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A variational approach to self-similar solutions for 
semilinear heat equations 

Yuki Naito 

Abstract. 

We study the existence of self-similar solutions for semilinear heat 
equations by making use of the methods for semilinear elliptic equa­
tions. In particular, via the variational approach, we show the existence 
of the second solution, which implies the non-uniqueness of solutions to 
the Cauchy problem for semilinear heat equations with singular initial 
data. 

§1. Introduction 

In this paper we review some recent results [19, 20] for the existence 
of self-similar solutions to semilinear heat equations by making use of the 
methods for semilinear elliptic equations. Let us consider the Cauchy 
problem for semilinear heat equations with singular initial data: 

(1) Wt = f:l.w +wP in RN x (0, oo), 

(2).>. w(x, 0) = .Xa (x/lxl) lxl- 2/(p- 1) in RN \ {0}, 

where N > 2, p > 1, a : sN-1 --> R, and .X > 0 is a parameter. We 
assume that a E £=(sN-1) and a~ 0, a¢. 0. A typical case is a= 1. 

The equation (1) is invariant under the similarity transformation 

w(x, t) f-> w11 (x, t) = JL2/(P- 1lw(JLX, JL2 t) for all f.L > 0. 

In particular, a solution w is said to be self-similar, when w = w11 for 
all f.L > 0, that is, 

(3) w(x, t) = JL2/(P- 1lw(f.Lx, JL2 t) for all f.L > 0. 
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Such self-similar solutions are global in time and often used to describe 
the large time behavior of global solutions to (1), see, e.g., [15, 16, 5, 
24]. 

Ifw is a self-similar solution of (1) and has an initial value A(x), then 
we easily see that A has the form A(x) = A(x/lxl)lxl- 2/(p-l). Then the 
problem of existence of self-similar solutions is essentially depend on the 
solvability of the Cauchy problem (1)-(2)..\. In this paper we consider the 
existence of self-similar solutions for the problem (1)-(2)..\. In particular, 
we study the multiplicity of self-similar solutions to the problem in the 
subcritical and critical cases. The idea of constructing self-similar solu­
tions by solving the initial value problem for homogeneous initial data 
goes back to the study by Giga and Miyakawa [12] for the Navier-Stokes 
equation in vorticity form. 

It is well known by [9, 14, 17] that if 1 < p ~ (N + 2)/N then (1) 
has no time global solution w such that w 2': 0 and w ¢. 0. (See also [28, 
15].) Then the condition p > (N + 2)/N is necessary for the existence 
of positive self-similar solutions of (1). 

We briefly review some results concerning the Cauchy problem for 
(1) with initial data in Lq(RN). Weissler [26, 27] showed that the IVP 
(1) with w(x, 0) = A E Lq(RN) admits a unique time-local solution if 
q 2': N(p- 1)/2. He also showed in [28] that the solution exists time­
globally if q = N(p- 1)/2 and if IIAIIL•(RN) is sufficiently small. Giga 
[11] has constructed a unique local regular solution in L"'(O, T : £f3), 
where a and (3 are chosen so that the norm of L"'(O, T: £f3) is invariant 
under scaling. On the other hand, for 1 ~ q < N(p- 1)/2, Haraux 
and Weissler [13] constructed a solution w0 E C([O, oo); Lq(RN)) of (1) 
satisfying wo(x, t) > 0 fort> 0 and llwo(·, t)IIL•(RN)---> 0 as t---> 0 when 
(N + 2)/N < p < (N + 2)/(N- 2) by seeking solutions of self-similar 
form. Therefore, the Cauchy problem 

(4) { 
Wt = Llw+wP 

wlt=O = 0 

in RN X (0, oo) 

in RN 

admits a non-unique solution in C([O, oo); Lq(RN)) for 1 ~ q < N(p-
1)/2 when (N + 2)/N < p < (N + 2)/(N- 2). 

