
Advanced Studies in Pure Mathematics 57, 2010 
Probabilistic Approach to Geometry 
pp. 437-461 

Non-symmetric diffusions on a Riemannian manifold 

lchiro Shigekawa 

Abstract. 

We consider a non-symmetric diffusion on a Riemannian manifold 
generated by Ql = ~ £:; + b. We give a sufficient condition for which Ql 
generates a 0 0-semigroup in L2 . To do this, we show that Ql is maximal 
dissipative. Further we give a characterization of the generator domain. 

We also discuss the same issue in LP (1 < p < oo) setting and give 
a sufficient condition for which Ql generates a 0 0-semigroup in LP. 

§1. Introduction 

We consider diffusion processes on a Riemannian manifold gener­
ated by the operator ~,6 +b. Here 6 is the Laplace-Beltrami operator 
and b is a vector field. We assume that coefficients are all coo. So 
we can construct a diffusion process up to the explosion time by solv­
ing a stochastic differential equation. Our interest is to construct a LP 
semigroup. Symmetry assumption in L2 setting does not simplifY the 
problem of essentially self-adjointness. So we consider the problem in 
non-symmetric case. 

We will give a sufficient condition to construct a Co semigroup, i.e., 
strongly continuous semigroup, in L2 or even in LP. Further, in L2 , we 
can determine the domain of the generator. To do this, the intertwining 
property of operators plays an essential role. 

The organization of the paper is as follows. In Section 2, we give 
a sufficient condition for the existence of Co semigroup in L2 . We have 
to show that the operator is maximal dissipative. In Section 3, we 
determine the domain of the generator. We use the intertwining property 
and the symmetric part of the associated bilinear form. In Section 4, 
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we construct a Co semigroup in LP and last we give some examples in 
Section 5. 

§2. Non-symmetric diffusion on a Riemannian manifold 

Let ( M, g) be a smooth d-dimensional Riemannian manifold. We 
assume that M is complete but we do not assume that M is compact in 
general. We consider a diffusion process on M whose generator is 

(2.1) 

Here 6 is the Laplace-Beltrami operator, b is a vector field. We as­
sume that b and other vector fields, tensor fields, etc, are all c=. We 
denote the Riemannian volume on M by m = vol and operators will be 
considered in L2 (m), or LP(m) later. 

The adjoint operator of l.2t is 

(2.2) 1.2t* = ~6- b- divb. 

The symmetrization of l.2t is defined by 

(2.3) 
- 1 1 1 

l.2t = -(1.2t + 1.2t*) = -6-- div b. 
2 2 2 

So far, all operators are well-defined on C0 (M), the set of all smooth 
functions on M with compact support. 

The bilinear form e associated with l.2t is given by 

(2.4) e(u, v) = -(1.2tu, v)2 = ~ JM (\i'u, \i'v) dm- JM (bu)v dm. 

Here ( , )2 denotes the inner product in L2 (m), (-, ·) the Riemannian 
metric, and \7 the gradient operator. Further we consider the bilinear 
form £ associated with sit as follows: 

(2.5) e(u,v) = ~ r (\i'u,\i'v)dm+ ~ r (divb)uvdm. 
2 jM 2 jM 

We impose the following condition to ensure that l.2t is bounded from 
above. 

( A.l): There exists a constant 1 so that ~ div b ;::: -{. 

To be precise, ~(divb)x;::: -1 for all x EM. Under this condition, 

we can see that £ is bounded from below and so we can take a closure 
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of it. By taking closure, we may assume that £ is closed. Our aim is to 
deal with semigroups without sector condition. 

We denote the metric function on M by d. We fix a reference point 
o E M and set p( x) = d( o, x). Since p is a Lipschitz function, V p can 
be defined as a vector valued bounded function. Using this, we add the 
following assumption on b: 

(A.2): There exists a positive non-increasing function"': [0, oo) -+ 

[0, 1] so that J0
00 "'(x) dx = oo and "'(p)bp::::: -1. 

To be precise, "'(p(x))bp(x) ::::: -1 for all x EM. The function "'(x) = ~ 
is a typical example satisfying J0

00 "'(x) dx = oo. 
To construct a semigroup, it suffices to show that our operator 

is maximal dissipative. Here, an operator A is called dissipative if 
(Au, u) :::; 0 for any u E Dom(A) and if it has no proper dissipative 
extension, it is called maximal dissipative. For the general theory of 
semigroup, refer to e.g., Pazy [7, Chapter 1, Section 4] or Goldstein [4, 
Chapter 1, Section 3]. 

In symmetric case, i.e., Qt = ~6, this is equivalent to the essential 
self-adjointness. This problem of essentially self-adjointness was solved 
by Gaffney [3] (see also Davies [1]). We have to modify it to handle the 
vector field b. 

Theorem 2.1. Assume (A.l) and (A.2). Then the closure of 
(5.2t, C0 (M)) generates a Markovian Co semigroup in L2 (m). (See, e.g., 
Ma-Ri:ickner [6] for the Markovian property. To be precise we should 
say "sub-Markovian" but we use this terminology for simplicity.) 

