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On tensor categories attached to cells 
in affine Weyl groups II 

Roman Bezrukavnikov and Viktor Ostrik 

Abstract. 

We prove a weak version of Lusztig's Conjecture on explicit de­
scription of the asymptotic affine Heeke algebras in terms of convo­
lution algebras. 

§1. Introduction 

Let R be a root system. Let W be the corresponding affine Weyl 
group, and let W be an extended affine Weyl group. Let 1i (respectively 
H) be the corresponding Heeke algebras. George Lusztig defined an as­
ymptotic version of the Heeke algebra, the ring J, see [10]. By definition 
the ring J is a direct sum J = EBc Jc where summation is over the set 
of two-sided cells in the affine Weyl group. Further, G. Lusztig proved 
that the set of two-sided cells in W is bijective to the set of unipotent 
conjugacy classes in an algebraic group over C with root system R, see 
[10] IV. Moreover, he proposed a Conjecture describing rings Jc in terms 
of convolution algebras, see [10] IV, 10.5 (a), (b). This Conjecture was 
verified in many cases by Nanhua Xi, see [16, 17, 18]. In this note we 
give a more conceptual proof of all previously known results. Our proof 
also works in some new cases. In general, we prove a statement (see 
Theorem 4 below) which is weaker than Lusztig's Conjecture. 

The proof relies on many results of G.Lusztig in [10]. Our new 
essential tool is the theory of central sheaves on affine flag manifold due 
to A. Beilinson, D. Gaitsgory, R. Kottwitz, see [6]. One of us used this 
theory to prove a part of Lusztig's Conjecture, see [4]. 
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§2. Recollections 

2.1. Notations 

Let G be an algebraic reductive connected group over the field of 
l-adic numbers Q1• Let X denote the weight lattice of G and let R C X 
denote the root system of G. Let Wt denote the Weyl group of G and 
let W be the extended Weyl group, that is the semidirect product of 
W1 and X. Let l : W -+ Z be the length function. Let W C W be the 
affine Weyl group, that is subgroup generated by Wt and R C X. Let 
S = {s E Wjl(s) = 1} be the set of simple reflections. It is well known 
that pair (W, S) is a Coxeter system. 

It is well known that any right W1-coset in W contains unique 
shortest element. Let W f C W denote the subset of such representa­
tives, so the set wt is in natural bijection with W /Wt· 

Warning. The notations of this paper are different from the nota­
tions of [4], for example the group G is denoted by Lc in [4]. 

2.2. Affine Heeke algebra 

Let A= C[v, v-1]. The affine Heeke algebra if. is a free A-module 
with basis Hw(w E W) with an associative A-algebra structure defined 
by HwHw' = Hww' if l(ww') = l(w) + l(w') and (Hs + v- 1 )(Hs- v) = 0 
if s E S. The algebra if. is endowed with the Kazhdan-Lusztig basis 
Cw, w E W, see e.g. [10] IV 1.1. Let hx,y,z E A be the structure 
constants of if. with respect to this basis, that is 

CxCy = L hx,y,zCz. 
zEW 

We say that (left, right or two-sided) ideal I C i£ is KL-ideal if 
it admits an A-basis consisting of some elements Cx. For x, y E W 
we write x '5,L y (resp. x '5,n y, x '5,LR y) if left (resp. right, two­
sided) KL-ideal generated by x is contained in left (resp. right, two­
sided) KL-ideal generated by y, cf. [9]. The relations '5,£, '5,n, -::;,LR 
are preorders. Let"'£, "'R, "'LR be the associated equivalence relations. 
The corresponding equivalence classes are called left, right and two-sided 
cells, see Zoe. cit. Each two-sided cell is a union of left (resp. right) cells. 
The map w f--+ w- 1 induces a bijection of the set of left cells to the set 
of right cells. This map induces identity on the set of two-sided cells. 

A deep Theorem due to G. Lusztig (see [10] IV 4.8) states that the 
set of two-sided cells is bijective to the set of unipotent orbits in G. 
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2.3. Asymptotic Heeke algebra J 

There are well defined functions a : W ~ N, 'Y : W x W x W ~ N 
such that 

va(z) hx,y,z - 'Yx,y,z-1 E vZ[v] for all x, y, z E W 

and such that for any z E W there exist x, y E W with 'Yx,y,z =/:- 0. The 
function a is constant on two-sided cells, see [10] I 5.4. 

Let J be a free Z-module with basis tx, x E W. It has a unique 
structure of an associative Z-algebra such that txty = l:zEW 'Yx,y,ztz-1, 
see [10] II. It has a unit element l:tEV td where the summation is over 
the set 'D C W of distinguished involutions, see loc. cit. Each left (resp. 
right) cell contains exactly one element of 'D. For any two-sided cell c 
let Je C J be the Z-submodule generated by tx, x E c. The submodule 
Je is in fact a subalgebra; moreover Je · Je, = 0 for c =/:- c', see [10] II, 
hence J = ffie Je. 

