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Finite subgroups of the plane Cremona group 

Igor V. Dolgachev 

To the memory of Vasily Iskovskikh 

Abstract. 

We survey some old and new results about finite subgroups of the 
Cremona group Cr2 (k) of birational automorphisms of the projective 
plane over a field k. 
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§1. Introduction 

The Cremona group Crn(k) of degree n over a field k is the group 
of birational automorphisms of lP'k. In algebraic terms, 

In this article I will survey some old and new results on classification of 
conjugacy classes of finite subgroups of Cr2 ( k). Recall that in the case 
n = 1, we have 

Received August 27, 2009. 
Revised March 23, 2010. 
2000 Mathematics Subject Classification. 14E07. 



2 I. V. Dolgachev 

The classification of finite subgroups of PGL2(k) is well-known. If k 
is algebraically closed of characteristic zero, then each such group is 
isomorphic to either a cyclic group Cn, or a dihedral group Dn of order 
2n, or the tetrahedron group T, or the octahedron group 0, or the 
icosahedron group I. There is only one conjugacy class for each group 
in Cr1 (k). If char(k) = p > 0, then G is isomorphic to a subgroup of 
PGL2(1Fq) for some q = p 8 • 

In this survey we will be concerned with the case n = 2. We will 
consider three essentially different cases: 

• k is the field of complex numbers C; 
• k is an arbitrary field of characteristic prime to the order IGI 

ofG; 
• k is algebraically closed of characteristic p dividing the order 

of G. 
Although in the first case the classification is 'almost' complete, in the 
remaining cases it is very far from being complete. 

This work arises from collaboration with my old, now deceased, 
friend and colleague Vasya Iskovskikh. His help and guidance is hard to 
overestimate. 

§2. General facts 

2.1. G-varieties 
Let G be a finite subgroup of Crn(k). We say that a rational variety 

X regularizes G if there exists a birational isomorphism </> : X- ~ IP'n 
such that ¢-1 o Go¢ is a subgroup of automorphisms of X. 

Lemma 1. Each finite subgroup of Crn ( k) can be regularized. 

Proof. First we find an open subset U of IP'n on which G acts bireg­
ularly. For example, we may take U = n9Eadom(g), where dom(g) 
denotes the largest open subset on which g : IP'n:._ ~ IP'n is defined. 
Then we consider the orbit space V = U jG, take some compactification 
V of V and let X' to be the normalization of V in the field of rational 
functions of U. The group G is the Galois group of the cover X' ~ V 
and acts biregularly on X'. Q.E.D. 

Assume that k is of characteristic zero (resp. n = 2) . Then a G­
variety X admits a G-equivariant resolution of singularities (1] (resp. 
[23]). Thus we can regularize the action on a nonsingular variety X. 

Definition 2. Let G be a finite group. A G-variety X is a pair 
(X,p) , where X is a projective algebraic variety over k and p: G ~ 
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Aut(X) is an injective homomorphism of groups. A rational map of 
G-varieties f: (X, p) ~ (Y, p') is a rational map f: X-~ Y together 
with a group automorphism¢: G ~ G such that, for any g E G, 

f o p(g) of-1 = p'(¢(g)). 

A birational isomorphism of G-varieties is an invertible rational map of 
G-varieties. 

For any G-variety (X, p), we choose a birational isomorphism ¢ : 
X~ ]pm and, for any g E G, we let t(g) = </Jop(g)o¢-1. This defines an 
injective homomorphism from G to Crn(k). The previous lemma easily 
implies the following. 

Theorem 3. There is a natural bijective correspondence between 
birational isomorphism classes of rational G-varieties and conjugacy 
classes of subgroups of Crn(k) isomorphic to G. 

Definition 4. A minimal G-variety is a G-variety (X, p) such that 
any birational morphism of G-surfaces (X,p) ~ (X',p') is an isomor­
phism. A group G of automorphisms of a rational variety X is called a 
minimal group of automorphisms if the pair (X, p) is minimal. 

So our goal is to classify minimal G-varieties (X, p) up to birational 
isomorphism of G-varieties. For this we need an analog of the theory of 
minimal models in a G-equivariant setting. If k is algebraically closed 
of characteristic zero we can equivariantly resolve singularities of (X, G) 
and then run the equivariant version of Mori's program in dimension 
3 [22] (and arbitrary dimension when such program will be fully es­
tablished). We obtain that G regularizes on a minimal G-variety with 
GQ-factorial terminal singularities ( nonsingular if n = 2). Since X is 
rational, we obtain that X is a G-equivariant minfmal Mori's fibration 
f: X~ Z, where dimZ < dimX, the Weil divisor -Kx is relatively 
ample and the relative G-invariant Picard number pCfc;z is equal to 1. 

If n = 2, then X is a nonsingular Fano variety (a Del Pezzo surface) 
with Pic(X)0 ~ Z or Z = JP>1 and f : X ~ Z is a conic bundle with 
Pic(X) 0 ~ 'Z}. One can also run the Mori program not assuming that 
the field k is algebraically closed (see [11]). 

From now on we restrict ourselves with the case n = 2. There are 
a few classification results in the cases n > 2. However, recently all 
simple and p-elementary subgroups of Cr3 (C) have been classified by 
Yuri Prokhorov [28], [29]. 
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2.2. Lift to characteristic 0 
A finite subgroup G of Crn(k) is called wild if its order is divisible 

by the characteristic of k. It is called tame otherwise. The following 
result belongs to J.-P. Serre (33] 

Theorem 5. Let G be a finite tame subgroup of Cr2(k). Then 
there exists a field K of characteristic 0 such that G is isomorphic to a 
subgroup of Cr2(K). 

The proof is based on the following result. 

Proposition 6. Let G be a finite group of automorphisms of a pro­
jective smooth geometrically connected variety X over a field k. Suppose 
the following conditions are satisfied. 

• IGI is prime to char(k); 
• H 2 (X, Ox)= 0; 
• H 2(X, 8x) = 0, where 8x is the tangent sheaf of X. 

Let A be a complete noetherian ring. with residue field k. Then there 
exists a smooth projective scheme XA over A on which G acts over A 
and the special fibre is G-isomorphic to X. 

We apply this proposition by taking X to be a rational surface over 
k and A to be the ring of Witt vectors with residue field k. It is easy 
to see that all conditions of the Proposition are satisfied. Let K be 
the field of fractions of A. It follows from the rationality criterion for 
surfaces that the general fibre XK is a geometrically rational surface, i.e. 
becomes rational when we replace K by its algebraic closure K. This 
proves the assertion of the theorem. 

Note that, even if k is algebraically closed, the lifts of two non­
conjugate subgroups of Cr2(k), may be conjugate in Cr2(K). 

§3. The case k = C 

Let k be an algebraically closed field of characteristic 0. Without 
loss of generality, we may assume that k = C. In this section we survey 
results obtained in [11] and (3], [4]. We refer for the very old history of 
the problem to [11]. 

3.1. Conic bundles 
We start with minimal groups acting on a conic bundle. Let 1r : 

S -+ lP'1 be a conic bundle with t singular fibres over points in a finite 
set 'E c lP'1 . Each singular fibre Fx, x E 'E, is the bouquet of two lP'1 's. 

Assume first that t = 0, i.e. S = F n is a minimal ruled surface. Since 
G acts minimally, n =/= 1. We identify F n with the weighted projective 
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plane IP{l, 1, n). If n-:/:- 0, an automorphism is given by the formula 

where fn is a homogeneous polynomial of degree n. The following propo­
sition is easy to prove. 

Proposition 7. Let 8 = F n, n -:/:- 0. We have 

where GL2{C)/ f.Ln acts on cn+I by means of its natural linear represen­
tation in the space of binary forms of degree n. Moreover, 

GL{2)/ ~ {C* )q PSL{2), 
f.Ln C* )q SL{2), 

ifn is even, 

ifn is odd. 

Using this proposition, it is not hard to list all finite subgroups which 
may .act on F n· 

Next we assume that 1r : 8 -+ IP1 is a conic bundle with t > 0 of 
singular fibres. The Picard group of 8 is freely generated by the divisor 
classes of a section E of 1r, the class F of a fibre, and the classes oft 
components of singular fibres, no two in the same fibre. The next lemma 
follows easily from the intersection theory on 8. 

Lemma 8. Let E and E' be two sections with negative self-intersec­
tion -n. Let r be the number of components of singular fibres which 
intersect both E and E'. Then t - r is even and 

2E · E' = t - 2n - r. 

In particular, 
t? 2n+r. 

Since a conic bundle 8 is isomorphic to a blowup of a minimal ruled 
surface, it always contains a section E with negative self-intersection 
-n. If n ? 2, we obviously get t ? 4. If n = 1, since (8, G) is minimal, 
there exists g E G such that g(E) -:/:- E and En g(E) -:/:- 0. Applying the 
previous lemma we get 

t? 4. 

Let G -+ Aut(IP1) be the natural action of G on the base of the 
conic fibration. Let G be the image of G in Aut(IP1) and K be the 
kernel. The group I( is isomorphic to a subgroup of Aut(817 ), where 817 
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is a general fibre of 1r isomorphic to the projective line over the field of 
rational functions of the base of the fibration. 

Suppose G acts faithfully on the Picard group Pic(S). Then the 
subgroup K acts non-trivially on the subgroup of Pic(S) generated by 
the components of fibres of the conic fibration. This implies that K is 
isomorphic to a subgroup of the group 2t := (Z/2Z)f. Since PGL2(C) 
does not contain subgroups isomorphic to 2t for t > 2 we obtain that 
K ~ 2 or 22 . 

Theorem 9. Assume that G acts faithfully on Pic(S). Then the 
subgroup K is isomorphic to either Z/27/., or (Z/2Z)2 . In the first case 
a generator of K fixes pointwise an irreducible smooth bisection C of ¢ 
and switches the components in m ::; t fibres over the branch points of 
the g~ on C defined by the projection 1r. The curve C is a curve of genus 
g = (m- 2)/2. In the second case, each nontrivial element gi of K fixes 
pointwise an irreducible smooth bisection Ci. The set ~ is partitioned 
in 3 subsets ~1 , ~2, ~3 such that the set of ramification points of the 
projection ¢: ci --? JP>1 is equal to ~j + ~k, i -I- j -I- k. 

In [11] we investigate possible extensions 1 --? K--? G--? G--? 1. 
Next we assume that G acts on Pic(S) with a non-trivial kernel Go. 

A conic bundle that admits such an action is called an exceptional conic 
bundle. All such conic bundles can be explicitly described. Here we give 
only one possible construction of an exceptional conic bundle. Other 
constructions can be found in [11]. 

Let us consider a quasi-smooth hypersurface Y of degree 2g + 2 in 
weighted projective space lP' = JP>(1, 1, g + 1, g + 1) given by an equation 

(1) 

where P2g+2(to, tl) is a homogeneous polynomial of degree 2g + 2 with­
out multiple roots. The surface is a double cover of JP>(1, 1,g + 1) (the 
cone over a Veronese curve of degree g + 1) branched over the curve 
isomorphic to the curve P2g+2(t0, h) + t~ = 0. The preimages of the 
singular point of JP>(1, 1, g + 1) with coordinates [0, 0, 1] is a pair of sin­
gular points of Y with coordinates [0, 0, 1, OJ and [0, 0, 0, 1]. The sin­
gularities are locally isomorphic to the singular points of a cone of the 
Veronese surface of degree g + 1. Let S be a minimal resolution of 
Y. The preimages of the singular points are disjoint smooth ratio­
nal curves E and E' with self-intersection -(g + 1). The projection 
JP>(1, 1, g + 1, g + 1) --? JP>l, [to, t1, t2, t3] 1--+ [to, h] lifts to a conic bundle 
on S with sections E, E'. The pencil >..t2 + f.d3 = 0 cuts out a pencil of 
curves on Y which lifts to a pencil of bisections of the conic bundle S 
with 2g + 2 base points [to, tb 0, 0], where P2g+2(to, t1) = 0. 
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The following proposition describes the automorphism group of an 
exceptional conic bundle. We denote by Yg an exceptional conic bundle 
given by equation (1). Since we are interested only in minimal groups 
we assume that g 2: 1. 

Proposition 10. The group of automorphisms of an exceptional 
conic bundle (1) is isomorphic to an extension N.P, where P is the 
subgroup of PGL2(C) leaving the set of zeroes of P2g+2(to, t1) invariant 
and N 9:! C* ~ 2 is a group of matrices with determinant ±1 leaving t 2 t 3 

invariant. Moreover, the extension splits and defines an isomorphism 

Aut(Y9 ) 9:! N x P 

if and only if g is odd, or g is even and P is either a cyclic group or a 
dihedral group D 4k+2. 

