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Instanton counting and the chiral ring relations in 
supersymmetric gauge theories 

Hiroaki Kanno 

Abstract. 

We compute topological one-point functions of the chiral opera­
tor Tr cpk in the maximally confining phase of U(N) supersymmetric 
gauge theory. These chiral one-point functions are of particular interest 
from gauge/string theory correspondence, since they are related to the 
equivariant Gromov-Witten theory of P 1 . By considering the power 
sums of Jucys-Murphy elements in the class algebra of the symmetric 
group we can derive a combinatorial identity that leads the relations 
among chiral one-point functions. Using the operator formalism of free 
fermions, we also compute the vacuum expectation value of the loop 
operator {Tr eit<p) which gives the generating function of the one-point 
functions. 

§1. Introduction 

Among the "web" of various dualities in string theory, one of the 
most intriguing ideas is gravity/gauge theory correspondence. The fact 
that gravity is described by closed string has been regarded as a miracle 
of string theory, while the boundaries of open string can incorporate the 
degrees of freedom of gauge theory. Hence, the gravity/ gauge theory 
correspondence is a kind of the duality of open and closed strings. The 
discovery of D-branes has led a completely new insight for the corre­
spondence, for example, involving the Chern-Simons theory [27, 7]. 
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Topological gauge theories and topological string theories often pro­
vide exactly solvable models of gauge theory and string theory. In math­
ematical physics exactly solvable models have played quite important 
roles in understanding interesting phenomena which are difficult to an­
alyze in perturbation theory; for example, sine-Gordon model in two di­
mensional quantum field theory for soliton dynamics and boson/fermion 
correspondence and the Ising model in statistical physics for phase tran­
sition. Thus it is interesting to see if we can use topological gauge/string 
theories to test the idea of gravity/ gauge theory correspondence. 

Recently Nekrasov proposed a partition function ZNek(E, ae, q) that 
encodes the information of the instanton counting in four dimensional 
gauge theory [23]. The leading part of the free energy log ZNek(E, ae, q) 
gives the Seiberg-Witten prepotential [24, 21]. In [23] integrations over 
the instanton moduli space, which are required for computing the non­
perturbative partition function and correlation functions, are evaluated 
by the equivariant localization principle, where the toric action (z1 , z2 )-+ 
( eiE 1 z1 , eiE2 z2) on flat four dimensional space-time (z1 , z2) E C2 ~ IR4 is 
introduced. Physically this corresponds to a special gravitational back­
ground, called "0 background" of Nekrasov, on the six dimensional 
space-time of a C2 fibration on two dimensional torus. In this paper 
we consider the case where the equivariant parameters (E1 , E2 ) satisfy 
the self-duality n = El = -E2. The fixed points of the toric action are 
isolated and labeled by the partitions or in other words the Young di­
agrams. Thus, we can compute the partition function and correlation 
functions by taking the summation of appropriate functions on the set 
of Young diagrams. They are Laurent polynomials in nand q, the pa­
rameter of instanton expansion. We can show that a five dimensional lift 
(or the K-theoretic version [22]) of Nekrasov's partition function Z~~k 
is nothing but topological string amplitudes (the generating function of 

the Gromov-Witten invariants) z~!,s~tr on a local toric Calabi-Yau 3-
fold Ks, where S is an appropriate toric surface [8, 9, 2, 3, 28]. This 

agreement of z~~k and z~!s1tr is one of the examples of gauge/string 
theory correspondence in topological theory, which is expected from the 
idea of geometric engineering [13]. 

In this article, we will explore a similar example of gauge/string the­
ory correspondence, which involves the chiral operators Tr cpJ inN= 1 
U (N) supersymmetric gauge theory, where cp is the (Higgs) scalar field 
in the adjoint representation. N = 1 theory is obtained by turning on a 
tree level superpotential W (<I?) that softly breaks N = 2 supersymmetry. 
We will compute one-point functions ofTr cpJ in the maximally confining 
phase, where effective low energy symmetry is reduced to the diagonal 
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subgroup U(1) C U(N). In [16] it is claimed that there is a correspon­
dence between the chiral operators in supersymmetric gauge theory and 
the topological operators in the Gromov-Witten theory of the rational 
curve P 1 developed by Okounkov and Pandharipande [25, 26]. More 
concretely, we expect the correspondence Tr cpJ <====? Tp(w), where Tp(w) 
is the p-th gravitational descendant of the Kahler class w of P 1. We 
have checked that the one point functions we compute exactly agree to 
a particular sector of the equivariant Gromov-Witten invariants of P 1 . 

