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Abstract. 

This text is a presentation of the general context and results 
of [01107] and [01109], with comments on related work. The goal is 
to present a notion of Ricci curvature valid on arbitrary metric spaces, 
such as graphs, and to generalize a series of classical theorems in pos­
itive Ricci curvature, such as spectral gap estimates, concentration of 
measure or log-Sobolev inequalities. 

The necessary background (concentration of measure, curvature 
in Riemannian geometry, convergence of Markov chains) is covered in 
the first section. Special emphasis is put on open questions of varying 
difficulty. 

Our starting point is the following: Is there a common geometric fea­
ture between theN-dimensional sphere sN, the discrete cube {0, l}N, 
and the space ~N equipped with a Gaussian measure? For a start, all 
three spaces exhibit the concentration of measure phenomenon; more­
over, it is known (Dvoretzky theorem) that random small-dimensional 
sections of the cube are close to a sphere, and small-dimensional pro­
jections of either the sphere or the cube give rise to nearly-Gaussian 
measures. 

So one can wonder whether there exists a common underlying geo­
metric property. A hint is given by the Gromov-Levy theorem [Gro86], 
which states that Gaussian concentration occurs not only for the N­
dimensional sphere, but for all Riemannian manifolds of positive cur­
vature in the sense that their Ricci curvature is at least that of the 
sphere. In Riemannian geometry, Ricci curvature is the relevant notion 
in a series of positive-curvature theorems (see section 1.2). 

One is left with the problem of finding a definition of Ricci curvature 
valid for spaces more general than Riemannian manifolds. Moreover, 
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the definition should be local and not global, since the idea of curvature 
is to seek local properties entailing global constraints. A first step in 
this direction is provided by Bakry-Emery theory [BE85], which allows 
to define the Ricci curvature of a diffusion process on a Riemannian 
manifold (or equivalently, of a second-order differential operator); when 
the diffusion is the ordinary Brownian motion, this gives back usual 
Ricci curvature. When applied to the natural process on JRN associ­
ated with the Gaussian measure, this yields a positive curvature for the 
Gaussian space. 

Because the Bakry-Emery definition involves differential calculus, 
it is not readily adaptable to discrete spaces. To deal with the next 
basic example, the discrete cube, one has to drop the continuity aspect 
and deal with more "robust" or "coarse" notions that forget the small­
scale properties of the underlying space. This is similar in spirit to what 
has been done for a long time in the (very different) world of negative 
curvature, for which coarse notions such as 6-hyperbolicity and CAT(O) 
spaces have been developed. 

Such a notion can be summarized as follows [Oll07, 01109]: a metric 
space has positive curvature if small balls are closer than their centers 
are (Definition 18). Here one uses transportation distances to measure 
the distance between balls. 

It is possible to put emphasis on a random process (consistently 
with Bakry-Emery theory) and replace the ball centered at a point with 
the transition probability of a random walk. Doing so, one finds that 
the property above is equivalent to a property first introduced by Do­
brushin [Dob70, DS85] for Markov fields, and still known in the Ising 
community as the "Dobrushin criterion" (several variants of which are 
in use). The 1970 Dobrushin paper was actually the one to make trans­
portation distances known to a wider audience. 

Dobrushin's contraction property in transportation distance for Mar­
kov chains can be seen as a metric version of the more well-known Do­
brushin ergodic coefficient (see e.g. Section 6. 7.1 in the textbook [Bn399]). 
It is, by Kantorovich duality, equivalent to a Lipschitz contraction prop­
erty for a semi-group, a fundamental feature of Bakry-Emery theory. 
Under one form or the other, this property pops out sporadically in the 
Markov chain literature [CW94, Dob96, BD97, Che04, Oli], generally 
to get rates of convergence. Note its use in [DGW04] to propagate a 
strong functional inequality from local to global level (thus getting con­
centration if this inequality holds locally). More recently, in an approach 
somewhat similar to ours, Joulin uses it under the name "Wasserstein 
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curvature" to get concentration results for the time-t and invariant mea­
sure [Jou07] as well as for the empirical measure [Jou]. 

Part 1. Basics: concentration, curvature, Markov chains, 
transportation distances 

We now turn to the background material needed in this course: con­
centration of measure, curvature of Riemannian manifolds, convergence 
of discrete Markov chains, transportation distances. We will try to keep 
the exposition simple and informal. Good beginner's guides are as fol­
lows: [SchOl, Oll, LedOl, Mas07] for concentration; [DC92] or [Pet06] for 
Riemannian geometry; [Mar04, ABCFGMRSOO, DS96] for convergence 
of Markov chains; [Vil03] for optimal transport. 

§1.1. Concentration of measure 

The first occurrence of the concentration of measure phenomenon is 
generally attributed to Levy [Lev22], who noted that, in the Euclidean 
unit sphere sN of large dimension N, a neighborhood of the equator 
of size roughly 1 I ffi contains most of the mass of the sphere (for the 
natural volume measure). 

This means that if we take a function f : sN ____, ffi. which is the 
orthogonal projection on a coordinate axis, then for most points of sN 
the value of f is close to 0 (roughly up to 1 I ffi). But concentration of 
measure is much more general: indeed the above applies to any Lipschitz 
function f, not only the projection to a coordinate axis. The precise 
quantitative meaning of "most" is a Gaussian control as follows. 

Theorem 1 (Concentration on the sphere, [Lev22]). Let SN c 
ffi.N+l be the Euclidean unit sphere. Let f : sN ____, ffi. be a !-Lipschitz 
function. Then there exists a m E ffi. such that, for any t ~ 0 

t2 
v ({x E SN, if(x)- ml ~ t}):::;; 2exp- 2D 2 

where D = II J N - 1 and v is the natural measure on SN, normalized 
so that v(SN) = 1. 

Exercise 2. 
Prove the theorem. (Hint: Use the fact that, of all parts of SN with measure 
1/2, half-spheres are those that minimize the boundary length and the measure 
of their E-neighborhood. Take for m a median of f. Then use an estimate of 
J;:12 cosN- 1 (s)ds.) 
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This means that something in the geometry of the sphere forces 
Lipschitz functions to be constant. Our goal is to convince the reader 
that it is positive Ricci curvature, as suggested by the Gromov-Levy 
theorem. 

Another space on which concentration of measure occurs is the dis­
crete cube X= {0, 1}N. Equip this space with the uniform probability 
measure, which means that we pick at random a sequence of O's and 1's 
with probability 1/2. Let f : X --+~be the function which maps each 
sequence to the proportion of 1's it contains. It is well-known that f 
is "most of the time" equal to 1/2, and that the deviations behave like 
1/ VN for large N and take a Gaussian shape. But in fact, concentration 
of measure states that this happens for a much wider class of functions, 
not only the "linear" f above. 

Theorem 3 (Concentration on the cube). Let X= {0, 1}N be 
the discrete cube equipped with the uniform probability measure v. Let 
f : X --+ ~ be a function such that, whenever one digit of the sequence is 
changed, then the value off changes by at most 1/N. Then there exists 
a m E ~ such that, for any t ?= 0 

t2 
v({x EX, lf(x)- ml ?= t}) ~ 2exp - 2D 2 

where D = 1/2VN. 

The proof uses an important Laplace transform (i.e. exponential 
moments) technique which is expressed in the following lemma. 

Lemma 4 (Laplace transform). Let X be a space equipped with 
a probability measure v. Let f : X --+ ~. Assume that there exists some 
D > 0 such that, for any >. E ~ one has 

where lE denotes integration w.r.t. v. Then for any t E ~ we have 

Exercise 5. 
Prove the lemma. (Hint: Markov inequality applied to e>-f for some A..) 

Laplace transforms may appear mysterious at first glance. Observe 
that for small >. we have JEe>-Cf-Ef) = 1 + XE(f -lEf) + ~2 lE(f -JEJ)2 + 
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0(>.3 ) = 1 + Y Var f + 0(>.3 ) = e(Var f)>? l 2+°C> . .3). So the D 2 appearing 
in the assumption is a kind of "exponential variance" for f. 

Exercise 6. 
Prove the theorem. (Hint: Work on the Laplace transform estimate. For 
N = 1 this results from a Taylor expansion, and then use induction on N by 
performing the integration w .r. t. the last coordinate only.) 

This tensorization property of Laplace transforms make them a very 
convenient tool. 

The relationship between the concentration theorems on the sphere 
and cube may be formalized by turning {0, 1 }N into a metric space. Let 
us say that the distance between two length-N sequences of O's and l's 
is the number of digits to change to go from one to the other. (This 
is the graph metric on the edges of the hypercube, or the £1 metric on 
{0, l}N, also called Hammingmetric.) Then the constraint on fin the 
theorem above simply states that f is 1/N-Lipschitz. If one rescales the 
cube metric by l/N so that the diameter is 1 (for better comparison 
with the unit sphere), the constraint on f is simply to be !-Lipschitz, so 
that the theorems on the sphere and cube parallel each other very well. 

This shows why concentration is often described as a "metric mea­
sure" phenomenon, expressed in terms of Lipschitz functions. The quan­
tity Dis, in the terminology of Gromov [Gro99), the "observable diam­
eter" of the space. 

