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On Q-multiplicative functions having a positive 
upper-meanvalue 

Jean-Loup Mauclaire 

Abstract. 

A classical approach to study properties of Q-multiplicative func­
tions f(n) is to associate to the mean ~ z=o:<:;n:<:;x J(n) the product 

Tio:<:;J:Sk iJ z=o:o;a:o;q1 _ 1 f(aQJ)· We discuss its validity in the case of 
non-negative Q-multiplicative functions f(n) with a positive upper 
meanvalue, defined via a Cantor numeration system. 

§1. Introduction and notations 

1.1. Numeration systems and associated additive func­
tions 

Let N be the set of non-negative integers, and Q = (Qk)k>o> Qo = 1, 
be an increasing sequence of positive integers. Using the greedy algo­
rithm to every element n of N, one can associate a representation 

+oo 
n = LEk(n)Qk, 

k=O 

which is unique if for every K, 

K-l 

LEk(n)Qk < QK. 
k=O 

Such a condition provides a numeration scale and in this case, we can 
define on N a complex-valued arithmetic function f(n) by f(O.Qk) = 1 
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and f(n) = fh>o f(ck(n)Qk), and it will be called a Q-multiplicative 
function. -

Simple examples of numeration scales are the q-adic scale, where 
Qk = qk, q integer, q ~ 2, and its generalization, the Cantor scale 
Qk+1 = QkQk, Qo = 1, Qk ~ 2, k ~ 0. 

A classical approach to study properties of Q-multiplicative func­
tions f(n) is to associate to the mean ~ l:osn<x f(n) the product 

11 ~ L f(aQj)), 
O:<=;j:<=;k qJ O:<=;a:<=;qi-1 

and in fact, this correspondence essentially explains a natural underlying 
probabilistic structure. 

Now, although the q-adic scale and its generalization, the Cantor 
scale, seem very similar, basic differences may exist between them. More 
precisely, if a Cantor system is such that there exists some uniform 
bound B of the Qk, there is practically no differences, and this is due 
essentially to this uniformity condition. Otherwise, if we allow the Qk 
to be unbounded, the situation is not so simple. An example was given 
in [4], where the case of the mean-value of unimodular Q-multiplicative 
functions is considered. 

§2. Results 

In the simple case of non-negative Q-multiplicative functions, the 
existence of some essential difference can be shown. In fact, we have the 
following result: 

Theorem 1. 1) For a given Cantor scale with uniformly bounded 
Qk and for any non-negative q-multiplicative function f, the condition 

1 
lim sup- L f(n) exists and is positive 
x--++oo X O:<=;n<x 

is equivalent to the condition 

1 
lim sup 11 - L f(aQj)) exists and is positive. 
k->+oo O< "<k Qj O<a< ·-1 _}_ - _qJ 

2) There exist Cantor scales (Q) with not uniformly bounded Qk and 
non-negative Q-multiplicative functions f such that the condition 

1 
lim sup- L f(n) exists and is positive 
x--++oo X O:<=;n<x 
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will not imply the condition 

lim sup II _.!._ L f(aQj)) exists and is positive, 
k-++oo 05,j-5,k qj O<;,a<;,q;-1 

and non-negative Q-multiplicative functions f such that the condition 

lim sup II _.!._ L f(aQj)) exists and is positive 
k-++oo O< ·<k qj O<a< -1 _]_ - _q, 

will not imply the condition 

lim sup ~ L f ( n) exists and is positive. 
x-++oo X 05,n<x 

In this article, we shall consider the case of non-negative Q- multipli­
cative functions with a positive upper meanvalue defined via an un­
bounded Cantor system. 

Given an arbitrary arithmetical function f, we set 

SN(f) = L f(n), 
05,n<N 

rvk(f) = qk, 1 L f(aQk), 
O<;,n<;,qk-1 

Ih- (f) = II wk(f). 
O<;,r<;,k-1 

For our convenience, the result of a summation (resp. a product) 
on an empty set will be 0 (resp.l). 

