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Two kinds of conditionings for stable Levy processes 

Kouji Yano 

Abstract. 

Two kinds of conditionings for one-dimensional stable Levy pro­
cesses are discussed via h-transforms of excursion measures: One is to 
stay positive, and the other is to avoid the origin. 

§1. Introduction 

It is well-known that a one-dimensional Brownian motion condi­
tioned to stay positive is a three-dimensional Bessel process. As an easy 
consequence, it follows that the former conditioned to avoid the origin 
is a symmetrized one of the latter. 

The aim of the present article is to give a brief survey with some new 
results on these two different kinds of conditionings for one-dimensional 
stable Levy processes via h-transforms of Ito's excursion measures. 

The organization of this article is as follows. In Section 2, we recall 
the conditionings for Brownian motions. In Section 3, we give a review 
on the conditioning for stable Levy processes to stay positive. In Section 
4, we present results on the conditioning for symmetric stable Levy 
processes to avoid the origin. 

§2. Conditionings for Brownian motions 

We recall the conditionings for Brownian motions. For the details, 
see, e.g., [8, §III.4.3] and [10, §VI.3 and Chap.XII]. 

Let (Xt) denote the coordinate process on the space of dtdlag func­
tions and (Ft) its natural filtration. Set Foe = D'(Ut>oFt). Fort~ 0, we 
write Ot for the shift operator: Xs o Ot = Xt+s· For 0 < t < oo, a func­
tional Zt is called Frnice if Zt is of the form Zt = f(Xtu ... , Xt,.) for 
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some 0 < t1 . < ... < tn < t and some continuous function f : ~n --+ ~ 
which vanishes at infinity. 

Let W, denote the law of the one-dimensional Brownian motion 
starting from x E ~. 

2.1. Brownian motions conditioned to stay positive 
For any fixed t > 0, we define a probability law Wl,(t) on :Ft as 

(2.1) wr,(t)(·) = n+(-; (>t) 
n+(( > t) 

where n+ stands for the excursion measure of the reflecting Brownian 
motion (see, e.g., (8, §III.4.3] and (10, §XII.4]) and (.for the lifetime. 
The process (Xs : s ~ t) under Wl,(t) is called the Brownian meander. 
Durrett-Iglehart-Miller (7, Thm.2.1] have proved that 

(2.2) wr,(t)(Zt] = lim Wo [zt I. Vu ~ t, Xu::::: -c] 
c:--+0+ 

for any bounded continuous :Frmeasurable functional Zt; in particular, 
for any :Frnice functional Zt. We may represent (2.2) symbolically as 

(2.3) wr,(t)O = Wo (I Vu ~ t, Xu 2: o); 
that is, the Brownian meander is the Brownian motion conditioned to 
stay positive until timet. As another interpretation of (2.3), we have 

(2.4) wr,(t)[Zt] = lim Wo [zt 0 ()€ I Vu ~ t, Xu 0 ()€::::: o] 
c--+0+ 

for any :Ft-nice functional Zt. The proof of (2.4) will be given in Theorem 
3.5 in the settings of stable Levy processes. 

We write wJ for the law of a three-dimensional Bessel process, 

that is, the law of the radius V(BP))2 + (B?)? + (B~3))2 of a three­

dimensional Brownian motion (BP), B~2), B~3)). We remark that wJ is 
locally equivalent ton+: 

(2.5) 

where or = n+[Xt] is a constant independent oft > 0. We say that 
wJ is the h-transform of the excursion measure n+ with respect to the 
function h(x) = x. Then it holds (see, e.g., Theorem 3.6) that 

(2.6) wJ[z] = t~~ wr,(t)[z] 
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for any Frnice functional Z with 0 < t < oo. We may represent (2.6) 
symbolically as 

(2.7) wJ (-) = Wo Cl Vu, Xu ? 0) ; 
that is, wJ is the Brownian motion conditioned to stay positive during 
the whole time. 