Proof. We first show that 5.2t- 'Y is dissipative. Here, 'Y is a constant 
that appeared in (A.l). From (A.2), we have 

((5.2t-"()u,u)2= r (~6u+bu-"(u)udm JM 2 

= -E(u, u)- 'Y(u, u)2 

= -~ { (i'Vui 2 + u2 div b) dm- { "(U2 dm:::; 0, 
2}M jM 

which shows that 5.2t - "( is dissipative. 
To show that the closure of 5.2t- 'Y generates a contraction semigroup, 

it suffices to show that the image (Qt- 'Y -1) ( C0 ( M)) is dense in L2 ( m), 
which means that 5.2t- 'Y is maximal-dissipative; in other words, to show 
that u = 0 if 

JM u(m- 'Y)¢dm = (u, ¢)2, \/¢ E C0 (M). 
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Assume this identity. Then, by the hypoellipticity of the elliptic opera­
tor, we have u E C00 (M). Using this, we have 

(2.6) (u, c/Jh = JM u(2i- 'Y)c/Jdm 

=-~ { 'Vu·'Vc/Jdm+ { (ubc/J-'Yuc/J)dm, \fcjJEC0 . 
2}M jM 

By an approximation argument, we easily see that the identity holds for 
cP E H1~c(M) with compact support. 

To truncate u, we introduce a bump function Xn in the following 
procedure. Take a c= function '1/J : lR ----> (0, 1] such that 'lj;(t) = 1 for 
t E (0, 1] and 'lj;(t) = 0 fortE (3, oo) and further -1 :S '1/J'(t) :S 0. Define 
h(x) by 

h(x) =lax ~(y) dy 

and then set 

(2.7) Xn(x) = '1/J(h(p(x))/n). 

Here p(x) = d(o,x). Clearly we have 

bxn = '1/J'(h(p)/n) K(p) bp. 
n 

Take cjJ = x~u as a test function. Then, from (2.6), we have 

JM ux;,udm 

= -~ JM 'Vu · 'V(x;.u) dm + JM {ub(x;,u)- 'Yux;,u} dm 

= -~ JM 'Vu · ('V(xnu)xn + XnU'VXn) dm 

+ JM { u(b(XnU)Xn + UXnUbXn)- /'X;.u2 } dm 

= -~ JM {Xn 'Vu · 'V(xnu) + xnu'Vu · 'Vxn} dm 

+ JM {xnu(b(xnu) + xnu2bxn)- 'YX;,u2 } dm 

= -~ JM {('V(xnu)- u'Vxn) · 'V(xnu) + Xnu'Vu · 'Vxn} dm 
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+ JM { ~b(x~u2 ) + Xnu2bxn- 'IX~u2 } dm 

= -~ JM {IV(xnu)l 2 - uVxn ° (Vxnu + Xn \7u) + xnu\7u 0 Vxn} dm 

+ JM {-~X~ u2 div b + Xn u2xn -'IX~ u 2 } dm 

= -~ JM {IV(xnuW- u2 1Vxnl2 } dm 

+ JM {xnu2bxn- ~x~u2 div b- '/X~u2 } dmo 

Hence 

(208) ~ r IV(xnuWdm+~ r x~u2 divbdm+ r ('1+1)x~u2 dm 
2}M 2}M JM 

= ~ JM u2 1Vxnl2 dm + JM XnU2bXn dmo 

Note that bxn = 'ljJ'(h(p)jn)"'~)bpo Using -1:::; 'ljJ':::; 0 and the assump­
tion ti,(p)bp 2': -1, we have 

and hence 

1 
bxn S­

n 

1 2 11 2 XnU bxn dm S - XnU dmo 
M n M 

Further, since Vxn = 'ljJ'(h(p))jn)~\7p and IV PI:::; 1, we have 

1 
IVxnl S - 0 

n 

Thus, the right hand side of (208) is bounded and so XnU has a subse­
quence which converges weakly in £0 We can easily show that the limit 
is u and, by letting n --7 oo, we have 

The positivity of £, = £ +'I( , )2 brings u = 00 
Thus we have shown that (Qt- '/- 1)(C0 (M)) is dense in L 2 (m)o 

This means that the closure of Q( - '/ with a domain 0 0 ( M) is maximal 
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dissipertive and so it generates a contraction semigroup. From now on, 
taking closure, we regard I(( as a closed operaotr. We also note that this 
means that C0 (M) is dense in Dom(l(t) with respect to the graph norm. 

Last we show the Markovian property. The criterion is the following 
(see e.g., [6] when 1 = 0 and [12] for general 1): 

(2.9) (I(Lu, u- u 1\ 1)2 ~ rllu- u 1\ 111~, 'VuE Dom(l(t). 

Here, a 1\ b = min{ a, b} and II 11 2 denotes the £ 2 norm. Since we have 
shown that C0 (M) is dense in Dom(l(t), it suffices to show (2.9) for u E 
C0 (M). Take u E C0 (M). We construct an approximating sequence 
to the function t f---' t 1\ 1. Take any c: > 0 and take a c= function 'Pc so 
that 

{
t, 

'PE(t) = E [1, 1 + c:], 

1 + c:, 

t ~ 1, 
1 ~ t ~ 1 + 2c:, 

t;::: 1 + 2c: 

and 0 ~ tp~ ~ 1. Recall that C. ( u, v) = - (I(Lu, v )2 . We first show 

(2.10) lim C.(tpE(u), u- 'Pc(u));::: 0. 
E-+0 

To do this, note 

C.(tpE(u), u- 'Pc(u)) 

= JM {~\7tpE(u) · V(u- 'PE(u))- btpE(u)(u- 'Pc(u))} dm 

= ~ JM tp~(u)(1- tp~(u))IVul 2 dm- JM tp~(u)bu (u- 'Pc(u)) dm. 