We show that the chiral one-point functions (Tr cp2J) satisfy the 
relations 

(1) ~ cr.n,2(r-j)(Tr rn2j) = (2r)!qr 
~ 3 r (r!)2 ' 
J=l 

where the coefficients cj are defined by n;:~(x2 - j 2) = z::::;=l cjx2j 

or a specialization of the elementary symmetric functions en(x); cj = 
( -1r-jer-j(12, 22, · · · , (r- 1)2). The relation (1) is proved in [6]. Our 
proof is based on combinatorial identities, which we obtain by consider­
ing the power sums of Jucys-Murphy elements in the class algebra of the 
symmetric group [10, 18, 14]. We also compute the generating function 
of (Tr cp2J), which is related to the vacuum expactation value of the loop 
operator (Tr eitcp) by the Laplace transformation. The operator formal­
ism of free fermions, which was also employed in [25, 26], gives a rather 
simple result; 

(2) (Tr eitcp) = I0 ( 4-JQ sinh(~n/2)) -----. Io(2iJQt) , (n-----. 0) , 

with I 0 (x) being the modified Bessel function. By taking the Laplace 
transformation of (2), we find that the generating function T(z) is given 
by 

(3) 

which is consistent with the relations (1). 
The paper is organized as follows. In section 2 we summarize ba­

sic facts on the chiral ring of supersymmetric gauge theory and give 
a characterization of the maximally confining phase. In section 3 we 
first explain what the one-point function (Tr cp2J) means mathemati­
cally. Then we outline a derivation of (1). The operator formalism is 
introduced in section 4. The computation of (Tr eitcp) and the generating 
function T(z) is worked out in section 5. 
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§2. Chiral ring of supersymmetric gauge theory 

In this section we review the generating functions of one-point func­
tions of chiral ring generators, closely following [1]. Chiral operators 0 
in supersymmetric field theories are, by definition, annihilated by the 
fermionic charges Qa of one chirality; [Qa, OJ± = 0, considered modulo 
Q a -exact operators; 0 ~ 0 + [ Q a, A J ±. The set of chiral operators forms 
a ring, called the chiral ring. From the supersymmetry algebra in four 
dimensions, [Qo:, Qal+ = CT~aPJL, we can see that correlation functions of 
chiral operators are "topological" in the sense that they are independent 
of the positions of operators. Especially, topological one-point functions 
characterize the vacuum structure (phase) of the theory, namely they 
are the moduli of vacua . 

. Let us consider a four dimensional N = 1 supersymmetric gauge the­
ory with a single chiral multiplet <P. This might be regarded as a (softly) 
broken N = 2 theory by a tree level superpotential W(<P). We have a 
vector multiplet (Am, >.a) and a chiral multiplet <P = (cp, 1/Jo:)· They are 
all in the adjoint representation of U(N). The operators Tr cpk (k E Z+) 
are examples of gauge invariant chiral operators. One can show that 
the generators of the chiral ring are of the form Tr cpk, Tr >.acpk and 
Tr >.a>.a:cpk. Classically they are subject to several relations of group 
theoretical origin, but we expect they are modified by instanton correc­
tions. The modified relations are realized by those among topological 
correlation functions of chiral operators. In [1 J the Ward identity of 
the generalized Konishi anomaly in supersymmetric gauge theory was 
formulated in terms of the generating functions of one-point functions: 

T(z) 

wa(z) 

R(z) 

When the fermionic expectation values vanish, wa(z) = 0, the general­
ized Konishi anomaly equations are 

(4) 

(5) 

1 
R(z)2 - W'(z)R(z)- 4 f(z) 

1 
2R(z)T(z)- W'(z)T(z)- 4c(z) 

0, 

0, 
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where W(<I>) = L;=O ~Tr <I>r+l is a superpotential of degree k + 1. 
j(z) and c(z) are polynomials of degree k- 1 that depend on the su­
perpotential. In deriving the above equations one uses the fact that the 
correlation functions of a product of chiral operators factorize. Solving 
the above equations, we obtain 

R(z) 

T(z) 

~ (w'(z)- JW'(z) 2 + j(z)) 

c(z) 

4JW'(z)2 + f(z) 

The point is that the equation (4) for R(z) is exactly the same as the 
loop equation in the matrix model in large N limit, while it is T(z) 
that can be directly related to the Seiberg-Witten theory. It is a crucial 
observation in [1] that these two generating functions R(z) and T(z), 
which are related to the large N matrix model and the Seiberg-Witten 
theory, are in the same multiplet under a (hidden) fermionic symmetry. 
Hence we may establish a connection of the Seiberg-Witten theory to 
the matrix model. 