Now, for a given f of non-negative Q-multiplicative function, we de­
fine a sequence of arithmetical functions fk- ( x) on ZQ ( resp. J;;_ (x)) by 
fk_(x) = ITo<;,j<kf(ajQr) (resp. J;;_(x) = ITo<;,j<kf(ajQj).rvj(f)- 1), 

where x being written in base Q as x = I:;t~ ajQk. For simplic­
ity, we shall also use the notations fj(x) = f(aQj) and f*(aQj) = 
f(aQj ).rvj(f)- 1 . 

We denote by ZQ the compact groupZQ = limk-++oo Z/QkZ equip­
ped with the natural Haar measure J-l, and we shall identify it with the 
compact space ITk Z/qkZ equipped with the measure J1 = 0k J-lqk, where 
J-lqk is the uniform measure on Z/qkZ. An element a of ZQ can be written 
as a= (ao, a 1 , ... ), 0 ::::; ak ::::; qk- 1, 0 ::::; k, and an integer is an element 
of ZQ which has only a finite number of digits different from zero. For 
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a = (a0 , a1 , ... ) in ZQ, we denote by Xk- (a) the sequence of random 
variables defined by Xk_ (a) = {ai }0:~::J:s;k- 1 , and by Xk+ (a) the sequence 
ofrandom variables defined by Xk+ (a) = { ai h< .. We shall use also the 

_J 

notation Xk for an integer Xk = E7,:~ aiQk when x = Ej~ aiQk. 
We have the following result: 

Theorem 2. Let (Q) be an unbounded Cantor system, and f(n) be 
a non-negative Q-multiplicative function such that 

lim sup.!_ L f(n) 
x-++oo X o::;n::=;x-1 

exists and is positive. Then, there are two possibilities: 

1) L1::;k Q/; 1 Lo::;a::;qk- 1 (1- f(aQk) 112rok(! 112 )-1) 2 is bounded, 
and in this case, for any r, 0 ::::; r ::::; 1, we have J.L-almost surely 

as Xk-> x. 

2) 2::19 Q/; 1 Lo::;a::;qk- 1 (1- f(aQk) 112rok(! 112 )- 1) 2 is not bound­
ed, and in this case, for any r, 0 < r < 1, we have 

1 
x L f(nr = o(1), as x-> +oo. 

o::;n::;x-1 

§3. Proof of the results 

3.1. Proof of Theorem 1 

1) We begin with a proof of assertion 1). 

Proof Assume that S =lim supx-++oo x-1 Lo<n<x f(n) exists and 
is positive. -

Let Xi be a sequence such that 

~s < x-:- 1 
2 - t L f(n). 

o::;n<xi 

A fortiori, if ~(xi) denotes the maximal index k for which ak(xi) is 
different from zero, then we have 

f(n), 



On Q-multiplicative functions having a positive upper-meanvalue 223 

and so 

( 1 ) ( 1 ) -S < L f(n) . 
2 - Qt<(x;)+ 1 O~n<Q,.(z;)+l 

Since (Q"~i>+ 1 ) - 1 2: ma;(qk) and max(qk) is bounded, this gives us 

that there is some S' > 2 1 ( ) S, hence > 0, such that - .max Qk 

0 < S' ~lim sup Q1 L f(n) < +oo. 
k-++oo k O~n~Qk__:1 

Conversely, if there exists some positive S" such that 

lim sup Q1 L f(n) = S" < +oo, 
k-++oo k O~n~Qk-1 

then by using the same notations as above, we remark that, since 

L f(n) ~ L f(n) ~ f(n), 

we have 

and 

Hence we get that 

0 < \ ) S" ~ limsupx-1 L f(n), 
max Qk x-++oo O~n~x 

for (x- 1 Q~<(x)) > - 1-( -) > 0, and - max Qk 

limsupx-1 L f(n) ~ max(qk)S" < +oo, 
x-++oo O~n~x 

since 
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and so 
limsupx- 1 L f(n) 
x->+oo o:s;n:s;x 

exists and its value is positive. 
Q.E.D. 

2) We prove now assertion 2). 