We will use many times the following characterization of cells due 
to G. Lusztig: w "'L w' if and only if twtw,-1 =/:- 0, see [11] 3.1 (k). 

Algebras Je are examples of based algebras, that is algebras over Z 
endowed with a basis over Z such that the structure constants in this 
basis are nonnegative integers. Another example of a based algebra can 
be constructed as follows: let F be a reductive algebraic group acting on 
the finite set X; then the Grothendieck group KF(XxX) of the category 
of F -equivariant coherent sheaves on X x X is a based algebra with 
the basis given by classes of irreducible F-bundles and multiplication 
given by convolution, see [10] IV 10.2. 

Assume for a moment that group G is simply connected. For any 
two-sided cell c let Ue be the unipotent element in G corresponding to 
c under Lusztig's bijection [10] IV 4.8. Let Fe be the Levi factor of the 
centralizer Za(ue) of Ue in G. In [10] IV 10.5 G. Lusztig conjectured 
that there exists a finite set X endowed with an action of Fe such that 
the based algebras Je and KFc(XxX) are isomorphic as based algebras, 
that is the isomorphism respects bases. The aim of this note is to prove 
a weak form of this Conjecture; more precisely, we replace finite Fe-set 
by a somewhat more general object- finite Fe-set of centrally extended 
points, see below. 

2.4. 

We will need the following well known 

Lemma. Let r 1 and r 2 be two left cells lying in the same two-sided 
cell. Then the intersection f 1 n (f2)-1 is non empty. 
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Proof. Let w E r1 and w' E r21. By [11] 3.1 (1) w ""LR w' if 
and only if there exists y E W such that twtytw' f. 0. We see from the 
characterization of left cells above that w rv L y- 1 and y rv L w'-1 . Thus 
y-1 E r1 nr21. o 

§3. Affine flags 

3.1. Notations 

Let LQ be a split reductive algebraic group over Z which is Lang­
lands dual to G. To LQ one associates the following "loop objects" 
defined over Z: the (inifinite type) group schemes Kz of maps from a 
formal disc to Lc, and the Iwahori group lz of maps whose value at 
the origin lies in a fixed Borel; and ind-schemes Jlz (the affine flag 
variety), and C!Srz (the affine Grassmanian). For a field t we have 
K(£) = LQ(O), 1(£) =I, C!Sr(t) = LQ(F)/LG(O) and Jl(£) = LQ(F)/I 
where F = t((t)), 0 = t[[t]], and I C LG(O) is an Iwahori subgroup. 

We fix a field t which is either iF P or complex numbers; we change 
scalars from Z tot (and drop the subscript Z). By the (derived) category 
of sheaves we will mean either the (derived) category of l-adic sheaves, 
l f. char(£), or the (derived) category of constructible sheaves on the 
complex variety for t = C. We will denote Q1 by C in the first case. 

The orbits of I on Jl, C!Sr are finite dimensional and isomorphic 
to affine spaces; it is well known that orbits (called Schubert cells) are 
labelled by elements of W for Jl and W /Wt for C!Sr. For w E W (re­
spectively w E W /Wt) let Jlw, C!Srw be the corresponding Schubert 
cells. 

Let DI be the 1-equivariant derived category of sheaves on Jl, and 
let pi C DI be the full subcategory of perverse sheaves. The convolution 
product defines a functor * : DI x DI -+ DI; moreover, * is equipped 
with a natural associativity constraint (cf. e.g. [7], §1.1.2-1.1.3, or [3], 
§7.6.1, p. 260). 

Let iw : Jlw -+ Jl be the natural inclusion and let 

where Qz is the constant sheaf. Simple objects in pi are exhausted by 
Lw,W E W. 

Remark. Following the standard yoga one can consider the "graded" 
versions of D{,ix, P{,ix of DI, pi; here D{,ix, P{,ix are subcategories 
in the derived category of mixed l-adic sheaves if t is of finite charac­
teristic, and they are objects of the (derived) category of mixed Hodge 
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D-modules if t = C. The convolution on n:nix is defined. It provides 
n:nix with the structure of a monoidal category, and thus equips the 
Grothendieck group K(D:nix) with an algebra structure; this algebra is 
isomorphic to 7-£. 

We will not use this theory below; however, it underlies the relation 
between the categories considered in this note and affine Heeke alge­
bras. Also, since the set of representations of an affine Heeke algebra 
injects into the set of representations of the corresponding p-adic group 
LG (JF q ( ( t))), appearance of the Langlands dual group in the statements 
below is a manifestation of the geometric Langlands duality. 

Notice also that mixed sheaves are used in [4] (in the proof of The-
orem 2); the results of this note are based on those of [4]. 

