Advanced Studies in Pure Mathematics 53, 2009 Advances in Discrete Dynamical Systems pp. 179–187

Stabilities with respect to a weight function in Volterra difference equations

Satoru Murakami

Abstract.

We establish some results on ρ -stabilities of the zero solution of a system of linear Volterra difference equations. Furthermore, for the equations with nonnegative coefficients we give an easy criterion for the ρ -UAS of the zero solution.

§1. Introduction

In this paper we are concerned with a system of linear Volterra difference equations

$$x(n+1) = \sum_{k=0}^{n} Q(n-k)x(k) \ (= (Q*x)(n)), \qquad n \in \mathbf{Z}^{+} := \{0, 1, 2, \dots\},$$

where $x = \{x(n)\}$ is a sequence of r column vectors, and $Q := \{Q(n)\}$ is a sequence of $r \times r$ matrices which is ρ -summable, that is, $\sum_{n=0}^{\infty} \rho(n) \|Q(n)\| < \infty$, for a weight function $\rho : \mathbf{Z}^+ \to (0, \infty)$. Here and hereafter, we call ρ a weight function if ρ satisfies

$$\rho(0) = 1, \qquad \rho(n+m) \le \rho(n)\rho(m) \quad \text{for } \forall n, \ m \in \mathbf{Z}^+.$$

The functions $\rho(n) \equiv L^n$, $\rho(n) \equiv L^n(1+n)^p$, $\rho(n) = L^n(1+\log(1+n))^p$ with positive costants L and p are typical ones of weight functions. In this paper, we will introduce the concept of stabilities with respect to ρ (ρ -stabilities, in short), which relates to the decay rate of solutions of Eq. (1) and is exactly same as the usual concept of stabilities in case of $\rho(n) \equiv 1$. As one of our main results in this paper, we will give a result which is a characterization of the ρ -uniform asymptotic stability property of the zero solution of Eq. (1) in connection with the ρ -summability

Received October 12, 2007.

²⁰⁰⁰ Mathematics Subject Classification. 39A11.

of the resolvent matrix of Eq. (1), as well as the invertibility of the characteristic matrix $zE - \sum_{n=0}^{\infty} Q(n)z^{-n}$ for z belonging to the domain $|z| \geq 1/l$, where E denotes the $r \times r$ unit matrix, and l is a number defined by $l := \lim_{n \to \infty} \sqrt[n]{\rho(n)}$ (= $\inf_n \sqrt[n]{\rho(n)}$) and it is assumed to be positive. In fact, in case of $\rho(n) \equiv 1$, the result is identical with the one obtained by Elaydi and Murakami [2]. Furthermore, under the restriction that the matrices Q(n) are all nonegative, we will give an easy criterion for the ρ -UAS of the zero solution of Eq. (1).

The following result is a typical one which is obtainable as an immediate consequence of our main theorems in Sections 2 and 3:

Theorem 1. Assume that $Q(n) \ge 0, \forall n \ge 0$ and $\sum_{n=0}^{\infty} ||Q(n)|| < \infty$. Then the zero solution of Eq. (1) is UAS, if and only if

$$\det\left(zE - \sum_{j=0}^{\infty} Q(j)\right) \neq 0 \quad (\forall |z| \ge 1).$$

On the other hand, the $(1+n)^{p+2}$ -UAS can **never** be realized for the zero solution of Eq. (1), when $\sum_{n=0}^{\infty} (n^p || Q(n) ||) = \infty$ for some positive integer p.

Indeed, the former part of the theorem is a direct consequence of Theorem 4 (in Section 3) with $\rho(n) \equiv 1$. Also, the latter part of the theorem follows from Theorem 3 (in Section 2), because the $(1+n)^{p+2}$ -UAS of the zero solution of Eq. (1) implies that the resolvent $R = \{R(n)\}_{n \in \mathbf{Z}^+}$ of Eq. (1) satisfies $\sup_{n \geq 0} \{(1+n)^{p+2} \|R(n)\|\} < \infty$, and hence $\sum_{n=0}^{\infty} (n^p \|R(n)\|) < \infty$.

