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Stabilities with respect to a weight function in 
Volterra difference equations 

Satoru Murakami 

Abstract. 

We establish some results on p-stabilities of the zero solution of 
a system of linear Volterra difference equations. Furthermore, for the 
equations with nonnegative coefficients we give an easy criterion for 
the p-UAS of the zero solution. 

§1. Introduction 

In this paper we are concerned with a system of linear Volterra 
difference equations 
(1) 

n 

x(n+1) = ~Q(n-k)x(k) (= (Q*x)(n)), n E z+ := {0, 1, 2, ... }, 
k=O 

where x = {x(n)} is a sequence of r column vectors, and Q := {Q(n)} 
is a sequence of r x r matrices which is p-summable, that is, I::=o p( n) 
IIQ(n)ll < oo, for a weight function p: z+ ~ (0, oo). Here and hereafter, 
we call p a weight function if p satisfies 

p(O) = 1, p(n + m) ~ p(n)p(m) for Vn, m E z+. 

The functions p(n) = Ln, p(n) = Ln(1+n)P, p(n) = Ln(1+log(1+n))P 
with positive costants L and p are typical ones of weight functions. In 
this paper, we will introduce the concept of stabilities with respect to 
p (p-stabilities, in short), which relates to the decay rate of solutions of 
Eq. (1) and is exactly same as the usual concept of stabilities in case of 
p( n) = 1. As one of our main results in this paper, we will give a result 
which is a characterization of the p-uniform asymptotic stability prop­
erty of the zero solution of Eq. (1) in connection with the p-summability 
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of the resolvent matrix of Eq. (1), as well as the invertibility of the char­
acteristic matrix zE- E:=o Q(n)z-n for z belonging to the domain 
lzl ~ 1/l, where E denotes the r x r unit matrix, and l is a number 
defined by l := limn-+= \.ftJ(ri) ( = infn \.ft)(ri)) and it is assumed to be 
positive. In fact, in case of p(n) = 1, the result is identical with the 
one obtained by Elaydi and Murakami [2]. Furthermore, under there­
striction that the matrices Q(n) are all nonegative, we will give an easy 
criterion for the p-UAS of the zero solution of Eq. (1). 

The following result is a typical one which is obtainable as an im­
mediate consequence of our main theorems in Sections 2 and 3: 

CX) 

Theorem 1. Assume that Q(n) ~ 0, Vn ~ 0 and L IIQ(n)ll < oo. 
n=O 

Then the zero solution of Eq. {1) is UAS, if and only if 

det (zE-~ Q(j)) =I 0 (VIzl ~ 1). 

On the other hand, the (1+n)P+2 -UAS can never be realized for the zero 
CX) 

solution of Eq. {1), when L(nPIIQ(n)ll) = oo for some positive integer 
n=O 

p. 

Indeed, the former part of the theorem is a direct consequence of 
Theorem4 (in Section 3) with p(n) = 1. Also, the latter part of the 
theorem follows from Theorem3 (in Section 2), because the (1 + n)P+2-

UAS of ·the zero solution of Eq. (1) implies that the resolvent R = 

{R(n)}nEZ+ of Eq. (1) satisfies SUPn;:::o{(1 + n)P+2 IIR(n)ll} < oo, and 
CX) 

hence L(nPIIR(n)ll) < oo. 
n=O 

§2. Some results on p-stabilities 

Given Vr E z+ and ¢ : [0, r] := {0, 1, ... , r} -+ cr. A function 
X: z+ -+ cr is called a solution of Eq. (1) through (r, ¢) if 

x(n + 1) = (Q * x)(n) (Vn ~ r), x(s) = ¢(s) (Vs = 0, 1, ... , r), 

and is denoted by the symbol x(·; r, ¢). 
The zero solution of Eq. (1) is said to be; 

(1) uniformly stable with respect top (p-US) if VE > 0, 38 > 0 : 

ll¢llz := sup (l¢(r + O)[l11 ) < 8 ==? p(n)lx(n + r; r, ¢)1 < E (Vn ~ 0), 
--r::::;e::::;o 
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(2) uniformly asymptotically stable with respect top (p-UAS) if the 
zero solution is p-US and if 38o > 0, "'t > 0, 3N(t) > 0: 

II<PIIz < 8o ===? p(n)lx(n + r; r, ¢)1 < E (Vn 2: N(t)). 

In the above, lis the (nonnegative) constant given by 

l := lim y!p(n} ( = inf \IP(n)). 
n-+-oo n 

We remark that if p(n) = 1, then l = 1, and hence the concept of the 
above p-stabilities is exactly same as the concept of the usual stabilities. 

In the remainder, we always assume l > 0 and the following condi­
tion on the weight function p: 

(2) 3(constant) C > 0: p(nW:::;; Cp(n + s- 1) (Vn 2: 0, s 2: 1). 