3.2. Central sheaves 

Recall the following definition, see e.g. [4] 

Definition. Let A be a monoidal category, and B be a tensor {sym­
metric monoidal} category. A central functor from B to A is a monoidal 
functor F : B ---+ A together with a functorial isomorphism 

ax,Y : F(X) ® Y ~ Y ® F(X) 

fixed for all X E B, YEA subject to the following compatibilities: 
(i) For X, X' E B the isomorphism ax,F(X') coincides with the iso­

morphism induced by commutativity constraint in B. 
(ii) For Y1 , Y2 E A and X E B the composition 

F(X) ® Yi ® Y2 ux~id Y1 ® F(X) ® Y2 id~y2 Y1 ® 1'2 ® F(X) 

coincides with ax,Y1 ®Y2 • 

{iii) For YEA and X 1 ,X2 E B the composition 

id®ux y ux y®id 
F(X1®X2)®Y~F(X1)®F(X2)®Y ~· F.(Xl)®Y®F(X2) ~ 

Y ® F(Xl) ® F(X2) ~ Y ® F(X1 ® X2) 

coincides with ax1 ®X2 ,Y. 

Let Prar be the category of K- equivariant perverse sheaves on ~r. 
The convolution endows Prar with monoidal structure and this structure 
naturally extends to a structure of a commutative rigid tensor category 
with a fiber functor, and this category is equivalent to Rep( G), see [6, 14]; 
[3], §5.3, pp 199-215. We will identify Rep( G) with Prar· 

In [6] a functor Z : Rep( G) = Prar ---+ P 1 (~l) was constructed. It 
enjoys the following properties: 
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(i) We have a natural isomorphism of functors 71"* o Z ~ id, where 
7r : 'Jl ---> c!Sr is the projection. 

(ii) For FE Pl!)r, g E pi we have g * Z(F) E pi. 
(iii) Z is endowed with a natural structure of a central functor from 

the tensor category P1!3r to the monoidal category DI. 
(iv) A unipotent automorphism (monodromy) VJ1 of the tensor func­

tor z is given; centrality isomorphism from (iii) commutes with vn. 

3.3. Monoidal category Ac 
For a subset S C W let P£ denote the Serre subcategory of pi 

with simple objects Lw, w E S. Let W::;e = Ue'<LRe c' and W<e = 
Ue'< e c'. We abbreviate P~e = Pwl.. and P<; = Pw . Let PJ 

LR _ <c <c 

denote the Serre quotient category P~Jp~e. 
For any object X E DI and integer i let Hi(X) E pi denote i-th 

perverse cohomology. For any X, Y E PJlet us define truncated convo­
lution X •Y E PJ by X •Y = Ha(e) (X *Y) mod P~e· Let Me be the full 
subcategory of PJ consisting of semisimple objects. It follows from the 
Decomposition Theorem [2] that the functor • preserves category Me· 
The fact the convolution of pure perverse sheaves is pure implies (see 
[12], 2.6) that the Grothendieck group K(Me) with the multiplication 
induced by • is isomorphic to the algebra Je. In [12] a natural asso­
ciativity constraint was constructed for •. Let He = ffidEenV Ld E Me 
(recall that V is the set of distinguished involutions). It is clear that 
He • X ~ X • He ~ X for any X E Me· Thus a choice of an isomorphism 
He • He---> He defines a structure of a monoidal category on Me, see [12]. 
We will fix such a choice for the rest of this paper. 

Let Ae be the full subcategory of PJ consisting of all subquotients 
of Lw * Z(F) mod P~e where w E c and F E P1!3r· The following 
Proposition is proved in [4], Proposition 2. 

Proposition. Restriction of • to Ae takes values in Ae, is exact in 
each variable, and it equips Ae with a structure of a monoidal category 
with unit object He. 

It is clear from the definitions that Lusztig's category Me is a 
monoidal subcategory of Ac consisting of semisimple objects in Ac. 

3.4. Some results from [4] 

Let d E c be a Dufio involution. Let Ad C Ac be the full subcategory 
consisting of all subquotients of Ld * Z(F), FE Pl!3r· This category is 
endowed with a functor Resd : Rep( G) ---> Ad defined by Resd (F) = 
Ld * Z(F) mod P~e· The functor Resd has natural automorphism VJld 
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induced by the automorphism Wt of monodromy. The following Theorem 
is proved in [4] Theorems 1 and 2: 

Theorem. (a) The category Ad has a natural structure of a tensor 
category with unit object Ld, functor Resd has a natural structure of a 
tensor functor and Wtd is an automorphism of the tensor functor Resd. 

(b) Moreover, there exists a subgroup Hd C G, a unipotent element 
Nd E G commuting with Hd, an equivalence of tensor categories <I>d : 
Rep(Hd)--+ Ad, and a natural transformation of functors Res~d ~ <I>d o 

Resd which interwines the tensor automorphism Wtd with the action of 
Nd. The pair (Hd, Nd) is unique up to a simultaneous conjugacy. The 
element Nd is conjugate to Uc. 

It is proved in [13] that the intersection c n wt consists of a unique 
canonical left cell which we will denote r c (recall that wt is a set of 
shortest representatives of right W1-cosets in W). In particular, there 
exists a unique distinguished involution d = df E c n W f. We call df a 
canonical distinguished involution. 