For U(N) gauge theory the generating function T(z) is classically 
given by 

T(z) = Pfv(z) 
PN(z) ' 

PN(z) := (det (z- cp)) . 

However, the Seiberg-Witten theory tells 

T z - Pfv(z) 
( ) - JPN(z)2- 4A2N ' 

where y2 = PN(z? -4A2 N is the Seiberg-Witten curve. The coefficients 
of the characteristic polynomial PN(z) are the moduli parameters of 
N = 2 vacua. When the superpotential W(<I>) = 2:=;=0 /+.1 Tr <I>r+l is 
turned on, the vacua are on a codimension N - k submanifold of the 
moduli space. This is described as the following factorization of the 
Seiberg-Witten curve 

(6) 

which appears on the codimension N - k submanifold of the moduli 
space of N = 2 vacua. The factorization (6) implies that N- k mutually 
non-intersecting one-cycles of the Seiberg-Witten curve collapse, which 
physically means the emergence of massless monopoles, or dyons which 
has both electric and magnetic charges. On such vacua SU ( N - k + 
1) c U(N) symmetry is confined due to massless monopoles and the 
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residual symmetry is U(1)k. F2k(z) is called reduced Seiberg-Witten 
curve. When the Seiberg-Witten curve factorizes as above, we can also 
factorize Pfv(z) = HN-k(z)Rk-l(z) and consequently 

T z - Pfv(z) 
( ) - y'PN(z)2- 4A2N 

In particular, if the tree level superpotential is a mass perturbation 
W(<I>) = ~mTr <I>2 , the vacua are those with N- 1 massless monopoles 
and the reduced curve is F2(z) = m2z2 - A2. This is called maximally 
confining phase, where the remaining low energy effective symmetry is 
U(1). In this phase, we have 

(7) T(z) = Ro(z) 
y'F2(z) 

N 

where Ro = Nm. In the following we will compute (Tr cpk) by the 
instanton counting of U(1) theory and derive the chiral ring relations 
among (Tr cpk). In particular, the relation implies the generating func­
tion T(z) is given by (7), which means the theory is in the maximally 
confining phase. 

§3. One-point functions in maximally confining phase 

The computation of the one-point function (Tr cp2n) mathematically 
involves the Chern class Tr :F2n of a universal sheaf E on C2 x MN,k 
[16, 5, 6], where MN,k is the moduli space of (framed) instantons in 
U(N) gauge theory with instanton number k. The moduli space MN,k 
is defined, for example, by the ADHM construction. The ADHM con­
struction tells us that when N = 1, M1,k, after the resolution of sin­
gularities, is isomorphic to the Hilbert scheme of points (C2)[k] on C2 . 

Over the instanton moduli space MN,k we have two vector bundles 
W and V of rank N and k, which naturally arise in the ADHM con­
struction. The ADHM data are identified as B1, B2 E Hom(V, V) and 
J, It E Hom(W, V). Roughly speaking, the vector bundle W comes 
from a local trivialization of the instanton at infinity1, while the bun­
dle V is the bundle of Dirac zero modes. The fiber of V is the space 
of normalizable solutions to the Dirac equation in the instanton back­
ground. The Riemann-Roch theorem tells that the number of Dirac 

1The moduli space MN,k is defined by the quotient by the gauge transfor­
mations that fix the "framing" at infinity. 
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zero modes is just the instanton number k. From vector bundles E 1 

on IC2 and E2 on MN,k, we can construct an external tensor product 
bundle E1 ~ E2 := Pi E1 0 p2E2 on IC2 x. MN,k, where Pi denotes the 
projection to the i-th component. Then as an element of the equivari­
ant K -cohomology group the universal sheaf is isomorphic to the virtual 
vector bundle [20, 16]; 

where s± are the positive and the negative spinor bundles on IC2 . Their 
equivariant characters are 

where ( E1, E2) are equivariant parameters of the toric action (z1, z2 ) -t 

( ei£1 Z1, ei£2 z2 ) on IC2 , which induces a toric action on MN,k· Note that 
we have another toric action on MN,k that comes from the maximal 
abelian subgroup U(1)N of the gauge group U(N). According to the 
work of Nakajima [19], the fixed point set of the U(1)2 x U(1)N action 
on MN,k is in one-to-one correspondence with the set PN(k) of N-tuples 
of Young diagrams whose total number of boxes is equal to k. At a fixed 
point labeled by N-tuples of Young diagrams Y"' the contribution to the 
Chern character of£ is [20, 16], 

