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Abstract. 

We shall construct the quantized q-analogues of the birational 
Weyl group actions arising from nilpotent Poisson algebras, which 
are conceptual generalizations, proposed by Noumi and Yamada, 
of the Backlund transformations for Painleve equations. Consider 
a quotient Ore domain of the lower nilpotent part of a quantized 
universal enveloping algebra for any symmetrizable generalized Car­
tan matrix. Then non-integral powers of the image of the Chevalley 
generators generate the quantized q-analogue of the birational Weyl 
group action. Using the same method, we shall reconstruct the quan­
tized Backlund transformations of q-Painleve equations constructed 
by Hasegawa. We shall also prove that any subquotient integral do­
main of a quantized universal enveloping algebra of finite or affine 
type is an Ore domain. 
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§0. Introduction 

The main theme of this article is a representation theoretic method 
for quantizing discrete symmetries of Painleve equations and isomon­
odromic deformations. Such discrete symmetries, often called Backlund 
transformations, play central roles in the theory of Painleve equations 
and isomonodromic deformations. We could expect that this is the case 
in quantum settings. 

In this article the term "quantization" means canonical quantization 
that replaces commutative Poisson algebras Aci with non-commutative 
algebras A and Poisson algebra automorphisms of Ac! with algebra auto­
morphisms of A. If Acl is an integral domain and Q(Acl) denotes the field 
of fractions of Ac!, then a birational action of a group G on Spec Acl is 
identified with an algebra automorphism action of G on Q(Ac1). There­
fore if a classical symmetry is represented by a birational action of G 
on a Poisson integral affine scheme, then its quantization should be an 
algebra automorphism action of G on a non-commutative skew field. 

Note that q-difference analogue (q-analogue for short) or q-difference 
deformation (q-deformation) does not always mean quantization. In this 
article we shall deal with four types of classical and quantum systems, 
ordinary differential versions of classical systems and their quantizations, 
and q-analogues of classical systems and their quantizations. 

Sections 1 and 2 are devoted to summarizing preparatory results 
on quantized universal enveloping algebras and localizations of non­
commutative rings. We shall show that a quantized universal envelop­
ing algebra of finite or affine type is an Ore domain (Theorem 2.14). 
The q = 1 cases were treated in [23] and [1]. Moreover we shall show 
that their subquotient integral domains are also Ore domains (Corollary 
2.15). In Section 3, we shall explain how to justify non-integral powers in 
fields of fractions along the lines of the work [6] by Iohara and Malikov. 

0.1. Quantized q-analogue ofbirational Weyl group actions 

In Section 4, we shall construct a quantized q-analogue of the bira­
tional Weyl group action arising from a nilpotent Poisson algebra. 

A series of works by Okamoto [19, 20, 21, 22] showed that the 
Painleve equations Pn, Pnr, Prv, Pv, and Pvr have affine Weyl group 
symmetries of type A~1l, C~1 l, A~1 l, A~1 l, and Di1l respectively. Each of 
the affine Weyl groups birationally acts on dependent variables and pa­
rameters of the corresponding Painleve equation. Its birational actions 
preserve the continuous flow generated by the Painleve equation and are 
called Backlund transformations. 
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In [14], Noumi and Yamada generalized the birational affine Weyl 

group actions of type A~l), A~1 ), and D2) (the cases of Prv, Pv, and 
Pvr) to the Weyl group associated to an arbitrary generalized Cartan 
matrix (GCM for short). If the size of GCM is equal to m, then the 
Weyl group birationally acts on a 2m-dimensional space of m dependent 
variables and m parameters. For each m ~ 2, they also constructed a 
system of differential equations with m dependent variables and m pa­
rameters on which the affine Weyl group of type A~~ 1 acts as Backlund 
transformations [15]. It is called a higher order Painleve equation of 

type A~~ 1 . Following this work, Nagoya constructed its quantization 
in [13]. 

In [17], Noumi and Yamada also proposed the further generalization 
of the birational Weyl group action. 

Fix an arbitrary GCM. Let g be the Kac-Moody algebra associated 
to the GCM, b its Cartan subalgebra, and n± its upper and lower parts 
([7]). The Kostant-Kirillov Poisson bracket { , } makes the symmetric 
algebra S(n_) Poisson and hence n~ = SpecS(n_) is regarded as a 
Poisson scheme. Let Jcl be an arbitrary Poisson prime ideal of S( n_) 
and denote by A81 = S(n_)jJcl the residue class ring modulo Jc!. Then 
A81 is a Poisson integral domain and hence Spec A81 is a Poisson integral 
subscheme ofn~. Denote by Acl = A81®S(b) the tensor product algebra 
of A81 and S(b). The Poisson structure of A81 uniquely extends to that 
of Ac! so that S(b) is Poisson-central in Ac1. 

In [17], Noumi and Yamada constructed a birational Weyl group 
action on Spec Ac! = Spec A81 x b. They called A81 a nilpotent Pois­
son algebra. Spec A81 and b are identified with the space of dependent 
variables and that of parameters respectively. 

Let us explain the quantized q-analogue of the above setting. 
Let A= [aij]i,jEJ be a symmetrizable GCM symmetrized by a family 

{ di}iEI of positive rational numbers. Denote by { aihEI the set of simple 
roots and by { aniEJ the set of simple coroots. Let d be the least 
common denominator of {dihEI· Set the base field lF' by lF' = Q(q1fd) 
and qi E lF' by qi = qd; . 

Let Uq be the quantized universal enveloping algebra of type A over 
JF', ug its Cartan subalgebra, and U:i its upper and lower parts ([11]). 
Let Jq be an arbitrary completely prime ideal of u;; and denote by 
Aq,O = u;; I Jq the residue class ring modulo Jq· Assume that Aq,O is 
an Ore domain. For example, if A is of finite or affine type, then Aq,O 
is always an Ore domain. See Corollary 2.15. For the construction of 
examples for an arbitrary case, see Section 2.4. 
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Denote by Aq = Aq,O ® ug the tensor product algebra of Aq,O and 
ug. Then Aq is also an Ore domain. Denote by Q(Aq) the skew field of 
fractions of Aq· Let {fihEI be the images in Aq of the lower Chevalley 
generators {Fi}iEI of U;;. In particular, fi (i E I) satisfy the q-Serre 
relations. Assume that fi -f. 0 for all i E I. 

Denote by si the action on ug of the simple reflection si E W for 
i E I. The action of si naturally extends to the action on Q(Aq) so that 
Si trivially acts on Aq,O· 

In Section 4, we shall obtain the following results: 
v 

(1) For each i E I, the conjugation action rUt';) of the non-
v v 

integral power Jt'i on Q(Aq) formally given by 1Ut'i )x = 
v v 

Jt'; xfi-a; for x E Q(Aq) is well-defined. (See Section 4.1.) 
(2) For each i E I, define the operator Si acting on Q(Aq) by 

v v 

si = Si 0 rUi-ai) = rUt'i) 0 Si Then si (i E I) satisfy the 
defining relations of the Weyl group. In particular the braid 
relations of Si (i E I) are derived from the Verma relations of 
the Chevalley generators. (See the proof of Theorem 4.3.) 

Thus we can construct a Weyl group action on Q(Aq), which is the 
quantized q-analogue of the birational Weyl group action arising from a 
nilpotent Poisson algebra. For details, see Section 4. 

0.2. Quantized birational Weyl group actions of Hasegawa 

In Section 5, we shall reconstruct the quantized ( q-analogue of) hi­
rational Weyl group actions of Hasegawa [4]. 

In [8], Kajiwara, Noumi, and Yamada introduced a q-analogue of 
the fourth Painleve equation P 1v. It is called a q-Painleve IV equation 
qP1v. They also constructed a birational action of the affine Weyl group 
of type A~1 ) preserving the discrete flow generated by qPiv· 

Based on this work, in [4], Hasegawa constructed the quantized q­
analogue of the birational Weyl group action associated to an arbitrary 
symmetrizable GCM. 

Apparently Hasegawa's quantized q-analogues are different from those 
explained in the preceding subsection. But we can reconstruct the for­
mer by the same method as the latter. 

We follow the notation and the assumptions on a GCM, roots, and 
coroots, etc. in the preceding subsection. Assume that if i -f. j and 
aij -f. 0, then Eij = ±1 and Eji = -Eij, and otherwise Eij = 0. 

Let l3q be the associative algebra generated by { kt1 , fi hE I with 
following defining relations: 
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Note that the last formula is a sufficient condition for the q-Serre rela­
tion. Define the algebra U~ by U~ = IF [ { ar1 hEI] , the Laurent polyno-

mial ring over IF generated by { ar1 hE I. We identify ai with q~i. Define 
the algebra Aq by Aq = Bq ® Bq ® u~, the tensor product algebra of Bq, 
Bq, and U~. Then Aq is an Ore domain and hence can be embedded in 

the skew field of fractions Q(~). 
Define fil, fi2 E Bq®Bq by fil = fi®1 and fi2 = ki 1®k Note that 

h1 + fi2 is the image of the coproduct of a lower Chevalley generator 
in the quantized universal enveloping algebra. Identify fil ® 1, h2 ® 
1,1 ® 1 ® ai E Aq with fil, h2 E Bq ® Bq, and ai E u~ respectively. 

Define Fi E Q(Aq) by Fi = a;: 1 fi]1 !i2 fori E J. Do not confuse these 
Fi with the lower Chevalley generators. Let Aq be the subalgebra of 

Q(Aq) generated by {Fi,ar1hEI· Note that ai is central in the field of 
fractions Q(Aq) and 

Therefore Aq is also an Ore domain. We have Q(Aq) C Q(~). Denote 
by si the action on U~ of the simple reflection si E W for i E J. Then we 

have si(aj) = aja-;a;;. The action of Si extends to the action on Q(Aq) 
by si(Fj) =a~;; Fj. 

In Section 5, we shall obtain the following results: 

(1) For each i E J, the conjugation action 'Y (Ui1 + fi2)ai) of 

the non-integral power (fi1 + fi2 )ai on Q(Aq) formally given 

by 'Y (Uii + fi2)ai) x = (fil + fi2)ai x(fil + fi2)-ai for x E 

Q(Aq) is well-defined (Section 5.1). 
(2) For each i E J, define the operator Si acting on Q(Aq) by 

Si = Bi o 'Y (Uil + fi2)-ai) = 'Y (Uil + Ji2)ai) o h Then 

Si ( i E J) satisfy the defining relations of the Weyl group. In 
particular the braid relations of Si ( i E J) are derived from the 
Verma relations of {fil + fi2hEI· (See Section 5~2.) 

Thus we can construct a Weyl group action on Q(Aq), which coincides 
with Hasegawa's quantized q-analogue of the birational Weyl group ac­
tion (Remark 5.3). For details, see Section 5. 
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§1. Quantized universal enveloping algebras 

In this section, we shall summarize widely known results on quan­
tized universal enveloping algebras. We shall mainly follow Lusztig's 
book [11]. 