The first term of the right hand side is non-negative. In the second 
term, the integrand is not 0 only when 1 ~ u ~ 1 + 2c: and in this case, 
lu- 'Pc ( u) I ~ c:. Hence the second term goes to 0 as c: ---+ 0, which proves 
(2.10). In addition, since £"~ is non-negative, we have 

Combining both of them, we get 

0 ~ lim{C(tpE(u),U- tpE(u)) + e"((U- tpE(u),U- tpE(u))} 
E-+0 

~ lim{c(tpE(u), U- 'Pc(u)) + C(U- tpE(u), U- tpE(u)) + rllu- 'Pc(u)lln 
E-+0 

~ lim{C.(u, u- 'PE(u)) + rllu- 'Pc(u)lln 
E-+0 
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~lim{ -(2tu, u- <Fc(u)h + 1llu- <Fc(u)lln 
E--+0 

~ -(2tu, u- u 1\ 1)2 + 1llu- u 1\ 111~, 

which is (2.9) as desired. Q.E.D. 

From now on, we assume that 2t is closed by taking a closure. The 
above argument shows that if u E Dom(2t), then u E Dom(£) and we 
have 

(2.11) e(u, u) = -(2tu, u)2. 

In connection to the Markovian property, we will show the £ 1 con­
traction property. Here, the £ 1 contraction property means that semi­
group {Tt} satisfies the following: for any u E £ 2 n L\ we have 

where II ll1 stands for the £ 1-norm. 
This is equivalent to the Markovian property of the dual semigroup. 

But we need an additional assumption to show the Markovian property 
of the dual semigroup, we give a direct proof of the £ 1 contraction 
property. Then the Markovian property of the dual semigroup follows. 
We denote the semigroup generated by 2t by {Tt}· 

Proposition 2.2. Assume (A.l) and (A.2). Then the semigroup 
{ e- 2t~'Tt} satisfies the £ 1 contraction property. 

Proof. It is enough to verify that 

(2.12) ((2t- 2/')u, u+ 1\ 1)2 ~ -"YIIu+ 1\ 111~, 't/u E Dom(2t), 

(see [12]). To show this, we may assume that u E C0 (M). 
We divide 2t into tow parts: l:,. and b. For any r:: > 0, take <pE such 

that 0 ~ <p~ ~ 1 and 

(2.13) <pE(t) = 

Then 

c, 

E [r::, 2r::], 
t, 
E [1, 1 + r::], 
1 +r::, 

t ~ 0, 

0 ~ t ~ 2r::, 

2r:: ~ t ~ 1, 

1 ~ t ~ 1 + 2r::, 

t ~ 1 + 2r::. 

JM l:,.u<pE(u) dm =- JM Vu · '\l<pE(u) dm =- JM <p~IVul 2 dm ~ 0. 
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Now letting c-+ 0, we have 

Next we consider the bu part. Let <I? be a primitive function of the 
function t -+ t + 1\ 1. That is 

(2.14) 

Then 

JM {bu(u+ 1\ 1)- 2ru(u+ 1\ 1)} dm 

t:::; 0, 

0:::; t:::; 1, 

t 2: 1. 

= JM {b<P(u)- 2ru(u+ 1\ 1)} dm 

=- JM(<P(u)divb+2ru(u+l\1))dm. 

By the assumption (A.l) and the definition of<!?, we have 

Hence 

Combining both of them, we get the desired result. Q.E.D. 

We can deal with 2(* similarly. This time, the sign of the vector field 
is opposite and so we assume the following 

(A.2)*: There exists a positive non-increasing function 
K,: [0, oo) -+ [0, 1] such that f0

00 K,( x) dx = oo and K,(p )bp :::; 1. 

We now have the following 

Theorem 2.3. Assume (A.l) and (A.2)*. Then the closure of 
(2t*,C0 (M)) generates a C0-semigroup in L2 (m). Further the semi­
group satisfies £ 1 contraction property. If, in addition, div b 2: 0, then 
the semigroup satisfies the Markovian property. 
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Proof. The proof is similar to that of Theorem 2.1. We only see 
the £ 1 contraction property. Define cp by (2.14). Then cf)(t) -t(t+ 1\ 1) = 
-!(t+ 1\ 1)2 and therefore 

JM{ -bu(u+ 1\ 1)- u(u+ 1\ 1) divb} dm 

= JM{cf)(u)divb-u(u+/\1)divb}dm 

= -~ JM (u+ 1\ 1)2 divbdm 

:::; "( JM (u+ 1\ 1)2 dm. 

This shows the £ 1 contraction property. 

§3. Domain of the generator 

Q.E.D. 

