on(@ ) = 0T N) = pia(a)),
V() 0 8i(a*) = v(fH) (g™ = 1(“),
507 (f7 (g = 8i(a") = ).
This proves the above lemma. Q.E.D.

Theorem 4.3 (quantized birational Weyl group action). Assume
that f; # 0 for alli € I. For each i € I we deﬁne the algebra automor-
phism S; of Q(Aq) by S = 3;0v(f; o ) =y(f ) © ;. Then the action
of the Weyl group W on Q(A,) is defined by s;(z) = Si(z) fori € I and



Quantization of Weyl group symmetries of Painlevé systems 319

z € Q(Aq). Eaplicitly, the following formulae define a representation of
the Weyl group in algebra automorphisms of Q(Ag):

%_EZN“”“*{A WU i
qi

i ifi=17,
si(q) = ¢ = el N egly.

Proof. Tt is sufficient to show the braid relations of {S;}ie; and
SZ=1foriel.

First let us prove S? = 1. It is sufficient to show that S2(f;) = f;.
Since SZ(f;) = f; is trivial, we can assume i # j. Using Lemma
4.2 we have S? = 7(fia"v) o V(f;aiv). S?(f;) is a Laurent polynomial
(g { ) of ¢ ¥ with coefficients in Q(Ag). Then we have ®(¢}') =
SR f™ ™ = f; for all n € Z. Therefore we obtain SZ(f;) =
@(q;") = f-

Second let us prove the braid relations for {S;};cr. Assume that
i # j and (as;,a5) = (0,0),(—1,-1),(—1,-2), or (—1,—3). We define
the sequences (i1,...,%n), (J1,--.,Jn) as follows. If (a;;,a;) = (0,0),
then n = 2, (i1,12) = (4,5), and (1, 52) = (4,9). If (aij, a51) = (=1, ~1),
then n = 3, (i1,i2,i3) = (i,j, ’L), and (jl,jg,jg) = (j,l,j) If (aij,ajz-) =
(_17 —Q)a thenn = 4) (ila ce >i4) = (iajvivj)7 and (jl, HR 7j4) = (]72’.777')
If (aij,aji) = (—1,—3), then n = 6, (’il,...,iﬁ) = (i,j,i,j,i,j), and
(41,-..,796) = (4,%,7,1,4,%2). Then the braid relation to be shown is writ-
ten as S;, ...5;, = ij -"Sjn'

For p = 1,...,n, we set Ay, = 8;,8i,, *Si, (@) and pp =
SjnSjn_1 " Sippa (). Then Ap = apey + bpaf and pp = cpa) + dporf
for some ay,bp.cp,dp € Zxo. (See Example 1.1.) For k,l € Z3, we
set up; = fa1k+b1l ) fank+bn and v = fclk+d1l fcnk+dn. Then

u(k,l) (resp. v(k,l)) is the image in Ay of the left- hand side (resp.
right-hand side) of the corresponding formula in Example 1.11. For
example, if (aij,a5) = (—1,—1), then u(k,1) = f/ff*'fF The Verma
relations mean that u(k,l) = v(k,!) for all k,1 € Zx,.

By Remark 1.12 and Lemma 4.2, the condition S;, ... S;, = S, ... S;,
is equivalent to y(f;, MYoy( ;A ) =(f;1) v (f;)). Denote the
left-hand side by ¢ and right-hand s1de by fd) le any t € I. Then

#(f:) and () belong to Q(Agolg; ™ ,q;*']). We denote ¢(fi) by
(g, ,q; ) and (fi) by B ™ ,q; ™).
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From Lemma 3.2 and the definition of v(f;), it follows that there
exists a subset I' of ZZZO with the following properties:

(1) If f(z,y) € Agolz,y] and f(gF,q}) = 0 for all (k,1) € T, then
f(@,y) = 0in Agolz,yl.
(2) ®(qf,q}) and ¥(gf,q}) are well-defined for all (k,1) €T
(3) ®(qf,q}) = u(k,l) fru(k,1)" and ®(gf,q}) = v(k, 1) frv(k, )"
for all (k,l) eT.
Using the Verma relations, we obtain that ®(¢f,q}) = ¥(gf,q}) for all
(k,1) € T. From Lemma 3.1 it follows that ¢(f:) = @(q;a’y,qj_a") =

U(q; o q; *7) = (f:). We have just completed the proof. Q.E.D.

Remark 4.4. In Theorem 4.3, we construct the representation of
the Weyl group W in algebra automorphisms of Q(A,). This can be
regarded as a quantized g-analogue of the birational Weyl group action
arising from a nilpotent Poisson algebra proposed by Noumi and Yamada
in [17]. See also Remark 4.1.