Kozono and Yamazaki [18] constructed Besov-type function spaces 
based on the Morrey spaces, and then obtained global existence results 
for the equation (1) and the Navier-Stokes system with small initial data 
in these spaces. Cazenave and Weissler [5] proved the existence of global 
solutions, including self-similar solutions, to the nonlinear Schrodinger 
equations and the equation (1) with small initial data by using the 
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weighted norms. By [18, 5] the problem (1)-(2)>. admits a time-global 
solution for sufficiently small A > 0. 

We note here that the equation (1) with p > N /(N -2) has a positive 
singular stationary solution W(x) = Llxl- 2/(p- 1), where 

- [ 2 ( 2 )] 1/(p- 1) L- -- N-2---
p-1 p-1 

Galaktionov and Vazquez [10] investigated the uniqueness of solutions 
to the problem (1)-(2)>. in the case where a= 1 and A= L, and showed 
that the problem has a classical self-similar solution for t > 0 with 
certain values of p. In [10, p. 41] they also conjectured that the problem 
(1)-(2)>. has exactly two solutions (the minimal and maximal) when 
N /(N- 2) < p::; (N + 2)/(N- 2). Recently, some improvements of the 
results [10] was shown by [25]. 

Letting J.L = r 112 in (3), we see that the self-similar solution w of 
( 1) has the form 

(5) w(x, t) = r 1f(p- 1)u(x/Vt), 

where u satisfies the elliptic equation 

1 1 
t:.u + -x · V'u + --u +uP = 0 

2 p -1 
(6) 

In addition, if w satisfies (2)>. in the sense of Lfoc(RN), then u satisfies 

(7)>. lim r 2/(P- 1lu(rw) = Aa(w) for a.e. WE SN- 1. 
r--->oo 

Conversely, if u E C 2 (RN) is a solution of (6) satisfying (7).>" then the 
function w defined by (5) satisfies (1)-(2)>. in the sense of Lfoc(RN). 
(See Lemma B.1 in [19].) 

In this paper we investigate the problem (6)-(7)>. by making use of 
the methods for semilinear elliptic equations to derive the results for the 
Cauchy problem (1)-(2)>.. First, we show the existence of the minimal 
solution by employing the comparison results based on the maximum 
principle. Next, by applying the variational method due to [1, 6, 4], 
we show the existence of the second solution of the problem (6)-(7)>. in 
the subcritical and critical cases, which implies the non-uniqueness of 
solutions to the problem (1)-(2)>.. 

This paper is organized as follows: In Section 2, we show the ex­
istence of the minimal solutions, and in Section 3, we introduce the 
weighted Sobolev space and recall some related results. In Sections 4 
and 5, we show the existence of second solutions by employing varia­
tional arguments in the subcritical and critical cases, respectively. 
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§2. Existence of the minimal solution 

In this section, we show the existence of positive minimal solutions 
of the problem (6)-(7)>.. For simplicity, we define £u by 

1 1 
£u = .6.u + -x · \i'u + --u 

2 p -1 

for u E C 2 (RN). First we obtain the maximum principle for the operator 
£u. 

Lemma 1. Let p > (N + 2)/N. Assume that -£u ~ 0 in RN, and 
that 

liminf JxJ 2 f(p-l)u(x) ~ 0. 
lxl---+oo 

Then u > 0 or u = 0 in RN. In particular, if -£u ~ 0 and u ~ 0 in 
R N then u > 0 or u = 0 in R N. 

Proof. From Lemma 2.1 in [19], there exists a positive function¢ 
satisfying £¢ = 0 in R N and 

lim r 2f(p-l)¢(rw) = 1 for a.e. wE sN-l. 
·r---+oo 

Let v(x) = u(x)/¢(x). Then v satisfies liminflxl---+oov(x) ~ 0 and 

-.6-v- (~\7¢ + ~x) · \i'v ~ 0 in RN. 

By the maximum principle [22] we have v > 0 or v = 0 in n, which 
implies that u > 0 or u = 0 in !1. Q.E.D. 

We obtain the comparison result for the operator £u by employing 
Lemma 1. For the proof, see [19, Proposition 2.2]. 