Proof We consider the following (with indexation shifted for con­
venience of notations) Q-system, satisfying lim sup( qk) = +oo : 

qk = k, k ~ 2, 

and the Q-multiplicative function f defined by 

We have 

and 

f(aQk) = 1 if k -=f. 2r and 0:::; a:::; qk- 2, 

f((qk- 1)Qk) = 0 if k -=f. 2r, 

J(Q2r) = 2r -1, 

f(aQ2,) = 0 if 2 :=:;a:=:; 2r -1. 

IT ~(j- 1) = ( IT ~u- 1)) ( IT 21 (2r- 1)) -1 

2:'0:j:'O:k,J¥2r J 2:'0:j:'O:k J 2:'0:j:'O:k,j=2r r 

~ ((k _ 1)!/k!) C,.D,~,. ;, (2" _ 1))-, 

1 IT 1 -1 k (1 - 2r) ' 
2:'0:j:'O:k,j=2' 

and so, since f1 2::;r(l - 21r) - 1 is convergent, we have 
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Now, for x = 2Q2k - 1, we have 

1 1 
x + 1 L f ( n) = 2Q k L f ( n) 

O~n~x 2 O~n~2Q2k-1 

~ G uro.Q,. + /(LQ,.))) x ('if:,}; f(aQ,)) 

~ G 2') X ( 2' ~ I ,)l y -21')- ') 

1 
>­- 2 
> 0. 

As a consequence, the condition 

. 1 """' O<hmsup- L..... f(n)<+oo 
x-++oo X O~n<x 

will not imply 

0 < S' =lim sup IT ~ L f(aQj)) < +oo 
k-++oo 2~j~k qj O~a~q;-1 

for someS'. 
In a similar way, it is possible, using the same kind of approach as 

above, to provide an example of Q-multiplicative function such that the 
condition 

will not imply the condition 

lim sup.!_ L f(n) < +oo. 
x-++oo X O~n<x 

It is sufficient to consider the following (again with indexation shifted 
for convenience of notations) Q-system, satisfying limsup(qk) = +oo: 

qk = k, k 2: 2, 

and the Q-multiplicative function f defined by 
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/(Q2r) = 2r -1, 

f(aQ2r) = 0 if 2 :::; a:::; 2r - 1. 

We have 

Now, for x = 2Q2k - 1, we have 

1 1 
x + 1 L f(n) = 2Q k Eo~n~2Q2k-d(n) 

O~n~x 2 

~ G (f(O.Q,, + f(LQ,.))) x ('If:,}; f(aQ,)) 

= (~2k) 
= 2k-1_ 

3.2. Proof of theorem 2 

3.2.1. Method of proof 

The method is as follows: 
i) We associate to fa Radon measure VJ on ZQ. 

Q.E.D. 

ii) We prove that VJ is absolutely continuous with respect to J.L if 

I: q;;1 I: ( 1- t(aQk)1f2wk(t1/2)-1 f 
1~k O~a~qk-1 

is bounded, and orthogonal to J.L if 

L q;;1 L ( 1 - f(aQk)1f2wk(!1f2)-1) 2 

1~k O~a~qk-1 

is not bounded. 
Remark that this dichotomy leaves no other eventuality. 
iii) We prove part 1) of Theorem 2 in the case r = 1 as a simple 

consequence of the absolute continuity of VJ· 
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iv) We show that tor, 0 < r < 1, one can associate a Radon mea­
sure which is absolutely continuous with respect to p. As a consequence, 
with iii), this gives the proof of part 1) of Theorem 2. 

v) We prove directly part 2) of Theorem 2. 

3.2.2. 

We denote by (a, k(a)) an arithmetical progression {a+ Qk(a)n} nEN' 
where a is inN, k(a) is a positive integer such that Qk(a) >a. Let Ia,k(a) 
be its characteristic function. Remark that Ia,k(a) is the restriction to 
N of the characteristic function, still denoted Ia,k(a), of the open subset 

O(a,k(a)) of ZQ defined by O(a,k(a)) = ( Xk(a)_ (a), flk;::=:k(a) Z /qkZ), and 
that this function is continuous, which implies that 

0 1 "'"' hm~ L..., Ia,k(a)(n) = p(O(a,k(a)))· 
O::On<x 

i) Radon measure associated to f. 
Let f(n) be a nonnegative Q-multiplicative function with a posi­

tive bounded upper mean-value M(f). Since M(f) exists, the series 
LnEN f(n)xn converges for lxl < 1 and can be written as 

Moreover, since f(n) is non-negative for all n inN, as a consequence 
of a theorem of Hardy and Littlewood ( [1], theorem 4), we get that there 
exists some L > 0 and a sequence (xk)kEN such that limk--->+oo Xk = 1 
and limk--++oo(1- Xk)- 1 LnEN f(n)xk_ = L. 

