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Analysis of an evolutionary variational inequality 
arising in elasticity quasi-static contact problems 

Nicolae Pop 

Abstract. 

In this paper, we present the strong arid the variational form of a 
dynamic contact problem with friction. We derive the result and obtain 
an incremental formulation by space discretization with finite element 
method and by time discretization with finite difference method of the 
dynamic contact problem. As well we describe the solution strategies 
for spatially discrete system and the condition for stability of the solu­
tion. Dificulties caused by the discontinuity of the Coulomb's friction 
law (passage from sliding to adhesion), are tried to be passed over 
using the Newton-Raphson iterative techniques, and their success de­
pends also on the small value of the parameter , from the regularized 
friction law. 

§1. Introduction 

The present paper is a continuation of the analysis presented in [ 10], 
which consists in a numerical analysis of a dynamic contact problem with 
friction presented in [11]. The problem is intended to model the physical 
situation of two elastically deforming bodies that come into contact with 
friction and are obeying the normal compliance law, where the normal 
stress is depending on statistical parameters of the contact surface's 
profile. 

First we give a classical and a variational formulation of the con­
tinuous dynamic contact problem. Afterwards, we derive the result and 

Received December 26, 2006. 
Revised October 12, 2007. 
2000 Mathematics Subject Classification. 74S05, 74M10, 74Ml5, 74H15, 

74H30, 39All. 
Key words and phrases. Unilateral contact problem, dry friction laws, fi­

nite element method, finite difference method, Newmark algorithm, Newton­
Raphson method. 



226 N. Pop 

obtain an incremental formulation by space discretization with finite ele­
ment method and by time discretization with finite difference method of 
the dynamic contact problem and we present the solution strategies for 
spatially discrete system and the condition for stability of the solution. 

In the present paper we compare the quasi-static contact problem 
with the dynamic contact problem. In the case of the quasi-static contact 
problem the inertial forces are neglected, but for the dynamic contact 
problem case, the inertial terms cannot be neglected. 

§2. Formulation of the problem 

Let us consider two linear elastic bodies that at a given time t = 0 
occupy domains n1 and n2 c Rd, respectively, where d = 2 or d = 3. 
The boundary of each body, is divided into three subregions such that 

1 1 -1 -1 -1 2 2 -2 -2 -2 an = r = r u u r N u r c and an = r = r u u r N u r c' 
which are topologically open, and disjoint, only rh and r~ being ac­
cepted to have common points, and mes(rk) > 0, i = 1, 2. 

The displacement u ( t, X) will be prescribed on ru = r~ u r~ and 
traction h (t, x) is to be given on rN = r}v ur~. For the beginning, the 
boundary r N = r}v u r~ is considered without tensions. At the same 
time the stress vector a( n) ( u) is defined, oriented towards the exterior of 
the boundary an= an1uan2 . The initial displacement u (0, x) = Uo (x), 
the initial velocity u (0, x) = u 1 (x) and the density of body force fare . 
also given. 

So long as the two bodies do not touch each other, the field of the 
displacements will be the solution of a boundary value problem of the 
differential equations of elastodynamics. If the two bodies touch one 
another, then in the contact boundary there are forces strong enough to 
prevent the interaction (penetration) of the two bodies. The condition 
that needs to be expressed in order to describe this process is called the 
contact condition. Beside these forces there may appear in the contact 
area friction forces as well, which are described by a law of friction. The 
contact problem in a time interval [0, tE] with tE > 0, has the following 
form: 

The elastodynamic equation on n = n1 U n2 

(2.1) pu(t,x)-O"ij,j(u(t,x))=f(t,x) on [O,tE]xn. 

The boundary conditions 

(2.2) u(t,x) =u(t,x) on [O,tE] xru 
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(2.3) a(n) (u) (t, x) = h (t,x) on [0, tE] X rN 

and the initial conditions are u (0, x) = u0 (x), the initial velocity 
iL (0, x) = u1 (x). The condition of non-penetrating bodies will be un­
derstood as a geometric contact condition. It is approximated by the 
inequation u~(x, t) :::; g(x), where g(x) is the initial gap between the 
bodies and u~ is the relative displacement between the contact bound­
aries. We shall use the following notations for the normal and tangential 
components of the displacements and of the stress vector: 

UN= u · n = uin[, ur = u- UNn1 , aN= O"ijn[n], 1:::; i,j:::; d and 
n 1 is the outward normal unit vector on r 1 . 