1.1. Symmetrizable GCM and root datum 

A matrix A= [aij]iEI with integer entries defined to be a generalized 
Cartan matrix ( GCMfor short) if it satisfies, for any i, j E I, (1) aii = 2, 
(2) aij ~ 0 if i =I j, and (3) aji = 0 if and only if aij = 0. Let A 
be a GCM. A is called indecomposable if, for any i =I j in I, there 
exists a sequence io, i1, ... , is E I such that i = io, aikik+l =I 0 (k = 
0, 1, ... , s- 1), and is = j. If there exists a family {dihEI of positive 
rational numbers such that diaij = djaji for any i,j E I, then A is called 
symmetrizable and symmetrized by { di hE I. If A is a GCM symmetrized 
by {di}iEJ, then the transpose tA is a GCM symmetrized by {di1hEI· 

Let A= [aij]iEI be a symmetrizable GCM symmetrized by {dihEI· 
We say that A is of finite type (resp. of affine type) if its principal mi­
nors are positive (resp. its proper principal minors are positive and its 
determinant is equal to zero). All GCM's of finite and affine type are 
classified explicitly. For details, see Chapter 4 of [7]. 

Let X andY be finitely generated free Z-modules and (,): YxX -t 
Z a perfect bilinear pairing. (X can be identified with Homz(Y, Z).) Let 
{athEI and {aihEI be families of elements in Y and X respectively. A 
root datum of type A is defined to consist of (Y, X, ( ')' { aniE[, { aihEI) 
satisfying (a£, a j) = aij for any i, j E I. Then a£ and ai are called a 
coroot and a root respectively. The dual root datum of type t A is defined 
to be (X, Y, ( , ) , { ai hEI, {a£ hEI) · 

If {aniEI (resp. {ai}iEI) is linearly independent in Y (resp. X), 
then the root datum called Y -regular (resp. X -regular) and the sub­
module of y (resp. X) generated by { aniEI (resp. { aihEI) is called 
a coroot lattice (resp. a root lattice) and denoted by Q (resp. Qv). We 
set x+ = { >. E X I (a£,>.) ~ 0 for all i E I} and call its elements 
dominant. We set Q+ = L:iEI Z~oai. 

1.2. Braid group and Weyl group 

Let A= [aij]i,jEI be a symmetrizable GCM. 
The braid group B(A) of type A is the group generated by { sihEI 

with the following defining relations: for any i =I j in I, 

SiSj = SjSi 

SiSjSi = SjSiSj 

if aijaji = 0, 

if aijaji = 1, 



Quantization of Weyl group symmetries of Painleve systems 295 

SiSjSiSj = SjSiSjSi if aijaji = 2, 

SiSjSiSjSiSj = SjSiSjSiSjSi if aijaji = 3. 

These relations are called braid relations. 
The Weyl group W(A) of type A is the group generated by { si}iEJ 

satisfying the braid relations together with s7 = 1 for all i E I. When 
A is indecomposable, W(A) is finite if and only if A is of finite type. 

Denote by B the braid group of type A and by W the Weyl group 
of type A. 

For w E W, the length £( w) of w is the smallest integer p ~ 0 such 
that there exists i1, ... , ip E I with w = Sit · · · sip. Then sit · · · sip is 
called a reduced expression of w. 

If sit · · · Si and si' · · · Si' are reduced expressions of w E W, then 
p t p 

the equality sit · · · si = si' · · · si' holds in the braid group B. There-v t p 

fore the mapping from W to B sending w E W to the element of B 
represented by a reduced expression of w is well-defined. 

Let (Y, X, (, ), {a{}iEI, {ai}iEJ) be a root datum of type A. Then 
the Weyl group W(A) acts on Y and X by si(Y) = y-(y, ai)a'( for y E Y 
and si(x) = x- (a'(, x)ai for x E X. Moreover we have (w(y), x) = 
(y, w- 1(x)) for wE W(A), y E Y, and x EX. 

If Sit · · · sip is a reduced expression in W, then sip sip-t · · · Si2 (a~) E. 

:Z::::iEI Z;;; 0a'( and Sip sip-t · · · Si2 ( aiJ E :Z::::iEJ Z;;;0ai. 

Example 1.1. Assume that i,j E I and i i- j. 

(1) If (aij, aji) = (0, 0), then both sides of SiSj = SjSi are reduced 
expressions and 

(2) If (aij,aji)= (-1,-1), then both sides of sisjsi =SjSiSj are 
reduce expressions and 
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(3) If ( aij, aji) = ( -1, -2), then both sides of SiSjSiSj = SjSiSjSi 
are reduce expressions and 

(4) If (aij, aji) = ( -1, -3), then both sides of SiSjSiSjSiSj = SjSi 
SjSiSjSi are reduce expressions and 

1(aY) = aY 
J J' 

sj(at) =at+ a'j, 

Sjsi(a'j) = 3at + 2a'j, 

SjSisj(at) = 2aY +a'j, 

SjSiSjSi(a'j) = 3at + a'j, 

SjSiSjSiSj(at) =a£, 

1(at) =a£, 

si(a'j) = 3a£ + a'j, 

sisj(at) = 2a£ + a'j, 

SiSjSi(a'j) = 3aY + 2a'j, 
· ( v) _ v v SiSjSiSj aj - ai + aj , 

SiSjSiSjSi(a'j) = a'j. 

These formulae shall be applied to the Verma relations. 

1.3. Kac-Moody algebra 
For details of Kac-Moody algebras, see Kac's book [7]. 
Let A= [aijkjEI be a symmetrizable GCM and (Y,X, (, ), {a{}iEI, 

{ ai}iEI) a root datum of type A. We set [J = C ®z Y and identify [J* 
with C ®z X by ( , ) . 

The Kac-Moody (Lie) algebra g associated to the root datum is 
defined to be the Lie algebra over C generated by Ei, Fi (i E J) and 
H E [J with following defining relations: 

[J is an Abelian Lie subalgebra of g; 

[H, Ei] = (H, ai)Ei, [H, Fi] = - (H, ai)Fi for i E I, H E [J; 

[Ei, Fj] = 8ija£ for i,j E J; 

ad(Ei)l-a;j Ej = 0, ad(Fi)l-a;j Fj = 0 if if j. 

Here we set ad(X)Y = [X, Y], for example, ad(X) 3 Y = [X, [X, [X, Y]]]. 
The last two relations are called Serre relations. 

Denote by n+ (resp. n_) the Lie subalgebra of g generated by { EihEI 
( resp. { Fi hE I). We call n± the upper and lower parts of g and Ei ( resp. 
Fi) the Chevalley generators of n+ (resp. n_). The Abelian subalgebra 
[J is called the Cartan subalgebra of g. We have the triangular decompo­
sition g = n_ EEl [J EEln+ of g. Define the upper and lower Borel subalgebras 
b± by b± = [J EEl n±. 
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We can define the Z-gradation of fl by deg Ei = 1, deg Fi = -1 
( i E I) and deg H = 0 ( H E ~) and call it the principal gradation 
of fl. Denote by flk the degree-k part of fl for k E Z. Then we have 
fl = EBkEZ flk, dimflk < oo, n± = EBk>O fl±k, and ~ =flO· The induced 
Z-gradation U(fl) = EBkEZ U(fl)k is also called the principal gradation. 
Define the principal gradations of U(n±) by U(n±)±k = U(fl)±k n U(n±) 
fork E Z;:::0 . 

Assume that the root datum is Y-regular and X-regular. Denote by 
fl1 the derived Lie algebra [fl, fl] of the Kac-Moody algebra fl· Then fl 1 is 
a finite dimensional Lie algebra (resp. a central extension of a (possibly 
twisted) loop algebra of a finite dimensional simple Lie algebra) if and 
only if A is of finite type (resp. of affine type). Then fl is called a Kac­
Moody algebra of finite type (resp. a Kac-Moody algebra of affine type 
or an affine Lie algebra for short). These lead to the following result. 

Lemma 1.2. Assume that the GCM A is of finite or affine type. 
Then {dim flk} kEZ is bounded, namely there exists a positive integer 
N such that dimflk ;£ N for all k E Z. Define the positive integers 

CkN) (k E Z~0) by (IT:1 (1-ti))-N = '5.:-'f:=oCkN)tk. Then we have 

dim U(n±)±k ;£ CkN) fork E Z~o· 

1.4. q-Binomial theorem 

We define q-numbers, q-factorials, q-binomial coefficients, and q­
shifted factorials as follows: 

qx _ q-x 
[x] - for n E Z, 

q- q- q-1 

n 

[n]q! = II [k]q for n E Z~0 , 
k=l 

[x]q[x- 1]q · · · [x- k + 1]q 
[k]q! 

(x)q,k = (1 + x)(1 + q2x) · · · (1 + l(k-l)x) fork E Z~0 , 

(x)q,oo = (1 + x)(1 + lx)(1 + qx4 ) · · · = II (1 + q2~"x). 
f.'=O 

Note that our q-shifted factorials are different from usual ones defined 
by (x; q)k = IJ~;_;;6(1- q"x). Then we can prove the following lemma by 
induction on n. 
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Lemma 1.3 (q-binomial theorem). Assume that x, y are elements 
of an !Q(q)-algebra satisfying yx = q2 xy. Then, for n = 0, 1, 2, ... , 

(x + y)n = t qk(n-k) [~] xkyn-k 
k=O q 

= ~ qk(n-k) [~Lxkyn-k = ~ qk(n-k) [~] /n-kyk. 

Moreover, if x is invertible, then, for n = 0, 1, 2, ... , 

where the infinite products cancel out except finite factors. 

1.5. Quantized universal enveloping algebra 

Let A= [aij]i,jEI be a symmetrizable GCM symmetrized by {di}iEI 
and (Y, X, (,), { a{}iEI. { ai}iEI) a root datum of type A. Let d be the 
least common denominator of {di}iEI· We set the base field lF by lF = 

!Q(q11d) and qi E lF by qi = qd;_ Then we have dia'( E d- 1y and 
we extend naturally the perfect bilinear pairing ( , ) : Y x X -+ Z to 
( , ) : d- 1 Y x X -+ d-1 Z. 

Then the quantized universal enveloping algebra Uq = Uq(g) asso­
ciated to the root datum is defined to be the associative algebra over 
the base field lF generated by Ei, Fi, q>.. for i E I and .X E d-1 Y with 
following defining relations: 

q0 = 1, q>..+JL = q>..q!L for .X, fJ E d-1 Y; 

q>..Eiq->.. = q<>..,a;)Ei, q>..Fiq->.. = q-(>..,a;)pi fori E I, .A E d- 1Y; 

[ v] Ki- Ki1 
EiFJ - FJEi = OiJ ai q; = oiJ _1 

qi- qi 
for i,j E I; 

1-aij 

L ( -1)k [1 -k aij] Ef EjE;-a;j-k = 0 
k=O q; 

ifi-j.j; 

1-a· · tJ ( -1)k [1-k aiJ] Fik FJF/-a;j-k = 0 if i -=f. j, 

k=O ~ 

a'! . v • 
where we set Ki = qi ' = qd,a; . The last two relatwns are called q-Serre 
relations. (For this definition, see Corollary 33.1.5 in [11].) In particular, 
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we have KiEjKi-1 = q:ij Ej and KiFjKi 1 = q;aij Fj for i,j E I. By 
induction on m, n E Z~0 we can prove the following formula: 

min{m,n} [ v ( ) ( )] E~m) p(n) = ""' p(n-k) o:i - m- k - n- k E~m-k) 
• • ~ • k • ' 

k=O ~ 

(1.1) 

min{m,n} [ v ( ) ( )] p(n) E~m) = ""' E~m-k) -o:i - m- k - n- k p(n-k) 
• • ~ • k • , 

k=O ~ 

where we set E}m) = Ef' /[m]q;! and Fi(n) = Fr /[n]q;!. (See Corollary 
3.1.9 in [11].) 