§2. Some results on ρ -stabilities

Given $\forall \tau \in \mathbf{Z}^+$ and $\phi : [0, \tau] := \{0, 1, ..., \tau\} \to \mathbf{C}^r$. A function $x : \mathbf{Z}^+ \to \mathbf{C}^r$ is called a *solution* of Eq. (1) through (τ, ϕ) if

$$x(n+1) = (Q*x)(n) \quad (\forall n \ge \tau), \quad x(s) = \phi(s) \ (\forall s = 0, 1, ..., \tau),$$
 and is denoted by the symbol $x(\cdot; \tau, \phi)$.

The zero solution of Eq. (1) is said to be;

(1) uniformly stable with respect to ρ (ρ -US) if $\forall \epsilon > 0, \exists \delta > 0$:

$$\|\phi\|_l := \sup_{-\tau \le \theta \le 0} (|\phi(\tau + \theta)|l^{\theta}) < \delta \Longrightarrow \rho(n)|x(n + \tau; \tau, \phi)| < \epsilon \ (\forall n \ge 0),$$

(2) uniformly asymptotically stable with respect to ρ (ρ -UAS) if the zero solution is ρ -US and if $\exists \delta_0 > 0, \forall \epsilon > 0, \exists N(\epsilon) > 0$:

$$\|\phi\|_{l} < \delta_0 \Longrightarrow \rho(n)|x(n+\tau;\tau,\phi)| < \epsilon \ (\forall n \ge N(\epsilon)).$$

In the above, l is the (nonnegative) constant given by

$$l:=\lim_{n\to\infty}\sqrt[n]{
ho(n)}\;(=\inf_n\sqrt[n]{
ho(n)}).$$

We remark that if $\rho(n) \equiv 1$, then l = 1, and hence the concept of the above ρ -stabilities is exactly same as the concept of the usual stabilities.

In the remainder, we always assume l > 0 and the following condition on the weight function ρ :

(2)
$$\exists (\text{constant}) \ C > 0 : \quad \rho(n)l^s \le C\rho(n+s-1) \quad (\forall n \ge 0, \ s \ge 1).$$

We note that Condition (2) is satisfied (with C = l) for the concrete functions $\rho(n) \equiv l^n$, $\rho(n) \equiv l^n (1+n)^p$, and so on.

Notice that the Z-transform $\tilde{Q}(z) := \sum_{n=0}^{\infty} Q(n)z^{-n}$ is convergent for any $|z| \ge 1/l$, because $\rho(n) \ge l^n$ and $\sum_{n=0}^{\infty} \|Q(n)\| \rho(n) < \infty$.

A family of $r \times r$ matrices $R = \{R(n)\}_{n \in \mathbb{Z}^+}$ is called the resolvent of Eq. (1), if R(0) = E and R(n+1) = (Q * R)(n) for any $n \ge 0$. It is easy to see that the Z-transform R(z) of the resolvent R exists for z with sufficiently large |z|. Considering the Z-transform of the both sides of $R(n+1) \equiv (Q*R)(n)$, one can get the relation zR(z) - zR(0) = $\tilde{Q}(z)\tilde{R}(z)$, or $(zE-\tilde{Q}(z))\tilde{R}(z)=zE$.

One of the crucial results in this section is the following:

Theorem 2. Assume that $Q = \{Q(n)\}\$ is ρ -summable for a weight function ρ satisfying Condition (2). Then the following statements are equivalent:

- (1) $\det(zE \tilde{Q}(z)) \neq 0$ $(\forall |z| \geq 1/l)$. (2) R is ρ -summable; that is, $\sum_{n=0}^{\infty} (\|R(n)\|\rho(n)) < \infty$.
- The zero solution of Eq. (1) is ρ -UAS.

The equivalence (i) \iff (ii) can be established by applying the theory of Banach algebras [6, Chapter 11] to the space

$$L_{\rho}(\mathbf{Z}^{+}; \mathbf{C}) := \{ a = \{ a(n) \}_{n \in \mathbf{Z}^{+}} \subset \mathbf{C} \mid ||a|| := \sum_{n=0}^{\infty} \rho(n) |a(n)| < \infty \}.$$