There are numerous generalizations to the theorems above. We refer 
to [LedOl, Mas07). 

Let us just mention our third basic example: JRN equipped with the 
Gaussian probability measure v( dx) = e-Nixl 2 12 j Z where Z is the nor­
malization constant. We have chosen the parameters such that lE lxl 2 = 
1, for better comparison with the unit sphere. Then the same theorem 
holds: for any !-Lipschitz function f : JRN ~ IR, deviations from the 
average are controlled by e-Nt2 

/ 2 . 

The traditional proof uses an isoperimetric inequality stating that in 
Gaussian space, among all subsets of measure 1/2, those with the small­
est neighborhoods are half-spaces. The passage from isoperimetry to 
concentration is then similar to that for the sphere above. Another proof 
is possible with Bakry-Emery theory, by using the Ornstein-Uhlenbeck 
process, which is the natural process on JRN having the Gaussian mea­
sure as its invariant distribution; actually this process has positive Ricci 
curvature in the Bakry-Emery sense. 
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§1.2. Ricci curvature of Riemannian manifolds 

Riemannian manifolds. Manifolds are the natural higher-dimensional 
generalization of curves and surfaces. Any (smooth) manifold can be 
seen as a subset of M C ~P such that, at each point x E M, there is a 
N-dimensional subspace of ~P, the tangent space TxM, such that TxM 
coincides with M around x up to a second order error. The number N 
is the dimension of the manifold. 

Note that if c(t) is a smooth curve in M, then the derivative dc(t)/dt 
is an element of the tangent space at c(t). 

It is possible to give an abstract version of this definition without 
resorting to subspaces of ~P; according to a theorem of Whitney this 
amounts to the same. 

A Riemannian manifold is a manifold equipped with a way to mea­
sure the length of tangent vectors. Namely, suppose that for each x EM 
we are given (in a smooth way) a positive definite quadratic form on the 
tangent space TxM; this consitutes a metric. (For example, if M C ~P, 

then one can take the restriction to TxM of the Euclidean structure on 
~P.) Then, if c(t) is a curve in M, we can use the quadratic form on 
Tc(t)M to define the length lldc(t)/dtll of a vector tangent to c. Hence, 
by integration, we can define the length of a curve. One can then turn 
the manifold M into a metric space by defining the distance between 
two points to be the infimum of the lengths of the curves in M between 
the two points. (If M C ~P and if we use the Euclidean structure of ~P 
as the metric, then we get the usual length for curves included in M.) 

We will always assume that our Riemannian manifolds are connected 
and complete. 

A geodesic is a curve in M such that, for any two close enough 
points on the curve, the distance between these two points is realized by 
the curve. For example, the equator and meridians are geodesics of the 
sphere, but the parallels are not. Locally, geodesics between two points 
always exist. Moreover, given a starting point x and a tangent vector v, 
there is always a geodesic starting at x with tangent vector v; it is the 
curve which "goes straight" in M starting with direction v. We will call 
endpoint of v the point obtained after following this geodesic for a unit 
time and we will denote it by expx v. 

Intuition for Ricci curvature. A central notion of Riemannian ge­
ometry is curvature. Let x EM and let v be a tangent vector at x, with 
very small norm 0 = llvll· Let y be the endpoint of v, in particular the 
distance d(x, y) is o. Let w be another tangent vector at x, with very 
small norm s; for simplicity we assume that w is orthogonal to v. Let 
w' be "the same" tangent vector as w, but with basepoint y; this can 
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be defined as the tangent vector at y whose endpoint is closest to the 
endpoint of w, with the constraint that w' be orthogonal to the geodesic 
from x to y, as w is. (Exercise: relate this to the usual definition of 
parallel transport and Levi-Civita connection.) 

~ 
_: 8 _: 

~/0(1-o2K/2) 

w' 

Now we are interested in the distance between the endpoint of w 
and that of w'. If we were in a Euclidean space, we would simply get a 
rectangle and so the length of the fourth side would be exactly 8. Now, 
consider the case of the sphere: if, say, x and y are close points on the 
equator, the geodesics issuing from x and y are meridians that meet 
at the poles. So, intuitively, in positive curvature geodesics get closer, 
and farther away in negative curvature. Using the distance between the 
endpoints of w and w' as a way to quantify this phenomenon we get: 

Proposition-Definition 7 (Sectional curvature). Let (X, d) 
be a smooth complete Riemannian manifold. Let v, w be unit tangent 
vector at x E X. Let c:, 8 > 0. Let y be the endpoint of 8v and let w' 
be the tangent vector at y obtained by parallel transport of w along the 
geodesic from x to y. Then 

d(expx c:w, expy c:w') = 8 ( 1- c:; K(v, w) + O(c:3 + c:28)) 

as (c:, 8) -t 0. Here K(v, w) is the sectional curvature in the directions 
(v,w). 

Exercise 8. 
Prove the proposition using the classical definition of sectional curvature. 

We are now ready to define Ricci curvature. 

Definition 9 (Ricci curvature). Let x be a point in a smooth 
N -dimensional Riemannian manifold, and let v be a tangent vector at 
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x. We define Ric(v), the Ricci curvature along v, as N times the average 
of K(v, w) when w runs over the unit sphere in the tangent plane at x. 

d(x, y) (1- c2 Ric /2N) on average 
··········· ... ···· .. 

The N factor comes from the fact that Ricci curvature is tradition­
ally defined as a trace, hence a sum on a basis instead of an average on 
the sphere. Moreover, generally the Ricci curvature arises as a quadratic 
form so that Ric(v) is usually denoted Ric(v, v). 

As a consequence we get (see also condition (xii) in [RS05], Theo­
rem 1.5, which uses an infimum of Ricci curvature instead): 

Corollary 10 (Transport of Riemannian balls). Let (X, d) be 
a smooth complete Riemannian manifold. Let v be a unit tangent vector 
at x EX. Let c, 8 > 0. Let y be the endpoint of 8v. 

Let Bx be the set of endpoints of the sphere of radius c in the tangent 
plane at x, and similarly for y. Then if we map Bx to Sy using parallel 
transport, on average points travel over a distance 

2 
as (c, 8) ---> 0. If we use balls instead of spheres, the {N factor becomes 

£2 

2(N+2) · 

This is the characterization of Ricci curvature we will use in more 
general spaces. 

Finally, let us mention, for the record, another visual characteriza­
tion of Ricci curvature. Consider once again a point x E M and a unit 
tangent vector v at x. Consider a very small neighborhood C of any 
shape around x. For each point z of C, throw a geodesic Zt starting 
at z with initial direction v (where v has been moved from x to z by 
parallel transport). As we have seen, on average these geodesics tend to 
get closer or farther away from the geodesic starting at x, according to 
the sign of curvature. Let Ct be the set obtained by "gliding" C along 
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these geodesics for a time t, i.e. the union { Zt, z E C}. In particular 
C=Co. 

Then we have (Exercise) 

volCt = volC (1- t; Ric(v) +smaller terms) 

so that Ricci curvature controls the evolution of volumes under the ge­
odesic flow. (Note that the derivative of vol Ct is 0 for t = 0 because we 
choose geodesics with parallel initial speeds.) 

Theorems in positive Ricci curvature. A lot of positive curvature 
theorems in Riemannian geometry take the form of a condition on Ricci 
curvature, compared to the reference positively curved space SN. Let 
us mention a few of them, which will serve as benchmarks for general 
notions of Ricci curvature. The sentence "the Ricci curvature is at least 
that of SN" means that for each unit tangent vector v, the value Ric(v) 
is at least that obtained on a unit sphere (namely N -1). By comparing 
to a sphere of different radius and rescaling, the same bounds apply 
whenever Ricci curvature is bounded below by any positive number. 

Theorem 11 (Bonnet-Myers). Let M be anN -dimensional Rie­
mannian manifold. Suppose that the Ricci curvature of M is at least that 
of SN. Then the diameter of M is at most that of SN. In particular M 
is compact. 

Theorem 12 (Lichnerowicz). Let M be an N- dimensional Rie­
mannian manifold. Suppose that the Ricci curvature of M is at least 
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that of SN. Then the first non-zero eigenvalue of the Laplace-Beltrami 
operator on M is at least that of sN. 

Theorem 13 (Gromov-Levy). Let M be anN-dimensional Rie­
mannian manifold. Suppose that the Ricci curvature of M is at least 
that of SN. 

Let A c M, and let A' C SN be a ball of radius r around some point 
of sN, where r is such that vol Aj vol M = volA' j vol sN. 

Then for any c ~ 0 one has 

vol Ac, volA~ -->--­
volM ""volSN 

where Ae is the set of points at distance at most c from A. 
In particular, if A has smooth boundary then 

volN-18A volN-18A' 
_v_o_l_M __ ~ vol SN 

This means that relative volume growth in M is faster than in sN. 
(Note that absolute volume growth is slower.) 