In the normal interface response case, we have 

if 

else 
ar(u) = cr(u~- g)~T 

Where CN, mN, cr, mr are material constants depending on the inter­
face properties and b+={b,O}. The following steps, similar with those 
of Oden and Martins [9], the nonlinear elastodynamics problem can be 
formally equivalent to the following variational problem: 

Problem Pl. Find the function u:{O,t}-+ Vs.t. 

(2.5) (u(t),v-u(t))+a(u(t),v-u(t))+(P(u(t)),v-u(t))+ 

+j ( u (t) , v) - j ( u (t) , iL ( t)) ~ (! ( t) , v - iL ( t)) , Vv E V 

with the initial conditions: 

(2.6) u (0, x) = u0 (x) andu (0, x) = ul(x). 

We have assumed here, for simplicity, that p = 1. The following notations 
and definitions were also used: 

(2.7) 

the space of admissible displacements (velocities); 

(2.8) a: V x V-+ R, a (u, v) = k CijklEij(u)E:kt(v)dx, 
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the virtual work produced by the action of the stress O"ij ( u) on the 
strains E:ij ( v); 

(2.9) p: V----> V', (P (u), v) = { CN(U~- g)~N VNdS, Jrc 
the virtual work produced by the normal pressure on the displacement 
(velocity) v; 

(2.10) j: V x V----> R, j (u,v) = { cr (u~- g):Tiv~lds, Jrc 
the virtual power produced by the frictional force on the velocity v ; 

(2.11) f (t) E V', (L, v) = (! (t), v) = { f (t) vdx + { h'Y (v) ds, 
Jn lrc 

the virtual work produced by the external forces. 
Here ( ·, ·) denotes duality pairing on V x V' where V' is the topolog-

ical dual of of V; 'Y is the trace operator mapping from [ H 1 ( 0)] d onto 

[ H! (F) r which may be decomposed into normal component 'YN ( V) 
and tangential component 'YT ( v). For simplicity of notation, the later 
are denoted as VN and vr, respectively. We also observe that the bound­
ary integrals on Fe are well defined for 1 :S mN, mr :S 3 if d=3 
and for 1 :S mN, mr < oo if d=2. These conditions on mN and 
mr basically com from the embedding theorem which states that for 
v E [H1 (O)]d,'Y (v) E [Lq (Fe)]d with 2 :::; q :::; oo for d=2, and with 
2 :S q :S 4 for d=3. 

One of the directions for the approximation of the Problem P1 is 
a family of regularized problems which lead insteads to of a variational 
equality. For this, it approximates the functional j:V x V ----> R which 
is nondifferentiable in the second argument (velocity) by a family of 
functionals Je convex and differentiable on the second argument: 

(2.12) Je: V XV----> R, Je (u, v) = { cr (u~- g):T'lte (v~) ds, 
lrc 

where the function 'lte:[Lq (Fe)]d ----> Lq (Fe), is an approximation of 
the function 1·1: [Lq (Fe)]d ----> Lq (Fe) and is defined for c > 0, ~ E 
[Lq (Fe)]d and a.e. x E Fe, according to 

(2.13) 
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The regularized form of Problem P1, is: 
Problem PlE. Find the functions U 15 : [0, tE] -" V s.t. 

(2.14) (iis (t), v) +a (us (t), v) + (P (us (t)), v) + (j15 (us (t), U15 (t)), v) 
= (! (t), v) , \fv E V 

with the initial conditions: 

(2.15) U 15 (0, x) = Uo (x) and U15 (0, x) = u1 (x). 

We observe that now we have a variational equation instead of a vari­
ational inequality. However, the regularized friction conditions are now 
the form: 

(2.16) 

with 

Fs (u¥) = { ~ 1¥1) u! 
lu¥1 if u¥ > E 

where F 15 is the friction coefficient. The choice of E will be dictated only 
by the desired proximity of the solutions of the Problems P1 and P1E 
and the corresponding computational costs associated. 

§3. Spatially semi-discrete approximations of the evolutionary 
variational equality 

Two types of semi-discrete approximation scheme can be developed. 
In the first type, when we replace the infinite-dimensional space V by a 
finite-dimensional subspace vh (the element finite spaces), leading to a 
finite-dimensional system of ordinary differential equations (3.3). Such 
approximation schemes can be termed as spatially semi-discrete scheme. 
In the second type, we replace the time derivatives by finite differences 
that lead to elliptic variational equations over infinite-dimensional space 
V at each time step. Such approximation schemes can be termed at tem­
porally semi-discrete schemes. In this paper, we consider the first type, 
spatially semi-discrete schemes, because after a spatially semi-discrete 
discretization, we can employ some ODE solvers for mathematical solu­
tion, see [8]. 