In fact if not, then, 

lim (1- x)- 1 "'"'f(n)xn = 0, 
X--l-1_ ~ 

nEN 

which implies that the mean value of f(n) is equal to zero, a contra­
diction with our hypothesis that f(n) has a positive bounded upper 
mean-value M(f). 

Now, we remark that 

nEN nEN,n=a(mod Qk(a)) 

and, since the function fk(a)(n) defined by fk(a)(n) = f(Qk(a)n) can be 
regarded as a Q-multiplicative function for the Cantor system defined 
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by qk = qk+k(a), k ~ 0, we get that 

nEN mEN 

mEN 

= f(a)xa IT ( L f(bQk)xbQk) 
k?.k(a) O~b~qk-1 

= f(a)xa ( ( IT ( L f(bQk)XbQk )) -
1 

O~k~k(a)-1 O~b~qk-1 

X ( !l ( 0<bt:.~/(bQk)XbQ')) ) 
= (f(a)xa ( IT ( L f(bQk)xbQk )) -

1
) X ( L f(n)xn) . 

O~k~k(a)-1 O~b~qk-1 nEN 

Since f(n) is non-negative and f(O.Qk) = 1, the function Fa,k(a)(x) 
defined by 

is analytic on a neighborhood of 1, and as a consequence of the relation 

L f(n)x'k'"" (1- xk)L ask---+ +oo, 
nEN 

we get that 

L f(n)Ia,k(a)(n)x'k'"" (1- Xk)LFa,k(a)(1) ask---+ +oo, 
nEN 

i.e. 

lim (1- Xk)- 1 L f(n)Ia,k(a)(n)x'k 
k-++CX) 

nEN 

( ) 

-1 

= Lf(a) IT ( L f(bQk) 
O~k~k(a)-1 O~b~qk-1 

as k ---+ +oo. 
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And so, we shall define VJ( Ia,k(a)) by 

Vj(Ia,k(a)) = f(a) ( II ( 2: f(bqk))) -
1 

O:Sk:Sk(a)-1 O:Sb:Sq-1 

Now, we check that Vf is a Radon measure. (For the definition, 
properties of the Radon measures, see [3], ch2, p.57 et seq.). To do that, 
we consider the set A of complex-valued continuous functions defined on 
Zq by 

A= { h = 2: la.Ia,k(a), L finite, la complex numbers} . 
laEL 

This is an algebra of step functions, and by the Stone-Weierstrass 
theorem ([2], p. 101, note La), A is dense with respect to the uniform 
topology in the set of the complex-valued continuous functions defined 
on Zq. If his in A, we define vt(h) by VJ(h) = LZaEL la.vf(Ia,k(a))· It 
is a simple remark that we have 

v1(h) = L - 1 lim (1- xk)- 1 2: f(n)h(n)xk,. 
k--->+oo 

nEN 

Since vt(1) = 1, for a given E > 0, if h and h'are in A and sat­
isfy suptEZq lh'(t)- h(t)l ~ E, then we have lvt(h'- h)l ~ E, since 
lvt(h'- h)l ~ vt(l). suptEZq lh'(t)- h(t)l ~ l.c, and so Vf defines 
a continuous linear form on the set of the complex-valued continuous 
functions defined on Zq. By Riesz representation theorem ([2], p. 129, 
(11.37)), this gives us that Vf is a positive Radon measure on Zq. 

ii) Characterization of the absolute continuity (resp. or­
thogonality) of v1 with respect to f-L· 

ForK inN, we have 

1 _ fK-(t)1/2f1K_(j1f2)-1 

= 2: (t(k-1)-(t/f2IJ(k-1)-(j1f2)-1- fk_(t)1/2f1k_(f1/2)-1) 
19:SK 

= 2: (tck-1J-(t)1f2IJ(k-1l-(j1f2)-1) (1- ik-1(t)1/2r:vk_I(j1/2)-1). 
1:Sk:SK 

We remark that 
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As a consequence of these orthogonality relations, we get that 

J (1- fK-(t)1/2flK_(f1/2)-1)2 dJ.L(t) 

2:.:: j (t<k-1)- (t)1/2n<k-1)- u1/2)-1 f dJ.L(t) 
1::;k~K 

x j (1- fk-1(t) 112rok-1(!112)-1f dJ.L(t). 