We now proceed to the issue of determining the generator domain. 
Our main tool is the intertwining property of operators. So we first 
need to investigate the intertwining property between ~ and \1. Here \1 
is the covariant differentiation. We always assume that our connection 
is the Levi-Civita connection. The intertwining property between 1::::. 
and \1 is well-known as \11::::. = 01\1, where 01 is the Hodge-Kodaira 
operator -(dd* + d*d) acting on 1-forms. In fact, noting that \1 = d for 
scalar functions and d2 = 0, we have \11::::. = -dd*d = -(dd* + d*d)d = 
0 1\1. Let us recall that 0 1 = -\1*\1-Ric where Ric denotes the Ricci 
curvature. We will use this later. What about \1 and \1 b? To see this, 
we note that for any vector field X, 

\lx(bu) = \lx(\lu,b) 

= (\12u)(X,b) + ('\lu, '\lxb) 

= (\12u)(b, X)+ ('\lu, \1 xb) (symmetry of '\12u) 

= ('\lb\lu,X) + ('\lu, \lxb). 

Now define an operator m acting on 1-forms as 

(3.1) 

Here ('\l.b, B) is a 1-form defined by (\l.b, B)(X) = 0('\1 xb) for any vector 
field X. Then 
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To be precise, this relation holds at least on 0 0 (M). 
Next we will get a symmetric bilinear form £ satisfying 

(3.2) e(o, e) = -(me, o)2. 

To do this, note that 

-(mB,B)2 = _!(010,0)2- f ('\hB,B)dm- f (('\l.b,B),B)dm 
2 jM jM 

= ~('\!(), '\10)2 + ~ JM Ric((), 0) dm- ~ JM '\lb((), 0) dm 

- JM ( ('\l.b, B), B) dm 

=!('\10,'\1())2+! r Ric(B,B)dm+-21 r IBI 2divbdm 
2 2}M jM 

- JM ( ('\l.b, 0), B) dm. 

Let B be a symmetrization of '\lb, i.e., B = !('\l.b +('\!.b)*). Then, £is 
given by 
(3.3) 

£(0, 77) = ~('\10, '\lry)2 + JM { ~ Ric(B, 77) + ~ div b(B, ry)- (BB, ry)} dm. 

We impose the following assumption to ensure that £ is bounded from 
below. 

(A.3}: Ric is bounded from below and there exists a constant 
8 so that! Ric+! divb- B;:::: -8. 

Let us remark that £in (3.3) is defined for o= 1-forms with compact 
support. Assuming (A.3), we see that f-a = £ + 8( , )2 becomes non­
negative and we can take a closure. So we assume that £ is closed from 
now on. Further, by (3.3), we have 

(3.4) 
1 2 ~ 
211'\JBII2:::; ea(B, B). 

We are ready to determine the domain of 2L 

Theorem 3.1. Assume (A.1), (A.2), (A.2)* and (A.3). Then the 
necessary and sufficient condition for u E Dom(2l) is that u E Dom(6) 
and bu E L2(m). 
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Proof. The sufficiency is easily shown by noting that C0 (M) is 
dense in Dom(2l*). In fact, by the integration by part, we have 

(~6.u + bu, ¢)2 = (u, 2l*¢)2, V¢ E C0 (M). 

It is easy to see that the above identity holds for ¢ E Dom(2l*) by 
using the denseness of C0 (M) in Dom(2l*). This implies that u E 
Dom(2l**) = Dom(2l). 

Next we will show the necessity. Take any u E C0 (M). Then 

((2l- o- 1)u, 6u)2 = -((2l- 6- 1)u, V'*V'u)2 

= -(\7(2l- 6- 1)u, V'u)2 

= -((2i- 6- 1)\i'u, \i'uh 

= £8+1(\i'u, \i'u). 

Hence, by Young's inequality, 

~ 1 2 E 2 
Cc5+1(\i'u, V'u):::; 2c 11(2l- 6- 1)ull2 + 2ll6ull2· 

Choose E to be small so that 

E 1 
2ll6ull~:::; 4(IIY'2ull2 +!lull~). 

Then, by (3.4), we have 

1 2 ~ E 12 
2c II (2l- 6- 1)ull2 :2': tc5+1 (\i'u, \i'u) - 2ll6ul2 

~ 1 2 2 
:2': tc5+1(\i'u, V'u)- 4(IIY' ull2 + llull2) 

1~ 
:2': 4£o+1(\i'u, V'u). 

Noting that C0 (M) is dense in Dom(2l), the above relation implies 
that \i'u E Dom(E) if u E Dom(2l). Therefore, by noting (3.4), we 
have \72u E L2(m), i.e., u E Dom(6). Since bu = 2lu- ~6.u, we have 
bu E L2(m). This completes the proof. Q.E.D. 

We can have a similar result for 2l* but we have to handle the 
potential term div b in this case. First we will get the intertwining 
property between 2l* and \7. To do this, it is enough to use that 
\i'(Vu) = u\i'V + V\i'u for V = divb. So, defining a operator i5 acting 
on 1-forms by 

(3.5) 
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we easily have the following defective intertwining property (see [11]): 

\i'Qt*u = i5Vu- u\7 div b. 

Further, denoting the symmetrization of \l.b by Band noting that 0 1 = 

- \7*\7 - Ric, 

-(i58, 8)2 = ~(\78, \78)2 + { { ~ Ric(B, 8) + ~181 2 div b + (BB, 8)} dm. 
2 }M 2 2 

Now we introduce the following assumption. 

