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Two kinds of conditionings for stable Lévy processes

Kouji Yano

Abstract.

Two kinds of conditionings for one-dimensional stable Lévy pro-
cesses are discussed via h-transforms of excursion measures: One is to
stay positive, and the other is to avoid the origin.

81. Introduction

It is well-known that a one-dimensional Brownian motion condi-
tioned to stay positive is a three-dimensional Bessel process. As an easy
consequence, it follows that the former conditioned to avoid the origin
is a symmetrized one of the latter.

The aim of the present article is to give a brlef survey with some new
results on these two different kinds of conditionings for one-dimensional
stable Lévy processes via h-transforms of Itd’s excursion measures.

The organization of this article is as follows. In Section 2, we recall
the conditionings for Brownian motions. In Section 3, we give a review
on the conditioning for stable Lévy processes to stay positive. In Section
4, we present results on the conditioning for symmetric stable Lévy
processes to avoid the origin.

§2. Conditionings for Brownian motions

We recall the conditionings for Brownian motions. For the details,
see, €.g., [8, 8I11.4.3] and [10, §VL.3 and Chap.XII].

Let (X;) denote the coordinate process on the space of cadlag func-
tions and (F;) its natural filtration. Set Foo = o(Up>oFy). For ¢ > 0, we
write 0; for the shift operator: X5 06; = X;.5. For 0 <t < 00, a func-
tional Z; is called F;-nice if Z; is of the form Z; = f(Xy,,..., Xy, ) for
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some 0 < t; < ... < t, < t and some continuous function f: R* — R
which vanishes at infinity.

Let W, denote the law of the one-dimensional Brownian motion
starting from x € R. '

2.1. Brownian motions conditioned to stay positive
For any fixed t > 0, we define a probability law W1®) on F; as
nt(; (>t

(2.1) WT’(t)(') = n+(c N t)

where nt stands for the ezcursion measure of the reflecting Brownian
motion (see, e.g., [8, §II1.4.3] and [10, §XII.4]) and ¢ for the lifetime.
The process (X; : s < t) under W ® is called the Brownian meander.
Durrett-Iglehart—Miller [7, Thm.2.1] have proved that

(2.2) wh®(z,] = lim Wo {Zt Vu <t X, > —5]

for any bounded continuous F;-measurable functional Z;; in particular,
for any Fi-nice functional Z;. We may represent (2.2) symbolically as

(2.3) whHO() = W ( \ Vu<t, Xo> o) :

that is, the Brownian meander is the Brownian motion conditioned to
stay positive until time t. As another interpretation of (2.3), we have

(2.4) WOz, = lim Wo [Zt 00, | Vu<t, Xyo00.> 0]
£—

for any Fi-nice functional Z;. The proof of (2.4) will be given in Theorem
3.5 in the settings of stable Lévy processes.

We write VVOT for the law of a three-dimensional Bessel process,
that is, the law of the radius \/(Bt(l))2 + (B?)2 4+ (B®)2 of a three-

dimensional Brownian motion (B,gl), Béz), st)). We remark that W, is
locally equivalent to n*:

1
cr
where CT = n*[X;] is a constant independent of ¢ > 0. We say that

WOT is the h-transform of the excursion measure n™ with respect to the
function h(z) = z. Then it holds (see, e.g., Theorem 3.6) that

(2.6) Wiz] = Jim wh®[z]

(2.5) AWl |7, = == X.dn'| g,
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for any F;-nice functional Z with 0 < ¢t < co. We may represent (2.6)
symbolically as

(2.7) Wi() = Wo ( v, X, 20);
that is, WOT is the Brownian motion conditioned to stay positive during
the whole time.

2.2. Brownian motions conditioned to avoid the origin
For any fixed t > 0, we define a probability law W*(Y) on F; as

wh® L wh@®

(2.8) wx® = 5

where WH®) stands for the law of the process (—Xs : s < t) under
WT®, The law W>*(®) may be represented as

n(; (>1)
n(¢ > 1)
where n stands for the excursion measure of the Brownian motion; in

fact, n = 31" where n~ is the image measure of the process (—X)
under n". Immediately from (2.4) and continuity of paths, we have

(2.9) WO () =

(2.10) w*O[z) = lim Wo [zt 00,

Yu < t, Xu09€750]
for any Fi-nice functional Z;. We may represent (2.10) symbolically as

(2.11) WO () =W, (

that is, W*®) is the Brownian motion conditioned to avoid the origin

until time t.
We define

Wy +wy

(2.12) Wy =~

where WOl stands for the law of the process (—X;) under WOT . In other
words, the law W;* is the symmetrization of the three-dimensional Bessel
process. We also remark that W is locally equivalent to n:

1
(213) dWOXIft = 'C—’X-lXtId’l’lI]-‘t
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where C* = n[|X;|] is a constant independent of ¢ > 0. We say that
Wy is the h-transform with respect to the function h(x) = |z|. Then it
is immediate from (2.6) that

(2.14) We'[Z] = lim w*®[2]

for any F;-nice functional Z with 0 < ¢ < co. We may represent (2.14)
symbolically as

(2.15) W () = Wo (

Vu, Xq 7EO>;

that is, W' is the Brownian motion conditioned to avoid the origin
during the whole time.