Now, since we have 

J (i(k-1)- (t)1f2IJ(k-1)- (jl/2)-1) 2 dj.L(t) 

= fl(k-1)- (!) X fl(k-1)- U 112)-2' 

we obtain that 

J (1- fK-(t)1f2IJK_(j1/2)-1)2 dJ.L(t) 

flK_(f) X f]K_(jl/2)-2 -1 

L (Il(k-1)-(f) X I1(k-1)-U112)-2) 
1~k~K-1 

x (q;; 1 O<•~-l (1- f(aQk)'l'w,(!112 )-1)') , 

and if we are in the situation such that limk-++oo (Ilk-(!) x Ilk- (!112)-2) 

exists and is > 0, we get that the series 

L qk1 L ( 1 - f(aQk)1f2wk(J1f2)-1) 2 

1~k O~a~qk-1 

is convergent. 
Assuming that we are in the case where 
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we consider the equality 

fiK_(/) X fiK_(/1/2)-2- 1 

L (II(k-1)-U) X II(k-1)-(!112)-2) 
1~k~K-1 

x (q;;1 z: (1 - J(aQk)1f2wku1/2)-1r). 
O~a~qk+1-1 

We multiply each member of this equality by fiK _ (!) - 1 x fiK _ (!112)2, 
and we get that 

1- fiK_(J)-1 X fiK_(/1/2)2 

><k~ _/(K, k) x ( qk' '<•~•-' (I - f(aQ,)'f',.,,(!'f')-') ') , 

where A(K, k) is defined by 

Now, we remark that if 

then, for a fixed k, we have 

lim A(K, k) = 0. 
K-++oo 

Since we have 

we get that the series of general term q;;1 Lo~a~qk- 1 (1 - f(aQk) 112wk 

(!112)-1)2 is not convergent, i.e. 

This proves that the measure Vf is continuous with respect to J.L 

(resp. orthogonal to J.L) if and only if the series of general term q;; 1 

Lo~a~qk- 1 (1- f(aQk) 112wk(J112)-1 ) 2 is convergent (resp. divergent). 
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iii) Part 1) of Theorem 2 in the case r = 1 is a simple 
consequence of the absolute continuity of v1. 

Proof. We shall apply to the present situation the method of proof 
given in [4]. 

1) First we prove 

Lemma 1. There exists a subset F00 of Zq such that J.L(F00 ) = 1 
and for every x = (ao(x), a1 (x), ... ) in F00 , we have 

. 1 2:: hm --
k--+oo ak(x) 
ak(x)#O O:Sa<ak(x) 

(1- j*(aQk)) = 0. 

2) This is a consequence of the following result: 

Lemma 2. There exists a subset F00 of Zq such that J.L(Foo) = 1 
and for every x = (a0 (x), a 1 (x), ... ) in F00 , we have 

Proof. 2) ==? 1). 
We have 

which gives us that 

As a consequence, we get that 

which gives that 

L (1- j*(aQk)) 
O:Sa<ak(x) 
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By the Cauchy inequality, we have 

L ( 1- f*(aQk) 112) :::; ak(x) 112. 
O::Sa<ak(x) 

and so we get that 

Hence we have 

(1- f*(aQk)) = 0. 

Q.E.D. 

