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Amoebas, convexity 
and the volume of integer polytopes 

Mikael Passare 

Abstract. 

To any given Laurent polynomial f on c: we associate two natu­
ral convex functions MJ and NJ on Rn. We compute the Hessian 
of MJ and obtain an explicit formula for the volume of the Newton 
polytope ~f. We also establish asymptotic formulas relating our con­
vex functions to coherent triangulations of ~ f and to the secondary 
polytope. 

Let A c zn be a finite set and consider a general Laurent polynomial 
f(z) = LaEA aa z<>, with complex coefficients and z E c:;. The Newton 
polytope At is defined as the convex hull of A (in Rn :J zn), or more 
accurately, as the convex hull of those a for which aa #- 0. The amoeba 
A f is defined to be the image of the zero set of f under the mapping 
Log: C!:--+ Rn given by (zl.···•zn) f-+ (loglzll, ... ,loglznl). In the 
sequel we use the notation lzJI = t3 and log lzJI = Xj· 

We are going to deal with the two functions 

Mt(x) = log(L laal e<a,x)) 
aEA 

and 

Nt(x) = ( l)n { log if(ex+iO)i dlh 1\ ···I\ dOn. 
271" 1[0,27r]" 

They are both convex functions in R n with the property that their 
gradient mappings map Rn to the Newton polytope At. More pre­
cisely, the mapping grad M f is a diffeomorphism R n --+ int A f, whereas 
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gradN1 maps Rn onto the closed polytope !:l.J with each connected 
component of R n \ A f being sent to one of the integer vectors D. f n zn, 
called the order of that connected component. (See [5] for more on this.) 

Introducing the corresponding Monge-Ampere measures 

HessMJ = Jac gradMJ and HessNf = Jac gradNJ, 

we conclude from general facts on convex functions, see [6], that these 
are both positive measures with total masses equal to Vol D. f. 

Let us order the set A as {a0,al, ... ,aN}, and consider, for any 
increasing multi-index J = {jo, ... , in} E {0, 1, ... , N}l+n, the square 
matrix AJ having the (1 + n)-vectors (1, aJk) as its columns. Observe 
that I det( AJ) I equals n! times the volume of the simplex a J with vertices 
in aJo, ... , aJ"'. We begin with an explicit computation. 

Proposition 1.1 The push-forward of the measure Hess M f under the 
mapping Exp: Rn ~ R+ defined by (x1, ... , Xn) f--+ (ex1 , ••• , exn ), is 
given by Lebesgue measure times a rational function h f / F 1 +n, with the 
polynomial h f explicitly given by 

' 
hj(t) = ~ det2 (AJ) laajo I t 0 j0 • • ·laajn I t<>in. 

L...tiJI=l+n 

Here the summation is over all increasing multi-indices J, and F is 

obtained from f by replacing each coefficient a0 by laal· 

Proof: The gradient of MJ equals the moment map (cf. [4], p.198) 

ad M ( ) l::aEA a laa I e(a,x) l::aEA a laa It<> 
gr fX = = 

l::aEA laal e(<>,x) l::aEA laal t<> ' 

which means that HessMJ(x) = det(82 MJ(x)j8xj 8xk) is equal to 

ll::aEA ajak laal t<> _ (l::aEA aj laal t<>) (l::aEA ak laal t<>) I 
l::aEA laal t<> (l::aEA laal t<>) 2 ' 

and if we introduce the abbreviation c0 = laal t<> we may re-write the 
above n x n-determinant as the following (1 + n) x (1 + n)-determinant: 

l::ca 2:: a1 Ca 2:: an Ca 

1 2:: al Ca 2:: a1a1 Ca l:a1an Ca 

(2:: ca)l+n 
(*) 

l:an C0 l:anal Ca l:anan C0 
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Now we consider the (1 + n) x (1 + N)-matrix 

B~ ( 

.;c;;o ~ vc;;N 

) o:~ytc;;O o:}~ o:f vc;;N 
... 
. . . 

o:~ytc;;O 0:~~ at;! vc;;N 

and make two observations. First, the determinant ( *) is equal to 
det(BBtr)/F(t)l+n. Second, the polynomial hJ is equal to the sum 
of the squares of all the maximal minors of B. The desired identity 
Hess M1 = h1 / pl+n therefore follows from the Cauchy-Binet formula, 
see [3], which says that the determinant of the product B Btr is indeed 
equal to the sum of the squares of the minors of B. 

We remark that h1 is the non-homogeneous toric Jacobian of the 
extended gradient (F, t 181F, ... , tnBnF), see [2] and Proposition 1.2 in 
[1], where a similar computation was carried out. Combining our Propo­
sition 1.1 with the fact that the total mass of Hess M f is equal to Vol Ll f, 
we obtain the following explicit, elementary, and apparently new formula 
for the volume of the Newton polytope. 

Theorem 1.2 The volume of the Newton polytope LlJ can be computed 
by means of the closed formula 

We knew a priori that this integral should converge, since the measure 

Hess M f has a finite mass, but the convergence now also follows from the 
obvious fact that the Newton polytope of hJ is contained in the interior 
of (1 + n) LlJ. 

Regarding the function N1 , we recall the following result from [5]. 
Remember that a polyhedral subdivision is a generalized triangulation 
whose elements are polyhedra (but not necessarily simplices). 