3.2. De Jonquieres transformations 
A Cremona transformation T of the plane which is defined by a 

linear system L of plane curves of degree d which pass through a point 
q with multiplicity d- 1 and points Pl, ... ,P2d-2 with multiplicity 1 is 
called a De Jonquieres transformation. One can show that there exists 
a curve r of degree d - 1 with singular point at q of multiplicity d - 2 
and passing through the points p1, ... ,P2d-2· If we choose q = [0, 0, 1], 
then r can be given by the equation 

where a8 (t0 , t 1) denotes a binary form of degrees. Let 

define a curve from L which does not belong to the pencil formed by 
r+£, where£ is a line through q. Then the transformation T with homa­
loidal net L is equal to the composition ¢ o T0 , where ¢ is a projective 
automorphism and To is given by the formula 

It easy to see that T transforms the pencil of lines through the point q to 
the pencil oflines through the point ¢(q). Assume ¢(q) = q, for example, 
if T is of finite order, then in affine coordinates x = tt/t0 , y = h/t0 , the 
transformation T can be given by the formula 

(3) T·( ) (a1x+a2 r1(x)y+r~(x)) 
· x,y f-t a 3x+a4'r3(x)y+r4(x) ' 
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where ri(x) are certain rational functions in x. All such transformations 
form a subgroup of Cr2 (k), called a De Jonquieres subgroup. It depends 
on the choice of generators, x, y of the field of rational functions k(lP'2) 

of lP'2 . Any Cremona transformation leaving a pencil of rational curves 
invariant belongs to a De Jonquieres subgroup. 

Consider the transformation To, where bd-l(to, h)= -ad-l(to, t1). 
Then one checks that T(f is the identity. Its set of fixed points is a plane 
curve of degree d 

Hd: t~ad-2(to, t1) + 2t2ad-l(to, t1) + bd(to, h)= 0. 

It has a singular point of multiplicity d - 2 at q and passes through the 
points p 1, ... ,P2d-2· Its normalization is a curve of genus g = d- 2. 
Let S --t lP'2 be the blow-up of the points q,p1 , .•• ,P2d-2· The pencil 
of lines through the point q defines a conic bundle structure on S. Its 
singular fibres are the full pre-images oflines (q,pi)· The transformation 
T0 lifts to S and interchanges the exceptional curve E at the point q with 
the proper inverse transform of the curve r. Its fixed locus on s is the 
proper inverse transform of the curve Hd. 

Theorem 11. Let G be a finite subgroup of Cr2 (k). The following 
properties are equivalent: 

(i) G leaves invariant a pencil of rational curves; 
(ii) G belongs to a De Jonquieres subgroup of Cr2(k); 

(iii) G can be regularized by a group of automorphisms of a conic 
bundle. 

More can be said about cyclic groups. A De Jonquieres transforma­
tion of order 2 is called a De Jonquieres involution. The transformation 
To from (2) with bd-l(to, h) = -ad-l(to, t1) is an example of a De 
Jonquieres involution. In affine coordinates it can be given by 

f(x) 
To : (x, y) f--> (x, -), 

y 

where f(x) is a polynomial of degree 2g + 1 with no multiple roots. The 
fixed locus of T0 is birationally isomorphic to the curve y2 - f(x) = 0. 

The proof of the following result can be found in [4]. 

Theorem 12. Let g be an element of a De Jonquieres group of finite 
order. Assume that g is not conjugate to a projective automorphism. 
Then g is of even order 2n and, up to a conjugate, 

F(xn) 
gn : (x, y) f--> (x, --) 

y 

for some polynomial F(x) with no multiple roots. 
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3.3. Automorphism groups of Del Pezzo surfaces 

Let 8 be a Del Pezzo surface of degree d = K~. We start with the 
case d = 9, i.e. 8 = JP>2 • The classification of conjugacy classes of finite 
subgroups of Aut(JP>2) ~ PGL3(k} is known since the beginning of the 
20th century. 

Recall some standard terminology from the theory of linear groups. 
Let G be a subgroup of the general linear group GL(V) of a vector 
space V over a field k. The group G is called intransitive if the repre­
sentation of G in V contains an invariant non-zero subspace. Otherwise 
it is called transitive. A transitive group G is called imprimitive if it 
contains a proper intransitive normal subgroup G'. In this case, if G 
is tame, V decomposes into a direct sum of G'-invariant proper sub­
spaces, and elements from G permute them. A group is primitive if it 
is neither intransitive, nor imprimitive. We reserve this terminology for 
finite subgroups of PGL(V) keeping in mind that each such group can 
be represented by a subgroup of GL(V). 

We restrict ourselves with transitive subgroups, since intransitive 
groups are easy to classify. 

Theorem 13. Let G be a transitive imprimitive finite subgroup of 
PGL3(C). Then G is conjugate to one of the following groups 

• G ~ n 2 ><1 3 generated by transformations 

[Ento, t1, t2], [to, Entl, t2], [t2, to, t1]; 

• G ~ n 2 ><1 83 generated by transformations 

[Ento, h, t2], [to, Enh, t2], [to, t2, h], [t2, to, t1]; 

• G = Gn,k,s ~ (n x ~) ><1 3, where k > l,kln and s2 - s + 1 = 0 
mod k. It is generated by transformations 

[Enfkto, t1, t2], [~:~to, Enh, t2], [t2, to, h]. 

• G ~ ( n x ~) ><1 83 generated by transformations 

[Enf3to,tl, t2], [~:~to, Entb t2], [to, t2, t1], [t1, to, t2]. 

Here we denote by [Zt(t), ... , ln(t)], where li(t) are linear forms in 
variables to, ... , tn, the projective transformation [to, ... , tn]~---+ [l1 (t), ... , 
ln(t)]. The next theorem is a well-known result of Blichfeldt [5]. 

Theorem 14. Any primitive finite subgroup G of PGL3(C) is con­
jugate to one of the following groups. 
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( 1) The icosahedral group I £':! A5 . It leaves invariant a nonsingu­
lar conic. 

(2) The Hessian group of order 216 isomorphic to 32 ~ SL2(1F3). It 
is realized as the group of automorphisms of the Hesse pencil 
of cubics 

x3 + y3 + z3 + txyz = 0. 

(3) The Klein group of order 168 isomorphic to £ 2(7) (realized 
as the full group of automorphisms of the Klein quartic x3 y + 
y3 z + z3x = 0). 

(4) The Valentiner group of order 360 isomorphic to \.Zk It can be 
realized as the full group of automorphisms of the nonsingular 
plane sextic 

(5) Subgroups of order 36 and 72 of the Hessian group. 

A Del Pezzo surface of degree d = 8 is isomorphic to either F 0 or F 1 . 

The second surface is not G-minimal. We have Aut(Fo) £':! PGL2(k) 12. 
All finite subgroups of this group are easy to find using the following 
Goursat Lemma. 

Lemma 15. Let G be a finite subgroup of the product A x B of two 
groups A and B. Let p 1 : A x B -+ A, p 2 : A x B -+ B be the projection 
homomorphisms. Let Gi = Pi(G),Hi = Ker(pjiG),i =I= j = 1,2. Then 
Hi is a normal subgroup in Gi. The map ¢: Gl/ H1 -+ G2/ H2 defined 
by cf>(aHI) = P2(a)H2 is an isomorphism, and 

where D = Gl/ H 1, o; : G1 -+ D is the projection map to the quotient, 
and (3 is the composition of the projection G2 -+ G2/ H 2 and ¢-1. 

We refer to [11] for a complete list. 
A Del Pezzo surface of degree d::::; 7 is isomorphic to the blow-up of 

9 - d distinct points in lP'2 such that no three are on a line, no six are 
on a conic, and, if d = 1, no plane cubic passes through the points with 
one of them being a singular point. A Del Pezzo surface of degree d = 7 
is not G-minimal, since the proper inverse image of the line through the 
two points is a G-invariant exceptional curve. 

From now on we assume that d ::::; 6. Recall that the orthogonal 
complement Rs of the canonical class Ks in Pic( B) equipped with the 
intersection form is isomorphic to a root quadratic lattice Qd of type 
A2EBA1 (d = 6), A4 (d = 5), D5 (d = 4), E6 (d = 3), E7 (d = 2), Es (d = 
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1). The subgroup of isometries of 'Rs generated by reflections in divisor 
classes R with R2 = -2 is denoted by W(S). It is isomorphic to the 
Weyl group W(Qd) of the lattice Qd. It coincides with the whole group 
of isometries for d = 1, 2 and its index is equal to 2 in other cases. The 
natural representation of Aut(S) in O(Pic(S)) defines a homomorphism 

p: Aut(S) ---+ W('Rs). 

Let 1r : S ---+ IP2 be the blow-up morphism of N = 9 - d points 
Pl, ... ,PN· Let Ei = 7f-1(pi) and ei = [Ei] E Pic(S) be the divisor 
class of Ei. Let e0 be the divisor class of the pre-image of a line in 
IP2. The classes (eo,eb ... ,eN) form a basis ofPic(S) which we call a 
geometric basis. It is an orthonormal basis in the sense that it defines 
an isomorphism of lattices Pic(S) ---+ J 1•N, where J1•N is the quadratic 
lattice defined by the diagonal matrix [1, -1, ... , -1]. The vectors 

form a basis of the lattice 'Rs. Its intersection matrix is equal to the 
negative of the Cartan matrix with the Dynkin diagram of the corre­
sponding type. The Weyl group W('Rs) is generated by reflections in 
the vectors ai. 

Si : X ~ X+ (x, O!i)O!i· 

Proposition 16. The homomorphism p is injective if d < 6. If 
d = 6, the homomorphism p is surjective and its kernel is a connected 
algebraic group isomorphic to the two-dimensional torus C*2 • It acts on 
S via its natural action on the projective plane. 

If d = 6, we have 

where D12 is the dihedral group of order 12. 
The reflection s1 is. realized by the lift of the standard quadratic 

transformation r : [to, t1, t2] ~ [t1t2, tot2, tot1] of IP2. The reflection 
s2(resp. s3) is realized by the projective transformations [to, t1, t2] ~ 
[t1, to, t2] (resp. [to, t1, t2] ~ [to, t2, t1]). This shows that W(Q6) = 
(s1) x (s2, s3) = 2 x 83. The normalizer N(T) ofT= Ker(p) in PGL3(k) 
is generated by T and s2, s3. 

Let G be a minimal finite subgroup of Aut(S). Obviously, p(G) 
contains s1 and s2s3 since otherwise G leaves invariant a1 or one of 
the vectors 2a1 + a 2, or a1 + 2a2. This shows that G n N(T) is an 
imprimitive subgroup of PGL3(C). This gives 
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Theorem 17. Let G be a minimal subgroup of a Del Pezza surface 
of degree 6. Then 

G = H.(s1), 

where His an imprimitive finite subgroup ofPGL3(C). 

Note that one of the groups from the theorem is the group 22 )q 83 ~ 
84. Its action on 8 given by the equation 

in (JP>1 ) 3 is given in [2]. 
Next we assume that 8 is a Del Pezzo surface of degree d = 5. 
In this case 8 is isomorphic to the blowup of the reference points 

Pl = [1, 0, 0], P2 = [0, 1, 0], P3 = [0, 0, l],p4 = [1, 1, 1]. The lattice Q5 
is of type A4 and Ws ~ 65 is the permutation group of degree 5. The 
homomorphism 

p : Aut(8) ---+ 65 

is an isomorphism . 
. One of the ways to see the isomorphism Aut(8) ~ 65 is to use 

a well-known isomorphism between 8 and the moduli space Mo,5 ~ 
(JP>1 ) 5 //SL2 (C). The group 6 5 acts by permuting the factors. 

Theorem 18. Let (8, G) be a minimal Del Pezza surface of degree 
d = 5. Then G = 65,!215,5 )q 4,5 )q 2, or 5. 

Proof. The group 6 5 acts on Q5 ~ Z4 by means of its standard 
irreducible 4-dimensional representation (view Z4 as a subgroup of Z5 

of vectors with coordinates added up to zero and consider the represen­
tation of 65 by switching the coordinates). It is known that a maximal 
proper subgroup of 6 5 is equal (up to a conjugation) to one of three 
subgroups 64, D12, !215, 5 )q 4. A maximal subgroup of !215 is either 5 x 2 
or 63 or Dw. It is easy to see that the groups 64 and D 12 have invariant 
elements in the lattice Q5. It is known that an element of order 5 in 6 5 
is a cyclic permutation, and hence has no invariant vectors. Thus any 
subgroup G of 65 containing an element of order 5 defines a minimal 
surface (8, G). So, if (8, G) is minimal, G must be equal to one of the 
groups from the assertion of the theorem. Q.E.D. 

Let 8 be a Del Pezzo surface of degree 4. It is well-:-known that 8 is 
isomorphic to a nonsingular surface of degree 4 in JP>4 given by equations 

4 4 

(4) F1 = Lt~ =0, F2 = L:ait~ = 0, 
i=O i=O 
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where all ai 's are distinct. 
The Weyl group W(Q4 ) ~ W(D5 ) is isomorphic to the group 24 ><1 

65. The normal subgroup 24 is generated as a normal subgroup by 
the element s 1s5 . It is realized by automorphisms of S which act in 
IP'4 by multiplying the coordinates by ±1. The subgroup of the Weyl 
group isomorphic to 6 5 acts on Pic(S) by permuting the divisor classes 
e1, ... , e5 of 5 skew lines and leaving the class e0 fixed. 