3) We prove that there exists a subset F00 of ZQ such that J.L(Foo) = 1 
and for every x = (a0(x), a1(x), ... ) in F00 , we have 

Proof Since the series 

L q;;1 L ( 1 - f(aQk)1/2rok(f1/2)-1) 2 
1::Sk o::;a::;qk -1 

is convergent, let ak be defined by ak = q~ 2::~:,~ 1 (1 - f(aQk) 112wk 

(!112)- 1( For x in ZQ, we write x = (a0(x),a1(x), ... ), 0:::; ak(x) :::; 
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qk- 1, 0 ::; k and we remark that, on the sequence of the ak(x) different 
from 0, one has 

1 '""' (1- f(aQk)lf2wk(Jlf2)-1)2 
ak(x) w 

o::;a<ak(x) 

::; _1_ '""' (1- f(aQkil2wk(Jlf2)-1)2 
ak(x) w 

o::;a<qk 

::; ~_..!:.._ L (1- f(aQk)lf2wk(Jlf2)-1)2. 
ak(x) qk o::;a<qk 

Since I":k ak < +oo, there exists an increasing positive function h 
tending to infinity as k tends to infinity such that I":k akh(k) < +oo 
and nt,:O(l- akh(k)) > 0. We consider the set F(h) of points X in ZQ 
such that for all k, the inequality 

holds, where [ ·] denotes the integer part function. This set F(h) is 
closed, and its measure p,(F(h)) is equal to 

and we have 
+oo 1 

p,F(h) ;:::: IT -(qk- qkakh(k)). 
k=O qk 

Now, we remark that this last product can be written as Tit,:O(l­
akh(k)) and so, p,F(h) =f- 0. For an x in F(h), we consider the condition 
[qkakh(k)] ::; ak(x) ::; qk -1, for ak(x) =1- 0. If [qkakh(k)] is not 0, then 
we have 

qk qk 
--ak < ak 
ak(x) - [qkakh(k)] 

< qkakh(k) . qk a < qkakh(k) 1 2 
- [qkakh(k)] qkakh(k) k- [qkakh(k)] h(k) ::; h(k) 

and in this case, we get limk-.+oo a:(x) ak = 0. Now the remaining case 
is that [qkakh(k)] = 0. We have 0::; qkakh(k) < 1, i.e. qkak < 1/h(k). 
Hence 



On Q-multiplicative functions having a positive upper-meanvalue 235 

To obtain the result, we remark that the sequence of functions hr 
indexed by positive integers rand defined by hr(n) = h(n) if n >rand 
h(n)r- 1 otherwise, satisfies the same requirements as h. Now, the se­
quence of closed sets F(hr) is increasing with rand limr-->+oo J-l(F(hr)) = 
1. This gives that F 00 , the union of the F(hr), is a measurable set of 
measure 1. Now, if x belongs to F 00 , it belongs to some F ( hr) and as a 
consequence, along the sequence k such that ak(x) =/= 0, we have 

1 "" (1- f(aQk)lf2wk(fl/2)-1)2 
ak(x) L 

o::;a<ak(x) 

qk < --(Jk 
- ak(x) 

::; qkCJk 

2 
::; hr(k) = o(1), k-+ +oo. 

4) We shall need the following result: 

Q.E.D. 

Lemma 3. There exists a subset E00 of ZQ such that J-l(Eoo) = 1 
and for every x = (ao(x),al(x), ... ) in E00 and c > 0, there exists a 
positive integer K(x) such that for s:::;,: r:::;,: K(x), and we have 

Proof. We consider the sequence of real-valued functions fc*k+l)­

defined on ZQ by x f-----+ ftk+l)-(x) = I1o::;J:s;k f(aJ(x)QJ)wJ(f)-1, 
x = (a0 (x), a 1 (x), ... ). Kakutani's Theorem ([5], p. 109) gives us that 
ftk+l)-(x) converges J-l- a.s. and in L 1(ZQ,df-l). Hence we get that 

f:X,(x) = Tio::;j f(aJ(x)Q1 )w1(!)- 1 exists J-l-a.s. and is in L 1(ZQ, df-l). 
Now, as a consequence of Jessen's Theorem [5, p.108], 

i.e. 