Ch(£)r(t) 

Since we identify :F as a curvature on the universal bundle £, we have 
Tr :Fn = Cn(£), where the n-th Chern class en(£) is defined by the 
expansion 

(8) 

In the maximally confining phase introduced in section 2, the resid­
ual symmetry is the diagonal subgroup U(1) C U(N). Hence it is suffi­
cient to consider the U(1) theory and we put 'Pel =a= 0 for simplicity. 
The fixed points are labeled by a single Young diagram Y and the Chern 
character is 

(9) Ch(£)y = 1- (1- eitE1) (1- eit£2) L eit£1(k-l)+it£2(£-1) . 

(k,t)EY 
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Putting E1 = -E2 = fi and comparing (8) and (9), we find Tr 'Pirn 
C2n(£)y is given by 

Tr 'Pirn fi2n 2:.: [(k- £ + 1)2n + (k- £- 1)2n- 2(k- e?n] 
(k,C)EY 

(10) = n2n ~ 2 (~:) 2:.: c(D)2m , 

m=O DEY 

where c(D) := (£- k) is called the content at D = (k, £). 
The Nekrasov's partition function of U(1) gauge theory is 

(11) 
(X) 1 

Zu(l) = 2:.: 2:.: IT (fih(D))2qk' 
k=O IYI=k DEY 

where h(D) is the hook length at D and we have introduced a parameter 
q of the instanton expansion. It is a classical result in representation 
theory that 

II 1 dim Sy 

DEY h(D) = k! ' 

where Sy is the irreducible representation of the symmetric group la­
beled by the Young diagram Y. We obtain 

2:.: II h(D)-2 = ~! . 
IYI=kDEY 

by the Plancherel formula LIYI=k(dim sY)2 = k!. Hence we find that 
the summation over the instanton number kin (11) is organized into a 
simple form; 

(12) Zu(l) = exp (;2) . 

The correlation functions of our interest are 

(13) 
1 = Tr 2n 

< 2n) ""' ""' 'Py k Tr cp = z-~ ~ fi2kiJ h(D)2q . 
U(l) k=l IYI=k DEY 

Substituting the formula (10), we have 



Instanton counting 59 

where we have introduced 

(14) ·- 4JEY c(o)2n 
Sn(k) .- L TI h(o)2 

IYI=k DEY 

Thus the computation of (Tr cp2n) is equivalent to giving a summation 
formula for Sn(k) over Young diagrams. Looking at the Young diagrams 
with lower number of boxes explicitly, we find 

(Tr cp2 ) = 2q ' 

(Tr cp4 ) = 6q2 + 2qn2 , 

(Tr cp6 ) = 20q3 + 30q2n2 + 2qn4 , 

(Tr cp8) = 70q4 + 280q3h2 + 126q2h4 + 2qn6 . 

In (6] we have proved the following formula; 

(15) ~ n ( ) (2n)! 1 
f;;::. cj Sj k = ((n + 1)!)2 (k- n- 1)! ' 

which recursively determines Sn(k). The coefficients cj in (15) are de­
fined by2 

n-1 n 

(16) P2n(x) := x" · xR =IT (x2 -l) = L:c"Jx2i. 
j=O j=l 

Note that cj are given by a specialization of the elementary symmetric 
functions er(x); cj = (-1)n-ien-j(12,22,··· ,(n -1)2). The formula 
(15) implies the following relation among topological one-point functions 
valid in the maximally confining phase; 

(17) ~ cr.n,2(r-j)(Tr l/.,2j) = (2r)!qr 
~ J ..,.. (r!)2 . 
J=l 

2The functions xn and xn. are natural power functions in the calculus of 
difference. 
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To prove (I7), we first plug the formula (IO) into the definition (I3) of 
(Tr <p2i) to obtain 

where in the last line we have used the following relation satisfied by 
P2n(x)3 ; 

~2P2n(x) := P2n(x+ I) -2P2n(x)+P2n(x-I) = 2n(2n-I)P2n-2(x). 

Finally we note that (I5) means the following combinatorial formula; 

(I8) 
"' rrr-2 ( 2 •2) ""' uDEY j=O c - J = (2(r- I))! I 

lfr;:'k IloEY h(o)2 (r!)2 (k- r)! 

