Advanced Studies in Pure Mathematics 53, 2009
Advances in Discrete Dynamical Systems
pp. 179-187

Stabilities with respect to a weight function in
Volterra difference equations

Satoru Murakami

Abstract.

We establish some results on p-stabilities of the zero solution of
a system of linear Volterra difference equations. Furthermore, for the
equations with nonnegative coefficients we give an easy criterion for
the p-UAS of the zero solution.

§1. Introduction

In this paper we are concerned with a system of linear Volterra
difference equations

(1)
z(n+1) =Y Qn-k)z(k) (= (Q*z)(n)), neZt:={0,1,2},
k=0

where x = {z(n)} is a sequence of r column vectors, and Q := {Q(n)}
is a sequence of X r matrices which is p-summable, that is, > o, p(n)
1Q(n)]| < oo, for a weight function p : Z+ — (0, 00). Here and hereafter,
we call p a weight function if p satisfies

p(0) =1, p(n+m) < p(n)p(m) for Vn, m € Z*.

The functions p(n) = L™, p(n) = L™(1+n)?, p(n) = L™(1+log(1+n))?
with positive costants L and p are typical ones of weight functions. In
this paper, we will introduce the concept of stabilities with respect to
p (p-stabilities, in short), which relates to the decay rate of solutions of
Eq. (1) and is exactly same as the usual concept of stabilities in case of
p(n) = 1. As one of our main results in this paper, we will give a result
which is a characterization of the p-uniform asymptotic stability prop-
erty of the zero solution of Eq. (1) in connection with the p-summability
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of the resolvent matrix of Eq. (1), as well as the invertibility of the char-
acteristic matrix zE — Y oo, Q(n)z~™ for z belonging to the domain
|z| > 1/1, where E denotes the r x r unit matrix, and [ is a number
defined by [ :=lim, .o ¥/p(n) (=inf, {/p(n)) and it is assumed to be
positive. In fact, in case of p(n) = 1, the result is identical with the
one obtained by Elaydi and Murakami [2]. Furthermore, under the re-
striction that the matrices Q(n) are all nonegative, we will give an easy
criterion for the p-UAS of the zero solution of Eq. (1).

The following result is a typical one which is obtainable as an im-
mediate consequence of our main theorems in Sections 2 and 3:

Theorem 1. Assume that @Q(n) > 0,Yn > 0 and Z 1Q(n)| < oo.
n=0

Then the zero solution of Eq. (1) is UAS, if and only if
det (2B~ 3 Q) 0 (vl 2 1),
3=0

On the other hand, the (14+n)P*2-UAS can never be realized for the zero
o0

solution of Eq. (1), when Z(n”HQ(n)H) = 00 for some positive integer
D. n=0

Indeed, the former part of the theorem is a direct consequence of
Theorem4 (in Section 3) with p(n) = 1. Also, the latter part of the
theorem follows from Theorem 3 (in Section 2), because the (1 + n)P+2-
UAS of the zero solution of Eq.(1) implies that the resolvent R =
{R(n)}nez+ of Eq. (1) satisfies sup,>o{(1 + n)P*?||R(n)||} < oo, and

hence Z(anR(n)H) < 00.

n=0
§2. Some results on p-stabilities

Given Vr € ZT and ¢ : [0,7] :== {0, 1, ..., 7} — C". A function
z:Z%t — C" is called a solution of Eq. (1) through (7, ¢) if
z(n+1)=(@x*z)(n) (Wnz7), z(s)=4¢(s) (Vs=0,1,...,7),

and is denoted by the symbol z(-; T, §).
The zero solution of Eq. (1) is said to be;

(1) uniformly stable with respect to p (p-US) if Ve > 0,36 > 0 :

Iglle = SE£><O(I¢(T +0)1%) <& = p(n)|z(n +;7,4)| <e (Yn>0),
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(2) uniformly asymptotically stable with respect to p (p-UAS) if the
zero solution is p-US and if 355 > 0, Ve > 0,3N(e) > 0 :

[6ll: < do = p()|z(n +7;7,¢)| < e (Vn 2 N(e)).

In the above, [ is the (nonnegative) constant given by
L= lim {/p(n) (= inf {/p(n)).

We remark that if p(n) = 1, then | = 1, and hence the concept of the
above p-stabilities is exactly same as the concept of the usual stabilities.