( A.4): Ric is bounded from below and there exists a constant 
s:1 h R" 1 d" b B > s:t M v div b • u so t at 1C + 2 1v + _ -u . oreover, div b+ZJ'+Z IS 

bounded. 

Under the above assumptions, we define a bilinear form e' on 1-
forms by 
(3.6) 
- 1 r 1 1 
E'(B,ry) = 2(\78, 'Vry)2 + }M{"2Ric(8,ry) + "2(8,ry)divb+ (BB,ry)}dm. 

Then e' is bounded from below and so it is closable. Taking a closure, 
we may assume that e' is closed. We also have the inequality for e' as 
follows: 

Now we can determine the domain of Q(*. 

Theorem 3.2. Assume (A.l), (A.2), (A.2)* and (A.4). Then the 
necessary and sufficient condition for u E Dom(Qt*) is that u E Dom(.6.) 
and bu+ ~udivb E L 2 (m). 

Proof. As in the proof of Theorem 3.1, the sufficiency is shown by 
using the denseness of C0 (M) in Dom(Qt). 

We will show the necessity. We set V = div b. From the assumption, 
we take a constant M so that v~~~t2 ::::; M. Take any u E C0 (M). 
Then 

((Qt*- 8'- 1)u, .6.u)2 

= -((Qt*- 8'- 1)u, \7*\7u)2 

= -(V(Qt*- 8'- 1)u, \7u)2 

=-((::5-8' -1)\lu, \7u)2 + (u\i'V, \7u)2 
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= l8'+l ('Vu, \7u) + (v \7V Jv + 21' + 2u, Jv + 21' + 2\7u)2 + 2')' + 2 

~ l8,+1(\7u, \7u) 

- M{~ { {(V + 21' + 2)u2 dm + ~ { (V + 21' + 2)I'Vul 2} dm 
2c }M 2 }M 

~, M- ~, 
~ £8,+ 1 (\?u, \7u)- -e'"'f+l(u,u)- Mc-£'"Y+1 (\7u, \7u). 

c 

Choose c > 0 to be small so that ~lliiull2 ::::; ~£J'+l ('Vu, \7u) + lluii~­
Then 

(1- Mc-)E8,+1 (\7u, \7u) 

::::; ((Ql*- 6'- 1)u, Liu)2 + M E'"'f+l (u, u) 
c 

= ((Ql*- 6'- 1)u, Liu)2- M ((Ql* -')'- 1)u, u)2 
c 

::::; ~II(Ql*- 6' -1)ull2 + ~IILo.ull2 + M II(S2t* -')' -1)ull~ + M !lull~ 
2c- 2 2c- 2c-

::::; 2
1cii(S2t*- 6' -1)ull2 + ~£8,+ 1 (\?u, \7u) 

M M 
+!lull~+ 2c II(Ql* -')'- 1)ull~ + 2c lluii~-

Eventually we have 

1 ~, (2-Mc-)£8,+1(\?u, \7u) 

::::; ~II(S2t*- 6'- 1)ull2 + M II(S2t* -')'- 1)ull2 + (M + 1)llull~-
2c 2c 2c-

Here we take again c to be small so that the coefficient of the left hand 
side becomes positive. This inequality holds for u E C0 (M) but, us­
ing the denseness, we can see that the above inequality holds for u E 

Dom(Ql*). It brings \7u E Dom(E'). Therefore we have \72u E L 2 (m) 
and hence u E Dom( ,6.). Now bu + ~u div b E L 2 ( m) follows easily. The 
proof is completed. Q.E.D. 

§4. Construction of LP semigroup 

So far we considered the L 2 case. In this section, we will construct 
a semigroup in LP setting where 1 < p < oo. We can show it along 
the same line as before but the discussion becomes complicated. We 
consider two cases separately: p ::::; 2 and p ~ 2. In the case p ::::; 2, we 
have the following. 



450 I. Shigekawa 

Theorem 4.1. Assume conditions (A.l) and (A.2). Then, in 
£P(m) (1 < p :::; 2), the closure of (~, C0 (M)) generates a Co semi­
group. 

Proof. 

( 4.1) 

Set /p = ~~- Then, from (A.l), we have 

~ divb;::: -lp· 
p 

We first show that ~ - /p is dissipative. To do this, we take any u E 
C0 ( M) and show that 

(4.2) JM 6usgn(u)luiP-1 dm:::; 0. 

For s > 0, define ips by 

(4.3) 

Then 

<p~(t) = (t2 + s)CP/2)-1 + t(~- 1)(t2 + s)CP/2)-22t 

= (t2 + s)(p/2)-2(t2 + c + (p _ 2)t2) 

= (t2 + s)CP/2)-2((p- 1)t2 + s);::: 0. 

Therefore, we have 

JM 6u<ps(u) dm =- JM \lu<p~(u)\ludm =- JM <p~(u)IVul 2 dm:::; 0. 