2.2. Brownian motions conditioned to avoid the origin 
For any fixed t > 0, we define a probability law wx,(t) on Ft as 

() wt,(t) + wLCt) 
wx, t = ------

2 
(2.8) 

where W LC t) stands for the law of the process (-X 8 s < t) under 
Wi,(t). The law wx,(t) may be represented as 

(2.9) wx,(t)(-) = n(·; ( > t) 
n(( > t) 

where n stands for the excursion measure of the Brownian motion; in 
fact, n = n+1n- where n- is the image measure of the process ( -Xt) 
under n+. Immediately from (2.4) and continuity of paths, we have 

(2.10) wx ,(t) [Zt] = lim Wo [zt 0 Be I Vu :::; t, Xu 0 Be =I o] 
e-->0+ 

for any Frnice functional Zt. We may represent (2.10) symbolically as 

(2.11) wx,(t)(·) = Wo Cl Vu:::; t, Xu =I 0); 

that is, wx,(t) is the Brownian motion conditioned to avoid the origin 
until time t. 

We define 

(2.12) vv:x- wJ + wJ 
0 - 2 

where WJ stands for the law of the process (-Xt) under wJ. In other 
words, the law W0x is the symmetrization of the three-dimensional Bessel 
process. We also remark that W0x is locally equivalent to n: 

(2.13) 
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where ex = n[IXt IJ is a constant independent of t > 0. We say that 
W0x is the h-transform with respect to the function h(x) = lxl. Then it 
is immediate from (2.6) that 

(2.14) W:x[Z] = lim wx,(t)[z] 
0 t->oo 

for any Frnice functional Z with 0 < t < oo. We may represent (2.14) 
symbolically as 

(2.15) 

that is, W0x is the Brownian motion conditioned to avoid the origin 
during the whole time. 

§3. Stable Levy processes conditioned to stay positive 

Let us review the theory of strictly stable Levy processes condi­
tioned to stay positive. For references, see, e.g., [1] and [6]. We refer to 
these textbooks also about the theory of conditioning to stay positive for 
spectrally negative Levy processes, where we do not go into the details. 

For a Borel set F, we denote the first hitting time of F by 

(3.1) TF = inf{t > 0: Xt E F}. 

Define 

(3.2) 

and call the process (Rt) the reflected process. 
Let (Px) denote the law of a strictly stable Levy process of index 

0 < a ::::; 2, that is, a process with cadlitg paths and with stationary 
independent increments satisfying the following scaling property: 

(3.3) (k-±Xkt: t 2:: 0) 1~ (Xt: t 2:: 0) under Po 

for any k > 0. Note that the Brownian case corresponds to a= 2. From 
the scaling property (3.3), it is immediate that the quantity 

(3.4) p := Po(Xt 2:: 0) 

does not depend on t > 0, which is called the positivity parameter. The 
possible values of p range over [0, 1] if 0 < a < 1, (0, 1) if a = 1, and 



Two kinds of conditionings for stable Levy processes 497 

[1- ~, ~] if 1 <a:::; 2. Let (Qx : x > 0) denote the law of the process 
killed at Tc -oo,o): 

(3.5) Qx(At; t < () = Px (At; t < T(-oo,o)), x > 0, At EFt. 

Note that the function 

(3.6) (x, t) 1-+ Qx(t < () = Px (t < T(-oo,o)) 

is jointly continuous in x > 0 and t > 0. 
Let us exclude the case where lXI is a subordinator, i.e., 

(3.7) 0 < a < 1 and p = 0, 1. 

Then the reflected process (Rt) under (Px) is a Feller process where the 
origin is regular for itself, and hence there exists the continuous local 
time process (.L.t) at level 0 of the reflected process (Bt) such that 

(3.8) Po [fooo e-qtd.L.t] = qP-1, q > 0. 

Let n i denote the corresponding excursion measure away from 0 of the 
reflected process (Rt)· The Markov property of nl may be expressed as 

for any A E Foe and AtE Ft. We introduce the following function: 

(3.10) hi(x) =Po [fooo 1{xt :2 -x}d.L.t], x :2 0. 