Theorem 1.3 The piecewise linear convex function maxa(Ca + (o:,x)), 
whereca+(o:, x) = NJ(x) in the component ofRn\AJ of order o:, defines 
a polyhedral subdivision of Rn whose (n- I)-skeleton is contained in 
A 1, while its Legendre transform similarly defines a dual polyhedral 
subdivision T f of Ll f. A vector o: is a vertex in T f if and only if 
R n \ A f has a component of order o:. 
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§2. 

In this section we shall study the asymptotic behaviour of Theorems 1.2 
and 1.3 as the coefficients aa tend to infinity. More precisely, we will 
set aa = >.sa for some fixed vector (sa) E RA and R 3 >. ----> oo. We 
recall from [4] that the so-called secondary polytope L:A c zA has the 
property that its vertices are in bijective correspondence with the co­
herent triangulations of ~ f, and that a triangulation is coherent if it 
can be defined by a convex (or concave) piecewise linear function (as in 
Theorem 1.3). 

For any vertex v of L:A, the normal cone Nv, which consists of all 
vectors (sa) E RA such that (s, v) = maxwE~A (s, w), has a non-empty 
interior. Any vector (sa) from int Nv, that is, such that (s, v) > (s, w) for 
all w E L:A with v -=1- w, can be used to produce the associated coherent 
triangulation Tv of ~ 1 in the following way. Let g s be the piecewise 
linear concave function on ~ f whose graph equals the upper boundary 
of the convex hull of the union of half lines {(a, y); a E A, y :::; sa}· 
Then Tv is obtained by projecting the linear pieces of the graph of 9s 
down to~!· Notice that -gs is the Legendre transform of the piecwise 
linear convex function maxa(sa +(a, x)) on Rn. 

The polynomial h f, and hence the whole volume formula in Theo­
rem 1.2, contains one term for each subsimplex u J with vertices in A. 
Asymptotically, it is only the terms corresponding to the disjoint sim­
plices of a coherent triangulation that survive, as shown by the following 
theorem. 

Theorem 2.1 Let v be a vertex of the secondary polytope L:A, and 
take a vector (sa) E RA in the interior of the normal cone Nv. Set 
the coefficients aa off equal to As". Then the term IJ(>.) in (**) 
corresponding to the multi-index J satisfies 

lim IJ(>..) = {VoluJ, 
>.-->oo 0, 

ifuJETv, 

otherwise. 

Proof: Recalling the formula for ht, we see that 
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If we perform the monomial substituion uk = A8 a 1 k t"'1 k / A8 a1o t"'10 , for 
k = 1, ... , n, we arrive at 

IJ(>.)= { [det(AJ)[du1/\···/\dun 
JR" (1 + U1 + · · · + Un + J()..))l+n' 

+ 

where J(>.) is a finite sum of fractional monomials )..ro u~1 • • • u~", with 
r E Ql+n and r0 =/=- 0. Now, it is not hard to verify that the simplex 
IJ J belongs to the triangulation Tv precisely if all the exponents r0 are 
negative. In this case the term J(>.) tends to zero, and since the integral 
of du 1 /\ · · · /\dun/(1 +u1 + · · · +un)l+n over the positive orthant is equal 
to 1/n!, we conclude that IJ(A)----+ [ det(AJ)[/n! as claimed. Otherwise, 
the denominator in the integrand goes to infinity, and the integral IJ(>.) 
tends to zero. 

The proof of the next result is essentially parallel to that of Theo­
rem 9 in [7] and will be omitted. 

Theorem 2.2 Let v be a vertex of the secondary polytope 'EA, and take 
a vector (sex) as in Theorem 2.1. Set the coefficients acx off equal to )..sa 

and denote the new polynomial by f >-. For large values of the parameter 
).. the polyhedral subdivision T t>' from Theorem 1.3 will then coincide 
with the coherent triangulation Tv. 

We end with a closer look at a one-dimensional case. 

Example 2.3 Consider a one-variable polynomial of the form f(t) 
1 + a1t + · · · + an-1tn- 1 + tn. For each m = 0, 1, ... , 2n- 2 the so-called 
Ostrogradski method for finding the rational part of a primitive function 
can be realized with the explicit formula 

J tm dt = _ Pm(t) J Qm(t) dt 
f(t) 2 f(t) + f(t) ' 

where the Pm and Qm are polynomials of degrees n- 1 and n- 2 re­
spectively. To be specific, one has Pm(t) = 2::~;:~ Am,ktk and Qm(t) = 
P:n(t)+ E~:;g Bm,ete, with the (2n-1) x (2n-1)-matrix (Bm,e, Am,k) be­
ing the inverse of the standard Sylvester matrix (see [4], p.405) whose de­
terminant equals the discriminant Dn of f. Now, if we collect terms in ht 

and write C 1 ht(t) = 2:;;::;g Cmtm, then it holds that Lm Am,kCm = 

(n-k)ak and Lm Bm,eCm = -(£+1)(n-£-1)ae+l· (Here ao =an= 1.) 
This implies in particular that if we replace the individual terms 

roo (j1 - Jo)2 ajoa}I tio+Jl-1 dt 

lo f(t) 2 
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in formula ( **) by their principal parts 

then they still sum to Vol~ f = n. In other words, the individual terms 
of ( ** ), which are not themselves rational functions of the coefficients 
a1, can be replaced by rational expressions so that the volume formula 
still holds true. Since these expressions all have the discriminant Dn 
as their denominator, this means we have in a canonical way associ­
ated polynomials (the numerators) with all subsimplices [j0 , j 1] so that 
their sum is equal to nDn. In fact, the linear form on the vector space 
(1, t, ... , t 2n- 2 ) given by 

coincides with the toric residue associated to the mapping (!, tf'). 
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