Letting s---+ 0, we can get (4.2). 
Let us deal with bu. This time, we set <p(t) = IW· Then, <pis a C 1 

function and <p'(t) = psgn(t)IW-1 . Hence 

b(luiP) = b<p(u) = psgn(u)luiP- 1 bu 

and 

r busgn(u)luiP- 1 dm=~ r b(luiP)d~=-~ r luiPdivbdm. JM p}M p}M 
Combining them, we have 

JM (~- /p)usgn(u)luiP- 1 dm 

= r 6usgn(u)lulp- 1 - r (~divb+rp)luiPdm:::;O, 
jM jM P 
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which shows that 2l - "/p is dissipative. 
Next we show that its closure generates a Co semigroup. To do this, 

it suffices to show that the image of C0 (M) by 2l- a is dense in LP(m) 
for sufficiently large a. So let q be the conjugate exponent of p and 
assume that u E Lq(m) satisfies 

JM u(2l- a)<f>dm = 0, '1:/<f> E C0 . 

Our aim is to deduce u = 0 from this condition. By using the hypoel­
lipticity of the elliptic operator, we have u E C00 (M). Therefore, the 
above identity can be rewritten as 

-~ { "Vu"V<f>dm + { ub<f> =a { <f>udm, '1:/<f> E C0 . 
2}M jM jM 

It is easy to see that the above identity holds for any</> E H 1(M) with 
compact support. We now set 

1/J(t) = sgn(t)IW-1 . 

1/J is a C 1-function and 1/J'(t) = (q-l)ltlq-2 • We take</>= x'h'l/J(u) where 
Xn is a function defined by (2. 7) in Section 2. Then we have 

Q r x~'l/J(u)u dm = -~ r "V(x~'l/J(u)). "Vu dm + r ub(x~'l/J(u)) dm 
jM 2 jM jM 

=:It +12. 

We compute It, J2 respectively. As for It, 

It=-~ { "V(x~'l/J(u)) · "Vudm 
2 }M 

= -~ r {qx~-l sgn(u)lulq-l"Vxn. "Vu + (q- l)x~lulq-2 I"Vul 2 } dm 
2}M 

= _<j { QX~-l sgn(u)lulq-l"VXn · "Vu dm 
2}M 

+ (q- 1) JM X~lulq-2 I"Vul 2 dm. 

The first term of the left hand side is estimated as follows. 

~ 1/M X~-l sgn(u)lulq-l"VXn · \lu dml 

:::; ~ JM x~-llulq-li"Vxn II"Vul dm 
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Thus we have 

h :S _!!_ { xit-2 iuiq dm- {(q -1)- _!!_} { xitlulq- 2 1Vul2 dm. 4n}M 4n }M 
If we take n to be large so that ( q - 1) - -fn > 0, then we can get 

h :S 4~ JM Xh-2iulq dm. 

As for h, 

h = JM {ubxnXh- 1¢(u) + UXnb(Xit- 1¢(u))} dm 

= JM {(bxn)Xit-1iulq- b(uxn)Xit-1¢(u)- (div b)uxnxit-1¢(u)} dm 

= { {(bxn)X~- 1 iuiq- ~b(xitiuiq)- (divb)x~lulq}dm 
jM q 

= r {(bxn)xit- 1 lulq + ~ divb(xitlulq)- divbxitlulq} dm JM q 

= r {(bxn)xit- 1 iulq- (1- ~)(divb)xitlulq}dm. 
jM q 

From the assumption, bxn :::; ~ and hence 

and therefore 

h :S ~ JM Xh-liulq dm- (1- ~) JM (divb)xitlulq dm. 

Summing up both of them, we have 

a JM X~ iulq dm :::; 4~ JM xit-2iulq dm + ~ JM xit-1iulq dm 

-(1-~) r (divb)x~luiqdm. 
q jM 
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Now we take a large enough so that a- (1- ~) divb?: 1. Then 

JM X~ lulq dm :::; 4~ JM x~-2 lulq dm + ~ JM x~-1 lulq dm. 

Since u E Lq(m), by letting n-+ oo, we get 

which implies u = 0 and the proof is completed. Q.E.D. 

We can treat the case p ?: 2 similarly but we have to adopt a different 
approximation method. 

Theorem 4.2. Assume (A.l) and (A.2). Then, the closure of 
(2!, C8"(M)) generates a Co semigroup in LP(m) (p?: 2). 

Proof. 

(4.4) 

Setting /p = ~~, we have 

~ div b ?: -1P" 
p 

Let us first show that 2!-/p is dissipative. We note that for u E C8"(M), 

JM .6.usgn(u)luiP-1 dm =- JM 'Vu · 'V(sgn(u)luiP-1 ) dm 

=- JM 'Vu · ((p- l)luiP-2 'Vu) dm 

=- JM (p -l)luiP-2 I'Vul 2 dm:::; 0. 

To deal with bu, we note 

b(luiP) = bcp(u) = psgn(u)iuiP-1bu, 

and hence we have 

r '\7usgn(u)iuiP- 1 dm = ~ r b(luiP)dm = -~ r (divb)luiPdm. 
jM p}M pjM 

Therefore 

JM (2!- /p)usgn(u)luiP-1 dm 

= r .6.usgn(u)iu1P-1 dm- r (~divb+/p)luiPdm:::;O, 
jM jM p 



454 I. Shigekawa 

which shows that 2( - 'Yp is dissipative. 
Next we show that its closure generates a Co semigroup. To do this, 

we need to show that it is maximal dissipative, i.e., for large enough a, 
the image of C[f ( M) by 2(- a is dense in £P ( m). Let q be the conjugate 
exponent of p and suppose that u E Lq ( m) satisfies 

JM u(2l- a)cpdm = 0, '</¢ E Cgo. 