This allows us to factor out the partition function Zu(l) as follows; 

r ( 2 ) 1 = I ( ) k-r r 2(r-j) 2j _ r · r q 
~ c/fi (Tr <p )Zu(l) - (r!)2 q L (k- r)! n2 
J=l k=l 

(2r)! r ( q ) 
= (r!)2 q exp n2 

Dividing both sides by Zu(l), we obtain (I7). 

§4. Computations in operator formalism 

Due to the correspondence of Young diagrams (or Maya diagrams) 
and the fermion Fock states with neutral charge, the operator formalism 

3This formula is a discrete version of da::2 x2n = 2n(2n - 1 )x2n-2 • 
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is a very powerful tool for computing summations over the set of Young 
diagrams. Let us introduce a pair of charged free fermions 

1/J(z) = L 1/Jrz-r-! , 1/J*(z) = L 1/J;z-s-! , 
rEZ+! sEZ+! 

with the anti-commutation relation 

1 
r,s E Z+ "2. 

The Fock vacuum IO) is defined by 

r,s > 0. 

Using Young/Maya diagram correspondence, for each partition >., we 
have a state 1>.) in the charge zero sector of the fermion Fock space, 
which is given by 

00 

1>-) = II 1/Ji-Ai-! IIO)) ' 
i=l 

with 

Recall the standard bosonization rule; 

(19) J(z) =: 1/J(z)'lj;*(z) := L Jnz-n-l , J-n = L : 1/Jr'l/J~-r: , 
nEZ rEZ+! 

J(z) = i8¢(z), 1/J(z) =: ei</>(z) :, 1/J*(z) =: e-i</>(z) :, 

where : : means the normal ordering. Now a crucial point is the fol­
lowing formula 

·(J_l) ~1"""' 1 (20) exp T IO) = ~ fik ~ I1 h(o) 1>.) ' 
k=O 1>-1=k DE>. 

which is eq.(5.29) of [24]. In the language of symmetric functions, the 
corresponding formula is given in [17]. 

What we want to compute is Sn(k) defined by (14). Let us introduce 
the generating function of Sn(k); 

"""' EoE>. exp (zc(o)) ~ z2n 
(21) Ch[k](z) := ~ I1o h(o)2 = ~ (2n)!Sn(k), 

1>-1=k EA n=O 
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where we have used the fact that c(o) is odd under the transpose of the 
Young diagram. This generating function gives the Chern character of 
the tautological vector bundle over (C2)[k] considered in' [15]. The sum 
in the numerator is 

L exp (zc(o)) 
DE>. 

d(>.) Aj d(>.) z _ z(>. ·+1) 
"""'"""' ez(i-j) = """'e-jz e e 3 

L..J L..J L..J 1 - ez 
j=li=l j=l 

d(.X) z(.X·-J·+1.) z(-J'+1.) '"'e 3 2 -e 2 

L..J e~-e-~ · 
j=l 

Following Okounkov and Pandharipande [25, 26], we consider the oper­
ator 

(22) Cn(z) := L ez(r-~) En-r,r , 
rEZ+! 

where Er,s :=: 1/Jr'l/J; : is the standard basis of g[(oo) acting on the 
fermion Fock space. We can see that &n(z) satisfies the commutation 
relation4 

shn(z+w) 
(23) [£n(z),£m(w)]=sh(nw-mz)£n+m(z+w)+8n+mO h( ) , 

' s z+w 

where sh(z) := e~ - e-~. We have &n(O) = Jn with Jn being the modes 
of the U(1) current in (19). We also find a useful relation 

00 

fo(z)I.X) = L (ez(>.;-i+!) -ez(!-i)) I.X) = sh(z) L:exp(zc(o)) I.X). 
i=l DE>. 

The second term comes from £o(z)IO)) = -(sh(z))-110)), which can be 
calculated directly from the definition of IO)) or from the consistency 
£o(z)IO) =0. By the formula (20), the generating function of Sn(k) is 
expressed in the operator formalism as follows; 

4The infinite-dimensional Lie algebra with the commutation relation (23) 
appeared first in [4], where it was called area-preserving torus diffeomorphism 
algebra. The representation theory was initiated in [11] and the algebra was 
identified with WHoo algebra. 
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The right hand side can be computed by the commutation relation (23), 
which implies 

We also use 

Jf J~1IO) = (k ~!n)! J~1nl0) , (n :S k) , 

which is derived from 

e·zJtewJ_tiO) = e[zJt,wJ_t]ewJ_tezJt IO) = ezwewJ_tiO). 