The group Aut(S) could be larger than 24 . Its image H in 6 5 is iso­
morphic to a subgroup of PGL2(tC) leaving the set of 5 points p 1 , ... ,pk 
invariant. Since there is a unique conic through these points, H is a 
subgroup of PGL2(tC) leaving an effective divisor of degree 5 invariant. 
It follows that H is one of the following groups 2, 3, 4, 5, 6 3 , D 10 • The 
corresponding surfaces are projectively equivalent to the following sur­
faces 

2 x6 +xi+ x~ + x~ + x~ = x6 + axi- x~- ax~= 0, a -1- -1, 0, 1, 
4 2 2 2 2 2 2 ·2 2 ·2 0 x0 + x1 + x 2 + x3 + x4 = x0 + ~x1 - x 2 - ~x3 = , 

6 2 2 22 2 2 22 2 2 0 
3 Xo + E3Xl + t 3x2 + X 3 = Xo + E3X 1 + E3X2 + x 4 = , 

4 4 

Dw L t~x; = L tg-ix; = 0 
i=O i=O 

The analysis of all minimal finite subgroup of Aut(S) is rather te­
dious and non-trivial. We only give the final result (see [11]). 

Aut(S) Subgroups 
2" 2'*, 2'\ 2:.l 
24 )<] 2 2 x 4, Ds, £ 16, 24 ><1 2 
24 )<] 4 8, 22 )<] 8, 24 )<] 4, 
24 )<] 63 22 X 3, 2 X Ql4, 24 )<] 3, 24 )<] 63, 
24 ><I Dw 24 ><1 Dw, 24 ><1 5 

Table 1. Minimal subgroups of automorphisms of a Del 
Pezzo surface of degree 4. 

Here £ 16 is a solvable group of order 16 with generators a, b, c and 
defining relations a4 = b2 = c2 = [c, a]b = [a, b] = [b, c] = 1. Note that 
we did not include subgroups occurring in the previous rows. 

Now let us consider the case of cubic surfaces. The groups of au­
tomorphisms of nonsingular cubic surfaces were essentially known in 
the 19th century ([20], [38]). A general cubic surface does not admit 
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non-trivial automorphisms. There are 11 classes of cubic surfaces with 
non-trivial automorphisms. They are reproduced in the following table. 

Type Order Structure F(to, t1, t2, t3) Parameters 

I 648 33 :64 t5+tr+t~+t~ 
II 120 65 t6t1 +tot~ + t2t§ + t3ty 
III 108 H3(3) : 4 t5 + tr + t~ + t~ + 6at1t2t3 20a3 + 8a6 = 1 
IV 54 H3(3) : 2 t5 + tr + t~ + t~ + 6at1t2t3 a- a4 i= 0, 

8a3 i= -1, 
20a3 + 8a6 i= 1 

v 24 64 t5 + ta(tr + t~ + t§) 9a3 i= 8a 
+at1t2t3 8a3 i= -1, 

VI 12 63 X 2 t~ + t~ + at2t3(to + tl) + t5 + tr aiO 
VII 8 8 t§i2 + t~t1 + t5 + tati 
VIII 6 63 t~ + t~ + at2t3(to +btl)+ t5 + tr a i= 0, b i= 0, 1 
IX 4 4 t~t2 + *1 + t5 + tati + atr a#-0 
X 4 22 t5(tl + t2 + at3) + tr + t~ 

+t~ + 6bt1 t2t3 8b3 i= -1 
XI 2 2 tr + t~ + t~ + 6at1M3 b3,c3 #-1 

+t5(h + bt2 + ct3) b3 i= c3 
8a3 i= -1, 

Table 2. Groups of automorphisms of cubic surfaces. 

A proof can be found in [14] and [11]. 
The important tool is the classification of conjugacy classes of el­

ements of finite order in the Weyl groups. According to [7] they are 
indexed by certain graphs. We call them Carter graphs. One writes 
each element w E W as the product of two involutions w1 w2 , where 
each involution is the product of reflections with respect to orthogonal 
roots. Let R1, R2 be the corresponding sets of such roots. Then the 
graph has vertices identified with elements of the set R 1 U R 2 and two 
vertices a, (3 are joined by an edge if and only if (a, (3) =f. 0. A Carter 
graph with no cycles is a Dynkin diagram. The subscript in the notation 
of a Carter graph indicates the number of vertices. It is also equal to 
the difference between the rank of the root lattice Q and the rank of its 
fixed sublattice Q(w). 

Note that the same conjugacy classes may correspond to different 
graphs (e.g. D3 and A3, or 2A3 + A1 and D4 (al) + 3Al)· 

The Carter graph determines the characteristic polynomial of w. 
In particular, it gives the trace Tr2(g) of g* on the cohomology space 
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Graph Order Characteristic polynomial 
Ak k+1 tk + tk- -1 + ... + 1 

Dk 2k- 2 w -l+ 1)(t + 1) 
Dk(a1) l.c.m(2k- 4, 4) w--2 + 1)W + 1) 
Dk(a2) l.c.m(2k - 6, 6) (tk--;j + 1)(t3 + 1) 

Dk(a~_1 ) even k (t~ + 1)2 

EB 12 (t4 - t:~. + 1)W + t + 1) 
EB(al) 9 t 0 +t;j+1 
E6(a2) 6 W- t + 1):/.W + t + 1) 
E1 18 (t6 - t3 + 1)(t + 1) 
E1(a1) 14 e +1 
E1(a2) 12 w- t:l. + 1)(t;j + 1) 
E7(a3) 30 W' + 1)W- t + 1) 
E7(a4) 6 W -t+1?W+1) 
Es 30 tlj + t1 - t" - t4 - t;j + t + 1 
Es(al) 24 t!l-t4 +1 
Es(a2) 20 tll-t6 +t4 -t:t.+1 
Es(a3) 12 W-t:/.+1? 
Es(a4) 18 {t0 - t;j + 1)W- t + 1) 
Es(a5) 15 tlj - t1 + t" - t" + t;j - t + 1 
Es(aB) 10 w- t3 + fl- t + 1):.! 
Es(a7) 12 (t4 - t:t. + 1)W- t + 1):!. 
Es(as) 6 W-t+1)" 

Table 3. Carter graphs and characteristic polynomials. 

H 2 ( S, q ~ Pic( S) ®C. The latter should be compared with the Euler­
Poincare characteristic of the fixed locus su of g by applying the Lef­
schetz fixed-point formula. 

(5) 'lh(g) = s- 2 + _L)2- 2gi), 
iEl 

where su the disjoint union of smooth curves ~' i E I, ·Of genus 9i and 
s isolated fixed points. 
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To determine whether a finite subgroup G of Aut( B) is minimal, we 
use the well-known formula from the character theory of finite groups 

rank Pic(S)0 = #~ L Tr2(g). 
gEG 

The tables for conjugacy classes of elements from the Weyl group Ws 
give the values of the trace on the lattice Rs = K-}. Thus the group is 
minimal if and only if the sum of the traces add up to 0. 

We first give the list of minimal cyclic groups of automorphisms. 

Proposition 19. The following conjugacy classes define minimal 
cyclic groups of automorphisms of a cubic surfaceS. 

• 3A2 of order 3, 
• E6(a2) of order 6, 
• As + A1 of order 6, 
• E6(a1) of order 9, 
• E6 of order 12. 

A very tedious computation gives the final classification of minimal 
finite subgroups of automorphisms of cubic surfaces. 

Surface Type Subgroups 
I 64, 63, 63 X 2, 63 X 3, 3:.! ><3 2, 3:.! ><3 2:.!, 
II H3(3) ><l 2, H3(3), 3;:s ><l 2, 3;:s ><l 2:.!, 3;:s ><l 3, 

33 ><l 63, 33 ><l Ds, 33 ><l 64, 
33 ><3 4,33, 32, 32 X 2, 9, 6 (2), 3. 

II 6s, 64. 
III H3(3) ><l 4, H3(3) ><l 2, H3(3), 

63 X 3, 63, 32, 12, 6, 3. 
IV H3(3) )<3 2, H3(3), 63, 3 X 63, 32' 6, 3. 
v 64, 63. 
VI 6, 63 X 2, 63. 
VIII 63. 

Table 4. Minimal subgroups of automorphisms of cubic sur­
faces. 

Here H3(3) is the Heisenberg group of order 27 isomorphic to the 
group of unipotent upper-triangular matrices of size 3 x 3 over the finite 
field JF3. Note that there could be more than on:e conjugacy class of 
isomorphic groups. The number of these classes can be found in [11]. 
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Next we consider the case of Del Pezzo surfaces of degree 2. It is 
known that the linear system J- Ksl defines a double cover f: S---+ IP'2 
branched along a nonsingular plane curve B of degree 4. This implies 
that the group of automorphisms of S is mapped isomorphically onto 
the group Aut(B) with kernel oforder 2 generated by the deck transfor­
mation "( of the cover. The automorphism 'Y of the rational surface S is 
conjugate in the Cremona group to the Geiser birational involution of 
the plane. The automorphism group of a plane quartic curve have been 
also determined in the 19th century. A modern proof can be found in 
(13]. 

It is known that the center of the Weyl group W(Q2 ) = W(E7) 
is generated by an element wo which acts on Q2 as the negative of 
the identity. Its conjugacy class is of type Ai. The quotient group 
W(E7)' = W(E7)/(w0 ) is isomorphic to the simple group Sp(6,1F2). 
The extension 2.Sp(6,IF2) splits by the subgroup W(E7 )+ equal to the 
kernel of the determinant homomorphism det : W ( E7 ) ---+ { ± 1}. Thus 
we have 

W(E7) = W(E7)+ x (wo). 

Let H be a subgroup of W(E7)'. Denote by H+ its lift to an iso­
morphic subgroup of w+. Any other isomorphic lift of H is defined by 
a nontrivial homomorphism a : H ---+ (w0 ) ~ 2. Its elements are the 
products ha(h), hE H+. We denote such a lift by Ha.. Thus all lifts are 
parameterized by the group Hom( H, ( wo)) and H+ corresponds to the 
trivial homomorphism. Note that wHa.w- 1 = (w' Hw'- 1 )a, where w' is 
the image of win W(E7 )'. In particular, two lifts of the same group are 
never conjugate. 

It is convenient to view a Del Pezzo surface of degree 2 as a hyper­
surface in the weighted projective space IP'(l, 1, 1, 2) given by an equation 
of degree 4 

(6) 

The automorphism of the cover is the Geiser involution 'Y = [to, h, t2, -t3]. 
For any divisor class D on S we have D + 'Yo(D) E J - mKsl for some 
integer m. This easily implies that 'Y* acts as the minus identity in Q2 . 

Its image in the Weyl group W(E7 ) is the generator w0 of its center. 
Thus the Geiser involution is the geometric realization of wo. 

Let p : Aut(S) ---+ W(E7) be the natural injective homomorphism 
corresponding to a choice of a geometric basis in Pic(S). Denote by 
Aut(S)+ the full preimage of W(E7)+. Since W(E7)+ is a normal 
subgroup, this definition is independent of a choice of a geometric ba­
sis. Under the restriction homomorphism Aut(S) ---+ Aut(B), the group 
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Aut(S)+ is mapped isomorphically to Aut(B) and we obtain 

Aut(S)+ ~ Aut(S)/('y) ~ Aut(B). 

From now on we will identify any subgroup G of Aut(B) with a subgroup 
of Aut(S) which we call the even lift of G. Under the homomorphism 
p : Aut( B) -+ W(E7 ) all elements of G define even conjugacy classes, 
i.e. the conjugacy classes of elements from W(E7 )+. It is immediate to 
see that a conjugacy class is even if and only if the sum of the subscripts 
in its Carter graph is even. An isomorphic lift of a subgroup G to a 
subgroup of Aut(S) corresponding to some nontrivial homomorphism 
G-+ ('y) (or, equivalently to a subgroup of index 2 of G) will be called 
an odd lift of G. 

The odd and even lifts of the same group are never conjugate, two 
minimal lifts are conjugate in Aut(S) if and only if the groups are con­
jugate in Aut(B). Two odd lifts of G are conjugate if and only if they 
correspond to conjugate subgroups of index 2 (inside of the normalizer 
of Gin Aut(B)). 

Lemma 20. Let G be a subgroup of Aut(B) and H be its subgroup 
of index 2. Assume H is a minimal subgroup of Aut(S) {i.e. its even 
lift is such a subgroup). Then G is minimal in its even lift and its odd 
lift corresponding to H. Conversely, if G is minimal in both lifts, then 
H is a minimal subgroup. 

Since 'Y generates a minimal subgroup ofautomorphisms of S, any 
group containing 'Y is minimal. So, we classify first subgroups of Aut(B) 
which admit minimal lifts. These will be all minimal subgroups of 
Aut(S) which do not contain the Geiser involution "f. The remaining 
minimal groups will be of the form ('Y) x G, where G is any lift of a 
subgroup G of Aut(B). Obviously, the product does not depend on the 
parity of the lift. 