We need to show that u = 0. We note that, by the hypoellipticity of the 
elliptic operator, u E C 00 (M). So the above identity can be rewritten as 

-~ JM \i'u\i'cpdm + JM ubcp =a JM cpudm, '</cp E Cg". 

Further the above identity holds for ¢ E H 1 ( M) with a compact support. 
For c > 0, we set, as in (4.3), 'Pc:(t) = t(t2 + c)~- 1 . Then 'Pc: is a C1 

function and satisfies cp~(t) = (t2 + c)~-2 ((q- l)t2 +c). We again use 
Xn defined by (2.7). Taking¢= X~'Pc:(u), 

a JM xPcpc:(u) dm = -~ JM V'(X~'Pc:(u)) · \i'u dm + JM ub(x~'Pc:(u)) dm 

=: h +lz. 

We estimate h and lz respectively. As for h, 

h = -~ JM V'(X~'Pc:(u)) · \i'udm 

= -~ JM {PX~-l'Pc:(u)Y'Xn · \i'u + X~'P~(u)\i'u · \i'u} dm 

= -~ Lx~-1 'Pc:(u)Y'xn · \i'udm 

- ~ JM x~(u2 + c)~-2 ((q- l)u2 + c)IV'ul 2 dm. 

The first term is estimated as 
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= ~: JM X~- 1 juj(u2 + c)!-1 j\7uJ dm 

Mp r 1'--1 2 !l 2 1 
= 2n jMXJ Jul(u +c)4((q-1)u +c)-2 

x xi. (u2 + c):i-1 ((q- 1)u2 +c)! l\7ul dm 

::::; ~: JM {x~-2 lul 2 (u2 +c)! ((q- 1)u2 + c)-1 

+ x~(u2 + c)!-2 ((q- 1)u2 + c)l\7ul2 } dm. 

In the first term of the above integrand, 

Therefore, we have 

(q- 1)(u2 +c)! JuJ 2-q 
Julq 

q-1 

J1::::; 4n~~ 1) JM X~-1Julq dm 

- (~- ~:) JM x~(u2 + c)!-2 ((q -1)u2 + c)J\7uJ 2 dm. 

Taking n to be large enough so that ·~- ¥:;- > 0, 
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p 1 1 2 2 !1 1 1 1?_ l'.(q-1) =- x~- bxnu (u +c:) 2 - dm- b(ux.i)x..i cpg(u)dm 
q M M 

- JM x~ucpg(u) div bdm. 

In the third line, we have used the Leibniz rule which requires the dif­

ferentiability of x~-~. But this is clear since p- ~ = 1. Now, 

~ JM X~-1 bXnU2 (u2 + c)!-1 dm:::; :q /M X~- 1u2 (u2 + c;)!-1 dm 

:::; ..!!... [ xp- 1 !u!q dm 
nq JM n 

and hence, 

J2 :::; ..!!... [ x~- 1 !u!q dm- [ b(ux!)x!(q-1) cpg(u) dm 
nq}M jM 

- JMx~ucpg(u)divbdm. 

Combining both estimates of h and J2 , we have 

a JMx~ucpg(u) dm 

:::; Mp { x~-1 !u!q dm +..!!... { x~-1 !u!q dm 
4n(q -1) }M nq }M 

- JM b(ux!)x!(q-1) cpg(u) dm- JM x~ucpg(u) divbdm. 

Letting c:-+ 0, 

a JMx~!u!q dm 

:::; Mp { x~-2 !u!q dm +..!!... { x~-:- 1 !u!q dm 
4n(q- 1) }M · nq }M 

- JM b(ux!)x!(q- 1) sgn(u)lulq-1 dm- JM X~!u!q divbdm. 

Recalling 

we have 
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Thus, eventually we have 

a { x~lulq dm::; Mp { X~-2 lulq dm + _E_ { X~- 1 lulq dm 
}M 4n(q -1) }M nq }M 

- (1- ~) r (divb)x~lulq dm. 
q jM 

Taking a to be large enough so that a + (1 - i) div b ?: 1 and letting 
n--+ oo, we get 

which deduces u = 0 as desired. Q.E.D. 

We can also show the Markovian property and the £ 1 contraction 
property of the semigroup in LP setting as follows. 

Theorem 4.3. Assume (A.l) and (A.2). Then the semigroups 
{Tt} obtained in Theorem 4.1 and Theorem 4.2 satisfy the Markovian 
property. Moreover { e-2-ytTt} satisfies the £ 1 contraction property. 

