Advanced Studies in Pure Mathematics 44, 2006 Potential Theory in Matsue pp. 391–402

Harmonic conjugates of parabolic Bergman functions

Masahiro Yamada

Abstract.

The parabolic Bergman space is the Banach space of solutions of some parabolic equations on the upper half space which have finite L^p norms. We introduce and study $L^{(\alpha)}$ -harmonic conjugates of parabolic Bergman functions, and give a sufficient condition for a parabolic Bergman space to have unique $L^{(\alpha)}$ -harmonic conjugates.

1. Introduction

Recently, Nishio, Shimomura, and Suzuki [4] have introduced parabolic Bergman spaces on the upper half-space and proved many interesting properties of these spaces. Parabolic Bergman spaces contain harmonic Bergman spaces studied by Ramey and Yi [6]. In this paper, we introduce and study $L^{(\alpha)}$ -harmonic conjugates of parabolic Bergman functions, which are a generalized notion of usual harmonic conjugates of harmonic Bergman functions.

We describe the definition of parabolic Bergman spaces. Let H be the upper half-space of the (n+1)-dimensional Euclidean space \mathbb{R}^{n+1} , that is, $H=\{(x,t)\in\mathbb{R}^{n+1}\ ;\ x\in\mathbb{R}^n,\ t>0\}$. For $1\leq p<\infty$, the Lebesgue space $L^p(H,dV)$ is defined to be the Banach space of Lebesgue measurable functions on H with

$$\parallel u \parallel_p = \left(\int_H |u(x,t)|^p dV(x,t) \right)^{1/p} < \infty,$$

where dV is the Lebesgue volume measure on H. For $0 < \alpha \le 1$, We define $L^{(\alpha)}$ -harmonic functions on H. For $0 < \alpha < 1$, $(-\Delta)^{\alpha}$ is the

Received March 2, 2005.

Revised May 16, 2005.

²⁰⁰⁰ Mathematics Subject Classification. Primary 32A36; Secondary 26D10, 35K05.

Key words and phrases. Bergman space, harmonic conjugate, heat equation, parabolic equation.

convolution operator defined by

$$((-\Delta)^{\alpha}\varphi)(x,t) = -C_{n,\alpha} \lim_{\delta \downarrow 0} \int_{|y-x| > \delta} (\varphi(y,t) - \varphi(x,t))|y-x|^{-n-2\alpha} dy$$

for all $\varphi \in C_0^{\infty}(H)$, where $C_{n,\alpha} = -4^{\alpha}\pi^{-n/2}\Gamma((n+2\alpha)/2)/\Gamma(-\alpha) > 0$, and Δ is the Laplace operator with respect to x. For $0 < \alpha \le 1$, a parabolic operator $L^{(\alpha)}$ is defined by $L^{(\alpha)} = \frac{\partial}{\partial t} + (-\Delta)^{\alpha}$. (We note that when $\alpha = 1$, $L^{(1)}$ is the heat operator.) A continuous function u on H is said to be $L^{(\alpha)}$ -harmonic if $L^{(\alpha)}u = 0$ in the sense of distributions, that is, $u \cdot \tilde{L}^{(\alpha)}\varphi \in L^1(H,dV)$ and $\int u \cdot \tilde{L}^{(\alpha)}\varphi dV = 0$ for all $\varphi \in C_0^{\infty}(H)$, where $\tilde{L}^{(\alpha)} = -\frac{\partial}{\partial t} + (-\Delta)^{\alpha}$ is the adjoint operator of $L^{(\alpha)}$. For $1 \le p < \infty$ and $0 < \alpha \le 1$, the parabolic Bergman space b_{α}^p is the set of all $L^{(\alpha)}$ -harmonic functions on H which belong to $L^p(H,dV)$, and it is a Banach space with the L^p norm. It is known that $b_{\alpha}^p \subset C^{\infty}(H)$ (see Theorem 5.4 of [4]), and when $\alpha = 1/2$, $b_{1/2}^p$ coincides with harmonic Bergman spaces of Ramey and Yi (see Corollary 4.4 of [4]).

We introduce the definition of $L^{(\alpha)}$ -harmonic conjugates of parabolic Bergman functions. For a function u on H such that $\partial u/\partial x_j$ and $\partial u/\partial t$ exist at every $(x,t)=(x_1,\ldots,x_n,t)\in H$, we write $\partial_{x_j}u=\partial u/\partial x_j$ and $\partial_t u=\partial u/\partial t$, respectively.