Remember how we proved concentration of measure on SN: a 1/ ffi­
neighborhood of a hemisphere contains almost all the mass. The Gromov­
Levy theorem implies that the same happens in any manifold with pos­
itive Ricci curvature. So we get 

Corollary 14 (Concentration in positive Ricci curvature). 
Let M be an N -dimensional Riemannian manifold. Suppose that the 
Ricci curvature of M is at least that of SN. Let f : M --+ R be a 
1-Lipschitz function. Then there exists a m E R such that, for any t ~ 0 

t2 
v({xESn, lf(x)-ml~t})~2exp- 2D2 

where D = 1/v'N- 1 and v is the natural measure on M, normalized 
so that v(M) = 1. 

Let us now mention some aspects of the tools developed by Bakry 
and Emery. Remember that the heat equation %f = !lf, where A is the 

Laplace-Beltrami operator generalizing the usual Laplacian 2:: ~'de­
fines a semi-group of operators (Pt)t;;;.o acting on, say, smooth fun~tions 
on a Riemannian manifold. 
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Theorem 15 (Bakry-Emery). Let M be anN-dimensional Rie­
mannian manifold. Suppose that the Ricci curvature of M is at least 
K > 0. Let (Pt)t)O be the heat equation semigroup on M. 

Then for any t ~ 0 and any smooth function f : M -+ JR: 

(i) supM IIV'Ptfll ( e-Kt supM IIVfll, 
(ii) IIV'Ptfll (x) ( e-Kt(Pt IIV fll)(x), 

(iii) Entf := J flog j1 dv ( 2k J IIV? 2 dv, f > 0, 

where as usual v is the normalized Riemannian volume on M. 

The first inequality states that the Lipschitz norm is exponentially 
decreasing under the heat equation. The second, more precise inequality 
states that the norm of the gradient at point x at time t is controlled 
by the average around x of the initial norm of the gradient. The third 
inequality is a so-called logarithmic Sobolev inequality; in this survey we 
will not say much about them, but there are deep links between concen­
tration of measure, convergence of Markov chains or heat kernels, and 
these log-Sobolev inequalities [ABCFGMRSOO]. (Compare the Poincare 
inequalities mentioned below.) 

The Bonnet-Myers theorem can be found in any textbook on Rie­
mannian geometry. A probabilistic proof of the Lichnerowicz theo­
rem using couplings of Brownian motions can be found, for example, 
in [Hsu02] (Theorem 6.7.3). The Gromov-Levy theorem is proven in 
[Gro86] (see also e.g. [Pet06]) and Bakry-Emery theory can be found in 
[BE85]. Actually the concentration of measure part of the Gromov-Levy 
theorem is a consequence of the logarithmic Sobolec inequality, though 
this was not clear at the time. 

§1.3. Markov chains and their convergence 

We present here basic results on Markov chains and their conver­
gence. We refer the reader to [Mar04], [ABCFGMRSOO], [DS96] for ap­
proaches focusing on convergence rates, especially in the discrete case. 
The presentation here is partially inspired by Laurent Veysseire's mas­
ter's dissertation. 

Random walks. Let X be a, say, Polish space (i.e. metrizable, sep­
arable, complete; this ensures a good behavior of measure theory). A 
Markov chain kernel, or random walk, on X is the following data: for 
each x EX, let mx be a probability measure on X (and we assume that 
the measure mx depends on x in a measurable way). The Markov chain 
jumps from a point x to a random point picked according to mx. The 
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n-step transition probability is given by 

where of course m~1 := mx. 
The Markov chain defines an operator on the set of (non-negative) 

measures on X: if f-L is a measure then we define the measure f-L * m by 

d(f.L * m)(y) := 1 df-L(x) dmx(Y) 
xEX 

which describes, given an initial mass distribution, what is the new mass 
distribution after a jump. Note that mass is preserved: (f.L * m)(X) = 
f.L(X). 

In a dual way, the Markov chain defines an operator M on bounded 
functions on X by 

(Mf)(x) := 1 f(y) dmx(Y) 
yEX 

and we check the duality I Mf df-L =If d(f-L*m), at least formally. Note 
that Mn f ( x) describes the expected value off at the endpoint of n steps 
of the random walk. In particular, if f is constant then Mf = f. Also 
note that sup Mf ~ sup f. 

A measure f-L is said to be invariant if f-L * m = f-L· A measure 
f-L is said to be reversible if df.L(x) 0 dmx(Y) = df.L(Y) 0 dmy(x) as a 
measure on X x X. One checks that a reversible measure is invariant, 
but reversibility describes a "local equilibrium" property much stronger 
than invariance, namely that, under the initial mass distribution f-L, the 
"flow" from x to y is equal to that from y to x. 

If v is an invariant measure, then conservation of mass reads 
IMfdv =I fdv. 

Convergence to equilibrium, spectral gap and Poincare inequalities. 
From now on we suppose that v is an invariant probability measure 
i.e. such that v(X) = 1. We denote integration under v by E. Two 
natural questions arising in the theory and practice of Markov chains 
are: Starting at a given point x E X, how many steps are necessary 
so that the law of the endpoint is close to the invariant distribution? 
Given a function f : X ---+ IR:., how close to JEf is the empirical average 
~ L.'[=l f(xt) where the xt's are the steps of the random walk? 

We will explain here the spectral answer to the first question. We 
will come back to empirical measures in section 2.3.4. 
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In practice, the most widely used criterion to compare probability 
measures is the total variation distance 

IIJ-L- 1-l'IITv := sup IJ-L(A)- /-l'(A)I = _21 r diJ-L- p/1 = _2111ddf-l, -111 
AcX lx f-l U(p/) 

(whenever the latter makes sense). The first expression given justifies 
the interest, since it controls the worst error on all possible bets on the 
result. 

What we want to control is llm~t- vii Tv· It is often more convenient 
to work in £ 2 than in £ 1 . Let us work for a moment with functions 
instead of measures. Let L6(v) be the quotient of L 2 (v) by the constant 
functions; the norm on L6 is variance under v: 

llfll~5 = II!- Efll£2 = Varv f = ~ j j (f(x)- f(y)) 2 dv(x)dv(y). 

One then checks (Exercise) the associativity of variances property: 

11!11 2 = IIMJII 2 + j (Varmx f) dv(x) 

and similarly 

Varv f = Varv Mf + j (Varmx f) dv(x) 

where Varmx denotes variance under the measure mx. This formula 
describes the "smoothing" effect of the averaging operator; it means in 
particular that M is a non-expanding operator on L 2 (v). 

The consequence for convergence of measures is the following. Let 
L6*(v) be the set of 0-mass signed measures on X having an £ 2 den­
sity w.r.t. v (i.e. the set {fv, f E L6(v)} ). Then the duality formula 
J Mf df-l = J f d(f-l * m) states that convolution by m on L6* (v) is the 
dual operator to M. In particular, the operator norm of M* on L6* ( v) is 
equal to that of M on L6(v), since both are equal to sup{f Mf df-l, f E 

L6, 11!11 :s; 1, f-l E £6*, IIJ-LII :s; 1}. 
Assume for a moment that X is discrete, so that the Dirac measure 

bx has a density w.r.t. v (or that, instead of starting exactly at x, we 
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start with an initial distribution having a density w.r.t. v). We can write 

II dm~t - 111 ~ II dm~t -111 -II dm~t - 111 
dv £l(v) "" dv L 2 (v) - dv L5(v) 

= jjm;t- vjjL5*(v) 

:::;; ll8x- viiL5*(v) IIM*II~5*(v)---+L5*(v) 
l-v(x) IIMIIt 
~ L5(v)--+L5(v) · 

Remember the formula above Varv f = Varv Mf+ J(Varm., f) dv(x). 
If we knew that, for any function f, the quantity J(Varm., f) dv(x) rep­
resents at least some proportion a of Varv f, then we would know that 
Varv Mf :::;; (1 - a) Varv f and so IIMIIL5(v)---+L5(v) :::;; .vr-=-a. Setting 
1 - A = J1 - a, what we have shown is 

Proposition 16 (Poincare inequality 1}. The norm of the op­
erator M on L~(v) is at most 1- A if and only if the inequality 

Varv f :::;; .A(2 ~ .A) j Varm., f dv 

holds for any function f E L~(v). 
In particular, in this case for any x EX with v(x) > 0 we have 

jjm;t- vjJTv:::;; ~Jl:'fl/) (1- .A)t. 

Such an inequality is (a variant of) a Poincare inequality. It ex­
presses the fact that the global variance off is controlled by the local 
variations Varm., f. 

Note that the J1/v(x) factor is sometimes detrimental in applica­
tions, even in very simple examples. For example, using this method on 
the (lazy) simple random walk on the discrete cube { 0, 1 }N yields mixing 
time estimates of O(N2 ) because here 1/v(x) = 2N, instead of the cor­
rect O(NlnN) (Exercise). We will see that the coarse Ricci curvature 
method allows to recover O(N ln N) very easily. 