Theorem. (see [4] Theorem 3) (a) The set of irreducible objects of 
Adt is{LwlwErcn(rc)-1 }. 

(b) The subgroup Hdt contains a maximal reductive subgroup of the 
centralizer Zc(uc)· 

3.5. Central action of Rep(Fc) 

Consider the functor F : Rep( G) = Pe'Jr --+ Ac defined by F(F) = 
Z(:F) *He mod P~c· It is easy to see from 3.2 that the functor F has 
a natural structure of a central functor. Moreover, this functor has a 
canonical tensor unipotent automorphism Wt (monodromy) commuting 
with the centrality isomorphism. 

Theorem 1. There exists a central functor F: Rep(Zc(uc)) --+ Ac 
such that F = F o Res~a(uc). Moreover, automorphism Wt is induced by 

the action of Uc on Res~a(uc). 

Proof. Let D(Ac) denote the Drinfeld double of the monoidal cat­
egory Ac, see e. g. [8]. By the universal property of double the functor 
F can be factorized as 

p 
Rep( G) ------- Ac 

~/ 
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where F0 is a braided functor. Recall that the unit object of V(A.,) 
is lie endowed with the centrality isomorphism induced by the unity 
isomorphisms: 

We remark that lie considered as an object of V(A.,) is irreducible: it 
is easy to see from Lemma 2.4 that any subobject of lie in A.: does not 
lie in the center of A.: even on the level of K -theory. Now consider 
the full subcategory iJ C V(A.,) consisting of all subquotients of objects 
Fo(X), X E Rep( G). Then the conditions of Proposition 1 (4) are sat­
isfied for the pair (V, F0 ). Consequently, the functor F0 factors through 
the restriction functor Res~ 

Rep(G) Po iJ 

~:/ 
Rep(H) 

for some subgroup H C G and the action of rot is given by some unipo­
tent element u E Za(H). Theorem 2 of (4) identifies u with Ue· Hence 
the subgroup His contained in Za(ue)· Without loss of generality we 
can assume that H = Za(ue)· We set the functor F to be equal to the 
composition 

Rep(Za(ue)) ~ iJ -t V(A.,) -t A.,. 

The Theorem is proved. 0 

Let us restrict F to the semisimple part of the category Rep(Za(ue)), 
that is to the category Rep( Fe) where Fe is the maximal reductive factor 
of Za(ue)· 

Proposition. For any X E Rep(Fe) the object F(X) E A.: is 
semisimple. 

Proof. We can assume that X is simple. Let Y E Rep( G) be an 
object such that X is a subquotient of Res~c (Y). The object F(Y) car­
ries the monodromy filtration; by Gabber's Theorem (see (1), Theorem 
5.1.2) it coincides with the weight filtration, so the associated graded 
object grF(Y) is semisimple by (2), 5.4.6. By the Theorem 1 we get the 
same filtration from the action of Ue on F(Res~a(u.c))· But the object X 

is a direct summand of gr Res~a(u.c)(Y) with respect to this filtration. 
0 

As a corollary we get 
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Theorem 2. The functor F restricts to a central functor F : 
Rep(Fc) ---t Me. 

§4. Canonical cell 

4.1. Module categories 
In this subsection we review basic theory of module categories. A 

more detailed exposition will appear in [15]. We will work over a fixed 
field k. 

Let C be an abelian monoidal category with biexact tensor product 
and with unit object 1. 

Definition. A module category M over C is an abelian category M 
endowed with 

1) An exact bifunctor ®: C x M---. M, 
2) Functorial associativity isomorphisms V ® (V' ®M) ~ (V ® V') ® 

M for any V, V' E C,M EM, 
3) Functorial unit isomorphisms l®M ---. M for any M E M subject 

to the usual pentagon and triangle axioms: the following diagrams where 
all arrows are associativity and unit isomorphisms commute: 

(V®l) ®M-----~ V® (1 ®M) 

~/ 
The notions of module functors, and, in particular, equivalences of 

module categories are defined in the obvious way. 

Remark. Module categories over general monoidal categories were 
considered by L. Crane and I. Frenkel, see [5]. The name comes from 
considering the notion of a monoidal category as categorification of the 
notion of a ring. Module categories seem to be of importance in Con­
formal Field Theory where they are implicitly considered in the context 
of Boundary Conformal Field Theory. 
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Of course the category C is a module category over itself with asso­
ciativity and unit isomorphisms induced by ones in tensor category C. 
Another example can be obtained as follows. Let A E C be an associa­
tive algebra with unit, that is associative multiplication A ® A -t A is 
defined and there is an inclusion 1 -t A satisfying unit axioms. Then 
category Modc(A) of right A-modules in the category C has an obvious 
structure of a module category. 