Since the ladder height process H :=X o .L.-1 is a stable Levy process of 
index a(1- p), we see that 

(3.11) h1(x) =Po [fooo 1{Hu :2 -x}du] = C[xa(l-p) 

for some constant c[ > (j independent of X :2 0. The following the­
orem is due to Silverstein [14, Thm.2]; another proof can be found in 
Chaumont-Doney [5, Lem.1] (see also Doney [6, Lem.10 in §8.3]). 

Theorem 3.1 ([14]). It holds that 

(3,12) Qx[(Xt)a(l-p); t < (] =Xa(l-p), X> 0, t > 0, 

(3.13) n i [(Xt)a(l-,0); t < (] =CJ, t > 0 

for some constant cJ independent oft > 0. 
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By virtue of this theorem, we may define the h-transform by 

(3.14) { 
( x,)<>(l-p) dQ I 

j _ X X Ft 
dPx IF,- _L(X )<>(1-p)dnil 

0 r t F, 
2 

if X> 0, 

if X= 0; 

indeed, the family (PJ IF, : t > 0) is proved to be consistent by the 
Markov property of n t. 

Theorem 3.2 ([3]). The process ((Xt), (PJ)) is a Feller process. 

This theorem is due to Chaumont [3, Thm.6], where he proved weak 
convergence PJ __, PJ as x __, 0+ in the cadlag space equipped with Sko­
rokhod topology. Bertoin-Yor [2, Thm.1] proved the weak convergence 
for general positive self-similar Markov processes. Tanaka [15, Thm.4] 
proved the Feller property for quite a general class of Levy processes. 

Now let us discuss the conditionings (2.3) and (2.7) for stable Levy 
processes. The following theorem is an immediate consequence of Chau­
mont [4, Lem.1] and of the continuity of (3.6). 

Theorem 3.3 ([4]). Lett> 0 be fixed. Then the function 

(3.15) [O,oo) 3 x f---t PJ [(Xt)-a(l-p)J 

is continuous and vanishes at infinity. 

Define a probability law Mi,(t) on :Ft as 

(3.16) 

for At E Ft. The following theorem, which generalizes (2.2), can be 
found in Bertoin [1, Thm.VIII.18]. 

Theorem 3.4 ([1]). For any t > 0, it holds that 

(3.17) Mi,(t)[Zt] = lim P0 [zt I Vu::::; t, Xu~ -s] 
s--+0+ 

for any :Ft-nice functional Zt. 

Now we give the following version of (2.4) for stable Levy processes. 

Theorem 3.5. For any t > 0, it holds that 

(3.18) Mi,(t) [Zt] = lim Po [zt 0 ec I Vu::::; t, Xu 0 ec ~ o] 
c-+0+ 

for any :Frnice functional Zt. 
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Proof. By the Markov property, the expectation of the right hand 
side of (3.18) is equal to 

(3.19) Po [Pxe [Zt; Vu:::; t, Xu 2: OJ] = Po [(X")-' p_t [Zt(Xt)-'J] 

Po [Pxe (Vu :S: t, Xu 2': 0)] p0 [ (X.:)-r p_L [(Xt)-rJ] ' 

where we put 1 = o:(l- p). By the scaling property, this is equal to 

Po [(XI)-'P]l/nx1 [Zt(Xt)-'J] 

Po [(XI)-'P]l/nx1 [(Xt)-'l] . 
(3.20) 

By Theorems 3.2 and 3.3 and by the dominated convergence theorem, 
we see that this quantity converges as E ~ 0+ to 

(3.21) 
PJ [Zt(Xt)-'] 

PJ [(Xt)-'] ' 

which coincides with Mj,(t)[Zt] by the definition (3.16). 

The following theorem generalizes (2.6). 

Theorem 3.6. It holds that 

(3.22) 

for any :Frnice functional Z with 0 < t < oo. 

The proof can be done in the same way as Theorem 3.5. 

Q.E.D. 

§4. Symmetric stable Levy processes conditioned to avoid the 
origin 

Let us discuss the conditioning for symmetric stable Levy processes 
to avoid the origin. This has been introduced by Yano-Yano-Yor [18] in 
order to extend some of the penalisation problems for Brownian motions 
by Roynette-Vallois-Yor [11], [12] and Najnudel-Roynette-Yor [9], to 
symmetric stable Levy processes. 