Indeed, the space $L_{\rho}(\mathbf{Z}^+; \mathbf{C})$ with the convolution product is a commutative Banach algebra, and any nontrivial character χ of $L_{\rho}(\mathbf{Z}^+;\mathbf{C})$ is given by $\chi = \phi_w$, that is, $\chi(a) \equiv \sum_{n=0}^{\infty} a(n)w^n$, for some $w \in \mathbf{C}$ with $|w| \leq l$. By this fact and the relation $(zE - \tilde{Q}(z))\tilde{R}(z) = zE$, one can verify the equivalence; cf. [3, Proof of Corollary 1 and pp.1213–1214]. Also, the implications (ii) \Longrightarrow (iii) and (iii) \Longrightarrow (i) can be verified by applying the representation formula of solutions of Eq. (1)

$$x(n+\tau;\tau,\phi) = R(n)\phi(\tau) + \sum_{j=0}^{n-1} R(n-j-1) \sum_{s=1}^{\tau} Q(j+s)\phi(\tau-s),$$

using Condition (2); cf. [2, Proof of Theorem 2].

Applying Theorem 2 with l=1 and $\rho(n)\equiv (1+n)^p$ (p is a nonnegative integer), we get the following corollary:

Corollary 1. Assume that $\sum_{n=0}^{\infty} (\|Q(n)\|n^p) < \infty$. Then the following statements are equivalent:

- (1) $\det(zE \tilde{Q}(z)) \neq 0 \quad (\forall |z| \geq 1).$
- (2) $\sum_{n=0}^{\infty} (\|R(n)\|n^p) < \infty.$
- (3) The zero solution of Eq. (1) is $(1+n)^p$ -UAS.

In case of p = 0, Corollary1 is exactly tha same as [2, Theorem 2]. As shown in the following result, we cannot drop the n^p -summability condition on Q(n) in Corollary1 under the sign condition for Q(n).

Theorem 3. Assume that $\sum_{n=0}^{\infty} ||Q(n)|| < \infty$, and that for sufficiently large n, each component $q_{ij}(n)$ of Q(n) has the same sign; that is,

$$\exists n_0 \ge 0: \ q_{ij}(n) \ge 0 \ (\forall n \ge n_0, \ i, j = 1, \dots, r)$$

or

$$q_{ij}(n) \leq 0 \ (\forall n \geq n_0, \ i, j = 1, \dots, r).$$

If
$$\sum_{n=0}^{\infty} (\|R(n)\|n^p) < \infty$$
 for some positive integer p , then $\sum_{n=0}^{\infty} (\|Q(n)\|n^p) < \infty$.

Proof. The theorem can be proved by a method similar to the one in [5]; so, we will give only a sketch of the proof. In the following, we may consider the case $p \ge 1$ and assume that the norm of $r \times r$ matrix

$$A=(a_{ij})$$
 is given by the l^1 norm, that is, $||A||=\sum_{i,j=1}^r |a_{ij}|$. Observe that

$$\tilde{R}(z) = \sum_{n=0}^{\infty} R(n)z^{-n}$$
 is convergent on $|z| \ge 1$, and $(zE - \tilde{Q}(z))\tilde{R}(z) = \tilde{Q}(z)$

zE; hence $\tilde{R}(z)$ is invertible and

$$\tilde{Q}(x) \equiv xE - x(\tilde{R}(x))^{-1} \ (=: F(x)) \ \ (\forall x \ge 1).$$

It follows that $F \in C^p([1,\infty))$, moreover if $M > n_0$ and h > 0, then

$$\|\frac{F(1+h) - F(1)}{h}\| = \|\sum_{n=0}^{\infty} Q(n) \frac{(1+h)^{-n} - 1}{h}\|$$

$$\geq \left(\sum_{n=n_0}^{M} - \sum_{n=0}^{n_0 - 1}\right) \|Q(n)\| \frac{1 - (1+h)^{-n}}{h}$$

by the sign condition on Q. Noting that

$$\sup_{0 \le n \le M} |\frac{1 - (1 + h)^{-n}}{h} - n| \le 1$$

for small h > 0, we can establish that

$$\sum_{n=0}^{\infty} n \|Q(n)\| < \infty, \quad F'(x) = \frac{d}{dx} \tilde{Q}(x) = \sum_{n=0}^{\infty} (-n)Q(n)x^{-n-1} \quad (\forall x \ge 1)$$

by a contradiction; cf. [5, Proof of Theorem 2]. Repeating the above argument, we can derive that

$$\sum_{n=0}^{\infty} n^k \|Q(n)\| < \infty,$$

$$F^{(k)}(x) = \sum_{n=0}^{\infty} (-1)^k n(n+1) \cdots (n+k-1)Q(n)x^{-n-k} \quad (\forall x \ge 1)$$

for k = 1, 2, ..., p. Letting k = p, we get the required one. Q.E.D.