In the remainder, we always assume [ > 0 and the following condi-
tion on the weight function p:

(2) F(constant) C >0: pn)°*<Cp(n+s—1) (Vn>0,s>1).

We note that Condition (2) is satisfied (with C' = [) for the concrete
functions p(n) = 1", p(n) = 1"(1 + n)?, and so on.

Notice that the Z-transform Q(2) := Y20, Q(n)z™™ is convergent
for any |z| > 1/1, because p(n) > 1™ and > ., |Q(n)||p(n) < co.

A family of 7 x r matrices B = {R(n)}necz+ is called the resolvent
of Eq. (1), if R(0) = E and R(n+ 1) = (Q * R)(n) for any n > 0. It
is easy to see that the Z-transform R(z) of the resolvent R exists for z
with sufficiently large |z|. Considering the Z-transform of the both sides
of R(n+ 1) = (Q * R)(n), one can get the relation zR(z) — zR(0) =
Q(2)R(2), or (2E — Q(2))R(2) = 2E.

‘One of the crucial results in this section is the following:

Theorem 2. Assume that Q = {Q(n)} is p-summable for a weight
function p satisfying Condition (2). Then the following statements are
equivalent:

(1) det(zE—Q(2)) #0 (V|| 21/.
(2) R is p-summable; that is, Z(HR(n)Hp(n)) < 00.

n=0

(3) The zero solution of Eq. (1) is p-UAS.

The equivalence (i) <= (ii) can be established by applying the
theory of Banach algebras [6, Chapter 11] to the space

Ly(2%;C) := {a = {a(M)}nez+ C C | llall := D p(n)la(n)| < oo}.

Indeed, the space L,(Z"; C) with the convolution product is a commu-
tative Banach algebra, and any nontrivial character x of L,(Z*;C) is
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given by x = ¢, that is, x(a) = Y7, a(n)w", for some w € C with
|w| < 1. By this fact and the relation (2E — Q(2))R(z) = zF, one can
verify the equivalence; cf. [3, Proof of Corollary 1 and pp.1213-1214].
Also, the implications (ii)==(iii) and (iii)==(i) can be verified by ap-
plying the representation formula of solutions of Eq. (1)

o+ i, 8) = RODOr) + 3 Rln— i~ 1) QU +s)6(r — ),
7=0 s=1

using Condition (2); cf. [2, Proof of Theorem 2].

Applying Theorem 2 with | = 1 and p(n) = (1+n)P (p is a nonneg-
ative integer), we get the following corollary:
[e o)

Corollary 1. Assume that Z(HQ(n)HnP ) < oo. Then the following
n=0
statements are equivalent:

(1) det{z — Q=) #0 (]2 2 1).
Z(IIR(n)iln” < o0,

(3) The zero solution of Eq. (1) is (1 + n)P-UAS.

In case of p = 0, Corollaryl is exactly tha same as [2, Theorem 2].
As shown in the following result, we cannot drop the nP-summability
condition on @Q(n) in Corollaryl under the sign condition for Q(n).

o0
Theorem 3. Assume that Z |Q(n)|| < oo, and that for sufficiently
n=0
large n, each component qij(n) of Q(n) has the same sign; that is,

EITL()ZO: qm(n)zo (VnZno, i,jzl,...,’l‘)

or
ij(n) <0 (Yn > ng, 4,5 =1,...,7).

If E (J|R(n)|InP) < oo for some positive integer p, then E (|Q(n)||nP)
n=0 n=0
< 0.

Proof. The theorem can be proved by a method similar to the one
in [5]; so, we will give only a sketch of the proof. In the following, we
may consider the case p > 1 and assume that the norm of r x r matrix

T

A = (as5) is given by the ! norm, that is, ||A|| = Z |a;;|. Observe that
ij=1
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R(z) = ZR(n)z_" is convergent on |z| > 1, and (2zF — Q(2))R(z) =
2E; hence R(z) is invertible and

Q(z) = zE — z(R(x))"! (=: F(z)) (Vz>1).
It follows that F' € CP([1, 00)), moreover if M > ng and h > 0, then

e e IR DI OR

\%

(Z nil)nc;( L@

n=ng

by the sign condition on (). Noting that

1-Q —-n
0<n<M h
for small A > 0, we can establish that
00 d - o o
> Q)| < oo, F'(z) = Q) = D (=n)Qm)z " (Vo > 1)
n=0 n=0

by a contradiction; cf. [5, Proof of Theorem 2]. Repeating the above
argument, we can derive that

> rflem)ll < o,
n=0

F® (z Z( Den(n+1)---(n+k—-1D)Qm)z ™" (vz >1)
for k=1,2,...,p. Letting k = p, we get the required one. Q.E.D.