£3. Stable Lévy processes conditioned to stay positive

Let us review the theory of strictly stable Lévy processes condi-
tioned to stay positive. For references, see, e.g., [1] and [6]. We refer to
these textbooks also about the theory of conditioning to stay positive for
spectrally negative Lévy processes, where we do not go into the details.

For a Borel set F', we denote the first hitting time of F' by

(38.1) Tp =inf{t > 0: X, € F}.
Define
(3.2) X, = irng: R, =X, - X,

and call the process (R,) the reflected process.

Let (P,) denote the law of a strictly stable Lévy process of index
0 < a < 2, that is, a process with cadlag paths and with stationary
independent increments satisfying the following scaling property:

(3.3) (k"% Xpe 1t >0)'"2 (X, :¢>0) under Py

for any k > 0. Note that the Brownian case corresponds to o = 2. From
the scaling property (3.3), it is immediate that the quantity

(3.4) p:=Po(X:20)

does not depend on t > 0, which is called the positivity parameter. The
possible values of p range over [0,1]if 0 < @ < 1, (0,1) if @ = 1, and
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[1-1,11if1<a <2 Let (Qs:z > 0) denote the law of the process
killed at T(_,0):

(35) Qm(Aty i< 4) =P, (At, t < T(—oo,O)) , T> O, At € Fy.
Note that the function

(3.6) (z,1) ~ Qz(t < ) = Py (t < T(—c0,0))

is jointly continuous in > 0 and ¢ > 0.
Let us exclude the case where |X| is a subordinator, i.e.,

(3.7) 0<a<1 and p=0,1.

Then the reflected process (R,) under (Py) is a Feller process where the
origin is regular for itself, and hence there exists the continuous local
time process (L,) at level 0 of the reflected process (R;) such that

(38) Py l/o e_qtst] = qp_l, q > 0.

Let n' denote the corresponding excursion measure away from 0 of the
reflected process (R;). The Markov property of n' may be expressed as

(3.9) n' (1p00s Ay, t<C) =n'[Qx,(A); A, t < (]

for any A € Foo and Ay € F;. We introduce the following function:
T _ o0

(3.10) W (z) = Py [/0 x> _x}st] Cz>0

Since the ladder height process H := X o L™! is a stable Lévy process of
index a(1 — p), we see that

(3.11) hl(z) = Py [/000 I{Hu > _x}du} = Clz>(-p)

for some constant C'lT > 0 independent of z > 0. The following the-
orem is due to Silverstein [14, Thm.2]; another proof can be found in
Chaumont—Doney [5, Lem.1] (see also Doney [6, Lem.10 in §8.3]).

Theorem 3.1 ([14]). It holds that
(3.12) QX2 t < ¢ =x*(=P) ) >0, t>0,
(3.13) nl[(X)*0-P); t < (] =C), t>0

for some constant 6‘2T independent of t > 0.
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By virtue of this theorem, we may define the h-transform by

(%)Y 4Q, |, iz >0,

T

1 1P]| 7, =
(3.14) dF; |7, {_C;T(Xt)a(lw)dnT]ft ifx =0

indeed, the family (P]}|# : ¢ > 0) is proved to be consistent by the
Markov property of n'.

Theorem 3.2 ([3]). The process ((Xt),(P])) is a Feller process.

This theorem is due to Chaumont [3, Thm.6], where he proved weak
convergence P] — POT as x — 0+ in the cadlag space equipped with Sko-
rokhod topology. Bertoin—Yor [2, Thm.1] proved the weak convergence
for general positive self-similar Markov processes. Tanaka [15, Thm.4]
proved the Feller property for quite a general class of Lévy processes.

Now let us discuss the conditionings (2.3) and (2.7) for stable Lévy
processes. The following theorem is an immediate consequence of Chau-
mont [4, Lem.1] and of the continuity of (3.6).

Theorem 3.3 ([4]). Let t > 0 be fized. Then the function
(3.15) [0,00) 5 z = P [(Xt)_o‘(l_”)]

18 continuous and vanishes at infinity.

Define a probability law MT®) on F, as

n(Ag ¢>8) _ Bl 2095 A
n'(¢>1) —  Pl[(X,)-*0-0]

(3.16) MTOA) =

for Ay € F. The following theorem, which generalizes (2.2), can be
found in Bertoin [1, Thm.VIIL18].

Theorem 3.4 ([1]). For anyt > 0, it holds that

(3.17) M"O[z,] = lim Py [Zt Vu<t, X, > —5]
£—

for any Fi-nice functional Zy.
Now we give the following version of (2.4) for stable Lévy processes.