We will say that a module category M is generated by objects 
M1. M2 , .•. EM over C if any object of M is a subquotient of V ® Mi 
for some V E C. We will say that M is finitely generated over C if there 
exists finitely many (equivalently one) objects M1. ... E M such that 
M is generated by them over C. 

Assume from now on that the category C is rigid. Then there exists 
a canonical isomorphism H om(V ® M, N) ~ H om(M, V* ® N) for any 
VEC,M,NEM. 

Now assume that both categories C and M are semisimple. For any 
two objects M,N EM the functor C -t Veck, V f---+ Hom(V®M,N) is 
representable by an ind-object Hom(M, N) of C. By Yoneda's Lemma 
Hom is a bifunctor M 0 P x M -t ind-objects of C. 

Lemma. Assume that w : M -t C is an exact faithful tensor func­
tor. Then for any M, N E M Hom(M, N) E C. 

Proof~ It is clear that the map Hom(M, N) -t Hom(w(M),w(N)) 
is an imbedding. 0 

Assume that for any M, N E M the ind-object Hom(M, N) is an 
object of C. For any three objects M; N, K E M a functorial and associa­
tive multiplication Hom(N, K) ® Hom(M, N) -t Hom(M, K) is defined 
(note that the order of factors is opposite to the intuitive one). In partic­
ular, for any object ME C the object Hom(M, M) has a natural struc­
ture of an associative algebra in C. Assume that Hom(M, X) f= 0 for 
any X E M, that is the category M is generated by M over C. It is easy 
to see that the functor FM: M -t Modc(A), FM(X) = Hom(M,X) is 
a tensor functor. Moreover, we claim that this functor is an equivalence 
of categories. The proof is straightforward: first one shows that the 
functor FM induces an isomorphism on Hom's for objects of the form 
V ® M, V E C, and then one uses the fact that any object of M admits 
a resolution by objects of the form V ® M. Summarizing we get the 
following 

Proposition. Let C be a semisimple rigid monoidal category and 
let M be a semisimple module category over C. Assume that there ex­
ists an exact faithful module functor w : M -t C. Then the category 
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M is equivalent to the category Modc(A) for some associative algebra 
A. Moreover one can choose A = Hom(M, M) for any object M E C 
generating M over C. 

Let M = Modc(A) be a module category. Consider the category 
Fun(M, M) consisting of module functors M -+ M. It is clear that 
the category Fun(M, M) is a monoidal category with tensor product 
induced by the composition of functors and identity functor as unit 
object. One shows easily that the monoidal category Fun(M, M) is 
equivalent to the category of A - A bimodules in C with the obvious 
monoidal structure. 

4.2. Module categories over Rep(H) 

In this subsection we specialize ourselves to the case when C 
Rep(H) for some reductive group Hover an algebraically closed field k 
of characteristic zero. 

Examples. (i) Rep(H) with the associativity and unit isomor­
phisms induced from those in the monoidal category Rep( H) is of course 
a module category over Rep(H). 

(ii) More generally, let X be a variety endowed with an H -action. 
The category CohH(X) of coherent H -equivariant sheaves on X is a 
module category. We get example (i) by letting X =point. 

(iii) Let 1 -+ Gm -+ if -+ H -+ 1 be a central extension of H 
whose kernel is identified with the multiplicative group Gm (we will call 
such a data just "a central extension"); of course, such an extension is 
necessarily the pushforward if a central extension 1 -+ C -+ if' -+ H -+ 

1 under a homomorphism C -+ Gm for a finite cyclic group C. Then the 
category Rep1(H) of representations V of if such that Gm acts on V 
via identity character is a module category over Rep(H). We will also 
consider the category Rep-1(H) of representations of if on which Gm 

acts via character x ~----+ x- 1 . 

We will say that a module category C has a quasifiber functor if there 
exists a faithful exact module functor w : C-+ Rep(H). The quasifiber 
functor if it exists is not unique: for any V E Rep(H) and quasifiber 
functor w the functor M ~----+ w(M) ®Vis again a quasifiber functor. 

Example. (iv) Let H' C H be a subgroup of finite index. Let 
1 -+ Gm -+ H' -+ H' -+ 1 be a central extension. The category 
Rep1(H') is a module category over Rep(H) with the Rep(H)-action 
which factors through the restriction functor Rep(H) -+ Rep(H'). Let 
V0 E Rep- 1(H') be a fixed object. It is easy to see that the functor 
V ~----+ IndZ,(V ® Vo), V E Rep1(H') is a quasifiber functor (Gm acts 
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trivially on V ® V0 so V ® V0 can be considered as a representation of 
H'). 

Example (iv) reduces to the example (i) with X = H / H' if the 
central extension splits. 

Example. (iv') Finite sums of categories considered in Example 
(iv) admit the following invariant description. 