Denote by U;j = Uq(n+) (resp. u;; = Uq(n_), U~ = Uq(~)) the sub­
algebraofUq = Uq(g) generated by {EihEI (resp. {FihEI, {q>.hEd-1y). 
We call U"t the upper and lower parts of Uq and Ei, Fi the upper and · 
lower Chevalley generators respectively. The commutative subalgebra 
U~ is called the Cartan subalgebra of Uq. We have the triangular decom­
position Uq ~ u;; 0 U~ 0 U;j of Uq· Note that ut are determined by 
the symmetrized GCM only and their structure does not depend on the 
choice of a root datum. Define the upper and lower Borel subalgebras 
Uq(b±) to be the subalgebra of Uq = Uq(g) generated by U"t = Uq(n±) 

and U~ = Uq(~). Then we have Uq(b±) ~ U~ 0 U"t ~ ut 0 U~. We say 
that Uq is of finite type (resp. of affine type or affine for short) if A is of 
finite type (resp. of affine type). 

We can define the Z-gradation of Uq by deg Ei = 1, deg Fi = -1 
( i E I) and deg q>- = 0 (.A E d-1 Y) and call it the principal gradation of 
Uq. Denote by (Uq)k the degree-k part of Uq for k E Z. Then we have 
Uq = EBkEZ uk. Define the principal gradations of ut by (U"t)±k = 
(Uq)±k nUt for k E Z~o· Then we have Ut = ffik~o(U"t)±k· 

We can regard Uq (~esp. U"t, U~) as a q-deformation of the universal 
enveloping algebra U(g), (resp. U(n±), U(~)) of a Kac-Moody algebra 
g (resp. its upper and lower parts n±, its Cartan subalgebra ~). 

Define the local ring A1 by A1 = { f(q1fd) E IF = Q(q1fd) I f is 
regular at q1fd = 1} = Q(q1fd) n Q[[q1/d - 1]]. We regard C as an 
algebra over A1 by acting q1fd on Cas 1 and denote the algebra Cover 
A1 by C1. Assume that {y1, ... ,yM} is a Z-free basis of d- 1Y. Set 
(x)q = (1- qx)/(1- q). Then we have the following results. For the 
proof, see Sections 3.3 and 3.4 of [5], for example. 

Lemma 1.4. Let U~;.1 be the subalgebra of Uq over A1 generated by 
{Ei,Fi}iEI and {(yp,)q,q-Y~-'}~1· Let utl (resp. Up:) be the subalgebra 
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of u;t over A1 {resp. u;;) generated by {Ei}iEI {resp. {Fi}iEI) 
ut the subalgebra of ug over Al generated by {qY", (yjt)q}~l· 

and 
Set 

(UfJk = (Ut=)k n UA1 fork E Z. 

(1) 

(2) 
(3) 

(4) 

(5) 

(6) 

The multiplication gives an isomorphism u~ 0Al ut 0Al ut_ ..; 
UA1 of A1-modules. 
(Uk)k are free A1-modules and ut = EB%':o(Uk)±k· 
ut = Al[(Yl)q,···,(YM)q,q-Yl, ... ,q-YM] properly contains 
A [ ±y1 ±YM] .&1 q ' ... 'q . 
lF0Al UAl = Uq, lF0Al ut = u:, lF0Al (Uk)k = (Ut=)k, and 
lF 0A1 ug = ug. 
C1 i8lA1 JA1 = U(g), C1 18lA1 ut = U(n±), C1 ®A1 (Uk)k = 
U(n±)k, and C1 i8lA1 Ut = U(~). 
dimJF(Ut=)±k = rankA1 (UfJ±k =dime U(n±)±k fork E Z~o· 

In particular, we obtain the following results. 

Lemma 1.5. Let A be a symmetrizable GCM. A quantized universal 
enveloping algebra Uq of type A is always an integral domain. If A is of 

finite or affine type, then dimJF(Ut=h ;;;; CkN) fork E Z~0 , where N and 

CkN) are given in Lemma 1.2. 

Proof. Assume that a, b E Uq are non-zero. Then there exist >., f..t E 

d-1 y such that q>.a, bq~' E u;; 18llF[qYl' ... 'qYM]0 u:. Let { u;}~o be 

Al-free bases of ut. Set u~ = (Y1)~1 ... (YM )~M for f..t = (t-tl' ... 'f..tM) E 

(Z~0)n. Then {u~}JtE(Z;::o)n is an A1-free basis of Al[(YI)q, ... , (YM)q]· 
Note that lF[qY1, ... , qYMJ = JF[(y1)q, ... , (YM )q]· Because of Lemma 1.4 
(1) and (4), we can uniquely write q>.a and bq~' in the following forms: 

>. -"' -O+b~-'-"' d -O+( d E q a - ur,Jt,S Cr,Jt,Bur UJ!US' q - ur,jt,B r,jt,sUr UJ!US Cr,{!,Bl r,Jt,S 

lF = Q(q11d)), where only finitely many Cr,Jt,s and dr,Jt,s are non-zero. 
Since any c E JFX is uniquely expressed as c = (q- 1)-kc with k E 
Z and c E Ai (i.e. c E A1 and c(1) -:f. 0), we set ord(c) = k and 
ord(O) = -oo. Setting l = max{ord(cs,Jt,s)} and m = max{ord(ds,Jt,s)}, 
we have (q -1)1q>.a, (q -1)mbq~' E u;:l 0Al AI[(yl)q, ... ' (YM )q]i8lA1 ut_. 
Moreover their images in cl 0Al UAl = U(g) are non-zero and hence 
their product in U(g) is non-zero. Therefore (q - 1)m+lq>.abq~' -:f. 0, 
namely ab -:f. 0. This means that Uq is an integral domain. The second 
statement immediately follows from Lemma 1.4 (6). Q.E.D. 

If· the root datum is Y- regular and X-regular, then the highest 
weight integral representations of g are deformed to those of Uq. For 
details, see Chapter 33 of [11] and Section 3.4 of [5]. 
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We can define the coproduct ~ : Uq ---+ Uq ® Uq (an algebra homo­
morphism), the counit s: Uq---+ lF (an algebra homomorphism), and the 
antipodeS: Uq ---+ Uq (an anti-algebra automorphism) by 

~(Ei) = Ei ® Ki + 1 ® Ei fori E I, 

~(Fi) = Fi ® 1 + Ki-l ® Fi for i E I, 

~(q.\) = q>- ® q.\ for>. E d- 1Y, 

s(Ei) = 0, s(Fi) = 0, s(q.\) = 1 fori E I,). E d- 1Y, 

S(Ei) = -EiKi1, S(Fi) = -KiFi, S(q>-) = q->- fori E I,>. E d- 1Y. 

These give a Hopf algebra structure on Uq. 

Remark 1.6. The above definition of a Hopf algebra structure on 
Uq is different from that in Lusztig's book [11]. Denote by ~ L, E:L, and 
sL the coproduct, the counit, and the antipode of [11] respectively. We 
can uniquely define the involutive algebra automorphism w of Uq by 
w(Ei) = Fi, w(Fi) = Ei, w(q>-) = q->- fori E I, ). E d- 1Y. Then the 
Hopf algebra structure of [11] is related to ours by ~L = (w ®w) o ~ow, 
sL =sow, and SL = w o Sow. 

Example 1.7 (affine glm case). Assume m E :Z~2 and set I = 
{0, 1, ... , m - 1 }. Let Y be the free :Z-module generated by { si}~ 1 , 
c, and d. Let X be the dual lattice of Y. Define the non-degenerate 
symmetric bilinear form(,): Y x Y---+ :Z by (si,EJ) = Oij, (c,d) = 1, 
and (si, c) = (si, d) = (c, c) = (d, d) = 0. We can identify X with Y 
by (, ). We set a( = ai = Ei - Ei-1 for i = 1, ... , m- 1, a~ = ao = 
c-s1 +sm. Define the matrix A~~ 1 by A~~ 1 = [aij] = [(a(,aj)]i,jEJ· 
If m = 2, then a00 = a 11 = 2 and ao1 = a10 = -2. If m ~ 3, then 

aij = 20ij - 8i+l,j - OJ+l,i- 8i08j,m-1 - OjoOi,m-1· Thus A~~ 1 is a 
symmetric GCM and (Y, X, (,), { a{}iEI, { aihEI) is a Y -regular and X-

regular root datum of type A~~ 1 . The Kac-Moody algebra associated 

to the root datum can be identified with the affine Lie algebra glm = 
glm ((C[ t' r 1]) ffi Cc ffi Ctd I dt by 

Eo= tEml, Fa= t- 1 Elm, 

Ei = Ei,i+l, Fi = Ei+l,i fori= 1, ... , m- 1, 

Ei = Eii fori= 1, ... ,m, d = tdjdt, 

where Eij ( i, j = 1, ... , m) are unit matrices. We set all di = 1. The 
quantized universal enveloping algebra associated to the root datum is 
called the quantized universal enveloping algebra of glm and denoted by 

Uq(glm)· 
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Example 1.8 (affine slm and pslm cases). Assume m E Z;;;2 and 

set I= {0, 1, ... , m- 1 }. Let A~~ 1 = [aij]i,jEI be the symmetric GCM 
given above. We set all di = 1. Let Y be the free Z-module generated 
by {an:,!\ c, and d. Set a'({ = c- a~-···- a~_1 . Let X be the 
dual lattice of Y. Define the non-degenerate symmetric bilinear form 
(,): Y x Y---+ Z by (a':(,a'j) = aij, (c,d) = 1, and (a':(, c)= (a':(, d)= 
( c, c) = ( d, d) = 0 for i = 1, ... , m - 1. Identifying X with a sublattice 
of~ = C ®z Y by (, ), we have Y ~ X. Define aj E X for j E I 
by (a':(,aj) = aij, (c,aj) = 0, (d,aj) = Ojo for i,j E I. Then (Y,X, 
(' ), { aniE/, { aihEI) is a Y-regular and X-regular root datum of type 
A~~ 1 . The Kac-Moody algebra associated to the root datum can be 

identified with the affine Lie algebra ;am= slm(C[t, r 1]) ffi Cc ffi Ctdjdt 
by 

Eo = tEml, Fo = t-1 Elm, 

Ei = Ei,i+l, Fi = Ei+l,i fori= 1, ... , m- 1, 

at = Eii - Ei+l,i+l for i = 1, .. . , m- 1, 

ari = c- Eu + Emm, d = tdjdt. 