DEFINITION 1.1. For a function $u \in b^p_{\alpha}$, the functions v_1, \ldots, v_n are called $L^{(\alpha)}$ -harmonic conjugates of u if v_1, \ldots, v_n satisfy the following conditions:

- (1) v_1, \ldots, v_n are $L^{(\alpha)}$ -harmonic on H,
- (2) $\partial_{x_j} v_k = \partial_{x_k} v_j$ and $\partial_{x_j} u = \partial_t v_j$ $(1 \le j, k \le n)$.

Usually, given a harmonic function u on H, the functions v_1, \ldots, v_n on H are called harmonic conjugates of u if $(v_1, \ldots, v_n, u) = \nabla f$ for some harmonic function f on H. As mentioned above, $b_{1/2}^p$ coincide with harmonic Bergman spaces, and it is easy to see that when $\alpha = 1/2$ the conditions (1) and (2) of Definition 1.1 are equivalent to the definition of usual harmonic conjugates of harmonic Bergman functions. Hence, $L^{(\alpha)}$ -harmonic conjugates are generalization of harmonic conjugates.

Many authors have studied and proved interesting and important results concerning properties of harmonic conjugates, (for instance, see Chapter III of [2]). One of the fundamental problems of harmonic conjugates is the boundedness of the conjugation operator. It is known that when $\alpha=1/2$ there are unique harmonic conjugates v_1,\ldots,v_n of a function $u\in b_{1/2}^p$ such that $v_j\in b_{1/2}^p$ (see Theorem 6.1 of [6]), and thus the conjugation operator is bounded on the harmonic Bergman spaces for

all $1 \leq p < \infty$. In this paper, we prove the following result (see Theorem 4.1): Let $0 < \alpha \leq 1$ and $1 \leq p < \infty$. If $\lambda = p(\frac{1}{2\alpha} - 1) > -1$ and $u \in b^p_{\alpha}$, then there exist unique $L^{(\alpha)}$ -harmonic conjugates v_1, \ldots, v_n of u such that $v_j \in b^p_{\alpha}(\lambda)$, where $b^p_{\alpha}(\lambda)$ is the weighted parabolic Bergman spaces (see section 3 for the definition). Hence, we obtain the conjugation operator from b^p_{α} into $b^p_{\alpha}(\lambda)$ is bounded whenever $\lambda = p(\frac{1}{2\alpha} - 1) > -1$.

Throughout this paper, C will denote a positive constant whose value is not necessarily the same at each occurrence; it may vary even within a line.

2. Existence of $L^{(\alpha)}$ -harmonic conjugates

When $\alpha=1/2$, there are unique harmonic conjugates v_1,\ldots,v_n of a function $u\in b^p_{1/2}$ such that $v_j\in b^p_{1/2}$ (see Theorem 6.1 of [6]). In this section, we show that there exist $L^{(\alpha)}$ -harmonic conjugates v_1,\ldots,v_n of a function $u\in b^p_\alpha$ such that $t^{\frac{1}{2\alpha}-1}v_j\in L^p(H,dV)$ whenever $p(\frac{1}{2\alpha}-1)>-1$.

A fundamental solution of the parabolic operator $L^{(\alpha)}$ plays an important role for studying parabolic Bergman spaces. We define the fundamental solution of $L^{(\alpha)}$. For $x \in \mathbb{R}^n$, let

(2.1)
$$W^{(\alpha)}(x,t) = \begin{cases} \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} \exp(-t|\xi|^{2\alpha} + i \ x \cdot \xi) \ d\xi & t > 0 \\ 0 & t \le 0, \end{cases}$$

where $x \cdot \xi$ denotes the inner product on \mathbb{R}^n and $|\xi| = (\xi \cdot \xi)^{1/2}$. The function $W^{(\alpha)}$ is the fundamental solution of $L^{(\alpha)}$ and $L^{(\alpha)}$ -harmonic on H. We describe some properties of $W^{(\alpha)}$. We note that $W^{(\alpha)}(x,t) \geq 0$ and

(2.2)
$$\int_{\mathbb{R}^n} W^{(\alpha)}(x-y,s)dy = 1$$

for all $x \in \mathbb{R}^n$ and s > 0. If $u \in b^p_{\alpha}$, then u satisfies the Huygens property, that is,