Continuous time. One can define a continuous-time analogue of the 
situation above, by deciding that in each time interval dt, the random 
walk has a probability dt to jump from the point x to a new point picked 
according to mx. This amounts to taking an "infinitely lazy" random 
walk and then speeding up time. Namely, we replace M with 

Mt := lim ( (1 - c;) ld +c:M)tfe = et(M-Id) 
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which converges as an operator on L 2(v) since IIMII ~ L 
The new transition probabilities at time t are given by 

tk 
dp;(y) = Le-t k! dm;t(y) 

kEN 

i.e. the number of jumps in time t is Poissonian with parameter t. 
In this situation it is nice to work with the Laplace operator 

6. :=M-Id 

357 

which is the discrete analogue of the Laplacian L: ~. 
In analogy with the above, we want to study th~ operator norm of 

etD.. on L~(v). One can check (Exercise) that 

dd Varv(etD..f) = 2(!,6.f)L2(v) =- !r { (f(y)- f(x)) 2 dv(x)dmx(Y) 
tjt=O o j 

where the last term is called the Dirichlet form associated with the 
random walk. 

Once more, if we knew that the right-hand-side represents at least 
some fraction a of Varv f, then we would know that Varv(etD.. f) de­
creases at least exponentially with rate a. What we have proven is 

Proposition 17 {Poincare inequality 2). The inequality 
Varv(etD..f) ~ e-2>.tvarvf holds for any f E L 2 (v) if and only if 

Varv f ~ 2\ I I (f(y)- f(x)) 2 dv(x)dmx(Y) 

holds for any function f E L 2 (v). 
In particular, in this case for any x EX with v(x) > 0 we have 

II t II _..- 1 Jl-v(x) ->.t Px - v TV ::::::: 2 v(x) e · 

This is the standard form of the Poincare inequality. The best value 
of A is called the spectral gap. The spirit is the same as the one above: 
both Varm, f and j(f(y)- f(x)) 2 dmx(Y) quantify the variations off 
around x. 

The reversible case. One checks that the invariant measurev is re­
versible if and only if the operator M is self-adjoint in L 2 (v). In this 
case, we have the duality formula 

(fv) * m = (Mf)v 
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meaning that the evolution of measures is the same as the evolution 
of their density functions w.r.t. v. In that case, the operator M has a 
real spectrum, included in [-1; 1], and .6. is a negative operator. The 
Poincare inequality then states that the spectrum of .6. on L5(v) is con­
tained in [-2, -A], hence the name spectral gap. Estimation of the spec­
tral gap is easier in the reversible case, since the operator norm of M is 
equal to its spectral radius, which may be easier to compute. 

The case of diffusions. If X is a Riemannian manifold, one can take 
for mx the volume measure restricted to the ball of radius c around X. 
Then, the discrete Laplace operator of the random walk is an approxi-

2 
mation of 2(~+2) times the Laplace-Beltrami operator of the manifold, 
and so the random walk will approximate Brownian motion and the 
heat equation. In this case for a smooth function f both Varm., f and 
f(f(y) - f(x)) 2 dmx(Y) approximate IIY' fll 2 (up to scaling), and the 
Poincare inequality reads Var f ~ t J IIY'fll2. 

§1.4. Transportation distances 

Transportation distances answer the following question: One wants 
to move a heap of sand from an initial position to a prescribed new 
position, in a cost-effective way, meaning that we want grains of sand 
to travel over the smallest possible distance. We refer to the excel­
lent [Vil03] or [Vil08]. 

This situation is formalized as follows: Let f.Ll, J.L2 be two measures 
on a metric space X with the same total mass. A transference plan 
from f.L1 to J.L2 is a measure~ on X x X such that JY~(x,y) = dJ.L1 (x) 
and fx d~(x, y) = df.L2(y). Here ~(x, y) represents the quantity of sand 
travelling from x to y, and the two constraints ensure that we indeed 
start with measure f.Ll and end up with measure f.L2· Let II(J.L1> J.L2) be the 
set of transference plans from f.Ll to J.L2 (also called couplings between f.Ll 
and f.L2). 

The £ 1 transportation distance (or Kantorovich-Rubinstein distance) 
between f.Ll and J.L2 is the best average travel distance that can be 
achieved. It is defined as 

In general this is only a semi-distance, as it may be infinite. The 
triangle inequality requires the so-called "gluing lemma" (composition 
of couplings), which technically imposes that X be Polish. This quantity 
defines a genuine distance when restricted to the set of those probability 
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measures J.-t with finite first moment i.e. such that J d( o, x) df.-t < oo for 
some (hence any) o E X. 

Wasserstein distances are a generalization obtained by optimizing 
d(x, y)P instead of d(x, y), for some p ~ 1. 

The only property of transportation distances we shall use is Kan­
torovich duality. It states that 

Wl(f.-tl,f.-t2) = sup jtdJ.-tl -jfdf.-t2 
f:X-+JR 

f 1-Lipschitz 

and the supremum can also be restricted to bounded !-Lipschitz functions. 
The fact that the variation of the integral of a 1-Lipschitz function is 

bounded by the transportation distance is easy. The converse direction 
is not at all trivial. A non-constructive proof using minimax princi­
ples for convex functions is given in [Vil03], whereas a somewhat more 
constructive approach is taken in [Vil08]. 

Part 2. Discrete Ricci curvature 

§2.1. Definition and examples 

We now have all the necessary ingredients to define a coarse version 
of Ricci curvature, as presented in [Oll07, Oll09]. Remember that, in 
Riemannian manifolds, the value of Ricci curvature can be recovered by 
comparing the average distance between two small balls to the distance 
between their centers (Corollary 10). We use this characterization in 
more general spaces: we will say that coarse Ricci curvature is positive 
if balls are closer than their centers are in transportation distance. The 
difference gives the value of coarse Ricci curvature. 

The notion of "small ball" depends on what is relevant in the situ­
ation considered. For example, in a graph it might be natural to take 
balls of radius 1, whereas in a manifold arbitrarily small balls are the 
natural choice. This allows for a definition of Ricci curvature "at a given 
scale". For example, the Earth is a reasonable approximation of an el­
lipsoid up to a scale of a dozen kilometers; the definition below allows 
to compute the Ricci curvature of the Earth at this scale and compare 
it to the ellipsoid. 

So, to allow for a more general treatment, we will assume that for 
each point x in our space X, a probability measure mx on X is given, 
which represents a "ball" of our own choosing around x. Of course, this 
is exactly the same data as a Markov chain. 

Moreover, in Riemannian manifolds Ricci curvature is defined for a 
tangent vector. In more general spaces, the best we can do for a tangent 
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vector is a pair of close points. (The meaning of "close" is made precise 
by Exercise 22 below.) 

xe~ 

i~m, 
,:' ~: : . .:' /(1-i'i:)d(x,y) 
· . on average 

y • _________./ ... 

my 

'EF-,y) 
Definition 18 (Coarse Ricci curvature). Let (X, d) be a metric 

space, endowed with a family (mx)xEX of probability measures on X. 
Let x, y be two points in X. The coarse Ricci curvature "'(x, y) of X 
along xy is defined by the relation 

where wl is the L 1 transportation distance. 

The hidden technical assumptions are the following: X should be 
Polish; the measure mx should depend measurably on x E X; each mx 
should have finite first moment (see section 1.4). 

Definition 19 (e:-step random walk). Let (X, d, f-L) be a metric 
measure space, and assume that balls in X have finite measure and 
that Supp f-L = X. Choose some E > 0. The E-step random walk on 
X, starting at a point x, consists in randomly jumping in the ball of 
radius E around x, with probability proportional to f-Li namely, mx = 

f-LIB(x,ro)/ f-L(B(x, c)). (One can also use other functions of the distance, 
such as Gaussian kernels.) 

Maybe the most fundamental example is the following. 

Exercise 20 (Discrete cube). 
Let {0, 1 }N be the discrete cube equipped with its L1 metric and uniform 
probability measure. Compute the coarse Ricci curvature of the 1-step 
random walk for a pair of points x, y at distance 1. 

Next, we did everything so that in Riemannian manifolds, we get the 
correct value of Ricci curvature up to some scaling (and up to checking 
that parallel transport between balls is indeed an optimal coupling up 
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to higher-order terms). See also condition (xii) in [RS05], Theorem 1.5, 
which uses an infimum of Ricci curvature instead. 

Exercise 21 (Riemannian manifolds). 
Let (X, d) be a smooth complete N-dimensional Riemannian manifold. 
Equip it with the c:-step random walk, for c: small enough. 

Let x, y EX with d(x, y) small enough, and let v be the unit tangent 
vector at x on the geodesic from x to y. Then 

( ) c:2 Ric( v) ( 3 2 
"' x, y = 2(N + 2) + 0 c: + E d(x, y)). 

The c: 2 factor reflects the fact that Riemannian manifolds are locally 
Euclidean up to second order. 

In both these cases, we have computed curvature only for "close" 
points x, y. This is justified by the following simple yet very useful 
property. 

Exercise 22 (Geodesic spaces). 
Suppose that (X, d) is a-geodesic in the sense that for any two points 
x, y E X, there exists an integer n and a sequence x0 = x, x 1 , ... , Xn = y 
such that d(x,y) = _Ld(xi,Xi+I) and d(xi,xi+I) ~a. 