The quantized universal enveloping algebra associated to the root datum 
is called the quantized universal enveloping algebra of slm and denoted 
by Uq(~m)· Associating to the dual root datum (X, Y, (, ), {ai}iEJ, 
{ a':(}iEI ), we define the quantized universal enveloping algebra Uq(Psim)· 

1.6. Adjoint action 
For an arbitrary Hopf algebra H, the adjoint action ad : H ---+ End H 

is defined by ad(x)y = Z::::cx) xc1)yS(xc2)) for x, y E H, where ~(x) = 
Z::::cx) X(l) ® X(2) (the Swedler notation). 

In a quantized universal enveloping algebra Uq, we have 

ad(Ei)x = EixKi-l - xEiKi-l fori E I, x E Uq, 

ad(Fi)x =Fix- Ki- 1xKiFi for i E I, x E Uq, 

ad(q")x = q"xq->. for .A E d- 1Y, x E Uq. 

Setting x = Fi ® 1 and y = Ki-l ® F, we have yx = qJxy. Using the 
n 

q-binomial theorem, we obtain ~(Fi)n = Lq;(n-k) [~] Qi Ft-k Ki-k ® 
k=O 

n 

Kf and hence (1 ® S)(~(Ft)) = L(-1)kq;(n-l) [~]qiFt-kKi-k ® Kf 
k=O 



Quantization of Weyl group symmetries of Painleve systems 303 

Fik. We conclude that 

ad(Fi)nx = ad(Ft)x =I) -1)kq;(n-1) [~] Ft-k K;kxKf F( 
k=O q; 

In particular, we have 

(1.2) ad(Fi)n FJ = i) -1)kq;(n-l+a,j) [~] Fin-k FJF( 
k=O ~ 

Hence the q-Serre relations for Fi (i E I) are rewritten as ad(Fi) 1-a,j Fj = 
0 fori f= j. Similar results hold for Ei (i E I). The following lemma is 
equivalent to Formula (14) of [6]. 

Lemma 1.9 ([6]). Assume that x E Uq and Ki- 1xKi = qf:x. Then 

Ftx = f q;k+a)(n-k) [~] ad(Fi)k(x)Ft-k for n E Z~0 , 
k=O ~ 

where the left-hand side is a finite sum with respect to k = 0, 1, ... , n. 
In particular, if i f= j in I, then 

Ft Fj = f qik+a,j)(n-k) [~] ad(Fi)k(Fj)Ft-k for n E Z~o· 
k=O ~ 

The first formula of this lemma is proved by induction on n. The case 
for n = 1 leads to the cases for any n E Z>o· The second immediately 
follows from the q-Serre relations. 

The following example can be found as Formula (24) of [6]. 

Example 1.10 ([6]). If aij = -1, then 

Ft Fj = q;n FJFt + [n]q, ad(Fi)(FJ)Ft- 1 

= [1- n]q,FJFt + [n]q,FiFJFt- 1 . 

1. 7. Verma relations 

Let A= [aij]i,jEI be a symmetrizable GCM symmetrized by {di}iEI 
and (Y, X, (, ), { o:{}iEh { o:i}iEI) a Y-regular and X-regular root datum 
of type A. 

Denote by W the Weyl group of type A and by si ( i E I) its genera­
tors. Denote by u;; the lower part of the quantized universal enveloping 
algebra associated to the root datum and by Fi ( i E I) its Chevalley 
generators. Let >. E x+. 
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Assume that si1 Si2 ···Bin is a reduced expression in W. We set 
kp E Z for p = 1, 2, ... , n by 

For examples, kn = (o{,.X), kn-l = (sin(a{n_J,.X), kn-2 = (sinBin-l 

( ai:,_,), .X), and so on. Since Bin · · · Bip+l sip is also a reduced expression, 
Bin · · · Bip+l (a~) E LiEf Z~0a{. Therefore kp E l£~0 for p = 1, 2, ... , n. 

Assume that B]I s12 · · · BJn is another reduced expression with Bi 1 Bi2 

· ··Bin = Sj1 s12 · · · Bjn. We similarly set lp E Z for p = 1, 2, ... , n by 

Then we have the following identity in uq-: 

(1.3) 

Furthermore the sequence ((i1, kl), (i2, k2), ... , (in, kn)) is equal to the 
sequence ((j1, h), (j2, Z2), ... , (jn, Zn)) up to permutation of order. In 
order to prove these results, it is sufficient to show them for each pair of 
reduced expressions in Example 1.1. For the proof, see Section 39.3 of 
[11] and Lemma 2 of [2]. These results are called Verma relations. 

Example 1.11 (Verma relations). Assume that i,j E I and i-/:- j. 
Let k and l be arbitrary non-negative integers. Then Example 1.1 leads 
to the following formulae of the Chevalley generators of uq-: 

(1) Fik Ff = FjFik if (aij, aJi) = (0, 0); 
(2) FfFf+lpik = FJFt+1FJ if (aiJ,aJi) = (-1, -1); 
(3) p.k p2k+l p.k+l pl = pl p.k+l p2k+l p.k if (a.. a .. ) = ( -1 _ 2). 

t J t J J 2 J 2 2]' ]2 ' ' 

(4) pk p3k+l p2k+l p3k+2l pk+l pl = pl pk+l p3k+2l p2k+l p3k+l pk if 
2] 2 J t J ]2 J 2 J 2 

(aij,aji) = (-1, -3). 
These formulae shall be used in the construction of the quantized bira­
tional Weyl group actions. 

Remark 1.12. For {31 , ... , f3n E LiEf Z~0a{, denote by Fh1 • · • Ftn 

the mapping from x+ to u- sending .X to p(f3l,>-.) · · · p(f3n,>-.). We in-
q 21 In 

troduce the formal symbols si ( i E I) satisfying the braid relations and 

8i1Fjjsi = F;'(f3j). Then the Verma identity (1.3) can be formally 
rewritten in the following form: 
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v 

This means that siFt·; ( i E I) formally satisfy the braid relations. More-
v v 

over, if we have sr = 1 and Fi-a; Ft'; = 1, then we obtain, at least 
formally, 

v v v v - Fa; - Fa; - -zF-a; Fai - 1 Si i Si i - Si i i - · 

v 

This means that siFia; ( i E I) formally satisfy the defining relations of 
the Weyl group. If we can justify the above heuristic consideration, then 
we can construct the braid or Weyl group representations. 

§2. Localizations of non-commutative rings 

In this section, we shall summarize results on localizations of non­
commutative rings necessary to quantize birational actions. Most of the 
proofs omitted below can be found, for examples, in Chapter 10 of [3] 
and Chapter 2 of [12]. 

2.1. Localization at an Ore subset 

Let A be a (possibly non-commutative) ring. A is called an integral 
domain (or a domain for short) if A =J 0 and the products of non-zero 
elements of A are always non-zero. A proper two-sided ideal I of A is 
called completely prime if A/ I is an integral domain. We say that A 
is left Noetherian if there is no infinite properly ascending chain of left 
ideals of A. A right Noetherian ring is similarly defined. 

A subset S of A is called multiplicative if S contains 1 and is closed 
with respect to multiplication. Let A be an integral domain and S its 
multiplicative subset. We say that S satisfies the left (resp. right) Ore 
condition if San As =J 0 (resp. aS n sA =J 0) for any a E A and s E S. 
A multiplicative subset satisfying the left (resp. right) Ore condition is 
called a left (resp. right) Ore subsetfor short. A left and right Ore subset 
is simply called an Ore subset. 

Assume that S is a left Ore subset of A. Then we can define the 
ring s-1 A as follows. As a set, s-1 A is defined to be the quotient set 
( S x A)/"', where the equivalence relation "' is defined by ( s, a) "' ( s', a') 
¢? there exists u, u' E A such that us = u' s' E S and ua = u' a'. Denote 
by s\a the element of s- 1 A represented by (s, a) E s X A. We can define 
the ring structure of s- 1 A by 

(s\a)(s'\a') = (s"s)\(a"a'), s"a = a"s', a" E A, s" E S; 

s\a+s'\a'=(us)\(ua+u'a'), us=u's', u'EA, uES. 

Identifying a E A with 1 \a E s-1 A, we can embed A into s-1 A. Then 
the ring s-1 A contains A as a subring and satisfies that any element 
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of sis invertible in s-1 A and s- 1 A = { s- 1a = s\a I s E s, a E A}. 
Furthermore s- 1 A has the following universality: for any ring B and 
any ring homomorphism f : A -+ B with the property that f ( s) is 
invertible in B for any s E S, there exists a unique ring homomorphism 
¢ : s- 1 A -+ B with ¢lA = f. In particular s-1 A is uniquely, up to 
isomorphism, determined by A and S. We call s-1 A the left localization 
of A at S. If S is an Ore subset, then the left localization at S can be 
identified with the right one, namely s-1 A= { as- 1 Is E S, a E A}. 

Lemma 2.1. Let A be an integral domain generated by { aj LEJ 
over a field lF and S its multiplicative subset generated by { si}iEI. Then 
we have the following results: 

(1) If San Asi =1- 0 for any a E A and i E I, then S is a left Ore 
subset of A. 

(2) Assume that for any i E I, j E J, and n E Z>o, there exists 
N E Z>o with sf aj E Asi. Then for any i E I, a E A, and 
n E Z>o, there exists N E Z>o with sf a E Asi. Therefore S 
is a left Ore subset of A. 

Proof. (1) Take i 1 , ... , in E I. By induction on n, let us show that 
San Afin · · · h =1- 0 for any a E A. The case of n = 1 is just the the 
assumption. Assume that it holds for n - 1. Then there exist t E S and 
b E A with ta = bfin-t ···fit· By the case of n = 1, there exist c E A 
and u E S with ub = cfin. Then ut E S and uta = cfin · ··fit. 

(2) Fix any i E I. Let A be the subset of A consisting of the 
elements a E A such that for any n E Z>o there exists N E Z>o with 
sf a E Asi. It is sufficient for the proof of the first statement to show 
that A is a subalgebra of A. Take any a, b E A. For any n E Z>o, 
there exists M, N E Z>o such that sf:I a E Asi and sf b E Asi. Then 
sf:I+N (a+ b) E Asi and hence a+ b E A. There exists L E Z>o such 
that sfa E A!f· Then sfab E Asfb C Asi and hence abE A. We have 
shown that A is a subalgebra of A. The second statement follows from 
(1). Q.E.D. 

Example 2.2 (the inverse of Fi)· Consider a quantized universal 
enveloping algebra Uq and its lower part u;;. Let J be any subset 
of I and SJ the multiplicative subset generated by {Fj}JEJ. Using 

Formula (1.1), Fiq; = q;+(:>..,a;) Fi (.>. E d- 1Y), and the q-Serre relations 
of { Fi}iEh we can find that both (U;;, SJ) and (Uq, SJ) satisfy the 
assumption of Lemma 2.1 (2). Therefore SJ is a left Ore subset of uq­
and Uq. The anti-algebra involution given by Ei r-+ Ei, Fi r-+ Fi (i E I) 
and q:>.. r-+ q-:>.. (.>.. E d- 1Y) proves that SJ is also a right Ore subset 
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of u;; and Uq. By the universality of S:J 1U;;, we can regard S:J 1U;; 
as a subalgebra of S:J 1Uq. For J = {il, ... ,ir}, we denote S:J 1Uq by 
Uq[Fi~\ ... , Fi~ 1 ] and S:J 1U;; by U;;[Fi~\ ... , Fi~ 1 ]. 