We first give the list of minimal cyclic groups. 

(1) Order 2 (AI) (The Geiser involution) g = [to, t1, t2, -t3] 

F = t~ + F4(to, t1, t2). 

(2) Order 4 (2A3 + A1) g = [to, t1, it2, t3] 

F = t~ + ti + L4(to, t1). 

(3) Order 6 (E7(a4)) g =[to, h, E3t2, -t3] 

F = t~ + t~L1(to, h)+ L4(to, t!). 
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(4) Order 6 (As+ A2) g =[to, -t1, t:3t2, -t3] 

F = t~ + t~ + tf +tot~ + at~ti. 

(5) Order 6 (D6(a2) +AI) g = [to, €3X1, f~X2, -x3] 

F = t~ + to(t~ + t~ + t~) + t1t2(at~ + !3t1t2). 

(6) Order 12 (E7(a2)) g =[to, f4t1, f3t2, t3] 

F = t~ + t~ + tf +tot~, (to, t1. t2, t3). 

(7) Order 14 (E7(a1)) g =[to, f4t1, €3t2, t3] 

F = t~ + t~h + t~t2 + t~to. 

(8) Order 18 (E7) g = (to, f3h, t:§t2, -t3] 

F = t~ + t~ +tot~+ t~t1. 

19 

Using the information about cyclic groups of automorphisms of plane 
quartics, it is not hard to get the classification of possible automorphism 
groups (see (13]). It is given in Table 5. 

Here AS16 is a solvable group of order 16 with generators a.b, c and 
defining relations a4 = b2 = c2 = [a, b] = (c, b]a-2 = (c, a] = 1 . 

Let us describe minimal subgroups of automorphisms of a Del Pezzo 
surface of degree 2. 

To summarize our investigation we give two lists. In the first one we 
list all groups which do not contain the Geiser involution 'Y· We indicate 
by + or - the types of their lifts. 

All other minimal groups are of the form ("!) x G, where G is one of 
the lifts of a subgroup of Aut( B). In the second list we give only groups 
2 x G, where G does not admit a minimal lift. All other groups are of 
the form 2 x G, where G is given in Table 6. 

Here M16 is a group of order 16 defined by generators a, b with 
relations a8 = b2 = [a, b]a4 = 1. Note that some isomorphic groups 
may not be conjugate in Cr2 (k). We compute the number of conjugacy 
classes in (11]. 

Theorem 21. Let G be a minimal group of automorphisms of a 
Del Pezza surface of degree 2. Then G is either equal to a minimal lift 
of a subgroup from Table 6 or equal to 'Y x G', where G' is either from 
the table or one of the following groups ofautomorphisms of the branch 
quartic curve B 

(1) Type I: 7: 3, ~4, 63, 7, 4, 3, 2. 
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Type 

I 
II 
III 
IV 

v 
VI 
VII 

VIII 
IX 

X 

XI 
XII 

XIII 

(2) 
(3) 
(4) 
(5) 
(6) 
(7) 
(8) 
(9) 

(10) 
(11) 
(12) 

I. V. Dolgachev 

Order Structure Equation Parameters 

336 2 x PSL2(lF7) t~ + t3tl + *2 + t~to 
192 2 x (42 : 6s) t~+tg+tf+t~ 
96 2 X 4.A4 t~ + t~ + tg + at~t~ + tf a2 = -12 

48 2 X 64 t~+t~+tf+tg ol -l±v-a 2 

+at~t~ + t~t~ + *~ 
32 2 X AS16 t~ + t~ + tg + at~t~ + tf a2 ol 0; -12, 4, 36 

18 18 t~ + t6 + totf + ht~ 
16 2 x D 8 t~+t~+t6+tt a,b ol 0 

+at~t~ + bt~tot1 
12 2x6 t~ + t~to + t6 + tf + at~t~ 
12 2 x 6 3 t~ + t~ + at~tot1 

+to(t~ + t3) + bt~t~ 
8 2;s t~ + t~ + tf +t6 distinct a, b, c ol 0 

+at~t~ + bt~t~ + ct~t~ 
6 6 t~ + t~to + L4(to, t1) 
4 22 t~ +t~ 

+t~L2(to, t1) + L4(to, t1) 
2 2 t~ + F4(to, h, t2) 

Table 5. Groups of automorphisms of Del Pezzo surfaces of 
degree 2. 

Type II: 22, 63, 8, 4, 3, 2. 
Type III: 22 , 4, 2. 
Type IV: 6 3, 22 , 3, 2. 
Type V: 22 , 2. 
Type VI: 9, 3. 
Type VII: 22 , 4, 2 
Type VIII: 3. 
Type IX: 63, 3, 2. 
Type X: 22 , 2. 
Type XI: 3. 
Type XII: {1 }. 

Let S be a Del Pezzo surface of degree 1. The linear system 1-2K s I 
defines a finite map of degree 2 onto a quadric cone Q in JP3. Its branch 
locus is a nonsingular curve B of genus 4 cut out by a cubic surface. 
Recall that a singular quadric is isomorphic to the weighted projective 
space JP>(1, 1, 2). A curve of genus 4 of degree 6 cut out in Q by a cubic 
surface is given by equation F(t0 , h, t 2 ) of degree 6. After change of 
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Type of S Group Lift 
I L2(7), 64, Ds + 

II 4:. ><1 63, 64, Ds x 4, AS16 +,-
42 ><1 3, Ql4, Ml6, Ds + 

42,2 X 4,4 -
III 4Ql4, AS16 +,-

Ds,Ds ><1 3 + 
12,6,2 X 4,4 -

IV 64,Ds + 
v AS16 +,-

Ds + 
2 X 4,4 -

VII Ds + 
VIII 6 -

Table 6. Minimal groups of automorphisms not containing 

'Y· 
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coordinates it can be given by an equation t~ +a( to, t!)t2 + b(to, tl) = 
0, where a(t0 , tl) and b(t0 , t 1 ) are binary forms of degree 4 and 6 (or 
identically zero). The double cover of Q branched along such curve is 
isomorphic to a hypersurface of degree 6 in IP'(l, 1, 2, 3) 

(7) 

The vertex of Q has coordinates [0, 0, I] and its preimage in the cover 
consist of one point [0, 0, 1, a], where a2 + 1 = 0 (note that [0, 0, 1, a] and 
[0, 0, 1, -a] represent the same point on IP'(l, 1, 2, 3)). This is the base­
point of I - K s I· The members of I - K s I are isomorphic to genus 1 
curves with equations y2 + x3 + a(t0 , t 1 )x + b(t0 , t 1 ) = 0. The locus 
of zeros of .6. = 4a3 + 27b2 is the set of points in IP'1 such that the 
corresponding genus 1 curve is singular. It consists of a simple roots 
and b double roots. The zeros of a are either common zeros with b and 
.6., or represent nonsingular elliptic curves isomorphic to an anharmonic 
plane cubic curve. The zeros of b are either common zeros with a and .6., 
or represent nonsingular elliptic curves isomorphic to a harmonic plane 
cubic curve. 

Observe that no common root of a and b is a multiple root of b since 
otherwise the surface is singular. 

Since the ramification curve of the cover S ~ Q (identified with the 
branch curve B) is obviously invariant with respect to Aut(S), we have 
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a natural surjective homomorphism 

(8) Aut(S) ---+ Aut(B). 

Its kernel is generated by the deck involution j3 which is called the Bertini 
involution. It defines the Bertini involution in Cr(2). The Bertini in­
volution is the analog of the Geiser involution for Del Pezzo surfaces 
of degree 2. The same argument as above shows that j3 acts in Rs as 
the minus identity map. Under the homomorphism Aut(S) ---+ W(Es) 
defined by a choice of a geometric basis, the image of j3 is the elements 
w0 generating the center of W(E8 ). This time w0 is an even element, i.e. 
belongs to W(E8 )+. The quotient group W(E8 )+ / (wo) is isomorphic to 
the simple group o+(8,lF2)· 

Since Q is a unique quadric cone containing B, the group Aut(B) is a 
subgroup of Aut(Q). Consider the natural homomorphism r: Aut( B) ---+ 

Aut(lP'1) which is the composition of (8) and the natural homomorphism 
Aut(B) ---+ Aut(lP'1). Let G be a subgroup of Aut(S) and P be its im­
age in Aut(lP'1 ). We assume that elements from G act on the variables 
t0 , t 1 by linear transformations with determinant 1. The polynomials 
a( to, tr) and b(to, t 1) are the relative invariants of the binary group 
P = 2.P. They are polynomials in the known basic relative invari­
ants (Griindformen). Each relative invariant p(t0 , ti) defines a character 
X : P ---+ <C* via g* (p) = x(g )p. Let X4, X6 be the corresponding charac­
ters of P defined by the binary forms a, b. Let x2 , x3 be the characters 
of G defined by the action on the variables t 2 , t 3 • Assume that a -1 0. 
Then 

3 2 
X4X2 = X6 = X3 = X3· 

If g E G n Ker(r) \ {1}, then g acts on the variables t0 ,t1 by either 
the identity or the minus identity. Thus x4 (g) = x6 (g) = 1 and we 
must have X2(g) = X3(g)2 = 1. This shows that g = [to, tr, t3, -t3] 
[-to, -tr,t2, -t3] = j3. If a = 0, then we must have only x2(g)3 = 
X3(g)2 = 1. 

Using these arguments it is easy to list all possible automorphism 
groups of the curve B, and then describe their lifts to Aut( B) similarly 
to the case of Del Pezzo surfaces of degree 2. We state the results. 

Table 7 gives the list of the full automorphism groups of Del Pezzo 
surfaces of degree 1. 

Here Qs denotes the quaternion group of order 8. 

The following is the list of cyclic minimal groups (g) of automor­
phisms of Del Pezzo surfaces V (F) of degree 1. 

(1) Order 2 



Type 

I 
II 
III 
IV 
v 
VI 
VII 
VIII 
IX 
X 
XI 
xn 
XIII 
XIV 
XV 
XVI 

XVII 
XVIII 
XIX 
XX 
XXI 
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Order Structure F4 F6 Parameters 

144 3 X (T: 2) 0 tot1 (tg - tf) 
72 3 X 2D12 0 t8 + tr 
36 6 X D6 0 t8 + at~tf + tr afO 

30 30 0 to(tg + t~) 
24 T a(tg + at~t~ + tf) tot1 (tg- tf) a=2H 
24 2D12 at~t~ t8 +tr afO 

24 2 X 12 t4 
0 

t6 1 
20 20 t4 

0 tot~ 
16 D16 at~t~ tot1(tg +tf) afO 

12 D12 *~ t8 + at~tf + tr afO 

12 2x6 0 Ga(t~, t~) 
12 2x6 t4 

0 at8 +t~ afO 

10 10 t4 
0 to(atg + t~) afO 

8 Qs tg + tf + at~t~ bt0 t1 (tg - tf) af2H 

8 2x4 atg +tf t~(btg + ctf) 
8 Ds tg + tf + at~t~ tot1 (b(tg + tf) bfO 

+ct~t~) 
6 6 0 F5(to, t1) 
6 6 to(at~ +btf) ct8 + dt~tf + tr 
4 4 G2(t~, t~ tot1F2(t~, t~) 
4 22 G2(t~, t~ ca(t~,m 
2 2 F4(to, t1) F6(to,h) 

Table 7. Groups of automorphisms of Del Pezzo surfaces of 
degree 1. 

• A~ (the Bertini involution) g = [to, t1. t2, -tg] 

F = t~ + t~ +a( to, t1)t2 + b(to, h), 

(2) Order 3 
• 4A2 g = [to, t1. E3t2, tg] 

(3) Order 4 
• 2D4(a1) g = [to, -t1. -t2, ±itg] 

F = t~ + t~ +(at~+ bt~t~ + ctf)t2 + toh(dt~ + etf), 

(4) Order 5 
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• 2A4 g = [to, Est1. t2, t3] 

F = t~ + t~ + at~h + to(btg + tf), 

(5) Order 6 
• E6(a2) + A2 g = [to, -tb E3t2, t3] 

F = t~ + t~ + G3(t~, t~), 

• E7(a4) + A1 g = [to, E3t1, t2, -t3] 

F = t~ + t~ + (t~ + at0t~)t2 + btg + ctgt~ + dt~, 

• 2D4 g = [E6to, Eij1t1. t2, t3] 

F = t~ + t~ + at~t~h + btg + ctgt~ + et~, 

• Es(as) g = [to, h, E3t2, -t3] 

F = t~ + t~ + F6(to, t1), 

• As+ A2 + A1 g = [to, E6tl, t2, t3] 

F = t~ + t~ + at~t2+ tg + bt~, 
(6) Order 8 

• Ds(a3) g = [ito, h, -it2, ±~:st3] . 