Using standard finite element procedures, approximate version of 
Problem P1E can be constructed in finite-dimensional subspaces Vh ( C V 
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c V'). For certain (h) the approximate displacements, velocities and 
accelerations at each time t are elements of 

Within each element OJ:. (e = 1, ... , Nh) the components of the displace­
ments, velocities and accelerations are expressed in the form: 

Ne Ne 

r~(t,x) = Lrk(t)NI(x), r~(t,x) = 'Lrk{t)NI(x), 

(3.1) l=l l=l 
Ne 

f~ (t, x) = L fk (t)NI (x), 
l=l 

where k = 2 or 3, Ne =number of node of the element, rk (t), Tk (t), 
fk (t) are the nodal values of the displacements, velocities and acceler­
ations, at the time t and N1 is the element shape function associated 
with the nodal point. The finite element version of the Problem P21c: 
with Nf! representing the number of the nodes of finite element mesh of 
n, is equivalent to the following matrix problem: 

Problem MP31c:h. Find the function r: [0, tE] ---. RdxNr, s.t. 

(3.2) Mf (t) + Kr (t)- P (r (t)) + J (r (t), r (t)) = F (t), 

with the initial conditions r (0) = po, r (0) = Pl· 
Here we have introduced the following matrix notations: 
r (t), r (t), f (t) :the column vectors of nodal displacements, veloc­

ities and accelerations, respectively; 
M: standard mass matrix, K: standard stiffness matrix, F (t): con­

sistent nodal exterior forces vector, P ( r ( t)): vector of consistent nodal 
forces on r c J ( r ( t) , r ( t)) : vector of consistent nodal friction forces 
on rc, po, p1: initial nodal displacement, velocity. The components of 
the element vector (e) Pare of the form: (e) P =- .f<e)r2 aN· n · N1ds 

c 
and the components of the element vector (e) J are of .the form: (e) J = 
- .f<e)r2 ar · N1ds. 

c 
In order to obtain the components of the element vector P and J is 

used a contact finite element, see [10], [11]. 
The algorithms that we shall use for solving the discrete dynami­

cal system involve variants of standard schemes used in nonlinear struc­
tural dynamics calculations: the Newmark-type algorithm or the central­
difference scheme. 

Using the Newton-Raphson method to solve the variational equation 
obtained at time tk introduced, into the variational equation P31c:h, 
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the relations which define the Newmark-type algorithm or the central­
difference scheme the following system of algebraic linear equations is 
obtained to solve at each iteration. 

Let us consider a partition of the time interval I = Uf=1 [tk-1, tk] 
with 0 = to < t1 < · · · < tN = tE, we denote flt = tk - tk-1 for the 
length of the sub-interval [tk-1, tk]· Two general classes are generally 
of interest. In the quasistatic case the inertial loads are taken to be 
insignificant in comparison with the applied loads and internal forces. 
In the dynamic case, the inertial terms are restored and issued associ­
ated with temporal accuracy and stability that come to the fore (must 
analysis). 

If we denote in ordinary differential equation (3.2), KN == K­
P + J (where the matrices P and J are nonlinear), dk == r (tk), vk == 
r (tk)' ak == r (tk), then (3.2) becomes: 

(3.3) Ma (t) + KN (d (t)) = F (t) 

For the analysis of this problem, must begin with quasistatic case: 

(3.4) KN (d (t)) = F (t) 

subject to only one initial condition d (0) =do. 
Note that the time variable t may correspond to real time, but 

doesn't need to have physical meaning for rate independent behavior. 
For example, it is common for t to be taken as a generic parameteriza­
tion for the applied loading on the system. With the above notation, 
the incremental load approach attempts (in each increment /lt) to find 
dk+1, given the solution dk at time level tk, such that 

(3.5) 

By introducing the concept of a residual vector R (dk+1): 

(3.6) 

Solution of (3.5) therefore amounts to the finding of the root of the 
equation 

(3.7) 

The physical meaning that is starting with an initial equilibrium state 
at tk, so that R (dk) = 0, we introduce a prescribed load increment 
flF = F (tk+l)- F (tk), and attempt to find that displacement incre­
ment dk+1 - dk that will restore equilibrium (eq. (3.5)). 
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In dynamic case inertial terms can not be neglected, and we note 
that it is possible in contrast to the quasi-static problem, the variable t 
in the dynamic case has the interpretation of real time. 