lim J f:X,(x) 0 df-l1(x) = J f:X,df-l = 1 J-l-a.s., 
k-->+oo o::;j:s;k 

lim IT f(a1(x)Q1)w1(!)- 1 = 1 J-l-a.s., 
k-->+oo k< _ _ ] 

and as a consequence, by Cauchy's criterion, we get our result. 
Q.E.D. 
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5) End of the proof 
We consider the intersection of the sets E00 and F 00 • We shall prove 

that, for every ' in E 00 n F 00 which is not an integer, we have 

Let E = (ao, a1, a2, ... ) be an element of E 00 n F00 and abbreviate 
xk(') by Xk. We have: 

and by iteration 

S"'(f) ~ t. (Jt9 f(a,Q,)) c.~,(() f(aQ;)) ([{};, f(aQ,)) 

~ t. (JJ9 f(a.Q.)) c.~,(() f(aQ;)) ([{X;' f(aQ,)). 

We remark now that this equality can be written as 

S"'(f) (g q;1 Xi f(aQ,)) -l 

~ t. [ (Jt9 f"(a,Q,)) C.E/(aQ;)) ([{};, f"(aQ,)) l· 
Since 

q.,.-1 

L f*(aQr) = qr, 
a=O 

we have 

(fi I:l f*(aQr)) = (fi qr) = Qj. 
r=O a=O r=O 

The choice of E in F00 implies that 

L f*(aQr) =aj(E)(l + C:j), 
O$a<aj(0 
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with Ej = o(1) as j tends to infinity. The choice of~ in E00 implies that 

IT j*(arQr) = 1 + sj, 
j+l<;r<;k 

with sj = o(1) as j tends to infinity. 
This gives us that 

as j ---+ +oo, 

k 

= L aJ(~)Qj(1 + Ej)(1 + sj), 
j=O 

and so, since 
k 

LaJ(~)QJ = Xk, 

j=O 

we remark that we have 

k k 

lim ("'"' aJ(~)QJ)- 1 ("" aJ(0QJ(1 + EJ)(1 + sj)) 
k--++oo L....- L....-

j=O j=O 
k 

= lim (xk)- 1("" a1 (~)QJ(1 + s1)(1 + sj)) 
k--++oo L....-j=O 

=1 

and as a consequence, we obtain that 

2. 

Sxk(f)x}; 1 = (,ft q; 111 
f(aQr)) (1 + o(1)), ask---+ +oo. 

Q.E.D. 

iv) To F, 0 < r < 1, one can associate a Radon measure 
absolutely continuous with respect to Jl· 

By 3) above, this will give the end of the proof of part 1) of Theorem 

We consider the sequence of real-valued functions JJ; defined on ZQ 
by x ~-----+ JJ;_(x) = Ilo<;j<kf(aj(x)QJ)wj(f)- 1, x = (ao(x),a1(x), ... ). 
Kakutani's Theorem ([5], p. 109) gives us that JJ;_(x) converges jl-a.s. 
and in L 1(ZQ,dJ1). As a consequence, we get that.(JJ;_(x))r converges 
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J.L- a.s. and in L 11r(zq, dJ.L). This implies that 

exists, and the value is less or equal to 1, but is not zero. 
Hence we get that the sequence of functions 

-1 ((TI (1/qr)· q~l r(aQr))((TI (1/qr)· ~ f(aQr))-r) (fk_(x)r 

converges J.L-a.s. and in L 11r(zq, dJ.L), i.e. 

converges J.L-a.s. and in L 11r(zq, dJ.L). 
As a consequence, since L 1(Zq, dJ.L) :J L 1fr(zq, dJ.L), this product 

defines a measure absolutely continuous with respect to J.L. 
Q.E.D. 

v) We prove directly part 2) of Theorem 2. 

1) Assume that limk--++oo J(!k_) 112dJ.L = 0. Then, we have 

Proof If x = ~f:=o akQk and K denotes the maximal index k for 
which ak(x) is different from zero, we have 

and so, 

But 

and since 
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and aK 2: 1, we get that 

(aK) X (aK + 1)-1 2: 1/2. 

This implies that 

((aK + 1)QK)- 1 

= ((aKQK) X ((aK + 1)QK)- 1) X (aKQK)- 1 2: (1/2) X (aKQK)- 1 , 

and as a consequence, since 

we get that 
(1/2) X (aKQK)- 1 :S: X- 1 . 