Lemma 2. Assume that p > (N +2)/N, and that a, {3 E L00 (SN-l) 
satisfy 0 :-::; a(w) :-::; {J(w) for a.e. wE sN-l. Suppose that there exists a 
positive function v satisfying 

{ 
-£v > vP in RN and 

lim r2 f(p-l)v(rw) = {J(w), a.e. wE sN-l. 
r---+oo 

(8) 

Then there exists a positive solution u of the problem 

{ 
-£u =uP in RN and 

lim r2 f(p-l)u(rw) = a(w), a.e. wE sN-l. 
r---+oo 
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Furthermore, for any positive function v satisfying (8), one has u ::; v 
inRN. 

By making use of Lemma 2, we obtain the existence of positive 
minimal solutions. 

Theorem 1. Assume that p > (N + 2)/N. Then there exists a 
constant X > 0 such that 

(i) for 0 < A < X, (6)-(7)A has a positive minimal solution 1!.x E 

C2 (RN); the solution 1!.x is increasing with respect to A and satisfies 

ll1!.xiiL""(RN)---> 0 as A---> 0; 
(ii) for A > X, there are no positive solutions u E C 2 (RN) of (6)­

(7).x. 

Sketch of Proof For each A> 0 we introduce the solution set 

S.x = {u E C 2 (RN): u is a positive solutionof (6)-(7)A}. 

Let v = v(r) with r = lxl be a positive solution of (6) satisfying 

lim r 2 f(p-l)v(r) = C 
r--+oo 

for some C > 0. The existence of such v is obtained by [13, Theorem 
5]. Take A> 0 so small that A ::; C/llaiiL""(SN-1)· By applying Lemma 
2 with a(w) = Aa(w) and ,B(w) = C, we obtain a positive solution u.x of 
(6)-(7)A, that is, S.x :/= 0. Applying again Lemma 2 with v = u.x and 
a(w) = ,B(w) = Aa(w), we obtain a positive solution 1!.x of (6)-(7)A such 
that 1!.x ::; u.x. Furthermore, we have 1!.x ::; u for all u E S.x. This implies 
that 1!.x is the minimal solution of S.x. 

Assume that 8>-.0 :/= 0 for some Ao > 0. Let A E (0, Ao). Then, by 
applying Lemma 2 with a(w) = Aa(w) and ,B(w) = Aoa(w), we have a 
positive solution u.x of (6)-(7).x. Therefore, S.x :/= 0 for all A E (0, Ao). 

Let X = sup{ A > 0 : S.x :/= 0}. As a consequence, we obtain X > 0 
and, for A E (0, X), S.x :/= 0 and there exists a minimal solution 1!.x E S.x. 
For the monotonicity properties of 1!.x, see (i) and (ii) of Lemma 4.2 
in [19]. By (iii) of Lemma 4.2 in [19], we obtain X < oo. By the 
definition of X, we can conclude that (6)-(7)A has no positive solution 
for A > X. Q.E.D. 

Furthermore, we obtain the following result for the linearized eigen­
value problem, which plays a crucial role in the proofs of the existence 
of the second solutions. 
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Lemma 3. Let 1!.>, be the minimal solution obtained in Theorem 1 
for A E (0, 'X). Then the linearized eigenvalue problem 

has the first eigenvalue J.L = J.L(A) > 1. Moreover, J.L(A) is strictly de­
creasing in A E (0, 'X). 

For the proof, see [19, Lemma 5.2]. 

§3. Weighted Sobolev space 

Put p(x) = elxl 2
/ 4 . Then the equation (6) can be written as 

'V · (p'Vu) + p (-1-u +uP) = 0. 
p-1 

Escobedo-Kavian [8] investigated the corresponding functional 

lo(u) = ~ { (1Vul 2 - - 1-u2 ) pdx- - 1- { uP+ 1pdx 
2 }RN p- 1 p + 1 }RN 

on the weighted functional spaces 

and 

We recall here some results about the weighted Sobolev space H~(RN). 
For the proof, we refer to [8, 15], 