85. Quantized birational Weyl group actions of Hasegawa

In this section, we shall reconstruct the quantized birational Weyl
group actions of Hasegawa. [4].

Let A = {a;;}: jer be a symmetrizable GCM symmetrized by {d; }icr,
d the least common denominator of {d; }ier, (Y, X, (, ), {&) }ier, {a: }ier)
a root datum of type A. Let {y1,...,yn} be a Z-free basis of d~'Y. As-
sume that if ¢ # j and a;; # 0, then ¢;; = 1 and €;; = —¢;;, otherwise
€;j = 0. Set the base field F by F = Q(¢*/?) and ¢; € F by ¢; = ¢%.

Consider the tempered domain B, defined in Section 2.4. For ¢ € I,
define fi1, fio € By ® By by fi1 = fi® 1 and fip = ki'l ® f;- Note that
fir + fiz (i € I) are the images of the lower Chevalley generators F; in
By ® B,. Therefore fij1 + fiz (i € I) satisfy the g-Serre relations (Section
1.5) and hence the Verma relations (Section 1.7).

Let .Zq,o be the subalgebra of B, ® B, generated by f;1, fi2 (iel).
Then /Tq,g is identified with the algebra over F generated by fi1, fiz
(¢ € T) with defining relations: '

fil/fju = qi_Eijaijijfiu for Za] € Ia v= 1a27
fiafin = 4% firfiz fori,j €l

Note that ¢;*

— g% i = i
;. =q;”" because d;a;; = djag;.
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Let jq be the tensor product algebra ./A(q’o ® Uy. Then .Zq can be
identified with the Laurent polynomial ring ij,o[qiyl, oo, qFYM] with
coefficients in A, g0- For i € I and X € d'Y, we identify fi1 ® 1, fiz ®
1,101® q € Aq with fi1, fi2,q* € A olgtYr, ..., qFYM] respectively.
Note that ¢* commutes f;; and fis in .A for A e d™ 1Y and ¢ € I. Since
Aq is also a tempered domain and hence an Ore domain, there exists
the field of fractions Q(A,) of A,.

For i € I, define g; € Q(.Zq) by g; = fii" fiz- Let Ago (resp. A,)
be the subalgebra of Q(Xq) generated by g; (i € I) (resp. generated by
gi (i € I) and ¢* (A € d1Y)). Then A, can be identified with the
algebra over T generated by g; (i € I) with defining relations:

~2€55 55

(5.1) 9:9; = q; g;9; fori,jel.

Furthermore A, can be identified with the Laurent polynomial ring
Agolg®?,. .., g™¥M]. Note that ¢* commutes g; in A, for A € =Y and
i € 1. Since A, 0 and A, are tempered domains, there exist the fields of
fractions Q(Ag0) and Q(Aq). We have also Q(Aq,0) C Q(Ag) C Q(A).

In [4], Hasegawa constructed a representation of the Weyl group
W = W(A) in algebra automorphisms of Q(A;). Our aim is to recon-
struct it by the same method as in Section 4.

5.1. Non-integral power of f;; + fi2

Applying the g-binomial theorem (Lemma 1.3) to fiofi1 = 42 fi1 fiz,
we obtain

—2n .
(fir + fi2)" = @-’@5@& " eQ(A,) fornel,
1/Q4,00

where (2)i00 = [[oeo(1 + ¢2“z). The infinite products in the right-
hand side cancel each other out except finite factors. Using (5.1), and
(ei5—1)as;

figi = ¢q; g; fi1, we obtain

(fir + fa2)"gi(far + fi2)™"

251] 223 —2n

9i)aioo  (9i)gi 00

- q{ﬂj*l)az‘jn (g
gi)q,, ( i_2ngi)qz'700

7 J ( —-26” (11,]
%

2e”a”

 (e—Dain (4 " 9)gi00 (47" 9i)gir00
: (gl)qi,oo (qfemau _2ngz)q1,oo

J
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for n € Z. More explicitly we have (fi1 + fi2)"g;{fir + fi2) ™™ = ¢s;(q})
for n € Z, where ¢;;(z) € Q(Ag0[z]) (3,5 € I) are defined by

—a;—1 1+q
’L .f = 1’
Qij 1 +q'21/$—2g,
() = 2(—aij) S v g e =—1
byl = {2 (1:10 R g ity =t
x_Zgi if i =7j,
gj if Qi = 0.