Theorem 3.5. For any t > 0, it holds that

(3.18) MTO[z,] = lim Py [Zt 0,

Yu < 1, XUOGEZO}

for any Fi-nice functional Z.
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Proof. By the Markov property, the expectation of the right hand
side of (3.18) is equal to

Py [Px. 7 Vu<t, X, >0 Fo ()P 1Z:0X0) 7]
BolPx. (ust, X200 py [(x)=1 P, [(X)-7]]

(3.19)

where we put v = a1 — p). By the scaling property, this is equal to
Py [(X2) 7P o, [2X0) ]
Py [(X00) 7Pl y, 10 )]

By Theorems 3.2 and 3.3 and by the dominated convergence theorem,
we see that this quantity converges as e — 0+ to

(3.20)

Py [Z(Xe) ]

(321 P (X071

i

which coincides with M(*){Z,] by the definition (3.16). Q.ED.
The following theorem generalizes (2.6).

Theorem 3.6. It holds that
(3.22) Pliz] = Jlim M ®[Z]

for any Fi-nice functional Z with 0 <t < oco.

The proof can be done in the same way as Theorem 3.5.

§4. Symmetric stable Lévy processes conditioned to avoid the
origin

Let us discuss the conditioning for symmetric stable Lévy processes
to avoid the origin. This has been introduced by Yano—Yano—Yor [18] in
order to extend some of the penalisation problems for Brownian motions
by Roynette-Vallois-Yor [11], [12] and Najnudel-Roynette—Yor [9], to
symmetric stable Lévy processes.

We assume that p = 3, i.e., the process ((X;), (P;)) is symmetric,
and that the index « satisfies 1 < a < 2. For simplicity, we assume that
Py[e*X1] = e~INI”, Then the origin is regular for itself, and there exists

the continuous resolvent density:

(4.1) ug(z) = l/ COSTA 4y, ¢>0, z€R.
0
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Moreover, there exists the local time process at level 0 of the process
(X¢), which we denote by (L), such that

11

(4.2) P [ /0 - e—qtst} = 4, (0) = L

s
(635301} >

, qg>0.

The corresponding excursion measure away from 0 will be denoted by
n*. We introduce the following function:

(@3 R = lim {0 (0) - w(@) = gl se R

see, e.g., [17, Appendix] for the exact value of the constant C*. Note
that the function A*(z) may also be represented as

(4.4) h*(z) = Po[Lr,]s zEeR;

see, e.g., [1, Lem.V.11]. Let (P?) denote the law of the process ((X4), (Py))
killed at Tioy:

(4.5) PY(Ay; t <) =Py (A; t <Tyoy), x#0, Ay € F.
By [18, Thm.3.5], we see that the function
(4.6) (z,t) = P(t <) = Py (t < Tyoy)

is jointly continuous in z € R\ {0} and ¢ > 0. The following theorem is
due to Salminen—Yor [13, eq.(3)] and Yano—Yano—Yor [18, Thm.4.7].

Theorem 4.1 ([13], [18]). It holds that

(4.7) PO X |7 =|z|>Y, 240, t>0,
(4.8) nX[| X%t t< (] =C*, t>0.

By virtue of this theorem, we may define the h-transform by

| XM a0y, if @ £,

4.9 dPx =
( ) T l]:t {CLX|AthIol——ld,’,.'lx1‘7__t if z=0;

indeed, the family (P)|z, : t > 0) is proved to be consistent by the
Markov property of n*. The following theorem is due to [16, Thm.1.5].

Theorem 4.2 ([16]). Suppose that 1 < a < 2. Then the process
((Xy), (PX)) is a Feller process.
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Remark 4.3. Yano [16, Thm.1.4 and Cor.1.9] obtained the follow-
ing long-time behavior of paths: If 1 < a < 2, then

(4.10) Py (lim sup Xy = limsup(—X;) = Jlim | Xy| = oo) =1.
—00

t—o0 t—o0

Remark 4.4. In the Brownian case (o« = 2), the process {((X3), (P)))
is not a Feller process. Indeed, Py is not irreducible (see (2.12)). Con-
trary to (4.10), the long-time behavior in this case is as follows:

(4.11) P (Jim X, = o00) = R (Jim X, = —o0) = -;-

Now let us discuss the conditionings (2.11) and (2.15) for symmetric
stable Lévy processes. The following theorem is an immediate conse-
quence of Yano—Yano—Yor [18, Lem.4.10] and of the continuity of (4.6).

Theorem 4.5 ([18]). Let t > 0 be fized. Then the function
(4.12) RSz PX [|Xt|—<a-1>]
is continuous and vanishes at infinity.

Define a probability law M*(®) on F, as

n*(Ay; (>1) P [IX =D Ay
nX(( >t) P [ X~ (=)

(4.13) MO (Ay) =

for A, € F;. The following theorem generalizes (2.10).
Theorem 4.6. For any t > 0, it holds that

(4.14) M*®z,] = lim Py {Zt 00, |Vu<t, Xy00.#0

~ for any Fi-nice functional Z.

The proof can be done in the same way as Theorem 3.5 by virtue of
Theorems 4.2 and 4.5. The following theorem generalizes (2.14).

Theorem 4.7 ([18]). It holds that
(4.15) Fy[Z] = lim M>*®[Z]
aadeel
for any Fi-nice functional Z with 0 <t < oo.
This is a special case of [18, Thm.4.9].
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