§3. Stabilities in equations with nonnegative matrices

For any two $l \times q$ matrices $A = (a_{ij})$ and $B = (b_{ij})$, the inequality $A \geq B$ means $a_{ij} \geq b_{ij}$ for all $i = 1, \dots, l, \ j = 1, \dots, q$. If $A \geq 0$, then A is called a nonnegative matrix. Also, a (column) vector b is said to be strictly positive, if all components of b are positive. We use the symbol $b \gg 0$ to denote that b is strictly positive.

In this section, we treat Eq. (1) with nonnegative matrices $Q(n), \forall n \in \mathbb{Z}^+$, and establish the following result on the ρ -stabilities.

Theorem 4. Assume that $Q(n) \geq 0, \forall n \geq 0$ and that $Q = \{Q(n)\}$ is ρ -summable for a weight function ρ satisfying Condition (2). Then the following statements are equivalent:

- $\det(zE \sum_{n=0}^{\infty} Q(n)l^n) \neq 0 \quad (\forall |z| \geq 1/l).$ The zero solution of Eq. (1) is ρ -UAS.
- (2)
- For any $b \gg 0$ and any solution y of $y(n+1) = (Q*y)(n) + b/l^n$, (3) $l^n y(n)$ tends to a strictly positive vector as $n \to \infty$.
- For some $b \gg 0$ and some solution y of y(n+1) = (Q*y)(n) +(4) b/l^n , $l^n y(n)$ tends to a strictly positive vector as $n \to \infty$.

Applying Theorem 4 with l=1 and $\rho(n)\equiv (1+n)^p$ (p is a nonnegative integer), we get the following corollary:

Corollary 2. Assume that
$$Q(n) \ge 0, \forall n \ge 0$$
 and that $\sum_{n=0}^{\infty} (\|Q(n)\|n^p)$

 $< \infty$. Then the following statements are equivalent:

- (1) $\det(zE \sum_{n=0}^{\infty} Q(n)) \neq 0 \quad (\forall |z| \ge 1).$
- (2) The zero solution of Eq. (1) is $(1+n)^p$ -UAS.
- (3) For any $b \gg 0$, any solution of y(n+1) = (Q*y)(n) + b tends to a strictly positive vector as $n \to \infty$.
- (4) For some $b \gg 0$, some solution of y(n+1) = (Q * y)(n) + btends to a strictly positive vector as $n \to \infty$.

In Corollary 2, (or Theorem 4), we cannot always drop the nonnegativity condition on Q(n) as the following example shows.

Example 1. Let us consider the scalar equation (1) with

$$Q(0) = 0,$$
 $Q(n) = (-1)^{n-1} \frac{\alpha}{n^2} (n = 1, 2, ...),$

where $\alpha = 6/\pi^2$. Then $\sum_{n=0}^{\infty} Q(n) = \alpha \times (\pi^2/12) = 1/2$; thus, Condition (i) in Corollary2 is satisfied. But the zero solution of Eq. (1) is not UAS, because the equation $\det(zE - \tilde{Q}(z)) = 0$ has a root z = -1.

Without assuming the nonnegative condition on Q(n), one can obtain the following result (like a comparison theorem in ODE) on stabilities in Eq. (1) by checking Condition (i) in Theorem 2. Here and hereafter, for any matrix $A = (a_{ij})$ we employ the notation $|A| = (|a_{ij}|)$.

Theorem 5. Assume that $Q = \{Q(n)\}\$ is ρ -summable for a weight function ρ satisfying Condition (2), and that

$$\det\left(zE - \sum_{n=0}^{\infty} (|Q(n)|l^n)\right) \neq 0 \quad (\forall |z| \ge 1/l).$$

Then the zero solution of Eq. (1) is ρ -UAS.