Lemma 4. (i) For every u E H~(RN), there holds 

(ii) The embedding H~(RN) c L~+l(RN) is continuous for 1 ~ p ~ 
(N + 2)/(N- 2), and is compact for 1 ~ p < (N + 2)/(N- 2). 
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It was shown by [8, 29] that there exists a solution u0 of the problem 

{ 
~u+~x-V'u+-1-u+uP=O inRN, 

(9) 2 p- 1 
u E H~(RN) and u > 0 in RN, 

with (N + 2)/N < p < (N + 2)/(N- 2). Moreover, it was shown in 
[8] that the solution u0 satisfies u0 E C 2(RN) and u0(x) = O(e-lxl 2 /8) 
as lxl ---> oo. The uniqueness of the solution to the problem (9) was 
obtained in [21, Corollary 2] by combining the results [7, 30] and [21]. 

Now put 

(10) wo(x, t) = cl/(v-lluo(x/ Vt), 

where uo is the unique solution of the problem (9). We note that uo E 
Lq(RN) for all q 2:: 1 and 

llwo(·, t)IILq(RN) = cl/(p-l)+N/2qlluoi1Lq(RN)· 

Then w0 solves the the Cauchy problem (4) in C([O, oo); Lq(RN)) for 
1 ::; q < N(p- 1)/2. By the uniqueness of the problem (9), we find 
that w0 defined by (10) coincides with the non-unique solution of ( 4) 
constructed by [13]. 

§4. Existence of the second solution: subcritical case 

Let Y.>. be the positive minimal solution of (6)-(7)>. obtained in The­
orem 1. In order to find a second solution of (6)-(7)>. we introduce the 
following problem: 

{ 
~u + ~x · V'u + - 1-u + g(u,y_>.) = 0 in RN, 

2 p-1 

u E H~(RN) and u > 0 in RN, 

where g(t, s) = (t + s)P - sP. We easily see that, if (11)>. possesses a 
solution U>., then we can get another positive solution U>. = Y.>. + U>. of 
(6)-(7)>.. 

·In this section we will show the existence of solutions of (11)>. in 
the subcritical case (N + 2)/N < p < (N + 2)/(N- 2) by using the 
variational method. To this end we define the corresponding functional 
of (11)>. by 
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1 1 
G(t, s) = --(t + s)P+l- --sP+1 - sPt. 

p+1 p+1 

We see that a nontrivial critical point u E H~(RN) of the functional!:>.. 
is a weak solution of the equation in (11).>.. Moreover, we have U.>. E 
C 2 (RN) and U.>. > 0 in RN by employing the bootstrap arguments and 
the maximum principle. (See [19].) 

We will verify the existence of a nontrivial solution of (11 ).>. by means 
of the Mountain Pass lemma ([1, 23]). We show the following lemmas. 

Lemma 5. The functional !:>.. satisfies the PalaiscSmale condition, 
that is, any sequence {uk} C H~(RN) such that 

{I.>.(uk)} is bounded and I~(uk)----> 0 ask----> oo 

contains a convergent subsequence. 

Lemma 6. For A E (0, X) there exist some constants 8 = 8(A) > 
0 and TJ = TJ(A) > 0 such that l.>.(u) :2:: TJ for all u E H~(RN) with 
IIV'ull£2 = 8. 

p 

Lemma 7. Let u0 be the solution of the problem (9), and let 0 < 
A <X. Then (i) f:>...(tuo) < 0 for sufficient large t; (ii) supt>O f:>...(tuo) ~ 
Io(uo). 

For the proofs of Lemmas 5-7, See [19, Lemmas 5.4-5.6]. In the 
proofs, the results in Lemma 3 play an important role. By making use 
of the results in Lemmas 5-7, we obtain the following: 

Theorem 2. Assume that (N +2)/N < p < (N+2)/(N -2). Then, 
for 0 < A < X, there exists a positive solution U.>. of (6)-(7).>. satisfying 
U.>. > :!!.>., U.>. -:g.>. E H~(RN), and 

(12) 

Furthermore, 

where uo is the unique solution of the problem (9). In particular, U.>. ----> 

uo in L00 (RN) as A----> 0. 
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Sketch of Proof. From (i) of Lemma 7, there exists a constant T > 
0 such that e = Tuo satisfies II'Vell£2 > 8 and h,(e) ~ 0, where 8 is the 

p . 

constant appearing in Lemma 6. Denote 

(14) c = inf max I>.(v(s)), 
vEr sE[O,l] 

where r = {v E C([O, 1];H~(RN)): v(O) = 0, v(1) = e}. Then, from 
Lemma 6 and (ii) of Lemma 7, it follows that 

(15) 0 < ry ~ c ~ Io(uo). 