A finite H -set of centrally extended points is the following collection 
of data: 

(a) A finite set X with an H action; 
(b) For any x E X a central extension Gm - ii(x) - H(x) of 

the stabilizer H(x) = StabH(x). These should be equivariant under the 
action of H, i.e. for every g EGan isomorphism of i~ : ii(x)'~ii(gx) 
identical on Gm and covering the map 0 9 : H(x) - H(g(x)) (conjuga­
tion by x) should be given. i; should coincide with the conjugation by 

g when g E H(x) and should satisfy i;192 = i~~(o:) o i;2 • 

Let X be a finite set of centrally extended points. An equivariant 
sheaf on X is a sheaf :F of finite dimensional C-vector spaces on the 
underlying set X together with 

(a) a projective H-equivariant structure on :F. 
(b) For every x EX an action of ii(x) on the stalk :F.,, comprising 

an object of Rep1(ii(x)). 
The data (a) and (b) should be compatible, i.e. (b) should be H­

equivariant, and the projective action of H(x) arising from (b) must 
coincide with the one arising from (a). 

Equivariant sheaves on X obviously form a category, which we de­
note by CohH(X). 

Choosing a set of representatives Xi for H -orbits on X we see that 
the data of a centrally extended set with underlying equivariant set X 
is equivalent to a collection iii of central extensions Gm - iii - Hi = 
H(xi)· The category CohH(X) is then canonically equivalent to the 
direct sum tJJiRep1(iii)· 

Theorem 3. Let M be a semisimple module category over Rep( H) 
finitely generated over Rep(H). Assume that M admits a quasifiber 
functor. Then M is equivalent to CohH(X) for some centrally extended 
finite H -set X (i.e. to a finite direct sum of some categories of the type 
described in Example (iv) above). 

Proof. By Proposition 4.1 the module category M is equivalent 
to the module category M odRep(H) (A) for some finite dimensional H­
algebra A. 
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Lemma. Semisimplicity of M implies semisimplicity of A as an 
algebm in the category of vector spaces. 

Proof. Consider the regular representation Areg of A as an object 
of M odRep(H) (A). Let r(A) be the Jacobson radical of A. It is clear that 
r(A) isH-invariant, hence r(A) is subobject of Areg in ModRep(H)(A). 
Suppose Areg = r(A) EB A1 for some A1 E ModRep(H)(A). Applying 
the forgetful functor ModRep(H)(A)---+ Mod(A) to Areg we would get a 
complement to r(A), which is impossible unless r(A) = 0. D 

Now let A 3 1 = I: ei is the decomposition of 1 in the sum of 
minimal central orthogonal idempotents. The group H acts on the set 
{ei}· We may assume that this action is transitive. Let H 1 C H be the 
stabilizer of e~, the subgroup of finite index in H. The algebra e1Ae1 

is isomorphic to the matrix algebra and the group H1 acts on e1Ae1. 
We can choose a projective representation V of H 1 and an isomorphism 
e1Ae1 ~ End(V). It is clear that A~ Ind~t (e1Aei) = Ind~t End(V). 

The projective action of H 1 on V comes from an action of a central 
extension fh of H 1· Let us consider the corresponding category from 
example (iv) Rep1(H1). The representation V can be viewed as an object 
of this category and one easily calculates Hom(V, V) = Ind~1 End(V). 
The Theorem is proved. D 

4.3. Module category corresponding to the canonical cell 

For any subset S C c let Ms C Me denote the full Serre sub­
category with simple objects Lw, w E S. Let r c c be the canonical 
right cell, see [13]. Let Mr C Me be the corresponding subcategory. 
By the definition of a right cell we have Mr • Me C Mr. Define 
on Mr a structure of a module category over Rep(Fc) by the formula 
V ® M = F(V) • M where F is a functor from Theorem 2. Note 
that due to the centrality of functor F we have F(Rep(Fc)) e Mr = 
Mr • F(Rep(Fc)) C Mr so this is well defined. We claim that this 
category admits a quasifiber functor. Indeed, let {w1 , w2 , •.. } c r-1 

be a set of representatives of all right cells contained in c (such a set 
exists by the Lemma 2.4 and is finite since Lusztig proved (see [10] II 
2.2) that the number of cells in an affine Weyl group is finite). Consider 
the functor Mr ---+ Mrnr-t, X 1---t X • (EBLwJ· Recall that in [4] the 
monoidal category Mrnr-t was identified with Rep(Fc), see 3.4. It is 
a simple exercise to check that this functor is module functor with the 
module structure induced by the associativity isomorphism in Me, and 
it is clear that it is exact and faithful. So this is quasifiber functor, and 
we can apply Theorem 3. We get 
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Proposition. The category Mr as a module category over Rep(Fc) 
is equivalent to the category Cohpc(X) of coherent sheaves on a finite 
Fc-set X of possibly centrally extended points. 

Note that the inclusion Mrnr-1 C Mr gives us a distinguished 
point 0 E X which is just a usual (not centrally extended) point fixed 
by the Fc-action. 