(2.3)
$$u(x,t) = \int_{\mathbb{R}^n} u(x-y,t-s)W^{(\alpha)}(y,s)dy$$

holds for all $x \in \mathbb{R}^n$ and $0 < s < t < \infty$ (see Theorem 4.1 of [4]). By (2.1), the fundamental solution $W^{(\alpha)}$ is in $C^{\infty}(H)$. Let $k \in \mathbb{N}_0$ and $\beta = (\beta_1, \dots, \beta_n) \in \mathbb{N}_0^n$ be a multi-index, where $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$. Then, we define $\partial_x^{\beta} \partial_t^k = \partial_{x_1}^{\beta_1} \dots \partial_{x_n}^{\beta_n} \partial_t^k = \partial^{|\beta|+k}/\partial x_1^{\beta_1} \dots \partial x_n^{\beta_n} \partial_t^k$. Clearly, we have

$$(2.4) \partial_x^{\beta} \partial_t^k W^{(\alpha)}(x-y,t+s) = (-1)^{|\beta|} \partial_y^{\beta} \partial_s^k W^{(\alpha)}(x-y,t+s)$$

for all $(x,t),(y,s)\in H$. The following estimate is (1) of Proposition 1 of [5]: there exists a constant C>0 such that

$$(2.5) |\partial_x^{\beta} \partial_t^k W^{(\alpha)}(x,t)| \le \frac{Ct^{-k+1}}{(t+|x|^{2\alpha})^{\frac{n+|\beta|}{2\alpha}+1}}.$$

The following lemma is an immediate consequence of Theorem 1 of [5].

LEMMA 2.1. Let $0 < \alpha \le 1$, $1 \le q < \infty$, $\theta \in \mathbb{R}$, $\beta \in \mathbb{N}_0^n$ be a multi-index, and $k \in \mathbb{N}$. If $\left(\frac{n+|\beta|}{2\alpha}+k\right)q-\left(\frac{n}{2\alpha}+1\right)>\theta>-1$, then there exists a constant C>0 such that

$$\int_{H} t^{\theta} |\partial_{x}^{\beta} \partial_{t}^{k} W^{(\alpha)}(x - y, t + s)|^{q} dV(x, t)$$

$$\leq C s^{\frac{n}{2\alpha} + 1 - (\frac{n + |\beta|}{2\alpha} + k)q + \theta}$$

for $all(y, s) \in H$.

Let $c_k = \frac{(-2)^k}{k!}$. The following lemma is Theorem 6.7 of [4].

Lemma 2.2. Let $0<\alpha\leq 1$ and $1\leq p<\infty.$ If $u\in b^p_\alpha$ and $(y,s)\in H$, then

$$u(y,s) = -2c_{m+j} \int_{H} \partial_t^m u(x,t) \ t^{m+j} \partial_t^{j+1} W^{(\alpha)}(x-y,t+s) dV(x,t)$$

for all $m, j \in \mathbb{N}_0$.

PROPOSITION 2.3. Let $0 < \alpha \le 1$ and $1 \le p < \infty$. If $\lambda = p(\frac{1}{2\alpha} - 1) > -1 - \frac{n}{2\alpha}$ and $u \in b^p_{\alpha}$, then there exist $L^{(\alpha)}$ -harmonic conjugates v_1, \ldots, v_n of u.

PROOF. For each $1 \le j \le n$, let v_j be a function on H defined by

$$(2.6) v_j(y,s) = 2c_1 \int_H u(x,t) t \partial_{x_j} \partial_t W^{(\alpha)}(x-y,t+s) dV(x,t).$$

Since $p(\frac{1}{2\alpha} - 1) > -1 - \frac{n}{2\alpha}$, Lemma 2.1 implies that

$$t\partial_{x_j}\partial_t W^{(\alpha)}(\cdot - y, \cdot + s) \in L^q(H, dV),$$

where q is the exponent conjugate to p. Hence, the function v_j is well defined for all $(y,s) \in H$ when $p(\frac{1}{2\alpha}-1) > -1 - \frac{n}{2\alpha}$. We show that

 v_1, \ldots, v_n are the $L^{(\alpha)}$ -harmonic conjugates of u. Since $W^{(\alpha)}$ is $L^{(\alpha)}$ -harmonic, so is v_i . Moreover, since (2.4) and Lemma 2.1 imply that

$$t\partial_{y_k}\partial_{x_j}\partial_t W^{(\alpha)}(\cdot - y, \cdot + s) \in L^q(H, dV)$$

for all $1 < q \le \infty$, we can differentiate through the integral (2.6) with respect to y_k . Therefore we obtain $\partial_{y_k} v_j = \partial_{y_j} v_k$. Similarly, Lemmas 2.1 and 2.2 imply that $\partial_s v_j = \partial_{y_j} u$.

Remark 2.4. We note that when $0<\alpha\leq\frac{1}{2}$, the assumption $\lambda=p(\frac{1}{2\alpha}-1)>-1-\frac{n}{2\alpha}$ of Proposition 2.3 always holds for all $1\leq p<\infty$.