We note that Condition (2) is satisfied (with C = l) for the concrete 
functions p(n) = ln, p(n) = ln(1 + n)P, and so on. 

Notice that the Z-transform Q(z) := L:~=O Q(n)z-n is convergent 
for any lzl 2: 1/l, because p(n) 2: ln and L:~=O IIQ(n)llp(n) < oo. 

A family of r x r matrices R = {R(n)}nEZ+ is called the resolvent 
of Eq. (1), if R(O) = E and R(n + 1) = (Q * R)(n) for any n 2: 0. It 
is easy to see that the Z-transform R(z) of the resolvent R exists for z 
with sufficiently large lzl. Considering the Z-transform of the both sides 
of R(n + 1) = (Q * R)(n), one can get the relation zR(z)- zR(O) = 
Q(z)R(z), or (zE- Q(z))R(z) = zE. 

One of the crucial results in this section is the following: 

Theorem 2. Assume that Q = {Q(n)} is p-summable for a weight 
function p satisfying Condition (2}. Then the following statements are 
equivalent: 

(1) det(zE- Q(z)) I 0 (VIzl 2: 1/l). 
00 

(2) R is p-summable; that is, l)IIR(n)IIP(n)) < oo. 
n=O 

(3) The zero solution of Eq. (1} is p-UAS. 

The equivalence (i) {::::::::} (ii) can be established by applying the 
theory of Banach algebras [6, Chapter 11] to the space 

00 

Lp(z+;c) :={a= {a(n)}nEZ+ c C lllall := LP(n)ia(n)l < oo}. 
n=O 

Indeed, the space Lp(Z+; C) with the convolution product is a commu­
tative Banach algebra, and any nontrivial character x of Lp(Z+; C) is 
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given by X = ¢w, that is, x( a) = I::=o a( n )wn, for some w E C with 
lwl :::; l. By this fact and the relation (zE- Q(z))R(z) = zE, one can 
verify the equivalence; cf. [3, Proof of Corollary 1 and pp.l213-1214]. 
Also, the implications (ii)===}(iii) and (iii)===}(i) can be verified by ap­
plying the representation formula of solutions of Eq. (1) 

n-l r 

x(n + T; T, ¢) = R(n)cjJ(T) + L R(n- j -1) L Q(j + s)cjJ(T- s), 
j=O s=l 

using Condition (2); cf. [2, Proof of Theorem 2]. 

Applying Theorem 2 with l = 1 and p(n) = (1 + n)P (pis a nonneg­
ative integer), we get the following corollary: 

00 

Corollary 1. Assume that L(IIQ(n)llnP) < oo. Then the following 
n=O 

statements are equivalent: 

(1) det(zE- Q(z)) f. 0 (VIzl ~ 1). 
00 

(2) L(IIR(n)llnP) < oo. 
n=O 

(3) The zero solution of Eq. (1) is (1 + n)P-UAS. 
In case of p = 0, Corollary! is exactly tha same as [2, Theorem 2]. 

As shown in the following result, we cannot drop the nP-summability 
condition on Q(n) in Corollary! under the sign condition for Q(n). 

00 

Theorem 3. Assume that L II Q( n) II < oo, and that for sufficiently 
n=O 

large n, each component Qij(n) of Q(n) has the same sign; that is, 

3no~O: Qij(n)~O ('v'n~no, i,j=l, ... ,r) 

or 
Qij(n):::; 0 (\In~ no, i,j = 1, ... ,r). 

00 00 

If L(IIR(n)llnP) < oo for some positive integer p, then L(IIQ(n)llnP) 
n=O n=O 

< 00. 

Proof The theorem can be proved by a method similar to the one 
in [5]; so, we will give only a sketch of the proof. In the following, we 
may consider the case p ~ 1 and assume that the norm of r x r matrix 

r 

A= (aij) is given by the l1 norm, that is, II All = L laij 1- Observe that 
i,j=l 
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00 

R(z) = L R(n)z-n is convergent on lzl 2: 1, and (zE- Q(z))R(z) = 
n=O 

zE; hence R(z) is invertible and 

Q(x) = xE- x(R(x))- 1 (=: F(x)) (\:fx 2: 1). 