F = t~ + t~ + at~t~t2 + tot1 (t~ + tf), 

(7) Order 10 
• Es(a6) g =[to, Esh, t2, -t3] 

F = t~ + t~ + at~t2 + to(btg + tf), 

(8) Order 12 
• Es(a3) g = [-to, h, E6h, it3] 

F = t~ + t~ + toh(t~ + at~t~ + tf), 

(9) Order 15 
• Es(as) g = [to, Esh, E3t2, t3] 

F = t~ + t~ + to(tg + tf), 

(10) Order 20 
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( 11) Order 24 
• Es(al) g = [ito, t1, E12t2, Est3] 

F = t~ + t~ + tot1(t6 + t{), 

(12) Order 30 
• Es g= [to,E5h,E3t2,-t3] 

To list all minimal subgroups of Aut(S) is very easy. We know that 
any subgroup in Ker(r) contains one of the elements a, /3, a/3 which are 
all minimal of types 8A1,4A2,E8 (ag). So, a subgroup is not minimal 
only if its image P in Aut(B) can be lifted isomorphically to Aut( B). 

We use the following lemma. 

Lemma 22. Let P c Aut(IP'1 ) and G c Aut(S) be contained in 
r- 1 (P). Then G is a minimal group unless G = P ~ P and G is a 
non-minimal cyclic group or non-minimal dihedral group D6 . 

Here is the list of minimal groups of automorphisms of a Del Pezzo 
surface of degree 1. 

Type I. P ~ 84. 

• P = {1}: (f3a) ~ 6, (a)~ 3, (/3) ~ 2; 
• p = 2: 4, 12; 
• p = 2: 4, 12; 
e p = 3: 32 , 3 X 6; 
• P = 22 : Qs, Qs x 3; 
• P = 22 : D8 , Ds x 3; 
• p = 4: 8, 8 X 3; 
• P = Ds: D16, Ds x 3; 
• p = D6: D6 X 2, D6 X 3, D6 X 6; 
• p = 2[4; T, T X 3; 
• p = 64: T: 2, 3 X (T: 2). 

Type II: P = D12· 

• P = {1}: (f3a) ~ 6, (a)~ 3, (/3) ~ 2; 
• p = 2: 4, 12; 
e p = 2: 22 , 22 X 3, 6; 
e p = 3: 32 , 32 X 2; 
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• P = 22 : Q8 , Qs x 3; 
e p = 6: 2 X 6, 
• p = D6: 2 X D6, D6 X 3, D6 X 6; 
• p = Dl2: 2Dl2, 3 X 2Dl2· 

Type IV: P = 5 

• P = {1}: (f3a) ~ 6, (a)~ 3, (/3) ~ 2; 
• p = 5: 5, 10, 15, 30; 

Type VII: P ~ 12 . 

• p = 2: 22 . 

• p = 3: 6; 
• p = 4: 2 X 4; 
e p = 6: 2 X 6; 
e p = 12: 2 X 12. 

Type VIII: P ~ 10. 

• P = {1}: (f3a) ~ 6, (a)~ 3, (/3) ~ 2; 
• p = 2: 22 . 

• p = 5: 10; 
• p = 10: 20. 

Type XV: P ~ 4. 

• P = {1}: (f3a) ~ 6, (a)~ 3, (/3) ~ 2; 
•P=2:22 . 

e p = 4: 2 X 4. 

3.4. Elementary links 
We will be dealing with minimal Del Pezzo G-surfaces or minimal 

conic bundles G-surfaces. In the G-equivariant version of the Mori the­
ory they are interpreted as extremal contractions ¢ : S ---> C, where 
C = pt is a point in the first case and C ~ lP'1 in the second case. They 
are also two-dimensional analogs of rational Mori G-fibrations. 

(9) 

A birational G-map between Mori fibrations are diagrams 

X s-- ,...s, 

¢ l ¢'! 
C C' 

which in general do not commute with the fibrations. These maps are 
decomposed into elementary links. These links are divided into the four 
following types. 

• Links of type I: 
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They are commutative diagrams of the form 

(10) S ~ Z = S' 

¢! ¢'! 
C = pt ~ C' = IP'1. 

Here cr : Z -+ S is the blowup of a G-orbit, S is a minimal Del Pezzo 
surface, ¢' : S' -+ IP'1 is a minimal conic bundle G-fibration, a is the 
constant map. For example, the blowup of a G-fixed point on IP'2 defines 
a minimal conic G-bundle ¢' : F 1 -+ IP'1 with a G-invariant exceptional 
section. 

• Links of type II: 

They are commutative diagrams of the form 

(11) 

c C'. 

Here cr : Z -+ S, T : Z -+ S' are the blowups of G-orbits such that 
rank Pic(Z) 0 =rank Pic(S) 0 + 1 =rank Pic(S') 0 + 1, C = C' is either 
a point or IP'1. An example of a link of type II is the Geiser (or Bertini) 
involution of IP'2, where one blows up 7 (or 8) points in general position 
which form one G-orbit. Another frequently used link of type II is an 
elementary transformation of minimal ruled surfaces and conic bundles. 

• Links of type III: 
These are the birational maps which are the inverses of links of type I. 

• Links of type IV: 

They exist when S has two different structures of G-equivariant conic 
bundles. The link is the exchange of the two conic bundle structures 

(12) S' 

¢'! 
C'. 

One uses these links to relate elementary links with respect to one conic 
fibration to elementary links with respect to another conic fibration. Of­
ten the change of the conic bundle structures is realized via an involution 
in Aut( B), for example, the switch of the factors of S = IP'1 x IP'1 (see the 
following classification of elementary links). 
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Theorem 23. Let f : S- -+ S' be a birational map of minimal 
G-surfaces. Then x is equal to a composition of elementary links. 

The proof of this theorem is the same as in the arithmetic case 
considered in [17], Theorem 2.5. 

To start a link, one has to blow-up base points of maximal multiplic­
ity of a linear system defining the birational map. To do it equivariantly, 
we blow up the orbits of points of maximal multiplicity. One uses the 
following 

Lemma 24. Let S a G-minimal Del Pezzo surface of degree d and 
1i = I - aKs - I: mih;i I be a linear system defining a birational G­
equivariant map a : S- -+ S'. Here h;i are the G-orbits of base points 
of'H and a E ~Z. Then 

2:::#/i;i <d. 

It follows from this lemma and Theorem 23 that a is an isomorphism 
if G has no orbits of points of cardinality less than d. For example, this 
obviously happens if d = 1. So any minimal group of automorphisms of 
a Del Pezzo surface of degree 1 cannot be conjugate to a minimal group 
of automorphisms of another Del Pezzo surface or a conic bundle. It is 
superrigid in the sense of the following definition. 

Definition 25. A minimal Del Pezzo G-surface is called superrigid 
(resp. rigid) if any birational G-map x : S- -+ S' is a G-isomorphism 
(resp. there exists a birational G-automorphism a : S- -+ S such that 
x o a is a G-isomorphism). 

A minimal conic bundle¢: S-+ lP'1 is called superrigid (resp. rigid) 
if for any birational G-map x : S- -+ S', where ¢' : S' -+ lP'1 is a 
minimal conic bundle, there exists an isomorphism 8 : lP'1 -+ lP'1 such 
that the following diagram is commutative 

(13) X 
s-- ""'s' 

¢! ¢'! 
JP>l ~ JP>l 

(resp. there exists a birational G-automorphism a : S- -+ S' such that 
the diagram is commutative after we replace x with x o a). 

3.5. Final classification 

Let S be a minimal G-surface S and d = K~. We will classify 
all birational isomorphism classes of (S, G) according to the increasing 
parameter d. Since the number of singular fibres of a minimal conic 
bundle is at least 4, we have d ~ 4 for conic bundles. 
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• d:::;; 0. 

In this case, Iskovskikh's classification of elementary links shows 
that S is a superrigid conic bundle with k = 8 - d singular fibres. The 
number k is a birational invariant. 

Also observe that if ¢ : S _, JP>1 is an exceptional conic bundle and 
Go = Ker(G _, O(Pic(S)) is non-trivial, then no links of type II is 
possible. Thus the conjugacy class of G is uniquely determined by the 
isomorphism class of S. 

• d = 1, Sis a Del Pezzo surface. 

The surface S is superrigid. Hence the conjugacy class of G is de­
termined uniquely by its conjugacy class in Aut(S). All such conjugacy 
classes have been listed. 

• d = 1, S is a conic bundle. 

Let¢: S _, JP> 1 be a minimal conic bundle on S. It hast= 7 singular 
fibres. If - Ks is ample, i.e. S is a (non-minimal) Del Pezzo surface, 
then the center of Aut(S) contains the Bertini involution /3. We know 
that j3 acts as -1 on Rs, thus j3 does not act identically on Pic(S) G, 

hence j3 rj_ G. Since t is odd, the conic bundle is not exceptional, so 
we cam apply Theorem 9. It follows that G must contain a subgroup 
isomorphic to 22 , adding j3 we get that S is a minimal Del Pezzo 23-

surface of degree 1. However, the classification shows that there are no 
such surfaces. 

Thus ~ Ks is not ample. It follows from classification of elementary 
links that the structure of a conic bundle on S is unique. Any other conic 
bundle birationally G-isomorphic to Sis obtained from S by elementary 
transformations with G-invariant set of centers. 

• d = 2, S is a Del Pezzo surface. 

By Lemma 24, S is superrigid unless G has a fixed point on S. If 
a: S- _, S' is a birational G-map, then the unique maximal base point 
of the linear system defining () does not lie on a ( -1 )-curve. We can 
apply an elementary link S +- Z _, S' of type II which together with the 
projections S _, JP>2 resolves the Bertini involution. These links together 
with the G-automorphisms (including the Geiser involution) generate 
the group of birational G-automorphisms of S (see [17], Theorem 4.6). 
Thus the surface is rigid. The conjugacy class of Gin Cr(2) is determined 
uniquely by the conjugacy class of G in Aut(S). All such conjugacy 
classes have been listed. 

• d = 2, ¢ : S _, JP>1 is a conic bundle. 

If -Ks is ample, then¢ is not an exceptional conic bundle. The center 
of Aut(S) contains the Geiser involution 'Y· Since 'Y acts non-trivially 
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on Pic(S)a = T}, we see that "( tf. G. Applying"( we obtain another 
conic bundle structure. In other words, "( defines an elementary link 
of type IV. Using the factorization theorem we show that the group of 
birational G-automorphisms of S is generated by links of type II, the 
Geiser involution, and G-automorphisms (see [17], [18], Theorem 4.9). 
Thus ¢ : S -+ 1P'1 is a rigid conic bundle. 

If S is not a Del Pezzo surface, ¢ could be an exceptional conic 
bundle with g = 2. In any case the group G is determined in Proposition 
10. It is not known whether Scan be mapped to a conic bundle with 
-Ks ample. 

One can show that any conic bundle with d ~ 3 is a non-minimal 
Del Pezzo surface, unless d = 4 and S is an exceptional conic bundle. 
In the latter case, the group G can be found in Proposition 10. It is not 
known whether it is birationally G-isomorphic to a Del Pezzo surface. 

• d = 3, S is a minimal Del Pezzo surface. 

The classification of elementary links shows that S is rigid. The 
conjugacy class of Gin Cr(2) is determined by the conjugacy class of G 
in Aut(S). 

• d = 3, S is a minimal conic bundle. 

Since k = 5 is odd, G has 3 commuting involutions, the fixed-point locus 
of one of them must be a rational 2-section of the conic bundle. It is 
easy to see that it is a (-1)-curve C from the divisor class -Ks- f. 
The other two fixed-point curves are of genus 2. The group Gleaves the 
curve C invariant. Thus blowing it down, we obtain a minimal Del Pezzo 
G-surface S' of degree 4. The group G contains a subgroup isomorphic 
to 22 . Thus G can be found in the list of minimal groups of degree 4 
Del Pezzo surfaces with a fixed point. For example, the group 22 has 4 
fixed points. 

• d = 4, S is a minimal Del Pezzo surface. 

If sa = 0, then S admits only self-links of type II, so it is rigid 
or superrigid. The conjugacy class of G in Cr(2) is determined by the 
conjugacy class of Gin Aut(S). If xis a fixed point of G, then we can 
apply a link of type I, to get a minimal conic bundle with d = 3. So, 
all groups with sa =J. 0 are conjugate to groups of de Jonquieres type 
realized on a conic bundle S E C5. 

• d = 4, S is a minimal conic bundle. 

Since k = 4, then either Sis an exceptional conic bundle with g = 1, 
or S is a Del Pezzo surface with two sections with self-intersection -1 
intersecting at one point. In the latter case, S is obtained by regular­
izing a de Jonqueres involution. They are minimal if and only if the 
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kernel of the map G --t PGL2{C) contains an involution not contained 
in Go = Ker(G) --t O{Pic{S)). If Go is not trivial, then no elementary 
transformation is possible. So, S is not birationally isomorphic to a Del 
Pezzo surface. 

• d = 5, S is a Del Pezzo surface, G ~ 5. 