We consider an integrability condition of the function v_j which is defined in (2.6).

THEOREM 2.5. Let $0 < \alpha \le 1$ and $1 \le p < \infty$. If $\lambda = p(\frac{1}{2\alpha} - 1) > -1$, then there exists a constant C > 0 such that

$$\parallel t^{\frac{1}{2\alpha}-1}v_j \parallel_p \leq C \parallel u \parallel_p$$

for all $u \in b^p_{\alpha}$ and $1 \leq j \leq n$, where v_j is defined in (2.6).

PROOF. Let $c = \frac{1}{2\alpha} - 1$. We suppose that p = 1 (we note that when p = 1, $\lambda > -1$ for all $0 < \alpha \le 1$). Then, (2.6) and the Fubini theorem imply that there exists a constant C > 0 such that

$$\begin{split} & \int_{H} |s^{c}v_{j}(y,s)|dV(y,s) \\ \leq & C \int_{H} |u(x,t)| \ t \int_{H} s^{c}|\partial_{x_{j}}\partial_{t}W^{(\alpha)}(x-y,t+s)|dV(y,s)dV(x,t). \end{split}$$

Therefore, Lemma 2.1 implies that $\|t^{\frac{1}{2\alpha}-1}v_j\|_1 \le C \|u\|_1$.

Suppose that p > 1, and let q be the exponent conjugate to p. Then, the Hölder inequality shows that there exists a constant C > 0 such that

$$\begin{split} &|v_j(y,s)|\\ &\leq &C\int_{H}|u(x,t)|\ t^{\frac{1}{pq}+\frac{1}{p}}\ t^{-\frac{1}{pq}+\frac{1}{q}}\\ &\quad \times |\partial_{x_j}\partial_t W^{(\alpha)}(x-y,t+s)|^{\frac{1}{p}+\frac{1}{q}}dV(x,t)\\ &\leq &C\left(\int_{H}|u(x,t)|^p t^{\frac{1}{q}+1}|\partial_{x_j}\partial_t W^{(\alpha)}(x-y,t+s)|dV(x,t)\right)^{\frac{1}{p}}\\ &\quad \times \left(\int_{H} t^{-\frac{1}{p}+1}|\partial_{x_j}\partial_t W^{(\alpha)}(x-y,t+s)|dV(x,t)\right)^{\frac{1}{q}}. \end{split}$$

Since $\lambda = p(\frac{1}{2\alpha} - 1) > -1$, Lemma 2.1 implies that

$$\int_{H} t^{-\frac{1}{p}+1} |\partial_{x_{j}} \partial_{t} W^{(\alpha)}(x-y,t+s)| dV(x,t) \leq C s^{-(\frac{1}{2\alpha} + \frac{1}{p} - 1)}.$$

Thus, by the Fubini theorem we have

$$\begin{split} &\int_{H} |s^{c}v_{j}(y,s)|^{p}dV(y,s) \\ &\leq &C\int_{H} |u(x,t)|^{p}t^{\frac{1}{q}+1} \\ &\times \int_{H} s^{cp-(\frac{1}{2\alpha}+\frac{1}{p}-1)\frac{p}{q}} |\partial_{x_{j}}\partial_{t}W^{(\alpha)}(x-y,t+s)|dV(y,s)dV(x,t). \end{split}$$

Lemma 2.1 also implies that

$$\int_{H} s^{cp-(\frac{1}{2\alpha}+\frac{1}{p}-1)\frac{p}{q}} |\partial_{x_{j}}\partial_{t}W^{(\alpha)}(x-y,t+s)| dV(y,s) \leq Ct^{-(\frac{1}{q}+1)}.$$

Therefore, we obtain $||t^{\frac{1}{2\alpha}-1}v_j||_p \le C ||u||_p$.

3. Weighted parabolic Bergman spaces

In Proposition 2.3 and Theorem 2.5, we prove that the function v_j which is defined in (2.6) is $L^{(\alpha)}$ -harmonic and in $L^p(H, t^{\lambda}dV)$, where $\lambda = p(\frac{1}{2\alpha} - 1)$. In order to study the $L^{(\alpha)}$ -harmonic conjugates, we define weighted parabolic Bergman spaces. For any $\lambda > -1$, the weighted parabolic Bergman space $b^p_{\alpha}(\lambda)$ is the set of all $L^{(\alpha)}$ -harmonic functions on H which belong to $L^p(H, t^{\lambda}dV)$. We note that any function $u \in L^p(H, t^{\lambda}dV)$ satisfies $u \cdot \tilde{L}^{(\alpha)}\varphi \in L^1(H, dV)$ for all $\varphi \in C_0^{\infty}(H)$. In fact, it is known that $u \cdot \tilde{L}^{(\alpha)}\varphi \in L^1(H, dV)$ for all $\varphi \in C_0^{\infty}(H)$ if and only if