It follows that FE CP([1, oo)), moreover if M >no and h > 0, then 

II F(1 +h)- F(1) II 
h 

II f Q(n) (1 + h~-n - 1 11 
n=O 

> (n~o- ~1)!1Q(n)ll1-(1:h)-n 

by the sign condition on Q. Noting that 

1- (1 + h)-n 
sup I - nl::::; 1 

O:S:n:S:M h 

for small h > 0, we can establish that 

00 

L niiQ(n)ll < oo, 
d - 00 

F'(x) = dx Q(x) = L(-n)Q(n)x-n-1 (\:fx 2: 1) 
n=O n=O 

by a contradiction; cf. [5, Proof of Theorem 2]. Repeating the above 
argument, we can derive that 

00 

L nkiiQ(n)ll < oo, 
n=O 

00 

p(k)(x) = L(-1)kn(n + 1) · · · (n + k -1)Q(n)x-n-k (\:fx 2: 1) 
n=O 

fork= 1, 2, ... ,p. Letting k = p, we get the required one. Q.E.D. 

§3. Stabilities in equations with nonnegative matrices 

For any two l x q matrices A= (aij) and B = (bij), the inequality 
A 2: B means aij 2: bij for all i = 1, · · · , l, j = 1, · · · , q. If A 2: 0, then 
A is called a nonnegative matrix. Also, a (column) vector b is said to be 
strictly positive, if all components of b are positive. We use the symbol 
b ~ 0 to denote that b is strictly positive. 

In this section, we treat Eq. (1) with nonnegative matrices Q(n), \:In E 
z+, and establish the following result on the p-stabilities. 
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Theorem 4. Assume that Q(n);::: 0, \In;::: 0 and that Q = {Q(n)} 
is p-summable for a weight function p satisfying Condition {2}. Then 
the following statements are equivalent: 

(1) det(zE- I::=o Q(n)ln) i- 0 (VIzl ;::: 1/l). 
(2) The zero solution of Eq. {1} is p-UAS. 
(3) For any b "2> 0 and any solution y ofy(n+1) = (Q*y)(n)+b/ln, 

lny(n) tends to a strictly positive vector as n-+ 00. 

(4) For some b "2> 0 and some solution y ofy(n+1) = (Q*y)(n)+ 
b/ln, zny(n) tends to a strictly positive vector as n-+ 00. 

Applying Theorem 4 with l = 1 and p(n) = (1 + n)P (pis a nonneg­
ative integer), we get the following corollary: 

00 

Corollary 2. Assume that Q(n) ;::: 0, \In;::: 0 and that L(IIQ(n)llnP) 

< oo. Then the following statements are equivalent: 

(1) det(zE- I::=o Q(n)) i- 0 (VIz I ::=:: 1). 
(2) The zero solution of Eq. (1) is (1 + n)P-UAS. 

n=O 

(3) For any b "2> 0, any solution of y(n + 1) = (Q * y)(n) + b tends 
to a strictly positive vector as n -+ oo. 

(4) For some b "2> 0, some solution of y(n + 1) = (Q * y)(n) + b 
tends to a strictly positive vector as n -+ oo. 

In Corollary2, (or Theorem4), we cannot always drop the nonnega­
tivity condition on Q(n) as the following example shows. 

Example 1. Let us consider the scalar equation (1) with 

Q(O) = 0, Q(n) = ( -1t-1 a2 (n = 1, 2, ... ), 
n 

where a= 6j1r2 . Then I::=o Q(n) =ax (1r2 /12) = 1/2; thus, Condition 
(i) in Corollary2 is satisfied. But the zero solution ofEq. (1) is not UAS, 
because the equation det(zE- Q(z)) = 0 has a root z = -1. 

Without assuming the nonnegative condition on Q(n), one can ob­
tain the following result (like a comparison theorem in ODE) on sta­
bilities in Eq. (1) by checking Condition (i) in Theorem 2. Here and 
hereafter, for any matrix A= (aij) we employ the notation IAI = (laijl). 

Theorem 5. Assume that Q = {Q(n)} is p-summable for a weight 
function p satisfying Condition {2}, and that 
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Then the zero solution of Eq. {1) is p-UAS. 

Example 2. Let lad < 1/2, I.BI < 1, h'l < 1, and consider Eq. (1) with 

( an+l 0 ) 
Q(n) = ,an 1'/(n + 1)(n + 2) · 

Then 

~ 1.Q(n)l = ( lal/(1-lal) 0 ) 
~ 1/(1- I.BI) 11'1 · 

Observe that lal/(1-lal) and 11'1 are the eigenvalues for the nonnegative 
matrix I::'=o IQ(n)l, and that they are smaller than 1 by the require­
ments on a and 1'· Therefore, the zero solution of Eq. (1) is UAS by 
Theorem 5 with l = 1. 

Before concluding the paper, we will give a sketch of the proof of 
Theorem 4. To do this, we first recall the following result which is well 
known as Perron-Frobenius's Theorem [1, 4] 

Lemma 1. Let P be a nonnegative square matrix. Then 

(1) The spectral radius r := ru(P) is an eigenvalue of P and there 
exists a nonnegative eigenvector x, x f=. 0 such that Px = rx . 