By these formulas, we obtain 

(OIJ~eo(z)J~ 1 IO) = t. G)sht(z)(Oit't(z) ~~ J~ 1 IO) 
k h( )2£-1 

(k!)2 L: <;')2~k- £)! . 
£=1 

The contribution from f = 0 is simply zero because (Oie0 (z)IO) = 0. 
Thus we find 

(24) 
k sh(z)u-2 

Ch[k](z) = ~ (£!)2(k _ £)! . 

We have computed the Taylor expansion of Ch[k](z) for each fixed k and 
found exact agreements with the results of the formula (15). Note that 
the formula (15) rather gives Bn(k) as a function of k for each fixed n. 

§5. Loop operator and the generating function 

The vacuum expectation value of the Wilson loop operator (Tr eitcp) 
is related to the generating function of one-point functions simply by the 
Laplace transformation: 

(25) T(z) = / Tr - 1-) = f'XJ dle-lz(Tr e1'P). 
\ z- cp lo 

By (13) together with the formula (10), the Wilson loop operator can 
be expressed as 

itcp - - _1_ oo [_!j_] ki:DEY(ez(c(0)+1) + ez(c(0)-1)- 2ez(c(O))) 

(Tr e ) 1 - Z L fi2 IT (h(o))2 
U(1) k=1 DEY 
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where z = itn. We can further put it into 

(26) (Tr eit<p)- 1 = ~ f [;2] k (sh(z))2Ch[k](z), 
U(l) k=l 

using the generating function Ch[k](z) defined in (21). The final expres­
sion (24) of Ch[k](z) derived in section 4 implies 

1 oo k [ q ] k sh(z)2z 
(Tr eit'P) - 1 = """" 

Zu(l) ~ ~ n2 (l!) 2 (k- l)! 

1 oo oo [ q ]k sh(z)2Z 

Zu(l) ~ £; n2 (l!) 2(k- l)!' 

where in the last equation we have exchanged the k summation and the 
l summation. Performing the k summation first, 

00 1 [ ] k 00 1 [ ] k+l [ ] l L (k _ l)! ;2 = L k! ;2 = Zu(l) ; 2 , 
k=l k=O 

we find the Wilson loop operator is given as 

00 1 [ ]l (27) (Tr eit<p) = 1 + ~ (l!) 2 ; 2 (sh(z))2 = I 0 (2yqsh(itn)/n), 

where I 0 (x) is the modified Bessel function. It is somewhat surprising 
that we can perform the instanton sum of the loop operator completely 
and obtain an exact result (27) in a closed form. We can also obtain an 
exact result on T(z) from (27). The Laplace transformation (25) implies 

By computing the residue at z = mn ( -n :::; m:::; n), we find a partial 
fraction expansion 

n 1 n (-1)n-m 1 Jln z- mn = n-2
n m~n (n- m)!(n + m)! z- mn ' 
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which gives 

(28) T(z) ~ (2n)! n ITn 
~ (n!)2 q m=-n z- mn 

1 

f (~7);qnz-2n-1 IT f (rr;n)2k 
n=O ( ) m=1 k=O 

This is a remarkably simple answer to then dependence of T(z). 
We can check that the final result (28) is consistent with the chiral 

ring relations (17) derived in section 3. Recall that the coefficients cj in 
the relation (17) are defined by (16). We find 

c~ = 1, 

r-1 

c~_ 1 =-LJ2 = -~r(r- 1)(2r -1) . 
j=O 

Substituting these to the relation (17), we obtain 

(Tr 2r) = (2r)! r fi2 (2r)! r-1 O(n4) 
rp (r!)2q + 12 (r -1)!(r- 2)!q + · 

Hence 

which agrees to the n expansion of (28). Finally from the Taylor expan-
sion; 

1 ~ (2n)! n 

y'1- 4x = f::o (n!)2 x ' 

and its derivatives, we have 

T(z) = 

1 
lxl < 4, 

whose leading term agrees with the result reviewed in section 2. By 
similar computations of the two-point function (Tr eit<p Tr eis<p) of the 
loop operators, we can also obtain the other generating function R(z) 
appeared in section 2. The result again exactly agrees to the prediction 
of the Konishi anomaly equation or the matrix models. See [12] for more 
details. 
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