Problem P32. Find approximations dk+l, Vk+l, ak+l at time tk+l 
from equation (3.5), with given displacement vector dk, velocity Vk and 
acceleration ak at time tk. 

(3.8) Mak+l + KN (dk+a) = F (tk+a) 

dk+a = adk+l + (1- a) dk, 

f::l.t2 
dk+l = dk + f::l.tvk + - 2- [(1- 2/3) ak + 2f3ak+l], 

vk+l = Vk + f::l.t [(1- "!) ak + "(ak+l], 

where a, /3 and 'Y are algorithmic parameters that define the stability 
and accuracy characteristics of the method. In particular, when a= 1, 
the algorithm reduces to the classical Newmark algorithm. 

A wide range of algorithms exists corresponding to the different 
available choices of these parameters, we illustrate two methods: implicit 
methods, which is simply member of the Newmark family obtained by 
setting a= 1, /3 = 1/4 and 'Y = 1/2 in (3.8). In this case, the integrator 
is second order accurate and unconditionally stable for linear problems, 
meaning that the spectral radii of the integrator remains less than 1 in 
modulus, for any time step f::l.t. For explicit methods, let us take a = 

1, /3 = 0 and 'Y = 1/2, substitute into (3.8) and examining the central 
difference algorithm. This integrator, for explicit method, is second 
order accurate and only conditionally stable, meaning that linearized 
stability is only retained when f::l.t is less than some critical limit. This 
limit, sometimes called the Courant stability limit, can be shown to be as 
follows f::l.t:::; 2/wmax' where Wmax is the highest modal natural frequency 
in the mesh. This frequency can be estimated: Wmax ~ 2 (Cfh)max where 
c and h are the sound speed and characteristic mesh size, respectively. 

Finally, we find that f::l.t :::; (hie) . . 
mm 

This meaning that the time step may by no larger than the amount 
of time required for a sound wave to traverse the element in the mesh 
having the smallest transit time. This fact tells us that explicit methods 
are appropriate only for those problems featuring very high frequency 
response, for problems featuring low frequency response, the implicit 
methods are is highly desirable, albeit at the cost of explicit updates 
in each increment. The implicit and explicit methods are valid only for 
linear or linearized problems. In this section we give a general framework 
for solving the nonlinear discrete equations associated with computation 
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of an unknown state at step tk+1 , in either context of a quasi-static (3.7) 
and dynamic contact problem formulation as in (3.8). In either case, 
the equation to be solved takes the form R (dk+l) = 0, where the R is 
considered to be a nonlinear function of the solution vector dk+l· 

The general concept of a Newton-Raphson iterative solution tech­
nique consists in the linearization of a nonlinear equation. This concept 

is applied to equation (3.8) and is defined in iteration j by R ( d{+1) + 
[8R ] · "+1 · · lad j b..d1 = 0, followed by the update d1+1 = d1+1 + b..d1. 

dk+l 

Iteration on j typically continue until the Euclidian norm II b..d{ II is 

smaller than some tolerance. 
The residual at iteration j , from (3.8) is of the form 

(3.9) R ( d{+1 ) .- F (tk+l)- KN ( d{+l) - b..~2 M d{+1 

+ M ( ak + b..tvk + :X2 d{) = 0 

which take the form [ (4/ b..t)M + KL ( d{+1) J b..d{ = R ( d{+1) , where 

the stiffness matrix KL ( d{+1) is given as 

We note that a variety of iterative procedures exist as alternatives 
to the Newton-Raphson nonlinear solution procedure (quasi-Newton, 
secant methods etc.). 

The scheme of solving the linearized dynamic contact problems is 
the following: 

(i) initialization the set of the iterative count tk = 0, b..t = 0, k = 
0 J. = 0 dj = O· 

' ' k ' (ii) compute the mass matrix M, the standard stiffness matrix K 
and a dynamic residual R; 

(iii) compute the contact nodal forces P and the contact friction 
forces J; 

(1) compute the normal gap gt-; 
(2) check for contact finite element status: 

IF gt- >TOL then out of contact 
ELSE in contact. Check for frictional stick or slip contact 

status 
END IF 
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(3) compute total matrix KL and residual R, this involves to com-
pute 

the vectors { a{+1 , v~+l' d{+1 }, from k=O toN, (k=N=>tk+l =tE); 

(IV) check for convergence: 

IF~~d{+1 - ~d{til <TOLl then converge and exit. 