Then, if "'(x, y) ~ "' for all pairs of points with d(x, y) ~ a, then 
"'(x, y) ~ "'for all pairs of points x, y EX. 

For example, a graph is 1-geodesic, and a Riemannian manifold is 
a-geodesic for any a > 0: in both cases, this is the very definition of the 
distance. 

This property is to be kept in mind in the next series of examples. 

Exercise 23 (ZN and ~N). 
Let m be the simple random walk on the graph of the grid zN equipped 
with its graph metric. Then for any two points x, y E zN, the coarse 
Ricci curvature along (xy) is 0. 

This example generalizes to the case of zN or ~N equipped with any 
distance and random walk which are translation-invariant. For example, 
the triangular tiling of the plane has 0 curvature, as well as ~N equipped 
with an £P norm. 

Our last basic example was ~N equipped with a Gaussian measure. 
Following the spirit of Bakry-Emery theory, we use (a discretization of) 
the natural random process having a Gaussian measure as its invariant 
distribution, namely the Ornstein-Uhlenbeck process. 
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Exercise 24 (Ornstein-Uhlenbeck process). 
Let s ): 0, a > 0 and consider the Ornstein-Uhlenbeck process in JRN 
given by the stochastic differential equation 

dXt = -aXt dt + s dBt 

where Bt is a standard N-dimensional Brownian motion. The invariant 
distribution is Gaussian, of variance s2 /2a. Let ot > 0 and let the 
random walk m be the flow at time ot of the process. Explicitly, mx is 
a Gaussian probability measure centered at e-oultx, of variance s2 (1-
e-2odit)/2a rv s2 ot for small ot. 

Then the coarse Ricci curvature t>,(x,y) of this random walk is 1-
e-arSt "' aOt, for any two X, y E JRN. 

On Riemannian manifolds this generalizes as follows. 

Exercise 25 (Ricci curvature a Ia Bakry-Emery). 
Let X be an N -dimensional Riemannian manifold and F be a tangent 
vector field. Consider the differential operator 

1 
L:=-.6.+F·\7 

2 

associated with the stochastic differential equation 

dXt = Fdt + dBt 

where Bt is the Brownian motion in X. The Ricci curvature (in the 
Bakry-Emery sense) of this operator, applied to a tangent vector v is 
~ Ric(v, v)- v · VvF. 

Consider the Euler approximation scheme at time ot for this sto­
chastic equation, which consists in following the flow of F for a time Ot 
and then randomly jumping in a ball of radius J(N + 2)0t. 

Let x, y EX with d(x, y) small enough, and let v be the unit tangent 
vector at x on the geodesic from x toy. Then 

"'(x,y) = ot (~ Ric(v,v)- v · VvF + O(d(x,y)) + O(vftft)) 
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X 

v i d(x,iy) + 8t v · (Fy- Fx) . . 

i d(x',y') (1- &Ric(v,v)/2) 
y on average 

Let us explain the normalization: Jumping in a ball of radius c 
generates a variance c2 N ~2 in a given direction. On the other hand, the 
N-dimensional Brownian motion has, by definition, a variance dt per 
unit of time dt in a given direction, so a proper discretization of Brownian 
motion at time 8t requires jumping in a ball of radius c = J(N + 2)8t. 
Also, as noted in [BE85], the generator of Brownian motion is·~ .0. instead 
of .0., hence the ~ factor for the Ricci part. 

Maybe the reason for the additional -v · 'VvF in Ricci curvature a la 
Bakry-Emery is made clearer in this context: it is simply the quantity 
by which the flow of F modifies distances between two starting points. 

It is clear on this example why reversibility is not fundamental in this 
theory: the antisymmetric part of the force F generates an infinitesimal 
isometric displacement. Combining the Markov chain with an isometry 
of the space has no effect whatsoever on our definition. 

Exercise 26 (Multinomial distribution). 
Consider the set X = { (xo, x1, ... , xd), Xi E N, E Xi = N} viewed as 
the configuration set of N balls in d + 1 boxes. Consider the process 
which consists in taking a ball at random among the N balls, removing 
it from its box, and putting it back at random in one of the d + 1 
boxes. More precisely, the transition probability from (xo, ... , xd) to 
(xo, ... ,xi -1, ... ,Xj + 1, ... ,xd) (with maybe i = j) is xdN(d+ 1). 
The multinomial distribution (d+l)~! I1 x;! is reversible for this Markov 
chain. 
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Equip this configuration space with the metric d((xi), (xD) := 
~I: lxi- x~l which is the graph distance w.r.t. the moves above. The 
coarse Ricci curvature of this Markov chain is 1/N. 

Exercise 27 (Binomial and Poisson distributions). 
Consider the discrete cube {0, 1 }N equipped with the following continuous­
time random walk: during a time interval Ot, each digit 0 has a prob­
ability p 8t of becoming a 1 and each digit 1 has a probability q 8t of 
becoming a 0. What is the coarse Ricci curvature of (a small-time dis­
cretization of) this random walk? 

A particularly interesting case is when N-+ oo and p = >..jN, q = 1. 
Then the number of 1 's asymptotically follows a Poisson law of parame­
ter >..; the random walk "projected" on N by considering only the number 
of 1's tends to the so-called M/M/oo process on N. 

The next example relates our definition to a traditional generaliza­
tion of negative sectional curvature. Although negative Ricci curvature 
is generally not very useful in Riemannian geometry, it is nice to see 
that at least the definition is consistent. (This exercise requires good 
knowledge of 8-hyperbolic geometry.) 

Exercise 28 (a-hyperbolic groups). 
Let X be the Cayley graph of a non-elementary 8-hyperbolic group with 
respect to some finite generating set. Let k be a large enough integer 
(depending on the group) and consider the random walk on X consisting 
in performing k steps of the simple random walk. Let x, y E X. Then 
K(x, y) =- d(~~y) (1- o(1)) when k and d(x, y) tend to infinity. 

Note that -2k/d(x, y) is the smallest possible value for K(x, y), 
knowing that the steps of the random walk are bounded by k. The 
argument applies to trees or discrete 8-hyperbolic spaces with a uniform 
lower bound on the exponential growth rate of balls as well. 

Exercise 29 (Glauber dynamics for the Ising model). 
Let G be a finite graph. Consider the configuration space X:= { -1, 1}0 

together with the energy function U(S) :=- Lx~yEG S(x)S(y)-h Lx S(x) 
for S E X, where h E ~ is the external magnetic field. For some 
(3 3 0, equip X with the Gibbs distribution J.t := e-f3Ujz where as usual 
Z := Ls e-f3U(S). The distance between two states is defined as the 
number of vertices of G at which their values differ. 

ForSE X and x E G, denote by Bx+ and Bx- the states obtained 
from S by setting Bx+ ( x) = + 1 and Bx- ( x) = -1, respectively. Consider 
the following random walk on X (known as the Glauber dynamics): at 
each step, a vertex x E G is chosen at random, and a new value for S ( x) 
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is picked according to local equilibrium, i.e. S(x) is set to 1 or -1 with 
probabilities proportional to e-f3U(S,+) and e-f3U(S,_) respectively (note 
that only the neighbors of x influence the ratio of these probabilities). 
The Gibbs distribution is reversible for this Markov chain. 

Then the coarse Ricci curvature of this Markov chain is at least 

1 ( ef3- e-!3) 
TGT 1 - Vmax ef3 + e-!3 

where Vmax is the maximal valency of a vertex of G. In particular, if 

(3 < ~ ln (Vmax + 1) 
2 Vmax -1 

then curvature is positive. Consequently, the critical (3 is at least this 
quantity. 

This estimate for the critical temperature coincides with the one 
derived in [Gri67]. Actually, our argument generalizes to different set­
tings (such as non-constant/negative values of the coupling Jxy between 
spins, or continuous spin spaces), and the positive curvature condition 
for the Glauber dynamics exactly amounts to the well-known one-site 
Dobrushin criterion [Dob70] (or to G(f3) < 1 in the notation of [Gri67], 
Eq. (19)). By comparison, the exact value of the critical (3 for the 

Ising model on the regular infinite tree of valency v is ~ ln ( v~2 ), which 
shows asymptotic optimality of this criterion. When block dynamics 
(see [Mar04]) are used instead of single-site updates, positive coarse 
Ricci curvature of the block dynamics Markov chain is equivalent to the 
Dobrushin-Shlosman criterion [DS85]. 

Positive curvature in our sense implies several properties, especially, 
exponential convergence to equilibrium, concentration inequalities and a 
modified logarithmic Sobolev inequality. For the Glauber dynamics, the 
constants we get in these inequalities are essentially the same as in the 
infinite-temperature (independent) case, up to some factor depending 
on temperature which diverges when positive curvature ceases to hold. 
This is essentially equivalent to the main results of the literature under 
the Dobrushin-Shlosman criterion (see e.g. the review [Mar04]), but may 
be a quick way to prove them. Note that in our setting we do not need 
the underlying graph to be 7J.,N. 