Using the inverse of Fi, we can state the following generalization of 
Lemma 1.9 for negative integral powers of Fi. 

Lemma 2.3. Assume that x E Uq, K; 1xKi = q'fx, and ad(Fi)kx = 
0 for sufficiently large k. Then we have the following formula in Uq[Fi- 1]: 

Ftx = f qik+a)(n-k) [~] ad(Fi)k(x)Ft-k for n E Z, 
k=O q; 

where the left-hand side is a finite sum. In particular, if i -1=- j in I, then 

Ft Fj = ~ q~k+a;j)(n-k) [~] ad(Fi)k(Fj)Ft-k for n E Z. 
k=O W 

Proof. The second formula immediately follows from the first for­
mula and the q-Serre relations. By Lemma 1.9, we can assume that 
n is negative. By induction on N E Z>o, we can obtain the following 
formula: 

N-1 
pi-lx = L ( -1)kq;(k+l)(k+a) ad(Fi)k(x)Fi-(k+l) 

k=O 

+ q:N(N-l+a) pi-1 ad(Fi)N (x)Fi-N· 

Since ad( Fi) k ( x) = 0 for sufficiently large k and [ ~ 1 J q, = ( -1) k, the first 
formula for n = -1 has been proved. This leads to the first formulae for 
all negative n by induction on -n. Q.E.D. 

2.2. Ore domains 

An integral domain A is called a left (resp. right) Ore domain if 
Aa nAb -1=- 0 (resp. aA n bA -1=- 0) for any non-zero a, b E A. In other 
words, an integral domain A is a left (resp. right) Ore domain if and 
only if A"- {0} is a left (resp. right) Ore subset. A left and right Ore 
domain is simply called an Ore domain. 

Assume that A is an Ore domain. Let K be the localization of A at 
A"- {0}. Then K is a skew field and K = { s- 1a I a, s E A, s -1=- 0} = 
{ as- 1 I a, s E A, s -1=- 0 }. We call K the (skew) field of fractions of A 
and denote K by Q(A). 
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Lemma 2.4 (2.1.15 of [12]). A left (resp. right) Noetherian do­
main is a left (resp. right) Ore domain. In particular a left and right 
Noetherian domain is an Ore domain. 

Example 2.5. The following are left and right Noetherian domains 
(Chapter 1 of [12]): 

(1) 

(2) 

(3) 

(4) 

the skew polynomial ring R[x; a, o] associated to a left and right 
Noetherian domain R, an algebra automorphism a of R, and 
a a-derivation o of R (o(ab) = o(a)b + a(a)o(b) for a, bE R), 
defined to be the ring generated by a E R and x with defining 
relations: (a) R is a subring of R[x; a, o], (b) xa = a(a)x + o(a) 
for a E R; 
the skew Laurent polynomial ring R[x, x-\ a] associated to a 
left and right Noetherian domain Rand an algebra automor­
phism a of R, defined to be the ring generated by a E R and 
x±1 with defining relations: (a) R is a subring of R[x, x- 1 ; a], 
(b) xa = a(a)x for a E R, (c) xx- 1 = x- 1x = 1; 
the Weyl algebras over a filed F of characteristic 0 generated 
by X1, ... , Xn, 81, ... , On with defining relations: XiXj = XjXi, 

aiaj = OjOi, and OiXj- XjOi = Oij; 

the universal enveloping algebra U(g) of any finite dimensional 
Lie algebra g over a field. 

Let F be a field and Qij E wx for i, j = 1, ... , n. Assume that Qii = 1 
and Qji = qi/. From the first and second examples above, we obtain, 
by induction on n, the following examples of left and right Noetherian 
domains respectively: 

(5) the q-polynomial ring over F defined to be the algebra over F 
generated by X1, ... , Xn with defining relations XjXi = QijXiXj 

for any i,j; 
(6) the q-Laurent polynomial ring over F defined to be the alge­

bra over F generated by xt1 , . .. , x;1 with defining relations 
-1 -1 1 £ . d c . . 

Xi Xi= XiXi = OT any Zan XjXi = QijXiXj 10f any Z,J. 

All of these examples are Ore domains. 

In the next subsection, we shall deal with Ore domains which are 
not always left and right Noetherian. 

2.3. Tempered domains 

Let A be an associative algebra over a field F and { FkA} k=O a family 
ofF-vector subspaces of A. Set Ak = 0 for k E Z<o· We say that 
{FkA}~0 is a filtration of A if FoA c F1A c F2A c · · ·, U~=o FkA = 
A, 1 E FoA, and FkAF1A c Fk+1A for any k, l. Let {FkA}k'=o be a 
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filtration of A. Set grk A = FkA/ Fk-lA and gr A = EB~=O grk A. Then 
gr A has a natural graded algebra structure. If gr A is an integral domain 
(resp. left Noetherian, right Noetherian), then A is so. 

Definition 2.6 (tempered domain). An associative algebra A over 
a field lF has a slowly increasing filtration if there exists a filtration 
{FkA}k'=o of A such that limsupk(dimiFFkA) 1/k ~ 1. This is equiv­
alent to the condition that dimiF grk A < oo for all k and limsupk 
(dimiFgrkA) 1/k ~ 1. See Remark 2.8 (1) below. An associative algebra 
with slowly increasing filtration is called a tempered algebra for short. In 
addition, if A is an integral domain, then A is called a tempered domain. 

From the definition we can immediately obtain the following result. 

Lemma 2. 7. Assume that A is a tempered domain over a field. 
Then subalgebras of A and quotient integral domains of A are also tem­
pered domains. 

Remark 2.8. Let {ak}k'=o be a sequence of complex numbers and 
p the convergence radius of the power series 2:::~0 akzk. The Cauchy­
Hadamard theorem says limsupk lakll/k = p- 1 . The absolute conver­
gence of l::~=O ak is equivalent to the condition that, for sufficiently large 
k0 , the infinite product TJ~ko(l+ak) is absolutely convergent to a non­
zero complex number. Therefore the following conditions are mutually 
equivalent: 

(a) limsupk lakll/k ~ 1. 
(b) There exists a holomorphic function in izl < 1 such that its 

Maclaurin expansion is equal to L:~=O akzk. 
(c) For sufficiently large ko, the infinite product [l~=ko(l + akzk) 

is absolutely and uniformly convergent in wide sense to a non­
vanishing holomorphic function in lzl < 1. 

These observations lead to the following results: 

(1) limsupk lakll/k ~ 1 implies limsupk lao+a1 +· ··+akll/k ~ 1. 
(2) Fix N E Z. Then lim supk lak ll/k ~ 1 is equivalent to lim supk 

lakil/(k+N) ~ 1. 

(3) Assume that lak I ~ 1 for all k. For any positive integer 
N, define the sequence {b~N)}~0 of complex numbers by the 

Maclaurin expansion (I1~=0 (1- akzk)) -N = L:~=O b~N) zk in 
lzl < 1. Thenlimsupklbkil/k ~ 1. 

(4) Set Ck = L:7=o aibk-i· Then limsupk lakll/k ~ 1 and limsupk 
lbkll/k ~ 1 implies limsupk lckil/k ~ 1. 
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Rocha-Caridi and Wallach found the following criterion of Ore do­
mains (Lemma 1.2 of [23]) to prove that the universal enveloping algebras 
of affine (or Euclidean) Lie algebras are Ore domains. 

Lemma 2.9 ([23]). A tempered domain over a field is always an 
Ore domain. 

Proof. Let A be an integral domain over a field lF and { FkA} k=O an 
arbitrary increasing filtration of A. Assume that A is not an Ore domain. 
Then there exist r E Z;:::0 and non-zero a, bE FrA such that AanAb = 0 
or a An bA = 0. Assume that Aa nAb = 0. Set ak = dimJF FkA and take 
ko E Z;:o:0 so that ako ~ 1. Since (FkA)a+(FkA)b C Fk+rA and (FkA)an 
(FkA)b = 0, we have ak+r = dimlF Fk+rA ~ dim((FkA)a EB (FkA)b) = 
2 d h > 2P > 2P . 1/(pr) > 21/r > 1 c 11 ak an ence ako+pr = ak0 = , Le. ako+pr = 10r a 

p E Z;:o:o· This leads to limsupk a~/(k-ko) > 1 and hence Remark 2.8 (2) 

shows limsupk a~/k > 1. Therefore A is not tempered. When aAnbA = 
0, similarly A is not. We complete the proof of the lemma. Q.E.D. 

Example 2.10. Let A be a q-Laurent polynomial ring over a field. 
(See Example 2.5.) Then A is a tempered domain. Therefore its subal­
gebras and quotient integral domains are also tempered domains. Fur­
thermore all of these are Ore domains. 

Remark 2.8 ( 4) immediately lead to the following result. 

Lemma 2.11. For any tempered algebras A and B over a field lF, 
the tensor product algebra AQ9B over lF is also tempered. Therefore, if A 
is a tempered domain and B is a q-polynomial or q-Laurent polynomial 
ring, then A Q9 B is also a tempered domain. 

Theorem 2.12. The following algebras are tempered domains: 

(1) the universal enveloping algebras U(n±) of the upper and lower 
parts n± of a Kac-Moody algebra of finite or affine type (The­
orem 1.10 of [23]), 

(2) the upper and lower parts U:f' of a quantized universal envelop­
ing algebra of finite or affine type. 

Therefore these are Ore domains. 

Proof. Denote U(n±) or U:f' by A. Let us define a filtration of A 

by using principal gradations. Set FkA = EIJ~=O U(n±)±i if A= U(n±) 

and FkA = E!J~=0 (U:/')±i if A= U:f'. Then {FkA}k'=o is a filtration of A. 
Because of U(n_) and uq- are of finite or affine type, from Lemma 1.2 
and Lemma 1.5 together with Remark 2.8 (3), we obtain that {FkA}k'=o 
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is slowly increasing. This means that A is a tempered domain. Therefore 
Lemma 2.9 completes the proof. Q.E.D. 

In [1], Berman and Cox showed that the universal enveloping al­
gebras of Kac-Moody Lie algebras of affine type, as well as those of 
toroidal Lie algebras, are tempered domains. Using an associative al­
gebra version of Lemma 1.4 (a) in [1], we shall show that quantized 
universal enveloping algebras of affine type are also tempered domains. 

Lemma 2.13. Let A be a domain over a field and A± and A 0 its 
subalgebras. Assume that A± and A 0 have a slowly increasing filtration 
denoted by { FiA±}~0 and { FiA0}~0 respectively. Assume that these 
satisfy the following conditions: 

(a) The multiplication gives an isomorphism A- 181 A 0 181 A+-=+ A 
of vector spaces. 