§3. Stabilities in equations with nonnegative matrices

For any two I x ¢ matrices A = (a;;) and B = (b;;), the inequality
A> B means a;; > by foralli=1,---,1, j=1,--- ,q. If A>0, then
A is called a nonnegative matrix. Also, a (column) vector b is said to be
strictly positive, if all components of b are positive. We use the symbol
b > 0 to denote that b is strictly positive.

In this section, we treat Eq. (1) with nonnegative matrices Q(n), Vn €
Z7, and establish the following result on the p-stabilities.
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Theorem 4. Assume that Q(n) > 0,Vn > 0 and that Q = {Q(n)}
is p-summable for a weight function p satisfying Condition (2). Then
the following statements are egquivalent:

(1) det(zE— X0 QIM) £0 (V2| = 1/0).

(2) The zero solution of Eq. (1) is p-UAS.

(3)  Foranyb> 0 and any solutiony of y(n+1) = (Qx*y)(n)+b/1",

{"y(n) tends to a strictly positive vector as n — oo.
(4)  For some b > 0 and some solution y of y(n+1) = (Q*y)(n)+
b/1™, I"y(n) tends to a strictly positive vector as n — oo.

Applying Theorem 4 with [ = 1 and p(n) = (1+n)P (p is a nonneg-
ative integer), we get the following corollary:

o
Corollary 2. Assume that Q(n) > 0,Vn > 0 and that Z(HQ(n)Hni")
n=0
< 0o. Then the following statements are equivalent:
(1) det(zE — 3,2, Q(n)) #0  (V|z| > 1).
(2) The zero solution of Eq. (1) is (1 4+ n)P-UAS.
(3) For any b>> 0, any solution of y(n+ 1) = (Q * y)(n) + b tends
to a strictly positive vector as n — oo.
(4) For some b > 0, some solution of y(n+ 1) = (@ *xy)(n) +b
tends to a strictly positive vector as n — oo.
In Corollary2, (or Theorem 4), we cannot always drop the nonnega-
tivity condition on @(n) as the following example shows.

Example 1. Let us consider the scalar equation (1) with

o
QO =0, Q=1 am=12.)
where @ = 6/72. Then Y 7 ; Q(n) = ax(n?/12) = 1/2; thus, Condition
(i) in Corollary? is satisfied. But the zero solution of Eq. (1) is not UAS,
because the equation det(zFE — Q(z)) = 0 has a root z = —1.

Without assuming the nonnegative condition on Q(n), one can ob-
tain the following result (like a comparison theorem in ODE) on sta-
bilities in Eq. (1) by checking Condition (i) in Theorem 2. Here and
hereafter, for any matrix A = (a;;) we employ the notation |A| = (|ai;|).

Theorem 5. Assume that Q = {Q(n)} is p-summable for a weight
function p satisfying Condition (2), and that

det (28~ Y_(QEIM ) 0 (el 2 170

n=0
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Then the zero solution of Eq. (1) is p-UAS.
Example 2. Let |a| < 1/2, |8] <1, |v| < 1, and consider Eq. (1) with

antt 0
A= (g0 s D )
Then -
al/(1 —|a 0
>iaei= (R 5 )-
Observe that |a|/(1—|a|) and || are the eigenvalues for the nonnegative
matrix Y 7 1 |Q(n)|, and that they are smaller than 1 by the require-

ments on « and 7. Therefore, the zero solution of Eq. (1) is UAS by
Theorem 5 with [ = 1.

Before concluding the paper, we will give a sketch of the proof of
Theorem 4. To do this, we first recall the following result which is well
known as Perron-Frobenius’s Theorem [1, 4]

Lemma 1. Let P be a nonnegative square matrix. Then

(1) The spectral radius r := r,(P) is an eigenvalue of P and there
exists a nonnegative eigenvector x, x # 0 such that Pz = rz.