$$\int_{t_1}^{t_2} \int_{\mathbb{R}^n} |u(x,t)| (1+|x|)^{-n-2\alpha} dV(x,t) < \infty$$

for all $t_2 > t_1 > 0$ (see Remark 2.2 of [4]). If $u \in L^p(H, t^{\lambda}dV)$ for some $1 \leq p < \infty$ and $\lambda > -1$, then elementary calculations show that $\int_{t_1}^{t_2} \int_{\mathbb{R}^n} |u(x,t)| (1+|x|)^{-n-2\alpha} dV(x,t) < \infty$ for all $t_2 > t_1 > 0$. Hence, $u \in L^p(H, t^{\lambda}dV)$ satisfies the integrability condition in the definition of $L^{(\alpha)}$ -harmonic functions.

We give some properties of the weighted parabolic Bergman spaces. When $\lambda = 0$, the following lemma is Theorem 4.1 of [4]. We claim that $u \in b_{\alpha}^{p}(\lambda)$ also satisfies the Huygens property.

Lemma 3.1. Let $0<\alpha\leq 1,\ 1\leq p<\infty$ and $\lambda>-1.$ If $u\in b^p_\alpha(\lambda),$ then

$$u(x,t) = \int_{\mathbb{D}^n} u(x-y,t-s)W^{(\alpha)}(y,s)dy$$

for all $x \in \mathbb{R}^n$ and $0 < s < t < \infty$.

PROOF. In the proof of Theorem 4.1 of [4], the Huygens property for $u \in b^p_\alpha$ derives from an $L^{(\alpha)}$ -harmonicity of u and a local integrability of a function $U(t) = \int_{\mathbb{R}^n} |u(x,t)|^p dx$ on $(0,\infty)$. If $u \in b^p_\alpha(\lambda)$, then it is easy to check that the function U(t) is also locally integrable on $(0,\infty)$. Therefore, u satisfies the Huygens property.

Remark 3.2. It was known that for $u \in b^p_{\alpha}$ the function $U(t) = \int_{\mathbb{R}^n} |u(x,t)|^p dx$ is decreasing on $(0,\infty)$ (see Lemma 5.6 of [4]). By Lemma 3.1 and the Minkowski inequality, for any $\lambda > -1$ the same result holds for $u \in b^p_{\alpha}(\lambda)$.

When $\lambda = 0$, the following lemma is Proposition 5.2 of [4].

LEMMA 3.3. Let $0 < \alpha \le 1$, $1 \le p < \infty$ and $\lambda > -1$. Then there exists a constant C > 0 such that

$$|u(x,t)| \leq C t^{-(\frac{n}{2\alpha} + \lambda + 1)\frac{1}{p}} \left(\int_{H} |u(y,s)|^{p} s^{\lambda} dV(y,s) \right)^{\frac{1}{p}}$$

for all $(x,t) \in H$ and $u \in b^p_{\alpha}(\lambda)$.

PROOF. Since the proof of Lemma 3.3 is analogous to that of Proposition 5.2 of [4], we describe the outline of the proof. For fixed $0 < a_1 < a_2 < 1$, Lemma 3.1 implies that

$$u(x,t) = \frac{1}{(a_2 - a_1)t} \int_{a_1 t}^{a_2 t} \int_{\mathbb{R}^n} u(y, t - s) W^{(\alpha)}(x - y, s) dy ds.$$

Then, using the Jensen inequality and (2.5), we have

$$\begin{aligned} &|u(x,t)|\\ &\leq &Ct^{-(\frac{n}{2\alpha}+1)\frac{1}{p}}\left(\int_{a_{1}t}^{a_{2}t}\int_{\mathbb{R}^{n}}|u(y,t-s)|^{p}dyds\right)^{\frac{1}{p}}\\ &= &Ct^{-(\frac{n}{2\alpha}+1)\frac{1}{p}}\left(\int_{a_{1}t}^{a_{2}t}(t-s)^{-\lambda}(t-s)^{\lambda}\int_{\mathbb{R}^{n}}|u(y,t-s)|^{p}dyds\right)^{\frac{1}{p}}\\ &\leq &Ct^{-(\frac{n}{2\alpha}+\lambda+1)\frac{1}{p}}\left(\int_{a_{1}t}^{a_{2}t}(t-s)^{\lambda}\int_{\mathbb{R}^{n}}|u(y,t-s)|^{p}dyds\right)^{\frac{1}{p}},\end{aligned}$$

because $(1 - a_2)t < t - s < (1 - a_1)t$ whenever $a_1t < s < a_2t$. Hence, we obtain

$$|u(x,t)| \leq C t^{-(\frac{n}{2\alpha} + \lambda + 1)\frac{1}{p}} \left(\int_0^\infty s^\lambda \int_{\mathbb{R}^n} |u(y,s)|^p dy ds \right)^{\frac{1}{p}}.$$