§5. Square of a finite set 

5.1. Monoidal category FunpJX, X) 
Consider the category Funpc (X, X) consisting of all module func­

tors Cohpc (X) --+ Cohpc (X). It is a monoidal category with the tensor 
product induced by the composition of functors and unit object equal 
to the identity functor. Since the category CohpJX) is semisimple, any 
functor F E Funpc (X, X) has left and right adjoint functors F* and 
*F. Observe that adjoint of tensor functor has a natural structure of a 
module functor and hence F*, *FE FunpJX,X). Standard properties 
of adjoint functors show that F* and * F are right and left duals of F 
in the monoidal category Funpc (X, X). So the category Funpc (X, X) 
is rigid. 

Lemma. The category Funpc (X, X) is semisimple. 

Proof. Let us choose an Fc-algebra A and an equivalence 
Cohpc (X) --+ M odRep(Fc) (A). Then the category Funpc (X, X) is equiv­
alent to the category of A- A bimodules in Rep( Fe), or to the category 
of A 181 A0 P-modules in Rep( Fe) where Aop is A with the opposite mul­
tiplication. The latter category is clearly semisimple since A 181 A 0 P is a 
semisimple algebra. 0 

Note that in semisimple monoidal category left and right duals co­
incide, so in the future we will not distinguish left and right duals. 

Remark. For an H-set X it is easy to construct an equivalence 
FunH(X, X) ~ CohH(X x X). Let us spell out a generalization of this 
statement to centrally extended H -sets. 

Recall that for two central extensions 1 --+ Gm --+ iii --+ H --+ 1, 
i = 1, 2 their product is defined by fi12 = fi1 XH H2/Gm, where Gm 
is embedded antidiagonally; also for a central extension fi the opposite 
central extension H' is the same group with the same homomorphism 
to H but with the identification of its kernel with Gm replaced by the 
opposite one (composition of the original one with the map x f-+ x- 1 ). 

Now for two centrally extended H-sets X, Y one can define their 
product in the obvious manner: the underlying equivariant set is X x 
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Y, where X, Y are equivariant sets underlying X and Y; the central 
extension H(x, y) is the product of restrictions of H(x) and of H(y) 
to H(x, y). For a centrally extended H-set X we obtain the opposite 
centrally extended set X' replacing each of the central extensions Gm --+ 

fi ( x) --+ H ( x) by the opposite one. 
If X, Y, Z are centrally extended H -sets with underlying H -sets 

X, Y, Z, then for FE CohH(X x Y'), g E CohH(Y x Z) the sheaf F 181 
~®~®g on X x Y x Z carries a natural structure of an equivariant sheaf 
on X x Yo X Z (here Yo is Y equipped with the trivial (split) centrally 
extended structure). Thus the convolutionF*g = pr13*(F181~®~181Q) 
(where pr13 : X x Y x Z--+ X x Z is the projection) carries the structure 
of an equivariant sheaf on X x Z. In particular, for X = Y = Z we get 
a monoidal structure on CohH(X X X'); and for X = Y, and Z being 
the point with the split central extension we get a monoidal functor of 
CohH(X x X') --+ FunH(X). It is easy to see that this functor is an 
equivalence. 

5.2. Monoidal functor G 

We have amonoidalfunctor G: M~--+ Funpc(X,X), G(X) =?•X 
where M~P is Me with the opposite tensor product. It is clear that G 
is exact and faithful. 

The main result of this section is the following 

Theorem 4. The functor G is a tensor equivalence 

Corollary. Suppose that any subgroup of finite index in Fe has no 
nontrivial projective representations. Then Lusztig 's Conjecture holds 
for the cell c. 

5.3. A result of G. Lusztig 
The following result cited from [10] II Proposition 1.4 is cruicial for 

the proof of Theorem 4. 

Proposition. (a) Assume that Lx •Ly, x, y E c contains as a direct 
summand Ld, d E V. Then x = y-1 and the multiplicity of Ld in Lx • Ly 
is one. 

(b) For any x E c the truncated convolution Lx • Lx-1 contains Ld 
for a uniquely defined d E V n c. 

5.4. Proof of the Theorem 4. 
Since the category Funpc (X, X) is semisimple it is enough to prove 

the following statements: 
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{i) Any functor from Funpc (X, X) appears as a direct summand of 
G(L), L E M~P. 

{ii) For any w E c the functor G(Lw) is irreducible. 
(iii) For w, w' E can isomorphism G(Lw) = G(Lw') implies w = w'. 
5.4.1. We begin with the following 

Lemma. (a) For any w E r the functor G( Lw) is irreducible. More­
over G induces an equivalence Mr ~ {module functors Rep( Fe) ~ 
Mr}. 

{b) For any wE r-1 the functor G(Lw) is irreducible. Moreover, G 
induces an equivalence Mr-1 ---+ {module functors Mr ~ Rep( Fe)} . 