Exercise 30. 
Make precise comparisons between the results obtained on Ising-like 
models using theorems on positive discrete coarse Ricci curvature, and 
the results from the literature. 
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We end this series of examples by asking for new ones. 

Problem A (Log-concave measures). 
We have seen that coarse Ricci curvature is positive for JRN equipped 
with a Gaussian measure, and this generalizes to smooth, uniformly 
strictly log-concave measures. What happens for a general log-concave 
measure? The next example would be a convex set (whose boundary has 
"positive curvature" in an intuitive geometric sense), with the associated 
process a Brownian motion conditioned not to leave the convex body. 

Problem B (Finsler manifolds). 
We have seen that coarse Ricci curvature is 0 for JRN equipped with 
an £P norm. Does this give anything interesting in Finsler manifolds? 
(Compare [Oht] and [OS].) 

Problem C (Nilpotent groups). 
We have seen that curvature of 71P is 0. What happens on discrete or 
continuous nilpotent groups? 

For example, on the discrete Heisenberg group ( a, b, c I ac = ca, be = 
cb, [a, b] = c), the natural discrete random walk analogous to the hy­
poelliptic diffusion operator on the continuous Heisenberg group is the 
random walk generated by a and b. Since these generators are free up to 
length 8, clearly coarse Ricci curvature is negative at small scales, but 
does it tend to 0 at larger and larger scales? 

§2.2. Elementary properties 

We leave here as exercices a series of simple properties associated 
with positive coarse Ricci curvature. We say that coarse Ricci curvature 
is at least K if for any pair of points x, y EX we have K(x, y) ~ K. 

The first such result shows that our notion is a direct generalization 
of one of the results of Bakry and Emery in positive Ricci curvature 
(part (i) of Theorem 15 above). This was actually suggested in [RS05]. 

Exercise 31 (Lipschitz norm contraction). 
Coarse Ricci curvature is at least K if and only if the random walk 
operator M maps 1-Lipschitz functions to (1 - K)-Lipschitz functions. 
(Hint: One direction is easy; use Kantorovich duality for the other.) 

Statements equivalent to the following proposition also appear in 
[Dob70] (Theorem 3), in [Dob96] (Proposition 14.3), in the second edi­
tion of [Che04] (Theorem 5.22), in [DGW04] (in the proof of Proposi­
tion 2.10) and in [Oli]. 
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Exercise 32 (W1-contraction). 
Coarse Ricci curvature is at least li if and only if the random walk acting 
on the space of probability measures with finite first moment, equipped 
with the £ 1 transportation distance, is a (1 - ~i)-contraction. (Hint: 
First check that this space is stable under the random walk action, then either 
use Kantorovich duality or the fact from [Vil08] that optimal couplings can be 
chosen in a measurable way.) 

Corollary 33 (Convergence). Suppose that coarse Ricci curva­
ture is at least li > 0. Then there exists a unique invariant probability 
measure v. Moreover, for any probability measure p, we have 

and, for x EX, 

The latter estimate is sometimes very useful because W1 ( 8x, mx) 
(the "jump" of the random walk at x) is often readily accessible. 

Exercise 34. 
Use this to prove an O(N ln N) estimate for mixing time of the lazy 
simple random walk on the discrete cube (in comparison with the O(N2 ) 

from the Poincare inequality). 

Exercise 35 (Composition). 
Let X be a metric space equipped with two random walks m = (mx)xEX, 
m' = ( m~) xEX. Suppose that the coarse Ricci curvature of m ( resp. m') 
is at least li (resp. 1i1). Let m" be the composition of m and m', i.e. the 
random walk which sends a probability measure p, to p, * m * m'. Then 
the coarse Ricci curvature of m" is at least li + li1 - lili1• 

Exercise 36 (Superposition). 
Let X be a metric space equipped with a family (m(i)) of random walks. 
Suppose that for each i, the coarse Ricci curvature of m(i) is at least 
Iii. Let (ai) be a family of non-negative real numbers with I; ai = 1. 
Define a random walk m on X by mx := I; aim~i). Then the coarse 
Ricci curvature of m is at least I; ailii· 

Exercise 37 (£1 tensorization). 
Let ((Xi, di))iEI be a finite family of metric spaces and suppose that 
Xi is equipped with a random walk m(i). Let X be the product of the 
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spaces Xi, equipped with the distanced:= L: di. Let (ai) be a family 
of non-negative real numbers with L: ai = 1. Consider the random walk 
m on X defined by 

Suppose that for each i, the coarse Ricci curvature of mCi) is at 
least "'i· Then the coarse Ricci curvature of m is at least inf ai"'i· (The 
"infimum" aspect is clear: if some component mixes very badly or not 
at all, then so does the whole process.) 

We close this section with an open problem. In several examples 
above, the natural process was a continuous-time one. When the space 
is finite or compact, or when one has good explicit knowledge of the 
process (as for Ornstein-Uhlenbeck on ~N), discretization works very 
well, but this might not be the case in full generality. 

Problem D (Continuous-time). 
Suppose a continuous-time Markov semigroup (m~)xEX,tEil~+ is given. 
One can define a coarse Ricci curvature in a straightforward manner as 

( ) ._ 1 .. f~ d(x,y)-W1(m~,mt) Kx,y .- 1mm d( ) 
t-+O+ t X, y 

but then, in the proofs of the elementary properties above, there arise 
non-trivial issues of commutation between limits and integrals, especially 
if the generator of the process is unbounded. Is this definition, combined 
with some assumption on the process (e.g. non-explosion), enough to get 
all the properties above in full generality, for both diffusions and jump 
processes? Given an unbounded generator for the process, is positivity of 
the K(x, y) above enough to ensure non-explosion? (One could directly 
use the Lipschitz norm contraction as a definition [RS05, Jou07], but 
first, this is not a local criterion, and second, it only defines a lower 
bound on Ricci curvature, not a value at a given point.) 

§2.3. Results in positive coarse Ricci curvature 

2.3.1. More notation 

Before stating the theorems, we need two more definitions which 
capture coarse analogues of the diffusion constant and dimension of the 
space. Here, as above, we consider a metric space (X, d) equipped with 
a random walk ( mx )xEX. 
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Definition 38 (Diffusion constant). Let the (coarse) diffusion 
constant of the random walk at x be 

and, if v is an invariant distribution, let 

(J := lldx)ll£2cx,vJ 

be the average diffusion constant. Let also O" 00 ( x) := ~ diam Supp mx 
and O"oo := SUPO"oo(x). 

Definition 39 (Local dimension). Let the local dimension at x 
be 

O"(x)2 
n ·- --~~--~~~~~~---=~~~~~ 

x .- sup{Varmx J, f: Suppmx-+ ~ 1-Lipschitz} 

and n := infx nx. 

Exercise 40. 
Consider the c--step random walk on an N -dimensional Riemannian man-

ifold. Then O"(x) = c v;t;; + o(c-) and N -1 ~ nx ~ N (I do not know 

the exact value). 

About this definition of dimension. Obviously nx ~ 1. For the 
discrete-time Brownian motion on aN-dimensional Riemannian mani­
fold, one has nx ~ N. For the simple random walk on a graph, nx ~ 1. 
This definition of dimension amounts to saying that in a space of dimen­
sion n, the typical variations of a (1-dimensional) Lipschitz function are 
1 j yn times the typical distance between two points. This is the case in 
the sphere sn, in the Gaussian measure on ~n, and in the discrete cube 
{0, l}n. So generally one could define the "statistical dimension" of a 
metric measure space (X, d, JL) by this formula i.e. 

StatDim(X, d, JL) := ~ JJ d(x, y)2 dJL(x)dJL~Y) 
sup{Varl-' J, f 1-Lipsch1tz} 

so that for each x E X the local dimension of X at x is nx = 
StatDim(X, d, mx)· With this definition, ~N equipped with a Gaussian 
measure has statistical dimension N and local dimension ~ N, whereas 
the discrete cube { 0, 1 }N has statistical dimension ~ N and local di­
mension~ 1. 
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2.3.2. Spectral gap 

We now give a generalization to the Lichnerowicz theorem (Theo­
rem 12) stating that positive curvature implies a spectral gap. We begin 
with a study of Lipschitz versus L 2 norms. 

Exercise 41 (Variance of Lipschitz functions). 
Let (X, d, m) be a random walk on a metric space, with coarse Ricci 
curvature at least "' > 0. Let v be the unique invariant distribution. 
Suppose that cr < oo. Then the variance of a !-Lipschitz function is 

2 2 

at most n~<(~-~<) ~ ~"'· In particular, Lipschitz functions are in L2 (v). 
(Hint: Iterate the formula Var f = VarMJ + JVarmx fdv(x).) 

Proposition 42 (Spectral gap). Let (X,d,m) be a metric space 
with random walk, with invariant distribution v. Suppose that the coarse 
Ricci curvature of X is at least "' > 0 and that cr < oo. Suppose that v 
is reversible, or that X is finite. 

Then the spectral radius of the averaging operator acting on 
L 2 (X,v)j{const} is at most 1- "'· 

Compare Theorem 1.9 in [CW94] (Theorem 9.18 in [Che04]). 