Example 2. Let $|\alpha| < 1/2$, $|\beta| < 1$, $|\gamma| < 1$, and consider Eq. (1) with

$$Q(n) \equiv \begin{pmatrix} \alpha^{n+1} & 0 \\ \beta^n & \gamma/(n+1)(n+2) \end{pmatrix}.$$

Then

$$\sum_{n=0}^{\infty} |Q(n)| = \begin{pmatrix} |\alpha|/(1-|\alpha|) & 0 \\ 1/(1-|\beta|) & |\gamma| \end{pmatrix}.$$

Observe that $|\alpha|/(1-|\alpha|)$ and $|\gamma|$ are the eigenvalues for the nonnegative matrix $\sum_{n=0}^{\infty} |Q(n)|$, and that they are smaller than 1 by the requirements on α and γ . Therefore, the zero solution of Eq. (1) is UAS by Theorem 5 with l=1.

Before concluding the paper, we will give a sketch of the proof of Theorem 4. To do this, we first recall the following result which is well known as Perron-Frobenius's Theorem [1, 4]

Lemma 1. Let P be a nonnegative square matrix. Then

- (1) The spectral radius $r := r_{\sigma}(P)$ is an eigenvalue of P and there exists a nonnegative eigenvector $x, x \neq 0$ such that Px = rx.
- (2) $r_{\sigma}(P) = \sup\{\nu \in \mathbf{R} : Px \ge \nu x \text{ for some nonzero } x \ge 0\}.$
- (3) If $\lambda > r_{\sigma}(P)$, then $(\lambda E P)^{-1} \geq 0$.

The following result is an immediate consequence of Perron-Frobenius's Theorem (ii).

Proposition 1. Let P and Q be $r \times r$ matrices such that $|P| \leq Q$. Then $r_{\sigma}(P) \leq r_{\sigma}(Q)$.

In the proof of the theorem, the following proposition plays a crucial role.

Proposition 2. Assume that $Q(n) \ge 0, \forall n \ge 0$ and $\sum_{n=0}^{\infty} (\|Q(n)\|\rho(n))$ $<\infty$. Then the following statements are equivalent:

- $\begin{array}{ll} (1) \ \det(zE-\tilde{Q}(z)) \neq 0 & (\forall |z| \geq 1/l). \\ (2) \ r_{\sigma}(\sum_{n=0}^{\infty}(Q(n)l^n)) < 1/l; \ \text{in other words,} \ \det(zE-\sum_{n=0}^{\infty}Q(n)l^n) \\ \neq 0 & (\forall |z| \geq 1/l). \end{array}$
- (3) For some $b \gg 0$, there is a $y^* \gg 0$ such that $\left((1/l)E \right)$ $\sum_{k=0}^{\infty} Q(k)l^k \bigg) y^* = b.$

Proof. (ii) ⇒(i). This is a direct consequence of Proposition 1, because of the inequality $|\tilde{Q}(z)| \leq \sum_{n=0}^{\infty} Q(n) l^n$ for $|z| \geq 1/l$.

(i) \Longrightarrow (ii). Let us consider the continuous function $f(t) = t - r_{\sigma}(\tilde{Q}(t))$ defined on $[1/l, \infty)$. Assume $f(1/l) \leq 0$. Since $f(\infty) = \infty$, there is some $\lambda_1 \geq 1/l$ such that $f(\lambda_1) = 0$; in other words, $\lambda_1 = r_{\sigma}(\sum_{n=0}^{\infty} Q(n)\lambda_1^{-n})$. Then λ_1 is an eigenvalue of the matrix $\sum_{n=0}^{\infty} Q(n)\lambda_1^{-n}$ by Perron-Frobenius's Theorem (i), which contradicts (i). Thus we must get f(1/l) > 0, which is equivalent to (ii).

(ii) ⇒ (iii). This is a direct consequence of Perron-Frobenius's Theorem (iii).

(iii) \Longrightarrow (ii). Since $r:=r_{\sigma}(\sum_{n=0}^{\infty}Q(n)l^n)$ equals the spectral radius of the transposed matrix of $\sum_{n=0}^{\infty}Q(n)l^n$, Perron-Frobenius's Theorem (i) implies that there is a nonzero row vector $c\geq 0$ such that $c(\sum_{n=0}^{\infty}Q(n)l^n)=rc$. Then $rcy^*=c(\sum_{n=0}^{\infty}Q(n)l^n)y^*=c(y^*/l-b)$, or $cb=(1/l-r)cy^*$. Since $cy^*>0$ and cb>0, we must get r<1/l, which shows (ii).

Sketch of Proof of Theorem 4. The equivalence relation (i) \iff (ii) is an immediate consequence of Theorem 2 and Proposition 2. Also, the implication (iii) \implies (iv) is obvious.