(b) FjA° FzA- = FzA- FjA0 and FkA+ FmA0 = FmA° FkA+ for 
any j, k, l, m. 

(c) FkA+ FzA- C I:;'~~{k,l} Fz-pA- FpA° FkPA+ for any k, l. 

Then A is also a tempered domain and hence an Ore domain. 

Proof. Using the above conditions, we can define a filtration { FzA }bo 
of A by FzA = Li+J+k=l FiA- FjA° FkA+. From Remark 2.8 (4) we 
obtain that { FzA }bo is slowly increasing and hence A is a tempered 
domain. Therefore Lemma 2.9 completes the proof. Q.E.D. 

Theorem 2.14. The following algebras are tempered domains: 

(1) the universal enveloping algebra U(g) of a Kac-Moody algebra 
of finite or affine type (part of Proposition 1. 7 of [1]), 

(2) a quantized universal enveloping algebra Uq of finite or affine 
type. 

Therefore these are Ore domains. 

Proof. Since U(g) and Uq are integral domains, it is sufficient for 
the proof to construct slowly increasing filtrations of U(g) and Uq. 

First we assume that A = U(g), a Kac-Moody algebra of finite or 
affine type. Set A± = U(n±) and A 0 = U(~). Using the principal 
gradations of U(n±), we can define the increasing filtrations {FkA±}k=O 

of A± by FkA± = E97=o U(n±)±k· Then we can find from the proof of 
Theorem 2.12 that {FkA±}k=O are slowly increasing. Let {y1, ... , YM} 
a basis of ~. Define the degree by deg Yi = 1 for i = 1, ... , M. Let FkA 0 

be the subspace of A0 = U(~) = C[y1 , ... , YM] spanned by the elements 
of degree ~ k. Then {FkA0 }k'=o is a slowly increasing filtration of A 0 . 

These satisfies the conditions (a), (b), and (c) of Lemma 2.13. Therefore 
A= U(g) is a tempered domain. 
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Second we assume that A= Uq, the quantized universal enveloping 
algebra associated to a root datum (Y, Z, ( , ) , {a£ }iEJ, { ai hEI) of finite 
or affine type. Using the principal gradations of U;i, we can define 

the filtrations {FkA±}k=O of A± by FkA± = EB7=0 (U;i)±k· Then we 
can find from the proof of Theorem 2.12 that {FkA±}k'=o are slowly 
increasing. Let {y1 , ... , YM} be a Z-free basis of d- 1 Y. Define the 
degree by deg q±y; = 1 for i = 1, ... , M. Let FkA0 be the subspace of 
A0 = ug = F[q±Yl ... 'q±YM] consisting of the elements of degree ;; k. 
Then {FkA0 }k'=o is a slowly increasing filtration of A 0 . These satisfies 
the conditions (a), (b), and (c) of Lemma 2.13. Therefore A= Uq is a 
tempered domain. Q.E.D. 

From Lemma 2. 7 and the above theorem, we immediately obtain 
the following. 

Corollary 2.15. Let A be the universal enveloping algebra U(g) of 
a Kac-Moody algebra of finite or affine type or a quantized universal 
enveloping algebra Uq of finite or affine type. Assume that B is a sub­
algebra of A and I is a completely prime ideal of B. Then B /I is a 
tempered domain and hence an Ore domain. 

2.4. Truncated q-Serre relations 

In this subsection, we shall explain a method for constructing quo­
tient tempered domains of U(n_) and u;; for any symmetrizable GCM. 

First let us consider the case of q = 1. 
Let A= { aij }i,jEI be a symmetrizable GCM symmetrized by {di}iEJ, 

(Y, X, (,), { a'!}iEI, { ai}iEJ) a root datum of type A, and g the Kac­
Moody algebra associated to the root datum. Denote by n_ (resp. b_) 
the lower part (resp. the lower Borel subalgebra) of g. Let {y1 , ... , YM} 
be a basis of ~ = C @z Y. Assume that if i of. j and aij of. 0, then 
Eij = ±1 and Eji = -Eij, otherwise Eij = 0. 

Define the algebra B to be the associative algebra over C generated 
by fi ( i E I) and h E ~ with defining relations: 

U(~) = S(~) is a subalgebra of B; 

[h,fi] = -(h,ai)fi fori E I, hE~; 

[fi, fJ] = -Eijdiaij for i,j E I. 

The last relations are sufficient conditions of Serre relations for {fi}iEJ 
and called truncated Serre relations. Sending Fi to fi for each i E I, we 
can regard B as a quotient algebra of U ( b _). 

Define the degree by deg fi = deg h = 1 for i E I and h E ~­

Let FkB be the subspace of B spanned by the elements of degree ;; 
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k. Then {FkB}k'=o is a slowly increasing filtration of B and gr B = 

ffi%':0 FkB/ Fk_ 1B is isomorphic to the commutative polynomial ring 
generated by fi (i E I) and y/1> (J.L = 1, ... , M). Therefore B is a tem­
pered domain. By Lemma 2.11, B0 N is also a tempered domain for any 
positive integer N. 

We can define the algebra homomorphism ¢N : U(n_) -+ B®N by 
¢N(Fi) = ~::= 1 fiv, where fiv = 1 ®(v- 1) l8l Fi 18)1 ®(N-v). Denote the 
image of ¢ N by N N. Then N N is also a tempered domain and hence an 
Ore domain. Denote N 1 by N for short. 

Second let us consider a q-analogue of the above construction. 
Let d be the least common denominator of { di hE I. Set the base 

field lF by lF = Q( q11 d) and qi E lF by qi = qd'. Let Uq be the quantized 
universal enveloping algebra associated to the root datum. Denote by 
u;; (resp. Uq(L)) the lower part (resp. the lower Borel subalgebra) of 
Uq. Let {y1 , ... , YM} be a Z-free basis of d-1 Y. 

Define the algebra Bq to be the associative algebra over lF generated 
by fi ( i E I) and q>. ().. E d-1 Y) with defining relations: 

U~ is a subalgebra of Bq; 

q>. fiq->. = q-(>.,a;) fi fori E I,).. E d- 1Y; 

fd1 = q-;E;JaiJ f1 fi for i, j E I. 

The last relations are sufficient conditions of q-Serre relations for {fi}iEI 
and called truncated q-Serre relations. Sending Fi to fi for each i E I, 
we can regard Bq as a quotient algebra of Uq(b-). Denote the image of 

v 

Ki = q~' in Bq by ki. 
Then Bqis a subalgebra of a q-Laurent polynomial ring over lF gener­

ated by fi (i E I) and qY" (J.L = 1, ... , M) and hence a tempered domain. 
By Lemma 2.11, B~N is also a tempered domain for any positive integer 
N. 

We can define the algebra homomorphism D..N : Uq -+ u;:N by 
!11 = iduq = 1, D..v = (D..v-1 18l1) o D.. for v = 2, ... , N. Then we 
have D..N(Fi) = ~v=1 Fiv, where Fiv = (Ki-1)®(v- 1) l8l Fi Q91®(N-v). 

Therefore we can define the algebra homomorphism r/Jq,N : u;; -+ B~N 
by r/Jq,N(Fi) = ~:!= 1 fiv, where fiv = (ki 1 )®(v-1)18lfil8l1 ®(N-v). Denote 
the image of r/Jq,N by Nq,N· Then Nq,N is also a tempered domain and 
hence an Ore domain. Denote Nq, 1 by Nq for short. 
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§3. Non-integral powers 

3.1. Evaluation mapping between fields of fractions 
Let lF be any base field. Let A be a tempered domain over lF. Set 

A= A®lF[x1, ... ,xM] = A[x1 , ... ,xM]· Then A is also a tempered 
domain over lF. Denote by K the field of fractions of A and by JC that 
of A. Using the universality of K, we can regard K as a subfield of JC. 
A' = A[xr1 , ... , x~ll is also a tempered domain. We can identifies the 
field of fractions of A' with JC. 

For c = (c1, ... , CM) E JFM, we define the evaluation algebra homo­
morphism eve: A--+ A at c by eve(!)= f(c) = f(c1, ... ,cM) E A for 
f E A= A[x1, ... ,xM]· 

Any element f of}( can be represented as f = g- 1 h for some g, h E 

A with g =f. 0. Fix c E JFM. Assume that g,h,g',h' E A, g(c),g'(c) =f. 0, 
and g- 1h = g'- 1h'. Since A is an Ore domain, there exist non-zero 
u,u' E A such that ug = u'g'. Then uh = ugg- 1h = ug'g'- 1h' = 
u'h'. We have u(c)g(c) = u'(c)g'(u) and u(c)h(c) = u'(c)h'(c). There­
fore g( c)-1 h( c) = ( u( c)g( c))-1u( c)h( c) = ( u' ( c)g' (c) )-1u' ( c)h' (c) = 
g' (c) - 1 h' (c) in K. This means that if f E }( can be represented as 
f = g- 1h for some g, h E A with g(c) =f. 0, then eve(!) = f(c) = 
g(c)- 1h(c) E K is well-defined and does not depend on the choice of g 
and h. 

Let C be a subset of JFM with the following Zariski dense property: 

(D) For every a E lF[x1, ... , xM], if a( c) = 0 for all c E C, then 
a= 0 in JF[x1, ... , xM]· 

For example, for any infinite subset C1 of lF, the direct product Cf-1 c 
JFM has the property (D). For every f E A= A® lF[x1, ... ,xM], if 
eve(!) = f(c) = 0 for all c E C, then f = 0 in A. Immediately we 
obtain the following result. 

Lemma 3.1. Let g, h E A, g =f. 0, and f = g-1h. Assume that 
there exit a subset C of JFM with the property (D) such that g( c) =f. 0 for 
all c E C. If eve(!)= f(c) = 0 for all c E C, then f = 0 in JC. 

Let C be a subset of JFM with the property (D). Then, for any non­
zero bE lF[x1, ... , xM], the subset Cb#O = { c E C I b(c) =f. 0} of C also 
has the property (D). In fact, for every a E lF[x1, ... , xM], if a( c)= 0 for 
all c E Cb#O, then a(c)b(c) = 0 for all c E C. Therefore ab = 0 and hence 
a= 0 in JF[x1, ... , xM]· It follows that, for any non-zero g1, ... , 9N E A, 
the subset Cg1 , ... ,gN#O = { c E C I gi(c) =f. 0 for all i = 1, ... , N} of C 
also has the property (D). From this we can obtain the following result. 

Lemma 3.2. Let C be a subset ofJFM with the property (D). Take 
any f, f' E JC. By the definition of the field of fractions JC, there exist 
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g, h, g', h', g", h", u, u' E A such that g, g', g", u i- 0, f = g- 1h, f' = 
g'- 1h', ff' = (g"g)- 1h"h', and f + f' = (ug)- 1 (uh + u'h'). Then 
the subset C' = Cg,g' ,g" ,u#O of C satisfies the property (D) and that 
ev c(i) ev c(i') = ev cU f') and ev c(i) + ev c(i') = ev c(i + f') for all 
cE C'. 

We shall use these results to justify the conjugation actions of non­
integral powers in Section 3.2. 