By Lemma 3.1, $u \in b^p_{\alpha}(\lambda)$ is in $C^{\infty}(H)$. Thus, as in the proof of Lemma 3.3, we have the following lemma, which is Theorem 5.4 of [4] when $\lambda = 0$.

LEMMA 3.4. Let $0 < \alpha \le 1$, $1 \le p < \infty$ and $\lambda > -1$. If $\beta \in \mathbb{N}_0^n$ is a multi-index and $k \in \mathbb{N}_0$, then there exists a constant C > 0 such that

$$|\partial_x^\beta \partial_t^k u(x,t)| \le C t^{-(\frac{|\beta|}{2\alpha} + k) - (\frac{n}{2\alpha} + \lambda + 1)\frac{1}{p}} \left(\int_H |u(y,s)|^p s^\lambda dV(y,s) \right)^{\frac{1}{p}}$$

for all $(x,t) \in H$ and $u \in b^p_{\alpha}(\lambda)$.

For $\delta > 0$ and a function u on H, we write $u_{\delta}(x,t) = u(x,t+\delta)$. We note that if $u \in b^p_{\alpha}(\lambda)$ then $u_{\delta} \in b^p_{\alpha}(\lambda)$ for all $\delta > 0$. In fact, if $u \in b^p_{\alpha}(\lambda)$, then

$$\int_{1}^{\infty} t^{\lambda} \int_{\mathbb{R}^{n}} |u(x, t + \delta)|^{p} dx dt$$

$$\leq C \int_{1}^{\infty} (t + \delta)^{\lambda} \int_{\mathbb{R}^{n}} |u(x, t + \delta)|^{p} dx dt$$

$$\leq C \int_{H} |u(x, t)|^{p} t^{\lambda} dV.$$

Moreover, Remark 3.2 implies that

$$\int_0^1 t^{\lambda} \int_{\mathbb{R}^n} |u(x,t+\delta)|^p dx dt \leq U(\delta) \int_0^1 t^{\lambda} dt < \infty.$$

Hence, we have $u_{\delta} \in b_{\alpha}^{p}(\lambda)$.

When $\lambda = 0$, the following lemma is Lemma 6.6 of [4].

Lemma 3.5. Let $0<\alpha\leq 1,\ 1\leq p<\infty$ and $\lambda>-1.$ If $u\in b^p_\alpha(\lambda)$ and $(y,s)\in H,$ then (3.1)

$$u_{\delta}(y,s) = -2c_{m+j} \int_{H} \partial_{t}^{m} u_{\delta}(x,t) \ t^{m+j} \partial_{t}^{j+1} W^{(\alpha)}(x-y,t+s) dV(x,t)$$

for all $m, j \in \mathbb{N}_0$ and $\delta > 0$.

PROOF. The proof of Lemma 3.5 is analogous to that of Lemma 6.6 of [4]. We only show that the integral (3.1) is well defined. By Lemma 3.4, there exist constants C > 0 and $0 < \varepsilon < 1$ such that

$$|\partial_t^m u_\delta(x,t)| \le C(t+\delta)^{-m-(\frac{n}{2\alpha}+\lambda+1)\frac{1}{p}} \le Ct^{-m-\varepsilon} \,\, \delta^{\varepsilon-(\frac{n}{2\alpha}+\lambda+1)\frac{1}{p}}.$$

Therefore, we have

$$|\partial_t^m u_{\delta}(x,t)t^{m+j}\partial_t^{j+1}W^{(\alpha)}(x-y,t+s)| \le Ct^{j-\varepsilon}|\partial_t^{j+1}W^{(\alpha)}(x-y,t+s)|.$$

Hence, Lemma 2.1 implies that
$$\partial_t^m u_\delta(x,t) t^{m+j} \partial_t^{j+1} W^{(\alpha)}(x-y,t+s) \in L^1(H,dV)$$
.