ELSE go to step (VI) 
(V) update the displacement field d{ti = dt1 + ~d{; 
(VI) set j=j+l and go back to (ii); 

§4. Conclusions 

1) It is known that the matrix KN is ill conditioned, if we split the 
normal and tangential stress from contact boundary, in blocks diagonal 
matrices, these block matrices contain coefficients of the same size order, 
and with this procedure we obtain a better conditioned matrix. 

2) The discontinuity of the Coulomb's friction law at zero sliding 
velocity is a major source of computational difficulties in friction prob­
lems. Even though, in the algorithms described in this and the previous 
sections, a regularized form of that law is used, those difficulties cannot 
be completely avoided. The situation which may arise when using the 
methods described here with a constant step is the following: in unload­
ing situations (passage from sliding to adhesion) the Newton-Raphson 
iterative techniques may fail to converge if E is very small and the step 
too large. For small values of E the radius of converge of the iterative 
scheme used is very small due to the step change in I]! c: on the interval 
[-E,E]. 

3) The critical situations arise in transitions from sliding to adhesion, 
because these are the most important (dramatic) changes. In order to 
avoid these difficulties that appear in the iterative solutions sequence, 
we decrease the time step until two successive solutions are not too far 
apart. 

References 

[ 1] L. E. Anderson, A quasistatic frictional problem with normal compliance, 
Nonlinear Anal., 16 (1991), 347-369. 

[ 2] M. Cocu, Unilateral contact problems with friction for an elastoviscoplastic 
material with internal state variable, In: Proc. Contact Mechanics Int. 
Symp., (ed. A. Curnier), PPUR, 1992, pp. 207-216. 



Evolutionary variational inequality 235 

[ 3) S. Drabla and M. Sofonea, Analysis of a Signorini problem with friction, 
IMA J. Appl. Math., 63 (1999), 113-130. 

[ 4) G. Duvaut, Loi de frottement non locale, J. Mec. The. Appl., spcial issue, 
1982, 73-78. 

[ 5) J. Jarusek and C. Eck, Dynamic contact problems with friction in linear 
viscoelasticity, C. R. Acad. Sci. Paris Ser. I Math., 322 (1996), 497-502. 

[ 6) N. Kikuchi and J. T. Oden, Contact Problems in Elasticity: A Study of 
Variational Inequalities and Finite Element Methods, SIAM Stud. Appl. 
Math., 8, SIAM Philadelphia, 1988. 

[ 7) A. Klarbring, A. Mikelic and M. Shillor, Frictional contact problems with 
normal compliance, Internat. J. Engrg. Sci., 26 (1988), 811-832. 

[ 8) T. A. Laursen, Computational contact impact mechanics. Fundamentals 
of modeling interfacial phenomena in nonlinear finite element analysis, 
Springer-Verlag, 2003. 

[ 9) J. T. Oden and J. A. C. Martins, Models and computational methods for 
dynamic friction phenomena, Comput. Methods Appl. Mech. Engrg., 52 
(1986), 527-634. 

[10) N. Pop, On the existence of the solution for the equations modeling contact 
problems, In: Proceedings of the Third International Palestinian Confer­
ence, Mathematics & Mathematics Education, (eds. S. Elaydi, E. S. Titi, 
S. K. Saleh and R. Abu-Saris), World Scientific, 2000, pp. 196-207. 

[11) N. Pop, A numerical formulation for quasistatic frictional contact problem, 
Advance in Difference Equations, Proceedings of the Second International 
Conference on Difference Equations, 1995, (eds. S. Elaydi, I. Gyori, G. 
Ladas), Gordon and Breach, 1997, pp. 517-524. 

[12) A. Signorini, Sopra alcune questioni di elastostatica, Atti. Soc. Ital. Progr. 
Sci., 1933. 

[13) D. Tabor, Friction- The present state of our understanding, J. Lubr. Tech­
nol., 103 (1981), 169-170. 

[14) K. L. Woo and T. R. Thomas, Contact of rough surface: A review of 
experimental work, Wear, 58 (1980), 331-340. 

North University of Baia Mare 
Romania 

E-mail address: nicpop@gmail. com 