3.2. Non-integral powers in fields of fractions 

In this subsection, we shall justify the conjugation actions of non­
integral powers along the lines of the work [6] by Iohara and Malikov. 

Let lF be any base field. Let A be a tempered domain over lF with 
generators fi (i E I) and defining relations R;.({fi}iEI) = 0 (>. E A), 
where R;. (>. E A) are elements of the tensor algebra T(V) of V = 

EBiEI lF k That is, A is the quotient algebra of T(V) modulo the two­
sided ideal generated by {R>.hEA· The polynomial ring A[x] = AQ?IJF[x] 
of one variable over A is also a tempered domain over JF. We can regard 
the field of fractions Q(A) as a subfield of Q(A[x]). 

Assume that a non-zero element g in A, a countable family { Cn} ~=O 
of mutually distinct elements in JF, and an infinite subset r of Z;:;: 0 satisfy 
the following condition: 

( *) For any i E I, there exists rPi E Q(A[x]) such that, for all 
n E r, even (¢i) = rPi(cn) E Q(A) is well-defined and gn fig-n = 
rPi (en)· 

For any>. E A and k E r, we haveR;.( { rPi(cn) hu) = R;.( {gn fig-n hE I) 
= gkR;.({fi}iEI)g-k = 0 in Q(A). By Lemma 3.1, R;.({¢i(xl)}iEI) = 0 
in Q(A[x]). Therefore we can define the algebra homomorphism "'(g,x : 
A[x] --1- Q(A[x]) by "'(g,x(fi) = ¢i(x) fori E I and "'(g,x(x) = x. Using the 
universality of the field of fractions Q(A[x]), we can extend "'(g,x to the 
algebra automorphism of Q(A[x]). We call "'(g,x the conjugation action 
of non-integral power of g on Q(A[x]). 

Assume that JF[x] is identified with a subalgebra of the polynomial 
algebra JF[xr1, ... , x'JJ] of M -variables over JF. Then we can also define 
the algebra automorphism "'(g,x of Q(A[x1, ... , XM]) by "'(g,x(fi) = rPi(x) 
for i E I and "Yg,x(xp.) = Xp. for f-L = 1, ... , M. 

If Cn = n, then "'(g,x is denoted by "'((gx). If Cn = qn and X is 
identified with qA, then "Yg,x is denoted by "'((g>. ). 
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§4. Quantized q-analogues of birational Weyl group actions 

In this section, we shall construct quantized q-analogues of the hi­
rational Weyl group actions arising from nilpotent Poisson algebras pro­
posed by Noumi and Yamada [17]. 

Let A = [ aij] be a symmetrizable GCM symmetrized by { di hEI. Let 
Aq,O be a quotient tempered domain of the lower part u;; of a universal 
enveloping algebra Uq of type A. Then Aq,O is generated by the images 
{fihEI of the lower Chevalley generators {Fi}iEI· If A is of finite or 
affine type, then any quotient integral domain of u;; is a tempered 
domain. See Corollary 2.15. In order to construct the examples for 
arbitrary cases, see Section 2.4. 

4.1. Non-integral power of fi 

Fix i E I and assume that fi -1- 0. Lemma 2.3 leads to the following 
formulae: 

fin /jfi-n = f q?+aij)(n-k) [~] ad(fi)k(/j)fi-k for n E Z if i -1- j, 
k=O ~ 

k 

ad(fi)k(fj) = I)-l)vq~(k-l+aij) [~] fik-vfjf(. 
v=O ~ 

For j E I, define ¢>i1(x) E Q(A[x]) by 

c/>ij(x) = { f q;(k+aij)kxk+aiiaij;k(x) ad(fi)k(IJ)fi-k 
k=O 
fi 

if i -1- j' 

if i = j, 

where aij;k(x) E JF[x, x-1] fork E Z?;o are given by 

.. ( )- [x;O]qi[x;-l]qi···[x;-k+l]qi 
a,1 ;k x - [k]qi! , 

v -1 -v 
[ . ] - xqi - x qi 
x, l/ qi - -1 

qi- qi 

Then there exist% E Aq,O and hi1(x) E Aq,o[x,x-1] such that ¢>i1(x) = 
g;;/ hij ( x). Therefore c/>ij ( qn) is well-defined and fi f1 fi-n = c/>ij ( qf) for 
all j E I and n E Z. 

Let (Y,X,(,),{ai}iEI,{ai}iEI) be a root datum of type A and 
{Y1, ... , YM} a Z-free basis of d-1 Y. Let Aq be the tensor product 
algebra Aq,O @ ug = Aq,o[q±Yl' ... 'q±YM]. Note that q).. (.A E d- 1 Y) 



Quantization of Weyl group symmetries of Painleve systems 317 

commute fJ (j E I) in Aq· Take any A E Y. Identifying x with q; = qd'\ 
we regard JF[x] as a subalgebra of ug. Using the result of Section 3.2, 
we can define the algebra automorphism ry(f/') of Q(Aq) by ry(f[)(IJ) = 

rPij(qt) for j E I and ry(f/')(qlh) = qlh for p, E d-1 Y. More explicitly we 
have 

Note that the right-hand side is a Laurent polynomial in q;. 
For the q = 1 cases, we have the same construction as the above. Let 

A0 be a quotient tempered domain of the universal enveloping algebra of 
the lower part n_ of a Kac-Moody algebra g of type A. Then Ao is gen­
erated by the images {fi}iEI of the lower Chevalley generators {Fi}iEI· 
Let A be the tensor product algebra Ao 0 U(b) = Ao[y1 , ... , ylh]. Then 
we can define the algebra automorphism ry(f/') of Q(A) by ry(f/' )(h) = h 
for hE b and the q--+ 1 limit of (4.1): 

(4.2) ry(f{)(IJ) ={~G) ad(fi)k(IJ)fi-k 

fi 

if i -1- j' 

if i = j, 

where ad(X)(Y) = [X, Y] and (~) = A(A- 1) ···(A- k + 1)/k!. The 
left-hand side of (4.2) is a polynomial in A. 

Remark 4.1. Formula (4.2) (resp. (4.1)) can be regarded as a quan­
tization (resp. quantized q-analogue) of Formula (1.9) in [17] proposed 
by Noumi and Yamada. 

Simply Formula ( 4.2) is the q--+ 1limit of Formula ( 4.1). Note that 
the q --+ 1 limit is not a classical limit because ( 4.2) is a formula in a 
non-commutative algebra. 

Let us explain how to obtain Formula (1.9) in [17] as the classical 
limit of Formula (4.2). We replace fi by n-1cpi and A by n-1 Ai and define 
adn by adn(X)(Y) = n-1 [X, Y], where n denotes the Planck constant. 
Assume that i-/= j. Then Formula (4.2) is equivalent to 
(4.3) 

( n-'.>..')( ·) _ ~ Ai(Ai- n) · · · (Ai- (k- 1)/t) d ( ·)k( ·) -k 
'"Y Y'i Y'J - ~ k! a n cp, Y'J Y'i · 

k=O 
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The classical limit of n,-1 [X, Y] should be the Poisson bracket {X, Y}. 
Thus, as the classical limit of (4.3), we can obtain Formula (1.9) in [17]: 

ado(X)(Y) ={X, Y}. 

4.2. Quantization of birational Weyl group actions 

In the previous subsection, we have constructed the conjugation ac­
tion '!(!/') of a non-integral powers !/' on the field of fractions Q( Aq), 
where i E I, A E Y, and Aq is the tensor product algebra of a quo­
tient tempered domain Aq,O of u;; and the Cartan subalgebra ug of 
Uq. We denote by fi the image of Fi in Aq,O· We identify Aq with the 
Laurent polynomial ring Aq,o[q±Yr, ... , q±YM], where {y1 , ... , YM} is a 
Z-free basis of d- 1Y. Note that q>.. (A E d-1Y) commute fi in Aq· 

The Weyl group W = (sili E I) acts on Y. (See Section 1.2.) This 
action naturally extends to those on d- 1y and ug = EfhEd-'YJFq\ In 
this subsection, we denote by w the action of w E W on ug regarded as 
a subalgebra of Aq: 

The action w of w E W on ug is extended to the action on Aq by 
w(fi) = fi for i E I. The induced action of w on Q(Aq) is also denoted 
by w. 

Lemma 4.2. For any i, j E I and A E Y, 'TUf) o si = si o 'TU;i(>..)) 
on Q(Aq)· 

Proof. Take any k E I and f-l E d-1 Y. Then we have 

,(!f) o si(fk) = ,(f})(fk) = <pjk(qj), 

- (fsi(>..))(f ) _- ( ( Si(>..))) ( s;(>..)) ( )..) Si 0 '/ j k - Si <pjk qj = <pjk qj = <pjk qj , 

'f(ff) o Si(q~) = '!(ff)(qsi(~)) = qs;(~)' 

si o 'IU;'<>..l)(q~) = si(q~) = qs'<~l. 

This proves the above lemma. Q.E.D. 

Theorem 4.3 (quantized birational Weyl group action). Assume 
that fi =1- 0 for all i E I. For each i E I we define the algebra automor-

v v 

phism Si of Q(Aq) by Si = si o '!Ui-ai ) ='!Uti ) o h Then the action 
of the Weyl group Won Q(Aq) is defined by si(x) = Si(x) fori E I and 
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x E Q(Aq)· Explicitly, the following formulae define a representation of 
the Weyl group in algebra automorphisms of Q(Aq): 

Si(IJ) = {~ qik+aij)(a{-k) [axrLi ad(fi)k(iJ)fi-k 

fi 

si(q>'·) = qsi(>.) = q>.-(>.,ai)a{ >. E d-ly, 

if i # j, 

if i = j, 

Proof. It is sufficient to show the braid relations of {SihEI and 
S'f = 1 for i E I. 

First let us prove S'f = 1. It is sufficient to show that S'f (fJ) = h 
Since S'f(fi) = fi is trivial, we can assume i # j. Using Lemma 

v v 

4.2 we have S'f = rUti) 0 rUi-ai ). S'f(fj) is a Laurent polynomial 

<l?(q~i) of q~i with coefficients in Q(Aq)· Then we have <l?(qf) 
ft(fi-n!Jr)f-n = fj for all n E Z. Therefore we obtain S'f(IJ) = 

av 
<l?(qi')=h 

Second let us prove the braid relations for {Si}iEI· Assume that 
i # j and (aij, aji) = (0, 0), ( -1, -1), ( -1, -2), or ( -1, -3). We define 
the sequences (i1, ... ,in), (j1, ... ,jn) as follows. If (aij,aji) = (0,0), 
then n = 2, (i1,i2) = (i,j), and (j1,j2) = (j,i). If (aij,aji) = (-1, -1), 
then n = 3, (i1,i2,i3) = (i,j,i), and (j1,j2,j3) = (j,i,j). If (aij,aji) = 
( -1, -2), then n = 4, (i1, ... , i4) = (i,j, i,j), and (j1, ... ,j4) = (j, i,j, i). 
If (aij, aji) = ( -1, -3), then n = 6, (i1, ... , i6) = (i,j, i,j, i,j), and 
(j1, ... , j 6) = (j, i, j, i, j, i). Then the braid relation to be shown is writ­
ten as si1 ... sin = sj1 ... sjn. 