Take any A € Y. Identifying z with ¢} = ¢%*, we regard F[z] as a
subalgebra of Ug. Using the result of Section 3.2, we can define the
algebra automorphism v((fi1 + fi2)*) of Q(Ag) by v((fir + fi2)*)(g;) =
¢i;(q}) for j € I and y((fi1 + fiz) ) (¢#) = ¢* for p € d™'Y.

Remark 5.1. We have shown that the conjugation action of a non-
integral power (fi1 + fi2)* on Q(A,) is well-defined. Recall that the
subalgebra of B, ® B, generated by {fi1 + fiz}icr is denoted by N2 in
Section 2.4. Although the conjugation action of (f;; + fi2)* on QN 2®
Ug ) is well-defined by Theorem 4.3, it does not reconstruct Hasegawa’s
action.

5.2. Reconstruction of Hasegawa’s Weyl group actions

The Weyl group W = (s;li € I) acts on U?. This is naturally
extended to the action on Q(A,) so that each w € W trivially acts on
{gi}icr- In this subsection, we denote by @ the action of w € W on
Q(A,): W(g:) = gi for i € T and w(g*) = ¢ for A € d~1Y.

Theorem 5.2. For i € I we define the algebra automorphism Si
of Q(Ag) by Si = 5 o y((fir + fir) ™) = v((fr + fi2)*¥) © 5. Then
the action of the Weyl group W on Q(Aq) is defined by s;(z) = S;(z)
Jori €I and x € Q(Aq). Ezplicitly, the following formulae define a
representation of the Weyl group in algebra automorphisms of Q(Ag):

. aﬂ 1+¢g: ey
gj —‘——__;' Zfelj_+a
2

v=0 1+ qz q; v
2
_ ) 2aipay "14g qz ' i ,
8; ) — ‘ [ . L= _1’
(g]) q; ( J;[O 1+ ql ; ) g; Zf €45
—2a) e .
q; & i Zf’l =72

gj if a;; =0,
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Si(q)\) - qsi()\) — qA—(A,ai)a;’ redly.

Proof. Since fi1 + fiz (i € I) satisfy the Verma relations, we can
prove the theorem by the same argument as in the proof of Theorem
4.3. Appropriately replacing f;" / and f; in the proof of Theorem 4.3
by (fi1 + f,-g)"‘y and g; respectively, we obtain the proof of the above
theorem. Q.E.D.

Remark 5.3 (Hasegawa’'s Weyl group action). In Theorem 5.2,
we construct the representation of the Weyl group W in algebra auto-
morphisms of Q(A,). This can be regarded as a reconstruction of the

Weyl group action constructed by Hasegawa in [4]. Set a; = g;' i/ and
Fi=a; ! g; for i € I. Do not confuse these F; with the lower Chevalley
generators. Then A, can be identified with the algebra generated by F;
(i € I) and ¢* (X € d7'Y) with defining relations:

FF; = g, """ F;F, fori,jel,

X3

=1, @*¢" =™, @ Fi=F¢ for \pcd'Y.

The explicit formulae of the Weyl group action in Theorem 5.2 can be
rewritten as

( —a,-j—l 2
14 q;"a; F; .
i T 2R ®ifi) e — 4,
J( Vl;[o wr@F ) N
sz(F}) = al—JI a,-—f—qiz"Fi Foifer — 1

bir S S 2 ’

F; otherwise,

Si(Q'\) = qsi()‘), in particular s;(a;) = aja;‘“i

These formulae essentially coincide with those of Hasegawa. Compare
these with Hasegawa’s formulae, Equation (8) in [4] for the Al(l) case
and the example for the By case below Theorem 4 in [4].

Let us explain the classical limit of Hasegawa’s action. Set q¢ = e".
In the above setting, replace ¢ by ¢" and A € d~'Y by A=A, Then ¢*
is replaced by itself and

RYE;, Fy] = A Y(F,Fy — FjF;) = —2n€;;d;a,;F;F;  mod A.

Hence the classical limit AZ of the algebra A, is the commutative Pois-
son algebra generated by F; (i € I) and ¢* (A € d~'Y) with Poisson
brackets defined by

{Fi, F}} = —ZneijdiaijFiFj for i,] € I,
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{* "} ={d"F}=0 for \,ped'Y,iel

The classical limit of the above Weyl group action can be simply written
as

14 a Fy ) 9% .
s =5 (L) s =0,

\2
where a; = g;* = ¢%%i. This action preserves the Poisson brackets of

Q(Agl). The classical case of type Agl) was found by Kajiwara, Noumi,
and Yamada in {8]. See Equation (6) of [8]. In [4], Hasegawa quantized
its generalization to an arbitrary symmetrizable GCM case.
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