Proof. Let us prove the Markovian property, which follows if we 
show the following (see Jacob [5, Lemma 4.6.6] when 1 = 0 and [12] for 
general1): 

(4.5) 

We show this inequality for u E C[f. We treat 6 and b separately. Take 
any c > 0 and define r.p10 E coo (JR;) as follows. r.p10 = c for t ::; 1 and 
r.p(t) = t- 1 for t ?: 1 + 2c. Then 

JM 6ur.p"'(u)P- 1 dm =- JM '\lu · '\l(r.p10 (u)P- 1 ) dm 

=- JM '\lu · ((p- 1)r.p10 (u)P- 2 r.p~(u)'\lu) dm 

= -(p- 1) JM 'Pc(u)P- 2 r.p~(u)IVul 2 dm::; 0. 
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Letting c ----t 0, we have 

JM 6u (u- 1)Z:- 1 dm:::; 0. 

As for b part, set <I>(t) = ~(t- 1)Z:. Then <I>'(t) = (t- 1)Z:-1 and 
hence 

JM bU'f6 (u)P- 1 dm = JM bu<I>'(u) dm 

= JM b<I>(u) dm 

=- JM(divb)<I>(u)dm 

= -~ r divb(u- 1l dm 
p}M + 

:::; 2"~ r ( u - 1 )Z: dm 
p JM 

= 2"~ II ( u - 1) + II~. 
p 

Combining both of them, we can see that ( 4.5) holds for u E C0 . The 
rest is easy if we notice that C0 is dense in Dom(2l). 

Next we show the £ 1 contraction property. It suffices to show the 
following (see [12]): 

(4.6) r (Ql- 2"f)U (u+ 1\ 1)P-1 dm:::; 2"(( ~- 1)llu+ 1\ 111~. JM p 

To show this, for any c > 0, define 'Pc by (2.13) in Section 2. Then 

JM 6u 'Pc( u )P-1 dm = - JM '\lu · '\1( 4?6 ( u )P-1) dm 

Letting c ----t 0, we have 

=- JM '\lu · ((p- 1)'f6 (u)P-Z'P~(u)'\lu) dm 

= -(p- 1) JM 'Pc(u)P-2 'P~(u)l'\lul 2 dm:::; 0. 

JM 6u (u+ 1\ 1)P-1 dm:::; 0. 

This shows the 6 part. 
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Let us treat b part. Define <I> by 

<I>(t) = {lt(vi\1)P- 1 dv, 

0, 

t2':0 

t:::; 0. 

This means that <I>(t) = -],tP for 0 :::; t :::; 1 and <I>(t) = t -1 +-], fort 2': 1. 
Then, <I>' ( t) = ( t + 1\ 1 )P- 1 and hence 

JM {bu( u+ 1\ 1)P-1 - 21u( u + 1\ 1)P-1 } dm 

= JM{bu<I>'(u)- 21u(u+ 1\ 1)P- 1}dm 

= JM {b<I>(u)- 21u(u+ 1\ 1)P-1 } dm 

=- JM {(div b)<I>(u) + 21u(u+ 1\ 1)P-1 } dm. 

From the definition of <I>, we have 

1 
-(divb)<I>(u) :S 21<I>(u) = 21u(u+ 1\ 1)P-1 + 21(- -1)(u+ 1\ 1)P 

p 

and therefore 

f {bu(u+/\1)P- 1 -21u(u+/\1)P- 1 }dm:S21(~-1) [ (u+I\1)Pdm 
jM P jM 

1 
= 21(- -1)llu+ 1\ 111~· 

p 

Combining both of them, (4.6) holds for u E C0 (M). Now, by the 
fact that C0 (M) is dense in Dom(2l.), (4.6) holds for u E Dom(2l.) and 
the proof is completed. Q.E.D. 

To determine the domain of the generator in LP setting is also an 
interesting problem. But it seems that we need a technique different 
from the L 2 case. It is left as a future problem. 

§5. Examples of non-symmetric diffusions 

We give some examples. Suppose that M = IR2 eqipped with the 
Euclidean metric. We denote the coordinates in JR2 by (x1 , x2 ). Define 
a vector field b = b1 8~1 + b2 8~2 as 

b1 = c1 + x1 b~ + x2 b~ 
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and consider the operator 2{ = ~.6 +b. Then '\lb may be represented 
with respect to the canonical coordinate as 

and therefore div b = bi + b§ and the symmetrization of '\lb is 

We easily see that all conditions (A.l), (A.2), (A.2)* (A.3), (A.4) in 
Section 2 and Section 3 are satisfied. Hence the operator 2{ generates 
a Markovian semigroup in £P(~2 , dx 1 dx2). To be precise, the closure 
of it with the domain C0 (~2 ) generates a semigroup. In £ 2 , we have 
moreover that the domain is the set of all u so that u E Dom(.6) and 
bu E £ 2 . The corresponding SDE is linear so that it can be solved 
explicitly, but, to his knowledge, the author chould not find the literature 
which gives the characterization of the generator domain. 

We can also treat the perturbation of the Ornstein-Uhlenbeck op­
erator. Here the Ornstein-Uhlenbeck operator L is defined by 

1 a 2 a 
L = .6 - X axl - X ax2 . 

In this case, we need to change the measure from the Lebesgue measure 
to the Gaussian measure f.L = 2~ exp{-((x1)2 + (x2 ) 2 )/2}dx1dx2 . If 
we take a vector field b as above, we can show that L + b generates a 
Markovian semigroup. This is not exactly within the framework of the 
previous sections, but we can show it with a minor change. 
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