Proof (sketch). The spectral radius w.r.t. Lipschitz norm of the op­
erator M acting on Lipschitz functions is at most 1 - "' by the results 
above. In full generality, since the Lipschitz norm controls the L 2 norm 
by the above, the spectral radius of M w.r.t. the L 2 norm, restricted to 
the subspace of Lipschitz functions in L 2 , is ~ 1-"' as well. Now Lips­
chitz functions are dense in L 2 , and for a bounded, self-adjoint operator 
it is enough to control the spectral radius on a dense subspace. Q.E.D. 

Problem E (Non-reversible spectral gap). 
What happens in the non-reversible case? There are different ways to 
formulate the question: spectral radius, norm of the operator, Poincare 
inequality. (Note that a Poincare inequality with a worse constant and 
with a "blurred" gradient always holds, cf. the section on log-Sobolev 
inequality in [Oll09].) 

In the reversible case, we get that the spectrum of ~ is included in 
[-2; -11,] together with the two Poincare inequalities 

and 



as a corollary. 

Exercise 43. 
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Run through all the examples above, and compare the spectral gap ob­
tained by coarse Ricci curvature to the actual value of the spectral gap, 
when known (e.g. on the cube). 

Problem F (Sharp Lichnerowicz theorem). 
For the E-step random walk on a Riemannian manifold, the operator 

2 
~=M-Id of the random walk behaves like 2c!r+2) times the Laplace-

2 

Beltrami operator and the coarse Ricci curvature is 2c!r +2) times ordi-
nary Ricci curvature, so that we get a spectral gap estimate of inf Ric( v) 
for the Laplace-Beltrami operator. On the other hand, the Lichnerowicz 
theorem has a qualitatively comparable but slightly better spectral gap 
estimate J!__ 1 inf Ric( v), which is sharp for the sphere. This is because 
our definition of r,;(x, y) somehow overlooks that the sectional curvature 
K ( v, v) in the direction of xy is 0. Is there a way to take this into ac­
count? (Note that our estimate is sharp for the discrete cube as well 
as for the Ornstein-Uhlenbeck process, so the phenomenon is rather 
specific to this situation.) 

Problem G (Non-constant curvature). 
The estimate above uses the infimum of r,;(x, y). Is it possible to relax 
this assumption and, for example, include situations where r,; takes "not 
too many" negative or zero values? Using the coarse Ricci curvature of 
the iterates m;, for some t ~ 2 should "smoothen out" exceptional values 
of r,;(x, y), so that for large t the coarse Ricci curvature of m;, should be 
close to an "average" coarse Ricci curvature of mx (probably involving 
large deviations of the average value of r,;(x, y) along trajectories of the 
random walk). 

This may be interesting e.g. on random objects (graphs ... ) where 
locally some negative curvature is bound to occur somewhere. 

2.3.3. Concentration of measure 

One of our main motivations was to find a common geometric prop­
erty between three concentrated spaces, namely the sphere, the discrete 
cube and the Gaussian space. It is very satisfying that the property thus 
found implies concentration of measure. 

We now state the theorem without proof (see [Oll09]). Remember 
the notation in Section 2.3.1. 

The estimated Gaussian variance is 0'2 jnr,;, in the notation of sec­
tion 2.3.1. However, concentration is not always Gaussian far away 
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from the mean, as exemplified by binomial distributions on the cube or 
MIMI oo queues. The width of the Gaussian window is controlled by 
two factors. First, variations of the diffusion constant a( x )2 can result in 
purely exponential behavior; this leads to the assumption that a(x) 2 is 
bounded by a Lipschitz function. Second, as Gaussian phenomena only 
emerge as the result of a large number of small events, the "granularity" 
of the process must be bounded, which leads to the (comfortable) as­
sumption that a 00 < oo. Otherwise, a Markov chain which sends every 
point x E X to some fixed measure v has coarse Ricci curvature 1 and 
can have arbitrary bad concentration properties depending on v. 

In the case of Riemannian manifolds, simply letting the step of the 
random walk tend to 0 makes the width of the Gaussian window tend to 
infinity, so that we recover Gaussian concentration as predicted by the 
Gromov-Levy theorem (Theorem 14). For the uniform measure on the 
discrete cube, the Gaussian width is equal to the diameter of the cube, 
so that we get full Gaussian concentration as well. In a series of other 
examples (such as Poisson measures), the transition from Gaussian to 
non-Gaussian regime occurs roughly as predicted by the theorem. 

Theorem 44 (Gaussian concentration). Let (X, d, m) be a ran­
dom walk on a metric space, with coarse Ricci curvature at least t£ > 0. 
Let v be the unique invariant distribution. 

and 

Let 

D 2 ·-JE D2 .- v x· 

Suppose that the function X f---7 v; is C-Lipschitz. Set 

D2 
tmax := max(aoo, 2C 13). 

Then for any !-Lipschitz function j, for any t :S; tmax we have 

t2 
v({x,j(x) ~ lEvf +t}) :S; exp- 6D 2 

and for t ~ tmax 

ll ( {X, f (X) ~ lEv f + t}) :S; exp (- t~a; - t (- tmax C) ) . 
6D max 3a00 , 2 
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Remark 45. Actually O"(x)2 /nxr;, itself need not be Lipschitz, only 
bounded by some Lipschitz function. In particular, if O"(x)2 is bounded 

one can always set D 2 = supx a(x) 2 and C = 0. Statements somewhat n,K 
similar to this latter case appear in [DGW04] (under a strong local 
assumption) and in [Jou07]. 

Exercise 46 (Continuous-time situations). 
Observe that the theorem above has a well-defined limit when we replace 
the random walk m = (mx)xEX with the lazy random walk m' whose 
transition probabilities are m~ := (1- ot) Ox+ ot mx. The point is that 
when 8t -+ 0, both O"; and r;, scale like 8t (and nx tends to 1). This 
means that we can apply Theorem 44 to continuous-time examples. 

Exercise 4 7. 
Review the various examples and check that the order of magnitude of 
the Gaussian variance is correct, especially for Riemannian manifolds 
and for binomial distributions on the cube. 

Exercise 48. 
Remove the various technical assumptions (Lipschitz O"( x )2, bounded 
0"00 ) and find counter-examples to the resulting statements. Also find 
an example when the Gaussian regime practically disappears and only 
the exponential part is visible. 

Problem H (Isoperimetric profile and curvature at infinity). 
Suppose that inf r;,(x, y) = 0 but that the same infimum taken on balls 
of increasing radii around some origin is non-zero. Is there a systematic 
correspondence between the way curvature decreases to 0 at infinity and 
the isoperimetric profile? (Compare the section of [Oll09] devoted to 
the relationship between non-negative coarse Ricci curvature and expo­
nential concentration.) An interesting example is the M/M/k queue. 

Problem I (Local assumptions). 
The condition 0"00 < oo can be replaced with a local Gaussian-type 
assumption, namely that for each measure mx there exists a number Sx 
such that 1Em,e'\f ~ e>- 2 s;/2e.\IE=,f for any 1-Lipschitz function f. Then 
a similar theorem holds, with O"(x) 2 /nx replaced with s;. (When s; is 
constant this is Proposition 2.10 in [DGW04].) However, this is not at all 
well-suited to discrete settings, because when transition probabilities are 
small, the best s; for which such an inequality is satisfied is usually much 
larger than the actual variance O"(x) 2: for example, if two points x andy 
are at distance 1 and mx(Y) = c:, Bx must satisfy s;) 1/2ln(1/c:) » c:. 



374 Y. Ollivier 

Thus making this assumption will provide extremely poor estimates of 
the variance D 2 when some transition probabilities are small (e.g. for 
binomial distributions on the discrete cube). In particular, when taking 
a continuous-time limit as above, such estimates diverge. So, is there a 
way to relax the assumption CJ00 < oo, yet keep an estimate based on 
the local variance cr2 , and can this be done so that the estimate stays 
bounded when taking a continuous-time limit? 

Problem J (Functional inequalities). 
The Laplace transform estimate JEe>-Cf-IEfl :(; eD2 >- 2

/ 2 often used to es­
tablish Gaussian concentration for a measure v is equivalent, by a result 
of Bobkov and Gotze [BG99], to the following inequality: W1 (f-L, v) :(; 
y'2D2 Ent(df-L/dv) for any probability measure f-L « v. Is there a way 
to formulate our results in terms of functional inequalities? As such, 
the inequality above will fail as concentration can be non-Gaussian far 
away from the mean (e.g. in the simple example of the binomial dis­
tributions on the cube), so in a coarse setting it might be necessary to 
plug additive terms in the formulation of the inequality to account for 
what happens at small measures or small scales. Another suggestion by 
Villani is to use a Talagrand inequality where the £ 2 transportation dis­
tance is replaced with a quadratic-then-linear transportation cost and 
use the results in [GL07]. 

2.3.4. Further results: Convergence of empirical measures, 
Log-Sobolev inequality, Gromov-Hausdorff conver­
gence 

Several more results are proven under these or similar assumptions. 