We assume that p = ~' i.e., the process ((Xt), (Px)) is symmetric, 
and that the index o: satisfies 1 < o: :::; 2. For simplicity, we assume that 
Po [ei>-X1 J = e-1>-1". Then the origin is regular for itself, and there exists 
the continuous resolvent density: 

( 4.1) u (x)=.!_ {oo cosx>.d>., q>O, xER 
q 1rJo q+A'" 
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Moreover, there exists the local time process at level 0 of the process 
(Xt), which we denote by (Lt), such that 

(4.2) q > 0. 

The corresponding excursion measure away from 0 will be denoted by 
n x. We introduce the following function: 

(4.3) 

see, e.g., [17, Appendix] for the exact value of the constant ex. Note 
that the function h x ( x) may also be represented as 

(4.4) 

see, e.g., [1, Lem.V.ll]. Let (P~) denote the law of the process ((Xt), (Px)) 
killed at T{o}: 

By [18, Thm.3.5], we see that the function 

(4.6) 

is jointly continuous in x E lR \ {0} and t > 0. The following theorem is 
due to Salminen-Yor [13, eq.(3)] and Yano-Yano-Yor [18, Thm.4.7]. 

Theorem 4.1 ([13], [18]). It holds that 

(4.7) P2[1Xtl"'-1] =lxl"'-1, x-/= 0, t > 0, 

(4.8) nx[IXtl"'-\ t < (] =Cx, t > 0. 

By virtue of this theorem, we may define the h-transform by 

(4.9) {l x,la-1 ol 
dPX - X dPX F, 

X IF, - _1 IX l"'-1d X I ex t n F, 

if X -/= 0, 

if X= 0; 

indeed, the family (Pxx IF, : t ;::: 0) is proved to be consistent by the 
Markov property of nx. The following theorem is due to [16, Thm.1.5]. 

Theorem 4.2 ([16]). Suppose that 1 < o; < 2. Then the process 
((Xt), (Pn) is a Feller process. 
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Remark 4.3. Yano [16, Thm.1.4 and Cor.1.9] obtained the follow­
ing long-time behavior of paths: If 1 <a< 2, then 

(4.10) Pi (limsupXt = limsup(-Xt) = lim IXtl = oo) = 1. 
t-+oc t-+oo t-+oo 

Remark 4.4. In the Brownian case (a= 2), the process ((Xt), (Pxx)) 
is not a Feller process. Indeed, P0x is not irreducible (see (2.12)). Con­
trary to (4.10), the long-time behavior in this case is as follows: 

(4.11) P0x (lim Xt = oo) = P0x (lim Xt = -oo) = ~-
t-+oc t-+oo 2 

Now let us discuss the conditionings (2.11) and (2.15) for symmetric 
stable Levy processes. The following theorem is an immediate conse­
quence of Yano-Yano-Yor [18, Lem.4.10] and of the continuity of (4.6). 

Theorem 4.5 ([18]). Lett> 0 be fixed. Then the function 

(4.12) JR 3 X t-t pxx [IXtl-(a-1)] 

is continuous and vanishes at infinity. 

Define a probability law Mx,(t) on :Ft as 

(4.13) 
Mx,(t)(A) = nx (At; ( > t) = Pox [IXtl-(a-1); At] 

t nX(( > t) PJ[IXtl-(a-1)] 

for At EFt. The following theorem generalizes (2.10). 

Theorem 4.6. For any t > 0, it holds that 

(4.14) Mx,(t)[Zt] = lim Po [zt 0 (}e I \fu:::; t, Xu 0 (}e =I= o] 
e-+0+ 

for any Frnice functional Zt. 

The proof can be done in the same way as Theorem 3.5 by virtue of 
Theorems 4.2 and 4.5. The following theorem generalizes (2.14). 

Theorem 4. 7 ([18]). It holds that 

(4.15) 

for any Frnice functional Z with 0 < t < oo. 
This is a special case of [18, Thm.4.9]. 

Acknowledgments. The author thanks Professor Marc Yor for valu­
able comments. 
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