Theorem 3.6. Let $0<\alpha\leq 1,\ 1\leq p<\infty,\ and\ \lambda>-1.$ If $\gamma>-1$ and non-negative integers ℓ,m satisfy

$$(3.2) \gamma + (\ell - m)p > -1,$$

then there exists a constant C > 0 such that

(3.3)
$$\int_{H} t^{\gamma + (\ell - m)p} |\partial_{t}^{\ell} u_{\delta}|^{p} dV \leq C \int_{H} t^{\gamma} |\partial_{t}^{m} u_{\delta}|^{p} dV$$

for all $u \in b^p_{\alpha}(\lambda)$ and $\delta > 0$.

PROOF. Suppose that p > 1, and let q be the exponent conjugate to p. By (3.2), we can choose a constant $\eta > 0$ such that

$$(3.4) \gamma + (\ell - m)p - \frac{p}{q}\eta > -1$$

Moreover, let j be a non-negative integer such that

$$(3.5) \qquad \qquad -\eta + \ell + j > -1$$

and

(3.6)
$$\ell + j > \gamma + (\ell - m)p - \frac{p}{q}\eta.$$

Since, as in the proof of Lemma 3.5, there exist constants C>0 and $0<\varepsilon<1$ such that

$$\begin{aligned} &|\partial_t^m u_{\delta}(x,t)t^{m+j}\partial_t^{\ell+j+1}W^{(\alpha)}(x-y,t+s)|\\ &\leq &Ct^{j-\varepsilon}|\partial_t^{\ell+j+1}W^{(\alpha)}(x-y,t+s)|, \end{aligned}$$

Lemma 2.1 implies that

$$\partial_t^m u_\delta(x,t) t^{m+j} \partial_t^{\ell+j+1} W^{(\alpha)}(x-y,t+s) \in L^1(H,dV).$$

Therefore, by Lemma 3.5 we have (3.7)

$$\partial_s^{\ell} u_{\delta}(y,s) = -2c_{m+j} \int_H \partial_t^m u_{\delta}(x,t) t^{m+j} \partial_t^{\ell+j+1} W^{(\alpha)}(x-y,t+s) dV(x,t).$$

As in the proof of Theorem 2.5, the Hölder inequality implies that there exists a constant C>0 such that

$$\begin{split} &|\partial_s^\ell u_\delta(y,s)|^p\\ &\leq &C\left(\int_H t^{-\eta+\ell+j}|\partial_t^{\ell+j+1}W^{(\alpha)}(x-y,t+s)|dV(x,t)\right)^{\frac{p}{q}}\\ &\times &\int_H |\partial_t^m u_\delta(x,t)|^p t^{\frac{p(\eta+m-\ell)}{q}+m+j}|\partial_t^{\ell+j+1}W^{(\alpha)}(x-y,t+s)|dV(x,t). \end{split}$$

By (3.5), Lemma 2.1 and the Fubini theorem imply that

$$\int_{H} s^{\gamma+(\ell-m)p} |\partial_{s}^{\ell} u_{\delta}(y,s)|^{p} dV(y,s)$$

$$\leq C \int_{H} s^{\gamma+(\ell-m)p-\frac{p}{q}\eta} \int_{H} |\partial_{t}^{m} u_{\delta}(x,t)|^{p} t^{\frac{p(\eta+m-\ell)}{q}+m+j}$$

$$\times |\partial_{t}^{\ell+j+1} W^{(\alpha)}(x-y,t+s)| dV(x,t) dV(y,s)$$

$$= C \int_{H} |\partial_{t}^{m} u_{\delta}(x,t)|^{p} t^{\frac{p(\eta+m-\ell)}{q}+m+j}$$

$$\times \int_{H} s^{\gamma+(\ell-m)p-\frac{p}{q}\eta} |\partial_{t}^{\ell+j+1} W^{(\alpha)}(x-y,t+s)| dV(y,s) dV(x,t).$$

By (3.4) and (3.6), Lemma 2.1 also implies that

$$\int_{H} s^{\gamma + (\ell - m)p - \frac{p}{q}\eta} |\partial_{t}^{\ell + j + 1} W^{(\alpha)}(x - y, t + s)| dV(y, s)$$

$$\leq Ct^{\gamma + (\ell - m)p - \frac{p}{q}\eta - (\ell + j)}.$$

Hence, we obtain

$$\int_{H} s^{\gamma + (\ell - m)p} |\partial_{s}^{\ell} u_{\delta}(y, s)|^{p} dV(y, s) \leq C \int_{H} t^{\gamma} |\partial_{t}^{m} u_{\delta}(x, t)|^{p} dV(x, t).$$