Similarly, since we have x- 1 :::; (aKQK)-\ we get that x- 1 :::; 2 x 
((aK + 1)QK)- 1 . 

Now, if g(n) is any non-negative Q-multiplicative function, from the 
inequality 

we obtain that 

i.e. 
x- 1SaKQK (g) :S:x- 1Sx(g) :S: x- 1 S(aK+1)QK (g) 

and so, using the above inequalities, we get that 

i.e., 

and similarly, 

i.e., 
X- 1Sx(g) :S:2 X (((aK + 1)QK)-1S(aK+1)QK(g)) · 

Replacing g by J, since limsupx--->+oo ~Sx(f) =L > 0, we have, if K 
is large enough, 
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Now, replacing g by j 112 , we have 

with 

and by Cauchy's inequality, we get that 

This gives us that 

and we write the right member of this inequality as 

i.e., 

and so we have 
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Since 

and 

K-1 q,-1 K-1 q,.-1 

(II (1/qr). L J112 (aQr))( II (1/qr). L f(aQr))- 112 

r=O a=O r=O a=O 

= o(1), asK--> +oo, 

we get that limx->+oo x- 1Sx(J1/ 2 ) = 0. 
Q.E.D. 

2) For any r in ]0, 1[, we have limx_,+oo ~ Lo:s;n:s;x f(nt = 0. 

Proof. Since 

lim .!. ""' f(n) 112 = 0, 
x->+oo X ~ 

o::;n:s;x 

we get that 
. 1 

hm -
x->+oo X 

f(n/12 = 0, 
o:s;n:s;x, f(n) 1 12?:1 

i.e. 
. 1 

hm -
x->+oo X 

f(n)1/2 = 0, 

and as a consequence 

which implies that 

o:s;n:s;x, f(n)?:1 

1. 1 
lm -

x->+oo X 

. 1 
hm -

x->+oo X 

o:s;n:s;x, f(n)?:l 

o:s;n:s;x, f(n):S:1 

If r is in ]0, 1 [, we have 

L J(nr = J(nr + 
o::;n:s;x, f(n)?:1 

1 = 0, 

1 = 1. 

o:s;n:s;x, f(n):'01 

J(nr. 
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Using Holder's inequality, we get that 

f(nr:::; ( f(n)f. 
0$n$x, f(n);;:::1 0$n$x, f(n);;:::1 

Since 
limsupx- 1 L f(n) = L, 
x-++oo 0$n$x 

we get that 

L f(n):::; L, 
0$n$x, f(n);;:::1 

and since 
1 = 0, 

we obtain that 

L f(nr 
O$n$x, f(n);;:::1 

:::; (lim sup x- 1 

x-++oo 
1) 1-r .(limsupx-1 

x-++oo 
L f(n)f 

O$n$x, f(n);;:::1 

:::; (limsupx-1 

x-++oo 

=0. 

Now, we remark that as above, we have 

O$n$x, f(n)9 

f(n)r 
O$n$x, f(n)9 0$n$x, f(n)$1 

and similarly, 

L f(nr 
O$n$x, f(n)9 

:::; (limsupx- 1 

x-++oo L 
O$n$x, f(n)$1 

1) 1-r.(lim sup x- 1 

x-++oo 
L f(n)r 

0$n$x, f(n)9 

:::; l.(lim sup x- 1 

x-++oo 
L f(n)r. 

0$n$x, f(n)9 
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But if 0 :S f(n) :S 1, then the inequality 0 :S f(n) :S f(n) 112 holds, 
and as a consequence, we get that 

f(n) :S f(n)l/2 
O:<:;n:<:;x, f(n)$1 O:<:;n:<:;x, f(n):<:;l 

and a fortiori, 

L f(n) :S L J(n)l/2. 
O:<:;n:<:;x, f(n)$1 O:<:;n:<:;x 

Now, since 

we get that 

L f(n) = 0 
O:<:;n:<:;x, f(n):<:;l 

and so, we have 

x---++oo 
'L J(nr =O. limsupx- 1 

o:<:;n:<:;x, f(n)?::l 

This proves that for any r in ]0, 1[, we have 

Q.E.D. 
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