Let us show that ( S, G) is birationally isomorphic to {:ll?'2, G). Since 
rational surfaces are simply-connected, G has a fixed point x on S. The 
anti-canonical model of S is a surface of degree 5 in Jll'5 . Let P be the 
tangent plane of Sat x. The projection from P defines a birational G­
equivariant map S- --t Jll'2 given by the linear system of anti-canonical 
curves with double point at x. It is an elementary link of type II. 

• d = 5, S is a Del Pezzo surface, G ~ 5 ><1 2, 5 ><1 4. 

The cyclic subgroup of order 5 of G has two fixed points on S. This 
immediately follows from the Lefschetz fixed-point formula. Since it is 
normal in G, the groups G has an orbit ,-. with #,.. = 2. Using an 
elementary link of type II with S' = Fo, we obtain that G is conjugate 
to a group acting on Fo. 

• d = 5, S is a Del Pezzo surface, G ~ s.2l5, 65. 

It is clear that sa = 0 since otherwise G admits a faithful 2-
dimensional linear representation. It is known that it does not exist. 
Since 1.2(5 has no index 2 subgroups G does not admit orbits ,-. with 
#,.. = 2. The same is obviously true for G = 65. It follows from the 
claSsification of links that (S, G) is superrigid . 

• d=6. 

One of the groups from this case, namely G ~ 2 x 6 3 was con8idered in 
[18], [19]. It is proved there that (S, G) is not birationally isomorphic to 
(Jil'2, G) but birationally isomorphic to minimal {Fo, G) . 

• d= 8. 
In this case S = F 0 or F n, n > 1. In the first case (S, G) is birationally 
isomorphic to (Jil'2, G) if sa =f. 0 (via the projection from the fixed point). 
This implies that the subgroup G' of G belonging to the connected com­
ponent of the identity of Aut{Fo) is an extension of cyclic groups. One 
can show that this implies that G' is an abelian group of transformations 
(x,y) t--+ (E~kx,E~ky), where a= sb mod k for somes coprime to k. If 
G =f. G', then we must have m = n = 1 and s = ±1 mod k. 

IfF~= 0 and Pic{Fo)a .~ Z, then the classification of links shows 
that links of type II with d = d' = 7, 6, 5, d = 3, d' = 1 map Fo to Fo 
or to minimal Del Pezzo surfaces of degrees 5 or 6. These cases have 
been already considered. If rank Pic{S)a = 2, then any birational G­
map S- --t S' is composed of elementary transformations with respect 
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to one of the conic bundle fibrations. They do not change K~ and do 
not give rise a fixed points. So, G is not conjugate to any subgroup of 
Aut(JP>2). 

Assume n > 1. Then G = A.B, where A ~ n acts identically on the 
base of the fibration and B C PGL2 (C). The subgroup B fixes pointwise 
two disjoint sections, one of them is the exceptional one. Let us consider 
different cases corresponding to possible groups B. 

B ~ n. In this case B has two fixed points on the base, hence G has 
2 fixed points on the non-exceptional section. Performing an elementary 
transformation with center at one of these points we descend G to a 
subgroup ofF n-1. Proceeding in this way, we arrive to the case n = 1, 
and then obtain that G is a group of automorphisms of JP>2. 

B ~ Dn. In this case B has an orbit of cardinality 2 in JP>1. A 
similar argument shows that G has an orbit of cardinality 2 on the non­
exceptional section. Applying the product of the elementary transfor­
mations at these points we descend G to a subgroup of automorphisms 
ofF n-2· Proceeding in this way we obtain that G is a conjugate to a 
subgroup of Aut(JP>2) or of Aut(F0 ). In the latter case it does not have 
fixed points, and hence is not conjugate to a linear subgroup of Cr(2). 

B ~ T. The group B has an orbit of cardinality 4 on the non­
exceptional section. A similar argument shows that G is conjugate to 
a group of automorphisms of F 2 ,F0 , or JP>2. Now suppose we arrive at 
F2. The group T has an orbit 01 of length 6 on the exceptional section 
and an orbit 02 of length 6 on a non-exceptional section. Make the 
elementary operations at 0 1 to get a surface that has a section C with 
C 2 = -8 and a disjoint section Z with Z 2 = 8. Now we take two orbits 
of cardinality 4 on Z and make the corresponding elementary operations 
to arrive at Fo. 

B ~ 0. Using orbits of cardinality 6 we first educe to the case 
S = JP>2, F n, n = 0, 2, 3. Suppose S = F3. Using an orbit of cardinality 8 
on the exceptional section we get a surface admitting a section C with 
C2 = -11 and a disjoint section Z with Z 2 = 11. Now using two orbits 
of cardinality 6 on Z, we arrive at F1. and then at JP>2 • If S = F2 , we 
do the same by using first an orbit of cardinality 6 on the exceptional 
section, and then an orbit of cardinality 8 to arrive at F 0 . 

B ~I. A similar argument shows that G is conjugate to a subgroup 
of group of automorphisms of Aut(JP>2 ), or Aut(F0 ), or Aut(F2 ).1 

• d= 9. 

1The argument in the last three cases is due to I. Cheltsov. 
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In this caseS= lP'2 and G is a finite subgroup ofPGL3 (C). The methods 
of the representation theory allows us to classify them up to conjugacy 
in the group PGL3 (C). However, some of non-conjugate groups can be 
still conjugate inside the Cremona group. 

For example all cyclic subgroups of PGL3 (C) of the same order n are 
conjugate in Cr2 (C). Any element g of order n in PGL3 (C) is conjugate 
to a transformation g given in affine coordinates by the formula (x, y) f--' 

(EnX, E~y). Let T be given by the formula (x, y) f--' (x, xa jy). Let 
g': (x, y) f--' (E;;1x, y). We have 

This shows that g' and g are conjugate. 
We do not know whether any two isomorphic non-conjugate sub­

groups of PGL3 (C) are conjugate in Cr2 (C). 

§4. Cyclic tame subgroups of Cr2 (k), where k is a perfect field 

In this section we survey the results from [12], [32] and [31]. 

4.1. Elements of finite order in reductive algebraic groups 

If the base field k is algebraically closed, then any cyclic tame group 
can be realized as a group of projective transformations. Also, it fol­
lows from the classification that any cyclic group of prime order f!. > 5 
is conjugate to a group of projective transformations. Both of these 
statements are not true anymore if k is not algebraically closed. 

For any integer N and a prime number f!. prime to char( k) we denote 
by vg(N) the largest n such that f!.n divides N. For any finite group A 
we set vg(A) to be equal to vg(IAI). Let tg = [k((t) : k], mg = sup{d;:::: 
1: (gd E k((g)}, where(£ generates f.tt(k). 

For example, when k = Q, we have tg = f!. -1 and mg = 1. If k = lF q, 

then tg is equal to the order of q in lF£ and mg = vg(q£-l- 1). 
The following is a special case of Theorem 6 from [31]. 

Theorem 26. Let A be a finite subgroup of PGLn+l(k). For any 
f!. > 2, 

vg(A) ~ (mg + vg(s)), 

(if the index set is empty, vg(A) = 0). 

Corollary 27. Assume tg ;:::: n + 2. Then PGLn+1 (k) does not 
contain elements of prime order f!.. 
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For example, if k is of characteristic zero and mt(k) = {1} (e.g. 
k = Q), then tt = £ - 1 and we get 

n;::: £-2, 

if PGLn+1(k) contains an element of order£. In particular, PGLn+l(k) 
contains an element of order 7 only if n;::: 5. 

On the other hand, if k = lF 2 and £ = 7, then tt = 3 and it is 
known that PGL3 (k) is isomorphic to a simple group of order 168 and 
it contains an element of order 7. 

The next result of Serre (31], Theorems 4 and 4', concerns elements 
of finite order in an algebraic k-torus. Note that any 2-dimensional k­
torus is known to be rational over k (37], hence any its element defines 
an element in Cr2 ( k). 

Theorem 28. Let T be an algebraic k-torus and A be a finite sub­
group ofT(k). Then 

[dimTJ 
Vt(A) :$ mt ¢(tt) , 

where ¢ is the Euler function. Assume mt < oo (e.g. k is finitely 
generated over its prime subfield). For any n ;::: 1 there exists an n­
dimensional k-torus T and a finite subgroup A ofT(k) such that Vt(A) = 

mt[~~J]. 
Corollary 29. A two-dimensional k-torus T with T(k) containing 

an element of prime order £ > 2 exists if and only if tt takes values in 
·the set {1, 2, 3, 4, 6}. 

Proof. In fact, the set {1, 2, 3, 4, 6} is the set of positive integers tt 
such that ¢(tt) :$ 2. If ¢(tt) > 2, Serre's bound implies that no such 
torus exists. If ¢(tt) = 2, Serre's construction from above exhibits such 
a torus. If ¢(tt) = 1, i.e. tt = 1 or 2, we can take T = G~ kin the first 
case and T = Rk((£)/k(Gm) in the second case. ' Q.E.D. 

4.2. Elements of order ;::: 7 

Looking at the table of conjugacy classes of elements in the Weyl 
groups, we notice that an element of order > 7 does not exist in these 
groups, and an element 9 of order 7 exists only in the Weyl groups 
W(E7) and W(Es). When k is algebraically closed, we checked that no 
such element is minimal. If d = 2 this can be shown directly as follows. 
It is known that, over the algebraic closure k, 8 contains 576 sets of 
7 disjoint ( -1 )-curves. An element 9 of order 7 acts on this set and 
has a fixed element because 566 = 2 mod 7. Blowing this invariant set 
down, we see that g arises from a projective automorphism. If k =f k 
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this argument does not work since one may not be able to blow down 
the seven disjoint curves over the ground field. Nevertheless, we prove 
that if this happens, the surfaceS must beak-minimal rational surface. 
Then we use the following fundamental result from arithmetic of rational 
surfaces .. 

Theorem 30. A minimal geometrically rational surface X over a 
perfect field k is k-rational if and only if the following two conditions are 
satisfied: 

(i) X(k) f= 0; 
(ii) d = K'i 2:: 5. 

This result is a culmination of several results due to V. Iskovskikh 
and Yu. Manin. Its modern proof based on the theory of elementary 
links can be found in [17], §4, p. 642. 

A similar argument works in the case d = 1. Thus, an element of 
order £ 2:: 7 may act minimally either on a Del Pezzo surface of degree 
d 2:: 6 or on a conic bundle. In the latter case, by using Corollary 27, we 
obtain that tt ::::; 2. More precisely, we prove the following. 

Proposition 31. Assume £ 2:: 5 and a acts minimally as an au­
tomorphism of a k-rational conic bundle X. Then tt ::::; 2 and a is 
conjugate in Cr2 ( k) to an element defined by a rational point on a 2-
dimensional algebraic k-torus. 

Recall that a Del Pezzo surface S of degree 6 over an algebraically 
closed field is obtained by blowing up 3 non-collinear points in the plane. 
It contains an open subset T isomorphic to a 2-dimensional torus which 
acts on S extending the action on itself by translations. In other word, 
S has a structure of a toric surface. The complement ofT is the hexagon 
of ( -1 )-curves. There is a unique toric surface V with Picard number 
4 defined over Z, and Sk 9:! VI<. Since the set of all ( -1 )-curves on 
sk is defined over k, its complement u in s becomes isomorphic to a 
torus over k. This implies that U is a torsor (=principally homogeneous 
space) over a two-dimensional k-torus T (see [24], Chapter IV, Theorem 
8.6). Since Sis rational, S(k) f= 0 and hence U(k) f= 0 ([21], Proposition 
4). This shows that U is an algebraic k-torus. Thus Sis a toric surface 
over k. 

Proposition 32. Assume a cyclic group G = (a) of prime order 
£ 2:: 5 acts minimally on a k-rational Del Pezza surface S of degree 6. 
LetT be the complement of the union of ( -1)-curves on S that acts on 
X via its structure of a toric surface over k. Then a is defined via the 
action by an element a E T(k). The torus T splits over k((t) with cyclic 
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Galois group ('-y) of order 6 and tt = 6. The G-surface (S, G) is unique 
up to k-isomorphism. 

Similarly, we deal with Del Pezzo surfaces of degree d > 6, 

Proposition 33. Assume that a of prime order £ ;:::: 7 acts mini­
mally on a k-rational Del Pezzo surface X of degree d. Then one of the 
following cases occurs: 

(i) d = 6, tt = 6; 
(ii) d = 8, tt = 4 or tt = 2; 

(iii) d = 9, tt ::::: 3. 
In all cases X has a structure of a toric surface and a belongs to T(k), 
where T is an open subset of X isomorphic to a k-torus. 

Summing up, we get the following main result of [12]. 

Theorem 34. Let k be a perfect field of characteristic p;:::: 0. Then 
Cr2(k) contains an element of prime order£ > 5 not equal top if and 
only if there exists a 2-dimensional algebraic k-torus T such that T(k) 
contains an element of order£. 

Assume char k = 0. We assume also that 

(*) k n Q((t) = Q. 

Thus 
tt = £- 1. 