The Mountain Pass Lemma [1, 23] enables us to find a critical point 
U>. E H~(RN) of I>.(u). Hence, U>. is a weak solution of the equation in 
(11)>. and satisfies h(u>.) ~ Io(uo). By [19, Proposition A.1], we have 
U>. E C2 (RN) and U>.(x) ---. 0 as lxl ---. oo. For the decay property (12), 
see the proof of Proposition 5.1 in [19]. 

We will show the outline of the proof of (13). We observe that { U>.} 
is bounded in H~(RN) as>.---. 0. Then there exists a sequence Ak ---. 0 
and v0 E H 1(RN) with v0 ~ 0 such that 

U>.k ---" vo weakly in H~(RN) as k ---. oo. 

Moreover, we can show that U>.k converges to v0 in H~(RN), and that v0 

is a solution of the problem (9). We note here that liminf>.-+O ry(>.) > 0 
in Lemma 6. (See [20, Lemma 3.2].) Then, from (14) and (15), we 
have v0 =/= 0. By the uniqueness of the solution to the problem (9), we 
conclude that v0 = uo. Thus, we obtain U>.---. uo in H~(RN) as>.---. 0. 
For the detail, see [19, Proof of Proposition 5.2.]. Q.E.D. 

Now we consider the Cauchy problem (1)-(2)>.. Recall that, if u 
is a solution of (6)-(7)>., then the function w defined by (5) is a solu­
tion of (1)-(2)>. in the sense of Lf0 c(RN), and that wo defined by (9) 
coincides with the non-: unique solution of ( 4) constructed by [13]. As a 
consequence of Theorems 1 and 2, we obtain the following results. 

Corollary 1. Assume that p > (N + 2)/N. Then there exists a 
constant X > 0 such that 

(i) for 0 < >. <X, (1)-(2)>. has a positive self-similar solution 1!L>.i 
the solution 1!L>. ( ·, t) satisfies, for each fixed t > 0, 

II1!L>.h t)IILoo(RN) ___... 0 as>.___... 0; 

(ii) for>.> X, (1)-(2)>. has no positive self-similar solutions. 
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Assume, furthermore, that p < (N + 2)/(N- 2). Then (1)-(2)>. has a 
positive self~similar solution w;.. satisfying w;.. > :JQ;.. in RN x (0, oo) for 
0 < >. <X. The solution w;.. satisfies, for each fixed t > 0, 

llw;..(·, t)- wo(·, t)IILoo(RN) __. 0 as>.__. 0, 

where w0 is the non-unique solution of (4) in C([O, oo); Lq(RN)) for 
1:::; q < N(p- 1)/2, which is constructed by [13]. 

§5. Existence and nonexistence of the second solutions: criti­
cal case 

In this section we consider the existence and nonexistence of second 
solutions of the problem (6)-(7)>. in the critical case p = (N +2)/(N -2). 
For the detail of the proofs in this section, we refer to [20]. 

For the critical growth case, there are serious difficulties in obtaining 
solutions by using variational methods because the Sobolev embedding 
H 1 C £P+ 1 is not compact. It is well known that this lack of compactness 
exhibits many interesting existence and nonexistence phenomena. See, 
e.g., [4, 2]. 

We show the existence of second solutions of the problem (6)-(7);.. by 
following the argument due to Brezis-Nirenberg [4]. Let us denote by S 
the best Sobolev constant of the embedding H 1(RN) c £ 2N/(N-2l(RN), 
which is given by 

In the critical case, the functional !;.. satisfies the following local Palais­
Smale condition. 