For p = 1, ... , n, we set Ap = SinSin- 1 .. · SiP+1 (a~) and /-lp = 
SjnSJn- 1 · · · SjP+1 (ajP). Then Ap = apa':( + bpaj and /-lp =Cpa':(+ dpaj 
for some ap, bp.cp, dp E Z;;;o· (See Example 1.1.) For k, l E Z;;;0 , we 
set u = f~1k+b1l ... fank+bnl and v = fc1k+d1l ... fcnk+dnl. Then k,l %1 %n k,l )1 Jn 
u(k, l) (resp. v(k, 1)) is the image in Aq,o of the left-hand side (resp. 
right-hand side) of the corresponding formula in Example 1.11. For 
example, if (aij, aji) = ( -1, -1), then u(k, l) = flJ}+l fik The Verma 
relations mean that u(k, l) = v(k, l) for all k, l E Z2:o· 

By Remark 1.12 and Lemma 4.2, the condition Si1 ••• Sin = Sj1 ... SJn 
is equivalent to 1Ui~)., 1 ) .• ·rUi~An) = rUj~fJ, 1 ) .. ·rUj--:,fJ,n ). Denote the 
left-hand side by ¢ and right-hand side by '1/J. Fix any t E I. Then 

v v 
¢(ft) and '1/J(ft) belong to Q(Aq,o[q;<>;, q;aj ]). We denote ¢(fk) by 

v v v v 
<l?(q;ai ,q;aj) and '1/J(fk) by \ll(q;ai ,q;aj ). 
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From Lemma 3.2 and the definition of "!(!/'), it follows that there 
exists a subset r of z~o with the following properties: 

(1) If f(x, y) E Aq,o[x, y] and f(qf, q;) = 0 for all (k, l) E f, then 
f(x, y) = 0 in Aq,o[x, y]. 

(2) <I>(qf,q;) and W(qf,q;) are well-defined for all (k,l) E r. 
(3) <I>(qf,q;) = u(k,l)ftu(k,l)- 1 and <I>(qf,q;) = v(k,l)ftv(k,l)- 1 

for all (k, l) E f. 

Using the Verma relations, we obtain that <I>( qf, q;) = W( qf, q;) for all 
v v 

(k, l) E f. From Lemma 3.1 it follows that ¢(ft) = <I>(q;"'' , q;"'1 ) = 
v v 

W(q;"'', q;"'J) = 1/J(ft). We have just completed the proof. Q.E.D. 

Remark 4.4. In Theorem 4.3, we construct the representation of 
the Weyl group W in algebra automorphisms of Q(Aq)· This can be 
regarded as a quantized q-analogue of the birational Weyl group action 
arising from a nilpotent Poisson algebra proposed by Noumi and Yamada 
in [17]. See also Remark 4.1. 

§5. Quantized birational Weyl group actions of Hasegawa 

In this section, we shall reconstruct the quantized birational Weyl 
group actions of Hasegawa [4]. 

Let A= {aij}i,jEI be asymmetrizable GCM symmetrized by {di}iEI, 
d the least common denominator of { di}iEI, (Y, X, (,), { o:{}iEI, { o:i}iEI) 
a root datum of type A. Let {y1, ... , y M} be a Z-free basis of d-1 Y. As­
sume that if i =/=- j and aij =/=- 0, then Eij = ±1 and Eji = -Eij, otherwise 
Eij = 0. Set the base field lF by lF = Q( q11 d) and qi E lF by qi = qd'. 

Consider the tempered domain Bq defined in Section 2.4. Fori E I, 
define fi1, fi2 E Bq ® Bq by fi1 = fi ® 1 and fi2 = ki 1 ® k Note that 
fi 1 + fi2 ( i E I) are the images of the lower Chevalley generators Fi in 
Bq ®Bq· Therefore fi 1 + fi2 (i E J) satisfy the q-Serre relations (Section 
1.5) and hence the Verma relations (Section 1.7). 

Let__Aq,o be the subalgebra of Bq ® Bq generated by fi1, fi2 ( i E J). 
Then Aq,o is identified with the algebra over lF generated by fil, fi2 
( i E J) with defining relations: 

fivfjv = q;E;JaiJ fJvfiv for i, j E I, V = 1, 2, 

fi2!j1 = q:'1 1Jdi2 for i, j E J. 
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Let Aq be the tensor product algebra Aq,O ® ug. Then Aq can be 

identified with the Laurent polynomial ring Aq,o[q±Yt, ... , q±YM] with 

coefficients in Aq,O· For i E I and >. E d-1 Y, we identify fi1 ® 1, fi2 ® 
1, 1 ® 1 ® q>-. E Aq with fil, fi2, q>-. E Aq,0 [q±Y1 , ••• , q±YM] respectively. 

Note that q>-. commutes fi 1 and fi2 in Aq for>. E d-1 Y and i E I. Since 
Aq is also a tempered domain and hence an Ore domain, there exists 
the field of fractions Q(Aq) of Aq· 

For i E I, define gi E Q(Aq) by gi = fi]_ 1 fi2· Let Aq,O (resp. Aq) 
be the subalgebra of Q(Aq) generated by gi (i E I) (resp. generated by 
gi (i E I) and q>-. (>. E d-1Y)). Then Aq,o can be identified with the 
algebra over lF generated by gi ( i E I) with defining relations: 

(5.1) 

Furthermore Aq can be identified with the Laurent polynomial ring 
Aq,o[q±Yt, ... , q±YM]. Note that q>-. commutes gi in Aq for>. E d-1 Y and 
i E I. Since Aq,o and Aq are tempered domains, there exist the fields of 

fractions Q(Aq,o) and Q(Aq)· We have also Q(Aq,o) c Q(Aq) C Q(Aq)· 
In [4], Hasegawa constructed a representation of the Weyl group 

W = W(A) in algebra automorphisms of Q(Aq)· Our aim is to recon­
struct it by the same method as in Section 4. 

5.1. Non-integral power of fil + fi2 

Applying the q-binomial theorem (Lemma 1.3) to fi2fil = qr filfi2, 
we obtain 

where (x)i,oo = TI~=0 (1 + qrvx). The infinite products in the right­
hand side cancel each other out except finite factors. Using (5.1), and 

_ (Eij-l)aij . 
filgJ - qi gJfil, we obtam 
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for n E Z. More explicitly we have (fil + !i2)ngj(fil + !i2)-n = <Pij(qi) 
for n E Z, where <Pij(x) E Q(Aq,o[x]) (i,j E I) are defined by 

if Eij = +1, 

if Eij = -1, 

if i = j, 
if aij = 0. 

Take any >. E Y. Identifying x with q[ = qdiA, we regard IF[x] as a 
subalgebra of ug. Using the result of Section 3.2, we can define the 
algebra automorphism 'Y((fi1 + fi2)>.) of Q(Aq) by 'Y((fil + fi2)>.)(gj) = 
<Pij(q[) for j E I and 'Y((hl + fi2)>.)(q~-') = qf-£ for f..L E d- 1Y. 

Remark 5.1. We have shown that the conjugation action of a non­
integral power (fil + fi2)>. on Q(Aq) is well-defined. Recall that the 
subalgebra of Bq ® Bq generated by {fi1 + fi2hEI is denoted by Nq,2 in 
Section 2.4. Although the conjugation action of (fi1 + fi2)>. on Q(Nq,2 ® 
ug) is well-defined by Theorem 4.3, it does not reconstruct Hasegawa's 
action. 

5.2. Reconstruction of Hasegawa's Weyl group actions 

The Weyl group W = (sili E I) acts on ug. This is naturally 
extended to the action on Q(Aq) so that each w E W trivially acts on 
{gi}iEI· In this subsection, we denote by w the action of w E W on 
Q(Aq): w(gi) = gi fori E I and w(q>.) = qw(>.) for>. E d- 1Y. 

Theorem 5.2. For i E I we define the algebra automorphism Si 
of Q(Aq) by Si = si o 'Y((fil + !i2)-01:) = 'Y((fil + fi2) 01:) o h Then 
the action of the Weyl group W on Q(Aq) is defined by si(x) = Si(x) 
fori E I and x E Q(Aq)· Explicitly, the following formulae define a 
representation of the Weyl group in algebra automorphisms of Q(Aq): 

if Eij = +1, 

if Eij = -1, 

if i = j, 
if aij = 0, 
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si(q>.) = qs;(>.) = q>.-(>.,cx;)cxj ,\ E d-1y. 

Proof. Since fi1 + fi2 ( i E I) satisfy the Verma relations, we can 
prove the theorem by the same argument as in the proof of Theorem 

v 

4.3. Appropriately replacing Jt' and fi in the proof of Theorem 4.3 
by (fi1 + !i2)cxi and gi respectively, we obtain the proof of the above 
theorem. Q.E.D. 

Remark 5.3 (Hasegawa's Weyl group action). In Theorem 5.2, 
we construct the representation of the Weyl group W in algebra auto­
morphisms of Q(Aq)· This can be regarded as a reconstruction of the 

v 
Weyl group action constructed by Hasegawa in [4]. Set ai = q~' and 
Fi = a-; 1 gi for i E I. Do not confuse these Fi with the lower Chevalley 
generators. Then Aq can be identified with the algebra generated by Fi 
(i E I) and q>. (>.. E d- 1Y) with defining relations: 

FiFj = q;2E;jaij FjFi for i,j E I, 

q0 = 1, q>.q~-' = q>.+~-', q>.Fi = Fiq>. for A,J.-L E d- 1Y. 

The explicit formulae of the Weyl group action in Theorem 5.2 can be 
rewritten as 

if Eij = +1, 

if Eij = -1, 

Fj otherwise, 

si(q>.) = qs;(>.), in particular si(aj) = aja;aij. 

These formulae essentially coincide with those of Hasegawa. Compare 
these with Hasegawa's formulae, Equation (8) in [4] for the AP) case 
and the example for the B 2 case below Theorem 4 in [4]. 

Let us explain the classical limit of Hasegawa's action. Set q = e11. 
In the above setting, replace q by qh and ,\ E d-1 Y by n-1 >... Then q>. 
is replaced by itself and 

n-1 [Fi, Fj] = n-1(FiFj- FjFi) = -2TJEijdiaijFiFj mod n. 
Hence the classical limit A~1 of the algebra Aq is the commutative Pois­
son algebra generated by Fi ( i E I) and q>. ( ,\ E d-1 Y) with Poisson 
brackets defined by 

{Fi,Fj} = -2TJEijdiaijFiFj for i,j E I, 



324 G. Kuroki 

The classical limit of the above Weyl group action can be simply written 
as 

v 
where ai = q~i = qd;a;j. This action preserves the Poisson brackets of 

Q(A~1). The classical case of type A~1 ) was found by Kajiwara, Noumi, 
and Yamada in [8]. See Equation (6) of [8]. In [4], Hasegawa quantized 
its generalization to an arbitrary symmetrizable GCM case. 
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