. (2) ru(P) = sup{v E R: Px 2: vx for some nonzero x 2: 0}. 
(3) If>. > ru(P), then (>.E- P)-1 2: 0. 

The following result is an immediate consequence of Perron-Frobenius's 
Theorem (ii). 

Proposition 1. Let P and Q be r x r matrices such that IPI ~ Q. 
Then ru(P) ~ ru(Q). 

In the proof of the theorem, the following proposition plays a crucial 
role. 

00 

Proposition 2. Assume that Q(n) 2: 0, Vn 2: 0 and L(IIQ(n)llp(n)) 

< oo. Then the following statements are equivalent: 

(1) det(zE- Q(z)) f=. 0 (VIzl 2: 1/l). 

n=O 

(2) ru(I::'=0 (Q(n)ln)) < 1/l; in other words, det(zE-I::'=o Q(n)ln) 
i o (VIzl 2: 1/l). 

(3) For some b ~ 0, there is a y* ~ 0 such that ( (1/l)E -

~ Q(k)lk )y* =b. 

Proof. (ii)==>(i). This is a direct consequence of Proposition 1, 
because of the inequality IQ(z)l ~ I::'=o Q(n)zn for lzl 2: 1/l. 
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(i)=?(ii). Let us consider the continuous function f(t) = t­
ra(Q(t)) defined on [1/l, oo). Assume f(1/l) :::; 0. Since f(oo) = 

oo, there is some >.1 2: 1/l such that f(>.I) = 0; in other words, 
A1 = ra(L~=O Q(n)>.;:-n). Then >.1 is an eigenvalue of the matrix 
L~=O Q(n)>.;:-n by Perron-Frobenius's Theorem (i), which contradicts 
(i). Thus we must get f(1/l) > 0, which is equivalent to (ii). 

(ii)=?(iii). This is a direct consequence of Perron-Frobenius's The­
orem (iii). 

(iii)=?(ii). Since r := ra(L~=O Q(n)ln) equals the spectral ra­
dius of the transposed matrix of L~=O Q(n)zn, Perron-Frobenius's The­
orem (i) implies that there is a nonzero row vector c 2: 0 such that 
c(I:~=O Q(n)zn) = rc. Then rcy* = c(I:~=O Q(n)zn)y* = c(y* jl- b), or 
cb = (1/l- r)cy*. Since cy* > 0 and cb > 0, we must get r < 1/l, which 
shows (ii). Q.E.D. 

Sketch of Proof of Theorem 4. The equivalence relation (i) {==} (ii) 
is an immediate consequence of Theorem 2 and Proposition 2. Also, the 
implication (iii) ==? (iv) is obvious. 

(i) ==? (iii). Given any b » 0 and a solution y of y(n + 1) = 

(Q * y)(n) + bjln on [u, oo) such that y =¢on [0, u]. By Proposition 2, 

there is a y* » 0 such that ( (1/l)E- f Q(k)lk) y* =b. We will certify 
k=O 

that limn--+oo { zny( n)} = y*. Observe that the solution y is written by 
the representation formula 

y(n) = R(n-u)¢(u)+ ~ R(n-s-1) c~a Q(s-u- j)¢(u+ j)+~). 

Since L~=O IIR(n)llp(n) < oo by Theorem2, one can easily deduce that 

zniiR(n- u)¢(u)ll ---+ 0 and znll 2::.:;~; R(n- s- 1){2::.:}~-a Q(s- u­
j)¢( u + j)} II ---+ 0 as n ---+ oo. Then 

n-1 

lim ""{R(n- s- 1)zn-sb} 
n----+oo L.....t 

s=a 

n-a-1 

nl~~ L {R(w)zw+lb} 
w=O 

tR(1/l)b 

lR(l/l)(~E- ~Q(k)zk)y* =y*, 
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because of z(zE- Q(z))- 1 = R(z) for lzl 2 1/l. 
(iv) ==? (i). Let y be a solution of y(n + 1) = (Q * y)(n) + b/ln 

satisfying limn_,00 (lny(n)) = y* » 0, where b » 0 is some vector. Since 
I:~=O IIQ(k) llp(k) < oo, one can easily check that limn_,00 (ln 2::::::,0 Q(n­
s)y(s)) = {2:::::~0 zkQ(k)}y*. Hence 

nl~~ (zn+l ~ Q(n- s)y(s) + lb) y* = lim (ln+1 y(n + 1)) 
n->oo 

00 

z(l: zkQ(k)}y* + Zb 
k=O 

or 

(~E- fQ(k)zk)y* =b; 
k=O 

thus Condition (iii) of Proposition 2 is satisfied. Therefore, (i) follows 
from Proposition 2. Q.E.D. 
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