Lemma 8. Let p = (N + 2)/(N- 2). Then h satisfies the (PS)c 
condition forcE (o,sN12 jN), that is, any sequence {uk} c H~(RN) 
such that 

I;..(uk) __. c E (o, ~sN/2) and I~(uk) __. 0 ask__. oo 

contains a convergent subsequence. 

By the Mountain Pass lemma with Lemma 8, we obtain the following 
existence result. 
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Lemma 9. Let p = (N + 2)/(N- 2). Assume that there exists 
v0 E H~(RN) with v0 ;::: 0, v0 ¢ 0 such that 

supf.x(tvo) < N1 sN/2 . 
t>O 

(16) 

Then there exists a positive solution u;. E H~(RN) of (11);.. 

Remark. We obtain u;. E C 2(RN) by employing the estimate due 
to Brezis-Kato [3], based on the Moser's iteration technique. 

In order to find a positive function v0 E H~(RN) satisfying (16), we 
set 

cp(x) _ 1; 2 _ uo:(x) 
uo:(x) = ( I 12)(N-2)/2p and vo:(x)- II II c + X Uo: L~+' 

for c > 0, where¢ E C0 (RN) is a cut off function. We remark that the 
functional I;. can be written as 

f.x(u) = ~ r (1V'ul2- _1_u2) pdx- _1_ r uP+lpdx 
2 }RN p- 1 p + 1 }RN 

where 

- f H(u,y,_;.)pdx 
JRN 

Io(u)- { H(u,y,_;.)pdx, 
JRN 

H(t,s)=G(t,s)- p: 1tv+l. 

Lemma 10. For sufficient small c > 0, there exists t 10 > 0 such 
that supt>O I.x(tv"') = I.x(t10v10 ). Moreover, as c ~ 0 we have 

{ O(e), N;:::5 

I0 (t"'v"'):::; ~sN/2 + O(cllogcl), N=4 

O(cl/2), N=3 

L H(teV.,lf.A)pdx <': { 

Cc3/4, N=5 

Ccl/2, N=4 

Cc114, N=3 

with some constant C > 0. 
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Remark. For instance, in the case N = 6, we obtain 

{ H(teve.1l>.)pdx :::: Cc as c ____, 0. JRN 
Then we can not ensure the condition (16) generally in this case. 

Combining the results in Lemmas 9 and 10, we obtain the following: 

Theorem 3. Let p = (N + 2)/(N- 2) and N = 3, 4, 5. Then, for 
0 < >. < X, the problem (6)-(7)>. has a positive solution U>. E C 2 (RN) 
satisfying U>. > 1h and U>.- 1h E H~(RN). 

On the other hand, for the case N ::=: 6 we obtain the uniqueness 
result in the radial class by employing the Pohozaev type identity. 

Theorem 4. Let p = (N + 2)/(N- 2) and N ::=: 6. Assume that 
a = 1 in (7)>.. Then there exists a constant >.o E (0, X) such that (6)-(7)>. 
has no positive mdial solutions u E C2 (RN) with u ¢. 1h for>. E (0, >.o), 
that is, (6)-(7)>. has a unique positive mdial solution lf>. for 0 < >. < >.o. 

Let us consider the Cauchy problem (1)-(2)>. with p = (N +2)/(N-
2). As a consequence of Theorems 3 and 4, we obtain the following 
results. 

Corollary 2. Assume that p = (N + 2)/(N- 2) in (1)-(2)>.. 
(i) Let N = 3, 4, 5. For 0 < >. < X, the problem (1)-(2)>. has a 

positive self-similar solution w >. satisfying w >. ( x, t) > W.>. ( x, t) for ( x, t) E 
(RN X (0, oo)). 

(ii) Let N ::=: 6 and a = 1 in (2)>.. Then there exists a constant 
>.o E (0, X) such that (1)-(2)>. has a unique positive mdially symmetric 
self-similar solution W.>. for 0 < >. < >.o. 
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