Assume£;:::: 7. By Proposition 31, a cannot act minimally on a conic 
bundle. By Proposition 33, a can only act minimally on a Del Pezzo 
surface X of degree 6 in which case £ = 7. By Proposition 32, X is a 
unique (up to isomorphism) toric surface T over k split over E = k((7). 
The Galois group r acts on TE via the subgroup H C Aut(I:) isomorphic 
to the cyclic group of order 6. The action of H on TE is r-equivariant, 
and hence admits a descent to an action of H on X. The 7-torsion 
subgroup T(k)[7] of T(k) is H-invariant. Hence H acts on the cyclic 
group (a) of order 7 by automorphisms. This shows that all non-trivial 
powers of a are conjugate in Cr2(k). 

This proves the following. 

Theorem 35. Assume (*) is satisfied. Then Cr2 (k) does not con­
tain elements of prime order > 7 and all elements of order 7 are conju­
gate. 

It follows from the proof of Proposition 33 that an element of order 
£ = 5 can be realized as an automorphism of a Del Pezzo surface of 
degree 8 defined over Q. One can also show that it can be realized as a 
minimal automorphism of a Del Pezzo surface of degree 5 over Q. 
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In the case when k is finitely generated over its prime field, J.-P. 
Serre gives a bound for the order of any finite group in Cr2(k) [32]. 

Theorem 36. Assume k is finitely generated over its prime sub­
field. Then finite tame subgroups of Cr(k) of order prime to char(k) 
have bounded order. Let M(k) be the least common multiple of their 
orders. Then 

(i) If k = Q, we have M(k) = 120960 = 27 .33 .5.7. 
(ii) If k is finite with q elements, we have: 

M(k) = {3(q4- 1)(q6- 1) 
(q4- 1)(q6- 1) 

§5. Wild cyclic groups 

if q = 4 or 7 mod 9 

otherwise. 

Here we assume that the ground field k is of characteristic p > 0 
and study wild subgroups of Cr2(k). 

5.1. Conic bundles 
Let G = (u) be a cyclic subgroup of Crn(k) of order p8 m, where 

(p, m) = 1. Assuming that we know the classification of tame cyclic 
subgroups (for example when k is algebraically closed and n = 2), we 
are interested only in wild cyclic p-groups. An example of a wild cyclic 
group of order pn in Crn(k) is easy to give (see [33]). We consider the 
additive group Wn(k) of Witt vectors of length n. It is an affine space 
Ak with a group law containing a cyclic subgroup of order pn. The latter 
acts on Wn(k) by translation, and hence embeds in Aut(Ak) C Crn(k). 

Conjecture 37. Crn(k) does not contains elements of order p8 with 
s > n. 

In [14] we prove this conjecture for n = 2. 
Let us sketch a proof. It is enough to assume that k is algebraically 

closed. First we consider the case when G regularizes on a conic bundle. 

Lemma 38. Let u be an element of order p8 in Aut(lP'k). Then 
s < 1 + logP ( r + 1). 

Proof. Let A E GLr+l(k) represent u and AP" = cir+l for some 
1 s 

constant c. Multiplying A by cP' we may assume that AP = Ir+l but 
APs- 1 =f Ir+l· Since k* does not contain non-trivial p-th roots of unity, 
we can reduce A to the Jordan form with 1 at the diagonal. Obviously 
APs-1 = Ir+l +(A- Ir+l)Ps- 1

• Since, for any Jordan block-matrix J 
with zeros at the diagonal, we have Jr+l = 0, we get ps-l < r + 1. The 
assertion follows. Q.E.D. 



38 I. V. Dolgachev 

Corollary 39. Let f : X -+ IP'~ be a conic bundle and u be an 
automorphism of X of orderp8 preserving the conic bundle. Then s::::; 2. 

Proof. Let g be the image of u in the automorphism group of the 
base of the fibration. By the previous lemma iJP = 1. Thus uP acts 
identically on the base and hence acts on the general fibre of f. By 
Tsen's Theorem, the latter is isomorphic to the projective line over the 
function field of the base. Applying the lemma again we obtain that 
uP2 = 1. Q.E.D. 

This checks the theorem in the case of a conic bundle. A closer look 
at elements of order p2 gives the following. 

Theorem 40. Let u be a minimal automorphism of order p2 of a 
conic bundle X-+ IP'~. Then p = 2. 

5.2. Del Pezzo surfaces 

Next we consider the case when G regularizes on a Del Pezzo surface. 

Theorem 41. A Del Pezza surface of degree d 2': 4 does not contain 
elements of order p3 • An automorphism of order p 2 not conjugate to a 
projective automorphism in Cr2(k) exists only if p = 2. It is minimally 
realized on X = IP'~ x IP'~ or on a Del Pezza surface of degree 4. 

Here the cases d 2': 6 are easy and the cases d = 4, 5 are treated by 
using the representation of automorphisms in the Weyl group. 

Consider the case d = 3. Again looking at the Weyl group, we 
immediately check the conjecture in this case. Moreover, we obtain that 
a minimal element of order p2 exists only if p = 3. The following nice 
argument due to J.-P. Serre excludes this case. 

It follows from the classification of conjugacy classes of elements 
of W ( E 6 ) that the trace of u in its action in K J< is equal to 0. Thus 
the Lefschetz number of u in in the £-adic cohomology of X is equal to 
3. This implies that u has a fixed point x 0 . Since u acts trivially on 
I- Kx- xol ~ IP'%, we obtain that it acts trivially on 1- Kxl ~ IP'~. 

We have proved the following. 

Theorem 42. A cubic surface does not admit minimal automor­
phisms of order p8 with s > 1. 

In the case of Del Pezzo surfaces of degree 2, the structure of the 
Weyl group W(E7) shows that there are no elements of order p3 unless 
p = 2 and s = 3. The following argument of Serre excludes this case 
(our original proof is a little more complicated). We use that W(E7 ) = 
W(E7 )+ x (wo), where wo generates the center of W(E7 ). In the faithful 
representation p: Aut(X)-+ W(E7 ), the image of the Geiser involution 
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'Y is equal to wo. This implies that a subgroup G of order 8 of Aut{X) is 
isomorphic to a subgroup of Ax("!), where A is isomorphic to a subgroup 
of Aut(JP>~). Since the latter has no elements of order 8, we are done. 

The case of Del Pezzo surfaces of degree 1 is the most difficult and 
interesting case. 

Theorem 43. A Del Pezza surface of degree 1 may admit an auto­
morphism of order p8 only if p = 2 and s = 2. 

We refer for the conceptual proof to [14]. A computational proof of 
this result was also given by J.-P. Serre. 

As we have seen in the previous sections, an element of order p2 
not conjugate to a projective transformation exists only for p = 2. It 
can be realized as a minimal automorphism of a conic bundle, or a 
Del Pezzo surfaces of degree 1 or 4. Del Pezzo surfaces of degree 1 
are super-rigid, i.e. a minimal automorphism of such a surface could 
be conjugate only to a minimal automorphism of the same surface. A 
minimal automorphism of a Del Pezzo surface of degree 4 is conjugate 
to a minimal automorphism of a conic bundle with 5 singular fibres {see 
[11], §8). 

Thus we have proved the following. 

Theorem 44. An element of order p2 not conjugate to a projective 
transformation exists only if p = 2. An element of order 4 is conjugate 
to either a projective transformation, or a transformation realized by a 
minimal automorphism of a conic bundle or of a Del Pezza surface of 
degree 1. 

For the completeness sake let us add that elements of order p not 
conjugate to a projective transformations occur for any p. They can 
be realized as automorphisms of conic bundles, and if p = 2, 3, 5 as 
automorphisms of Del Pezzo surfaces. 

§6. Wild simple groups 

We use the notation from [9]. Thus Ln(q) denotes PSLn{lFq), Un(q) 
denotes PSUn{1Fq2), PGUn(q) denotes PUn{q2). The group Ln(q) is 
a subgroup ofindex (q- 1,n) of PGLn{lFq) and the group Un(q) is 
a subgroup of index (q + 1, n) of PUn{q). We will assume that k is 
algebraically closed of characteristic p > 0. 

6.1. Projective linear groups 
Let us first recall the classification of finite subgroups of Cr1 ( k) = 

PGL2{k) and PGL3{k). 
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First let us make some remarks. In the wild case, a primitive group 
may arise from a reducible linear representation, i.e. a representation 
that admits an invariant proper subspace which does not split as a sum­
mand. So the right analog of a primitive group is an irreducible group, 
a group arising from an irreducible linear representation. If a group G 
is simple, then it is either an irreducible group or is isomorphic to an 
irreducible subgroup in lower dimension. We will also use that an irre­
ducible subgroup of PGLn(k) is conjugate to a subgroup of PGLn{lFq) 
for some finite subfield lF q of k [39]. 

A proof of the following result can be found in [36], Chapter 3, 
Theorem 6.17. 

Theorem 45. Let G be a proper wild subgroup ofPGL2(k). Then 
G is isomorphic to one of the following groups 

{i) the group Gf.,A of affine transformations x f-+ t;,tx +a, where a 
belongs to a finite subgroup A of the additive group of k con­
taining 1 and e is a root of unity such that eA = A. 

{ii) p = 2 and G is a dihedral group of order 2n, where n is odd. 
{iii) p = 3 and G ~ L2{5) C L2{9). 
{iv) L2(q) or PGL2{1Fq) for some q = pr. 

The proof of the next result can be found in [16]. 

Theorem 46. Assume p = 2. Let G be a finite irreducible subgroup 
of PGLg{k). Then G is conjugate to one of the following groups. 

{i) Lg{28 ) or PGL3 {28 ) for some s {the groups are equal if s is 
odd); 

{ii) U3 {28 ) or PGU3 {28 ) for some s {the groups are equal if s is 
even); 

{iii) 216 c Lg(4); 
{iv) 32 )q 4 c PGU3 {2). 

Note that some of these groups are familiar from the case when 
k =C. We have Lg(2) ~ L2{7) is the Klein group oforder 168, PU3 {1F4) 
is the Hessian group of order 216 and U3(2) = 32 : Q8 is its subgroup of 
index 3. Note that in characteristic 2, 215 is realized as primitive group 
but leaves a point invariant (the intersection of tangents to an invariant 
conic). 

The proof of the next theorem can be found in [6], [25]. 

Theorem 47. Assume p > 2. Let G be a finite irreducible subgroup 
ofPGLg(k) which does not leave a point or a line invariant. Then G is 
conjugate to one of the following groups. ' 

{i) Lg{p8 ) or PGLg(p8 ) for somes {the groups are equal if3lp8 -1); 
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(ii) U3(P8 ) or PGU3(p8 ) for somes {the groups are equal if 3lp8 + 
1}; 

(iii) The Hessian group of order 216 and its subgroups of order 72 
and 36; 

(iv) S03(ps) ~ L2(P8 ); 

(iv) £2(7) {isomorphic to 03(7) if p = 7 }; 
(v) ~6; 

(vi) 66 ifp = 5; 
(vii) ~7 if p = 5. 

Note that ~5 is realized in characteristic 5 as the group S03 (5). 

6.2. Conic bundles 

Let G be a wild subgroup of Cr2 (k) minimally realized as a group of 
automorphisms of a conic bundle. We assume that it has t > 0 singular 
fibres. By Lemma 8 which applies in our case, we get t ~ 4. 

Lemma 48. Let G K be the kernel of the action of G on the base of 
the conic bundle. Then G K contains an element of order 2. If p i- 2 it 
switches the irreducible components of some singular fibre. 

Proof. In the complex case this is Lemma 5.6 from [11]. The proof 
extends to the wild case if pi- 2. Assume p = 2. Since G acts minimally, 
there exists g E G which switches two components R and R' of some 
singular fibre. If the order of g is an odd number 2m+ 1, then g2m 

and g2m+l fix the components, hence g fixes the components. Thus the 
order g is even. Replacing g by some odd power, we may assume that 
the order of g is equal to 2a for some a > 0. Assume a > 1. Since 
PGL2 (k) does not contain elements of order 2a, the element ga-l E GK 
and satisfies the assertion of the theorem. If a =, 1, applying Theorem 
2.4 from [27], we obtain that the point q is not an isolated fixed point. 
This implies that there exists a curve of fixed points passing through 
q. Since g switches the components of the fibre, this curve is mapped 
surjectively to the base of the fibration. This immediately implies that 
g E GK. Q.E.D. 

Assume p i- 2. Applying Theorem 40, we find that either G or 
K is a tame group. If K is tame, then we have a complete analog 
of the description of G in the tame case, except the group G is given 
by Theorem 45. Assume K is wild. If K is in case (iii) or (iv) from 
Theorem 45, then it is simple, and hence the natural homomorphism 
K -+ 2t, where t is the number of singular fibres, is the identity. This 
shows that K acts trivially on the Picard group. Let g0 be a nontrivial 
element from K of order divisible by p and E be a section of the conic 
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bundle with negative self-intersection. Then go fixes E and hence has 
a fixed point on each component of singular fibre. Since a wild element 
has only one fixed point on JI:D1 and the singular point of the fibre is 
obviously fixed, we get a contradiction. 