(2) ro(P) =sup{r € R: Px >vz for some nonzero z > 0}.

(3) If A > r5(P), then (\E — P)~! > 0.

The following result is an immediate consequence of Perron-Frobenius’s
Theorem (ii).

Proposition 1. Let P and @ be r x r matrices such that |P| < Q.
Then 1, (P) < 7,(Q).

In the proof of the theorem, the following proposition plays a crucial
role.

Proposition 2. Assume that Q(n) > 0,VYn > 0 and Z(]]Q(n)“p(n))
. n=0
< 00. Then the following statements are equivalent:

(1) det(zE — Q()) £0 (Y]] > 1/1).
(2) 7o (302 o(Q(n)I™)) < 1/1; in other words, det(zE—Y o, Q(n)l™)
£0 Wl > 1/1).

(3) For some b > 0, there is a y* > 0 such that ((1/l)E -

ZQ(k)lk)y* =b.

k=0
Proof. (ii)==(i). This is a direct consequence of Proposition 1,
because of the inequality |Q(2)| < Yoo, Q(n)I™ for |z| > 1/1.
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(i)=(ii). Let us consider the continuous function f(t) = ¢ —
ro(Q(t)) defined on [1/l,00). Assume f(1/l) < 0. Since f(oo) =
0o, there is some Ay > 1/l such that f(A\;) = 0; in other words,
M o= 130 o Q(M)AT™). Then A; is an eigenvalue of the matrix
Yoo o Q(M)AT™ by Perron-Frobenius’s Theorem (i), which contradicts
(i). Thus we must get f(1/1) > 0, which is equivalent to (ii).

(ii)==(iii). This is a direct consequence of Perron-Frobenius’s The-
orem (iif).

(ii)==>(ii). Since 7 = r5(Xor, @(n)I™) equals the spectral ra-
dius of the transposed matrix of } .~ Q(n)I", Perron-Frobenius’s The-
orem (i) implies that there is a nonzero row vector ¢ > 0 such that
(320 o QM)I™) = re. Then rey* = (3 oo o Q@()I™)y* = c(y*/l—b), or
¢b = (1/1—r)cy*. Since cy* > 0 and cb > 0, we must get r < 1/l, which
shows (ii). Q.E.D.

Sketch of Proof of Theorem 4. The equivalence relation (i) <= (ii)
is an immediate consequence of Theorem 2 and Proposition 2. Also, the
implication (iii) = (iv) is obvious.

(i) => (iii). Given any b > 0 and a solution y of y{(n + 1) =
(@ *y)(n) +b/I™ on [0, 00) such that y = ¢ on [0, 0]. By Proposition 2,

[ee)
there is a y* > 0 such that ((1/l)E — Z Q(k)lk> y* = b. We will certify
k=0
that lim, .. {{"y(n)} = y*. Observe that the solution y is written by
the representation formula

o) = R+ 52 mtn—s-1( 3 Qoo i)+ L),

J=—0

Since Yo7 o [|R(n)||p(n) < oo by Theorem2, one can easily deduce that
PR (@) - 0 and 1] S Rn - 5 — 1Y
7)p(o+ 7))} — 0 as n — co. Then

j=—0 (‘9 -0 -

n—1

lim {{"y(n)} = lim Z{R(n —s— 1"}
n—o—1

= lim Y {R(w)"*'b}

= W:/l)b
— lR(l/l( ZQ l’“) v
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because of z(2zE — Q(z))~" = R(2) for |z| > 1/I.

(iv) = (i).- Let y be a solution of y(n + 1) = (Q *y)(n) + b/I"
satisfying lim,, .o (I"y(n)) = y* > 0, where b > 0 is some vector. Since
S oo 1Q(K)||p(k) < oo, one can easily check that limy, e (I" Y oo o Q(n—

s)y(s)) = {3520 1"Q(k)}y". Hence

y* = nli_)rr;(l"“y(n +1)) = lim (l"-“ ZQ(n —8)y(s) + lb)
=0
= D _1"Qk)}y* +1b
k=0

or o
1 k * __ 1.
(35S awr v =t

thus Condition (iii) of Proposition 2 is satisfied. Therefore, (i) follows
from Proposition 2. Q.E.D.
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