(i) \Longrightarrow (iii). Given any $b \gg 0$ and a solution y of $y(n+1) = (Q*y)(n) + b/l^n$ on $[\sigma, \infty)$ such that $y \equiv \phi$ on $[0, \sigma]$. By Proposition 2, there is a $y^* \gg 0$ such that $\left((1/l)E - \sum_{k=0}^{\infty} Q(k)l^k\right)y^* = b$. We will certify that $\lim_{n\to\infty}\{l^ny(n)\} = y^*$. Observe that the solution y is written by the representation formula

$$y(n) = R(n-\sigma)\phi(\sigma) + \sum_{s=\sigma}^{n-1} R(n-s-1) \bigg(\sum_{j=-\sigma}^{-1} Q(s-\sigma-j)\phi(\sigma+j) + \frac{b}{l^s} \bigg).$$

Since $\sum_{n=0}^{\infty} \|R(n)\|\rho(n) < \infty$ by Theorem 2, one can easily deduce that $l^n \|R(n-\sigma)\phi(\sigma)\| \to 0$ and $l^n \|\sum_{s=\sigma}^{n-1} R(n-s-1)\{\sum_{j=-\sigma}^{-1} Q(s-\sigma-j)\phi(\sigma+j)\}\| \to 0$ as $n \to \infty$. Then

$$\lim_{n \to \infty} \{l^n y(n)\} = \lim_{n \to \infty} \sum_{s=\sigma}^{n-1} \{R(n-s-1)l^{n-s}b\}$$

$$= \lim_{n \to \infty} \sum_{w=0}^{n-\sigma-1} \{R(w)l^{w+1}b\}$$

$$= l\tilde{R}(1/l)b$$

$$= l\tilde{R}(1/l) \left(\frac{1}{l}E - \sum_{k=0}^{\infty} Q(k)l^k\right)y^* = y^*,$$

because of $z(zE - \tilde{Q}(z))^{-1} = \tilde{R}(z)$ for $|z| \ge 1/l$.

(iv) \Longrightarrow (i). Let y be a solution of $y(n+1)=(Q*y)(n)+b/l^n$ satisfying $\lim_{n\to\infty}(l^ny(n))=y^*\gg 0$, where $b\gg 0$ is some vector. Since $\sum_{k=0}^\infty\|Q(k)\|\rho(k)<\infty$, one can easily check that $\lim_{n\to\infty}(l^n\sum_{s=0}^\infty Q(n-s)y(s))=\{\sum_{k=0}^\infty l^kQ(k)\}y^*$. Hence

$$y^* = \lim_{n \to \infty} (l^{n+1}y(n+1)) = \lim_{n \to \infty} \left(l^{n+1} \sum_{s=0}^n Q(n-s)y(s) + lb \right)$$
$$= l \{ \sum_{k=0}^{\infty} l^k Q(k) \} y^* + lb$$

or

$$\left(\frac{1}{l}E - \sum_{k=0}^{\infty} Q(k)l^k\right)y^* = b;$$

thus Condition (iii) of Proposition 2 is satisfied. Therefore, (i) follows from Proposition 2. Q.E.D.

References

- A. Berman and R. J. Plemmons, Nonnegative Matrices in Mathematical Sciences, Academic Press, New York, 1979.
- [2] S. Elaydi and S. Murakami, Asymptotic stability versus exponential stability in linear Volterra difference equations of convolution type, J. Differ. Equations Appl., 2 (1996), 401–410.
- [3] T. Furumochi, S. Murakami and Y. Nagabuchi, A generalization of Wiener's lemma and its application to Volterra difference equations on a Banach space, J. Differ. Equations Appl., 10 (2004), 1201–1214.
- [4] D. G. Luenberger, Introduction to Dynamical Systems, Theory, Models and Applications, J. Wiley, New York, 1979.
- [5] S. Murakami, Exponential asymptotic stability for scalar linear Volterra equations, Differential Integral Equations, 4 (1991), 519–525.
- [6] W. Rudin, Functional Analysis, McGraw-Hill, New Delhi, 1988.

Department of Applied Mathematics Okayama University of Science 1-1 Ridaicho, Okayama 700-0005 Japan

E-mail address: murakami@@youhei.xmath.ous.ac.jp