Assume K is as in case (i) of Theorem 45. Then, the kernel of the 
homomorphism K ~ 2t is a wild group. By the above, this leads to 
contradiction. 

Assume p = 2. By Lemma 48, K is a wild group. By the above, 
the kernel of the homomorphism K ~ Pic(S) is a tame group. This 
implies that either it is trivial, or S is an exceptional conic bundle. The 
automorphism group of an exceptional conic bundle can be described 
similarly to the tame case. If S is not exceptional, then K must be 
a subgroup of 2t isomorphic to a subgroup of k. Note that this case 
includes the example of a De Jonquieres involution (x, y) ~ (x, F(x)jy) 
which makes sense over any .field. 

Next we consider the case when the conic bundle is a minimal ruled 
surface F n· Proposition 7 has a similar statement where C is replaced 
by k. However, a wild group may have nontrivial intersection with the 
kernel of the homomorphism Aut(F n) ~ Aut(JI:D1 ). A simple wild group 
must be isomorphic to a subgroup of Aut(JI:D1 ). 

6.3. Del Pezzo surfaces 

Next we assume that G is a wild group of automorphisms of a Del 
Pezzo surface. Consider first the following two examples. 

Example 49. Assume p = 2 and let S be the Fermat cubic 

t~ + t~ + t~ + t~ = 0. 

We consider the left-hand-side F as a hermitian form over the finite 
field lF4. Then the unitary group PGU4(2) ~ U4(2) acts faithfully 
on the surface. It is known that PU4(2) is isomorphic to the simple 
subgroup W(E6)' of index 2 of the Weyl group W(E6). I claim that 
Aut(S) ~ PU4(2). Suppose that Aut(S) ~ W(E6)· Choose a double-six 
(£1, ... ,£6), (.e~, ... ,.e~) of lines on S. Let a E W(S) ~ W(E6) which 
acts by sending [.ei) to [£~). If we choose the first six lines to define a 
geometric marking (eo, e1. ... , e6) on S, then a is represented in W(E6 ) 

by the reflection in the vector 2e0 - e1 - ... - e6 • Any of the 15 lines 
with the divisor class eo - ei - ej is invariant with respect to a. Suppose 
there exists g E Aut(S) such that g* =a. Then g has a fixed point on 
each of the 15 lines. Since no more than three lines pass through one 
point, we have 2: 9 fixed points of g on S. Looking ~t the Jordan form of 
a matrix representing g acting in JI:D3 we see that g has a plane section of 
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fixed points inS. This plane intersects each line Ci. Since g(Ci) = £~ and 
C and£~ are skew, we get a contradiction. Obviously, Aut(S) ~ W(E6 )' 

is a minimal subgroup of automorphisms. 

Example 50. Let p = 3 and S be a Del Pezzo surface of degree 2 
with equation 

t6 + ti + t~ + t~ = 0. 

Then the polynomial H: tg + tf + t~ can be considered as a hermitian 
form over JF9 . The group of its automorphisms is the simple group 
U3(3) ~ PGU3(3) of order 25 .33.7. It is isomorphic to a subgroup of 
index 4 of a maximal subgroup of W(E7 ) of index 240. 

Together with the Geiser involution t3 ~--+ -t3 we obtain a subgroup 
of Aut(S) isomorphic to U3 (3) x 2. Let us show that this is the whole 
group. It suffices to show that the automorphism group of the quartic 
curve H = 0 is isomorphic to U3 (3). We have an upper bound B(g,p) for 
the automorphism group of a curve of genus g 2: 2 over an algebraically 
closed field of characteristic p > 0. If 2g + 1 > p > g + 1, or p > 2g + 1 
we have the Hurwitz bound B(g,p) = 84(g- 1) (see [30]). If p:::; g + 1 
we have the bound (see [35]) 

(14) 
16p2g4 2g 

B(g,p) = (p-1)3 +p-1 (p-1 + 1). 

This gives B(3, 3) = 6048 = #U3 (3). The subgroup U3 (3) admits a 
unique lift to a subgroup of Aut(S). It is known to contain an element of 
order 12. It follows from Table 3.3 that its conjugacy class is minimal of 
type E 7 (a2). Thus U3 (3) is realized as a minimal subgroup of a Del Pezzo 
surface of degree 2. Since it is rigid (note that the theory of elementary 
links applies without change to the case of positive characteristic), it is 
not conjugate in Cr2 (k) to a group of linear transformations. 

The previous examples show that there are new conjugacy classes 
of finite subgroups in Cr2 (k) which are not realized in the case of char­
acteristic 0. 

Theorem 51. Let G be a simple non-abelian wild subgroup ofCr2(k). 

(i) If G is conjugate to a group of projective transformations, then 
it is isomorphic to one of the following groups 

(ii) If G is not conjugate to a linear group, then it is isomorphic 
to one of the following groups: 
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Moreover, the groups L 2 (pm)(pm =f 2, 3) are realized as minimal sub­
groups of a minimal ruled surface, the groups U3(3), L2(7) are realized 
as minimal subgroups of a Del Pezza surface of degree 2 in characteris­
tic p = 3 and the latter group also when p = 7, the group Ql5 is realized 
as a minimal subgroup of Del Pezza surface of degree 4 (p = 2} and a 
Del Pezza surface of degree 1 (p = 5}, the group U4(2) is realized as a 
minimal subgroup of a cubic surface in characteristic p = 2. 

Proof. Suppose G is minimally regularized on a conic bundle 1r : 

S ---> lP'1 with t > 0 singular fibres. Then the homomorphism G ---> 

Aut(lP'1 ) is either injective or trivial. Assume that it is injective. Since 
G is minimal, the G-orbit of any component of a singular fibre does 
not consist of disjoint curves. Thus there exists an element g E G 
of necessarily even order switching two components R and R' of some 
singular fibre. Replacing g by some power we may assume that its order 
is 2r > 1. Obviously it fixes the intersection point R nR'. If p = 2, an 
element of order 2r acts identically on the tangent space at a fixed point 
(because GL2 ( k) has no elements of order 2r, r > 1). Thus it cannot 
switch the components. This shows that G cannot be minimal in the 
case p = 2. If p > 2, the proof of Lemma 5.6 from [11] applies in our 
case and shows that K cannot be trivial. So, we see that G = K and 
hence G admits a non-trivial homomorphism G ---> 2t, contradicting the 
simplicity assumption. 

If t = 0, i.e. S is a minimal ruled surface, then G embeds in the group 
of automorphisms of the base, hence is isomorphic to L 2 (pm),pm =f 2, 3. 
Since it has no fixed point on lP'1 , it cannot be conjugate to a linear 
group. 

Next we assume that Sis a Del Pezzo surface of degree d. If S = lP'2 , 

applying Theorems 46 and 47, we obtain the groups from our list. If 
S = lP'1 x lP'1 , then G, being simple, does not switch the factors, and 
hence leaves invariant Pic(S). This contradicts the minimality of (S, G). 

If d = 6, G is mapped isomorphically to a subgroup of W(A 2 +A!) ~ 
D 6 . So this case does not occur. 

If d = 5, G is a subgroup of W(A4) ~ 6 5 . Thus G ~ Ql5 . This case 
is realized in all characteristics. The group contains a minimal element 
of order 5, so it is minimal. We know that from the theory of elementary 
links this group is not conjugate to a linear group. 

If d = 4, G is mapped isomorphically to a subgroup 65 of W(D5). 
The only simple subgroup is Ql5 . Comparing the characters of elements 
of W(D5) acting on the root lattice of type D5 isomorphic to K.g we 
learn that the representation of Ql5 on K .g is not irreducible. Thus Ql5 
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cannot act minimally on S. It acts leaving a set of 5 skew lines invariant, 
and hence is conjugate to a subgroup of Aut(IP'2). 

If d = 3, G is isomorphic to a simple subgroup of W(E6 ), hence, 
it must be isomorphic to U4(2) or one of its subgroups 21.6 or 21.5 (see 
[9]). The first group is conjugate to a subgroup of a maximal subgroup 
of W(E6) isomorphic to 65. The latter group is not minimal, it leaves 
a set of 6 skew lines invariant. The group 21.5 is also non-minimal since 
it has no irreducible representations of dimension 6 = dim K-§. As we 
have seen in Example 49 the group U4(2) is realized in the case p = 2. 

If d = 2, G is isomorphic to a simple subgroup of W(E7 ). Using [9] 
we find that it must be isomorphic to one of the following groups 

It is known that I - Ksl defines a degree 2 separable finite map S --+ 

IP'2 ramified over a nonsingular plane quartic curve if p > 2 (see [10]). 
This implies that the group G is isomorphic to a subgroup of PGL3(k). 
Comparing our list with the list from Theorem 47, we find that the 
groups 2ls and U4(2) are not realized. Any of the groups 21.5 , 21.6 , 21.7 has 
no irreducible 7-dimensional representation, so it can not be minimally 
realized. As we saw in Example 50 the group U3(3) is realized. The 
group L2(7) is realized as a minimal wild group in characteristic 3 and 7. 
In characteristic 3 it is realized as a subgroup of U3(3). In characteristic 
7 we use that L2(7) ~ 0 3(7) and occurs as the automorphism group of 
the Klein plane quartic [15]. It can be lifted to a minimal automorphism 
group of a Del Pezzo surface of degree 2. 

Assume p = 2. The equation of Sin IP'(1, 1, 1, 2) is 

t~ + a2(to, h, t2)t3 + a4(to, t1, t2) = 0. 

The conic B : a2(to, t1, t2) = 0 is the branch curve of the cover. The 
group G is isomorphic to a subgroup of Aut(IP'2) leaving the conic B 
invariant. If B is not smooth, then G leaves each component of B 
invariant and becomes isomorphic to a subgroup of a solvable group, 
hence it is not simple. Thus B is smooth and G is isomorphic to a 
subgroup of the projective orthogonal group P0(3). The group has a 
fixed point q in the plane where all tangents to the conic meet. Thus, 
acting on the pencil of lines through this point, it becomes isomorphic 
to a subgroup of PGL2(k). Applying Theorem 45 and the classification 
of subgroups of W(E7 ), we find that G ~ L2(8) or L2(4) ~ 21.5 . The 
latter group does not admit an irreducible 7-dimensional representation 
so cannot act minimally on S. Let us show that L2(8) also cannot occur. 
The pre-image of the pencil of lines through q on Sis a pencil of elliptic 
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curves with two base points q' and q" which are mapped to q under the 
map S ---> lP'2 . Blowing them up we obtain an elliptic surface f : X ---> lP'1 . 

The group G acts on the base of the fibration leaving invariant a set of 
:::; 12 points corresponding to singular fibres. The set of these points 
is the locus of zeros of a binary homogeneous form of degree d :::; 12. 
Now we use that the algebra of invariants k[T1, ... , tTn]SLn(IFq) is freely 
generated by polynomials of degrees q;_-/ and qn - qi, i = 1, ... , n - 1 

(see [26]).2 Taking q = 8 and n = 2 we see that the degrees of these 
polynomials are larger than 12. This contradiction proves the assertion. 

Finally let S be a Del Pezzo surface of degree 1. As we have ex­
plained in the previous section G is mapped to the automorphism group 
of the base of the corresponding elliptic fibration leaving invariant the 
set of points corresponding to singular fibres. Since the general fibre 
does not admit a simple non-abelian group of automorphisms we see 
that G is isomorphic to a subgroup of PGL2 (k) in its action on the base. 
Applying Theorem 45 we obtain that G ~ L 2(q) for some q = p8 or 
G ~ S2k The latter case is excluded for the same reason as in the case 
d = 2. We also know from the previous case that the algebra of L2(q)­
invariant binary forms is generated by two polynomials of degrees q + 1 
and q(q- 1). 

Assume p > 3. Then equation (15) shows that G leaves invariant 
polynomials of degree 6. This implies that q = p = 5. Also coefficient 
a4 in the equation must be equal to zero (since it is also invariant). The 
locus of zeros of the invariant of degree q + 1 is of course the set of 
points in lP'1 (JF q). So the equation of a Del Pezzo surface S of degree 1 
in characteristic 5 with Aut(S) ~ £ 2 (5) ~ Qt5 is 

z2 + x 3 + toh(to + h)(to + 2tl)(to + 3i!)(to + 4h) = 0. 

Assume p = 3. Then q = 3 and the group £ 2 (3) is not simple. For 
completeness sake, or for the future use, we mention that the surface 
must be given by a unique equation of the form 

where a4 and a6 are the Dickson invariants. 
Assume p = 2. Then the Weierstrass equation of an rational elliptic 

surface in characteristic 2 must be of the form 

2Usually this theorem is stated in the case k = lFq, however the polynomials 
define a system of parameters over k and the product of their degrees is equal 
to the order of SLn(q), so they freely generate the algebra of invariants over k. 
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or 

This implies that q = 2 and hence the group is £ 2(2) 3:! 

simple. 
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