We suppose that p = 1. Then, using (3.7) and the Fubini theorem, we have

$$\begin{split} &\int_{H} s^{\gamma+\ell-m} |\partial_{s}^{\ell} u_{\delta}(y,s)| dV(y,s) \\ &\leq &C \int_{H} |\partial_{t}^{m} u_{\delta}(x,t)| t^{m+j} \\ &\qquad \times \int_{H} s^{\gamma+\ell-m} |\partial_{t}^{\ell+j+1} W^{(\alpha)}(x-y,t+s)| dV(y,s) dV(x,t). \end{split}$$

Since we can choose a non-negative integer j such that $\gamma - m - j < 0$, Lemma 2.1 implies that

$$\int_{H} s^{\gamma+\ell-m} |\partial_{t}^{\ell+j+1} W^{(\alpha)}(x-y,t+s)| dV(y,s) \le Ct^{\gamma-m-j}.$$

Hence, we have the theorem.

For a function $u \in L^p(H, t^{\lambda} dV)$, define $||u||_{p,\lambda} = (\int_H |u|^p t^{\lambda} dV)^{1/p}$. We have the following inequalities.

COROLLARY 3.7. Let $0 < \alpha \le 1, \ 1 \le p < \infty, \ and \ \lambda > -1.$ Then, there exists a constant C > 0 such that

(3.8)
$$C^{-1} \parallel u_{\delta} \parallel_{p,\lambda} \leq \parallel t^{\ell} \partial_{t}^{\ell} u_{\delta} \parallel_{p,\lambda} \leq C \parallel u_{\delta} \parallel_{p,\lambda}$$

for all $u \in b^p_{\alpha}(\lambda)$, $\delta > 0$, and $\ell \in \mathbb{N}_0$.

4. Uniqueness of $L^{(\alpha)}$ -harmonic conjugates

In this section, we show that $L^{(\alpha)}$ -harmonic conjugates of $u \in b^p_{\alpha}$ are unique whenever $\lambda = p(\frac{1}{2\alpha} - 1) > -1$.

THEOREM 4.1. Let $0 < \alpha \le 1$ and $1 \le p < \infty$. If $\lambda = p(\frac{1}{2\alpha} - 1) > -1$ and $u \in b^p_{\alpha}$, then there exist unique $L^{(\alpha)}$ -harmonic conjugates v_1, \ldots, v_n of u on H such that $v_j \in b^p_{\alpha}(\lambda)$.

PROOF. By Proposition 2.3 and Theorem 2.5, it suffices to prove the uniqueness of $L^{(\alpha)}$ -harmonic conjugates of $u \in b^p_{\alpha}$ that belong to $b^p_{\alpha}(\lambda)$.

Suppose that u_1, \ldots, u_n are also $L^{(\alpha)}$ -harmonic conjugates of u such that $u_j \in b^p_{\alpha}(\lambda)$. Take arbitrary $\delta > 0$. Then by Corollary 3.7, there exists a constant C > 0 such that

By the hypothesis and the definition of $L^{(\alpha)}$ -harmonic conjugates, we have

$$\partial_t (v_j - u_j)_\delta = \partial_{x_j} u_\delta - \partial_{x_j} u_\delta \equiv 0.$$

Therefore, (4.1) and the continuity of $v_j - u_j$ imply that $v_j(x, t + \delta) = u_j(x, t + \delta)$ for all $(x, t) \in H$. Since $\delta > 0$ is arbitrary, we obtain $v_j = u_j$ as desired.

References

- [1] S. Axler, P. Bourdon and W. Ramey, Harmonic Function Theory, Springer-Verlag, New York, 1992.
- [2] C. Fefferman and E. Stein, H^p -Spaces of several variables, Acta Math., **129** (1972), 137–193.
- [3] J. Garnett, Bounded Analytic Functions, Academic Press, New York, 1981.
- [4] M. Nishio, K. Shimomura and N. Suzuki, α -Parabolic Bergman spaces, to appear in Osaka J. Math.
- [5] M. Nishio and M. Yamada, Carleson type measures on parabolic Bergman spaces, preprint.
- [6] W. Ramey and H. Yi, Harmonic Bergman functions on half-spaces, Trans. Amer. Math. Soc., 348 (1996), 633–660.
- [7] N. Watson, Parabolic Equations on an Infinite Strip, Marcel Dekker, New York, 1989.

Masahiro Yamada
Department of Mathematics
Faculty of Education
Gifu University
Yanagido 1-1, Gifu 501-1193, Japan
E-mail address: yamada33@cc.gifu-u.ac.jp