- For example, in his preprint [Jou], Joulin proves that, under a 
positive curvature assumption, the empirical means of Lipschitz func­
tions are concentrated and satisfy a Poisson-like deviation inequality 
(together with a control of their deviation from the actual expectation 
under the invariant measure). The order of magnitude for the variance 

at timet is, with our notation, supt:~x) 2 , and the transition from Gauss­
ian to Poisson behavior of the tail is controlled by CJ00 as above. (See 
also [DGW04] for related results.) 

-A generalization of the results of Bakry-Emery mentioned above 
(Theorem 15) holds [Oll09]. We use a kind of "blurred Lipschitz con-

stant" defined by \7>-f(x) ·=sup if(y)-f(y')l e->-d(x,y)->-d(y,y') The 
· y,y'EX d(y,y') · 

larger ,\ is, the closer this is to the usual Lipschitz norm, but there is 
a maximal possible value of ,\ depending on the object: typically for 
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a manifold one can take A ---+ oo and thus recover the usual gradient, 
whereas in a graph one has to take A ~ 1. 

With this gradient, one can prove generalizations to points ( ii) and 
(iii) of Theorem 15. Namely, any positive function f : X ---+ lR with 
'V>J < oo satisfies 

Entvf := J flogfdv ~ (s~p 4:~l 2 ) J (\11) 2 
dv 

and moreover, we have the contraction property 

\1,\(Mf) ~ (1- K/2) M('V>-f) 

(so compared to Theorem 15, we lose a factor 4 or so in the constants for 
Riemannian manifolds; this is to be expected for a theorem valid both 
on discrete and continuous settings). 

Exercise 49 (Herbst argument for V.\.)· 
Use the Herbst argument to show that a logarithmic Sobolev inequal­
ity with the gradient \1>-f as above implies Gaussian-then-exponential 
concentration, where the transition from Gaussian to exponential is con­
trolled by the value of A. (Hint: Show that for )..' ,:; ).., for any !-Lipschitz 
function f we have the chain rule ('V>.e>-' f)(x) ,:; )..' e"'' f(x). For this use the 

inequality lea- ebl ,:; Ia- bl ea!eb. Then apply the usual Herbst argument.) 
Does the argument work the other way round? 

~ Oliveira [Oli] used contraction of transportation distances by 
Markov chains to substantially improve mixing time estimates of a ran­
dom walk on the set of orthogonal matrices known as Kac's random 
walk, which consists, at each step, in composing the current matrix with 
a rotation of random angle in the plane generated by two randomly cho­
sen coordinates. This is consistent, of course, with the positive Ricci 
curvature of SO(N) as a Riemannian manifold, but Kac's random walk 
is more practical than Brownian motion on SO(N). 

~ Finally, since the objects used in the definition of coarse Ricci 
curvature involve only integrals of the distance function under the transi­
tion kernel, it is kind of tautological [Oll09] to prove continuity theorems 
for coarse Ricci curvature in the Gromov-Hausdorff topology (suitably 
extended to include convergence of the Markov kernel). 

2.3.5. A few more problems 

Problem K (Sturm-Lott-Villani definition). 
What is the relationship (if any) between our notion and the one defined 
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by Sturm and Lott-Villani [Stu06, LV]? The latter is generally more dif­
ficult to work out on concrete examples, and is not so well suited to dis­
crete settings (though see [BS]), but under the stronger CD(K, N) ver­
sion, some more theorems are proven, including the Brunn-Minkowski 
inequality and Bishop--Gromov comparison theorem, together with ap­
plications to the Finsler case [Oht, OS]. 

Problem L (Bishop-Gromov theorem). 
Is it possible to generalize more traditional theorems of positive Ricci 
curvature, i.e. the Bishop--Gromov theorem, or something close to the 
isoperimetric form of the Gromov-Levy theorem? It is not clear what a 
reference constant curvature space would be in this context. Observe for 
example that, in the discrete cube, the growth of balls is exponential­
like for small values of the radius (namely N, N(N- 1)/2, etc.). Such 
theorems may be limited to manifold-like spaces for which a reference 
comparison space exists. Yet in the case of the cube, the isoperimetric 
behavior of balls still "slows down" in a positive-curvature-like way. A 
maybe useful definition of the "boundary" of a part A is wl (lA, lA *m). 
Also compare Problem R below. 

Problem M (Entropy decay). 
The logarithmic Sobolev inequality (under the form comparing Ent P to 

J ll\7 !11 2 , not under the modified form comparing Ent f to J ll\7 !11 2 /f) 
usually implies an exponential decreasing of entropy by the Markov 
chain. Is there some form of this phenomenon in our setting? (Once 
more, it is necessary to keep in mind the case of binomial distributions 
on the cube, for which the modified form of the Sobolev logarithmic 
inequality was introduced.) 

Problem N (Discrete Ricci flow). 
Define a "discrete Ricci flow" by letting the distance on X evolve ac­
cording to coarse Ricci curvature 

d 
dtd(x,y) = -K-(x,y)d(x,y) 

where K-(x, y) is computed using the current value of the distance (and 
by either keeping the same transition kernel mx or having it evolve ac­
cording to some rule). What can be said of the resulting evolution? 
(Note that if the same transition kernel is kept, then this will only com­
pare to the usual Ricci flow up to a change of time, since, e.g. on a 
Riemannian sphere, this will amount to using smaller and smaller "dif­
fusion constants" whereas the diffusion constant C in the Ricci flow 
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¥t = -CRic is taken constant; in particular, the diameter of a sphere 
will tend exponentially towards 0 instead of linearly.) 

Problem 0 (Up to 6). 
The constraint W1 (mx, my) ~ (1- ,..,) d(x, y) may be quite strong when 
x andy are too close, even if the measures mx, my have a larger support. 
In order to eliminate completely the influence of small scales, and in the 
spirit of 8-hyperbolic spaces, we can define a "positive curvature up to 
8" condition. Namely, ,..,(x, y) is the best ~ 1 constant in the inequality 

so that positive curvature up to some 8 becomes an open property in 
Gromov-Hausdorff topology. Which theorems extend to this setting? Is 
it possible, in such a situation, to choose a discrete subset X' c X and 
to redefine the random walk on X' in a reasonable way such that it has 
positive coarse Ricci curvature? 

Problem P (Discrete sectional curvature). 
A notion equivalent to non-negative sectional curvature for Riemannian 
manifolds can be obtained by requiring that there be a coupling between 
mx and my, such that the coupling moves all points of mx by at most 
d(x, y). (This amounts to replacing W1 with the £ 00 transportation dis­
tance in the definition.) Does this have any interesting properties? Is 
it possible to get an actual value for sectional curvature? (In this defi­
nition, the contribution from x and y themselves will generally prevent 
getting non-zero values.) Is this related to positive sectional curvature 
in the sense of Alexandrov? (Though the latter cannot be applied to 
discrete spaces.) 

Problem Q (Discrete scalar curvature). 
In Riemannian geometry, scalar curvature at x is the average of Ric( v) 
over all unit vectors v around x. It controls, in particular, the growth 
of the volume of balls. Here one can transpose this definition and set 
S(x) := J ,..,(x, y) dmx(Y) (where maybe a weight depending on d(x, y) 
should be added). Does it have any interesting properties? 

Problem R (£2 Bonnet-Myers and the dimension parameter). 
For an £ 2 version of the Bonnet-Myers theorem to hold, it is necessary 
to make stronger assumptions than positive curvature, namely that for 
any points x, x' and for any small enough pair of times t, t' one has 

w (m*t m*t') ~ e-~<inf(t,t')d(x x') + C(Vt- .Jfi) 2 
l X ' x' -..:: l ----'-2d-(,.-X-, -X-,/).....:...... 
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whereas before one used only the case t = t'. (The second term is 
obtained by considering Gaussian measures of variance t and t' centered 
at x and x' in JR.N.) Then (see the section on strong Bonnet-Myers 

theorem in [Oll09]) one gets a diameter estimate diamX :::;; 1rjf;, so 
that C plays the role of N - 1. Is the constant C somehow related to 
a "dimension", in particular to the "dimension" n in the Bakry-Emery 
CD(K, n) condition? 

ProblemS (Alexandrov spaces). 
What happens for spaces with positive sectional curvature in the sense 
of Alexandrov? Do they have positive Ricci curvature for a reasonable 
choice of mx? This seems to be unknown for the Sturm-Lott-Villani 
definition too. Would it be enough to approximate these spaces by 
manifolds or use a parallel transport in Alexandrov spaces? (See also 
Problem P above.) 

Problem T (Expanders). 
Is there a family of expanders (i.e. a family of graphs of bounded degree, 
spectral gap bounded away from 0 and diameter tending to oo) with 
non-negative Ricci curvature? (Suggested by A. Naor and E. Milman.) 

Problem U (Permutation groups). 
For the permutation groups, with respect to the random walk generated 
by transpositions, Ricci curvature is positive but does not allow to re­
cover concentration of measure with the correct order of magnitude. Is 
this related to results by N. Beresticky about the 8-hyperbolic-like prop­
erties of the permutation groups, which thus appear to have a mixture 
of positive and negative curvature properties? 
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