Proof. (a) It is clear that Lv • Lw = 0 for any wE r, v Er-r n 
r-1 . So the functor G ( Lw) can be considered as a functor Rep( Fe) = 
Mrnr-1 ~Mr. For any module category M over Rep(Fc) the map 
f f---+ /(1) defines an equivalence of categories FunRep(Fc)(Rep(Fc), M) 
~ M. In our case G(Lw)(l) = Ldf • Lw = Lw and (a) is proved. 

(b) Let us first check that for wE r-1 we have 

where G(Lw)* is the functor adjoint to G(Lw)· 
For w E r-1 the functor G(Lw) maps Mr to Mrnr-1 = Rep( Fe) c 

Mr. Thus G(Lw)* sends Lv to zero unless v E r n r-1; hence part 
(a) of the Lemma implies that G(Lw)* is isomorphic to G(L) for some 
L E Mr. To see that L ~ Lw-1 it is enough to check that for v E r 
the space Hom((G(Lv), G(Lw)*)) is one dimensional if v = w-1 , and 
is zero otherwise. We have Hom((G(Lv), G(Lw)*)) = Hom(G(Lw) o 
G(Lv), IdMr)· Notice that G(Lw)oG(Lv) preserves the direct summand 
Mrnr-1 C Mr and is zero on its complement. It follows that 

Hom(G(Lw)oG(Lv), IdMr) = Hom(G(Lw)oG(Lv)IMrnr-1, JdMrnr-1). 

Since Mrnr-1 ~ Rep( Fe) by 3.4, and the category of module functors 
from Rep(H) to Rep(H) (considered as the free module over itself) is 
equivalent to Rep(H), we see that 

Hom(G(Lw) o G(Lv), IdMrnr-J = HomMrnr-t (Lw • Lv, Ldf ), 

thus ( *) follows from Proposition 5.3. 
Irreducibility of G(Lw) follows from (*) and part (a), because the 

dual object of an irreducible object (in the category of functors) is irre­
ducible. It remains to check that any module functor cjJ : Mr ~ Rep( Fe) 
is isomorphic to the one coming from some L E M r-1. Consider cjJ 

as an endofunctor Mr (i.e. take its composition with the imbedding 
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Rep(Fc) = Mrnr-1 <---+ Mr); then by (a) the adjoint functor¢* is iso­
morphic to G(L) for L E Mr, so this statement also follows from(*)· 

0 
We can now prove {i). 

Corollary. Any irreducible functor from Fun Rep( Fe) (X, X) appears 
as a direct summand of G(Lw' • Lw), wE r, w' E r-1 . 

Proof. We need to prove that any irreducible functor 

is a direct summand of a composite functor Cohpc (X) --t Rep( Fe) --t 

Cohpc (X). For this we choose any functor g : Cohpc (X) --t Rep( Fe) 
such that the composition go f is nonzero. Let g* be the adjoint functor 
to g. Then f is evidently a direct summand of (g* o g) of which admits 
the required factorisation g* o (g o f). 0 

5.4.2. Lemma. For any w E c- V we have Hom( G(Lw), id) = 0. 

Proof. We note that Lw as an object of Me is a direct summand 
of L,. • Lv where u E r-1 and v E r {this follows easily for the example 
from Theorem 1.8 in [10] II). Assume that Hom(G(Lw), id) =F 0 and 
hence Hom(G(L,. • Lv),id) =F 0. Then we get a nonzero transforma­
tion G(L,.) --t G(Lv)*; since both functors are irreducible by Lemma 
5.4.1 they are actually isomorphic. On the other hand, Proposition 5.3 
provides a non-zero transformation G(L,.) o G{£:;;1) --t I d, which also 
yields an isomorphism G(L,.)* ~ G(L,.-1). Thus G(L,.-1) ~ G(Lv), 
and by Lemma 5.4.1 this yields L,.-1 ~ Lv, so v = u-1 . Further­
more, dimHom(G(L,. • Lv),id) = dimHom(G(Lv),G(L,.)*) = 1; and 
by Proposition 5.3 the object L,. • Lv contains Ld for a uniquely defined 
dE V. Since Hom(G(Ld),id) =F 0 we have that Hom(Lw,id) = 0 if 
w =F d. The Lemma is proved. 0 

Now we can prove (ii) 

Corollary. For any wE c the functor G(Lw) is irreducible. 

Proof. Consider the adjoint functor G(Lw)*. By Lemma 5.4.1 any 
summand of G(Lw)* appears as a direct summand of G(Lw' ). For such 
w' wehave a non-zero transformation G(Lw') oG(Lw) = G(Lw•Lw') --t 

Id, and by Lemma 5.4.2 and Proposition 5.3 this is possible only when 
w' = w-1. If G(Lw) is reducible this implies that dimHom(G(Lw) o 
G(Lw-1),id) > 1. On the other hand dimHom(G(Lw) oG(Lw-l),id) = 
dimHom(G(Lw-1 • Lw),id) = 1 by Proposition 5.3 and Lemma 5.4.2, 
and we get a contradiction. 0 
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5.4.3. We can now prove (iii). Assume that G(Lw) = G(Lw' ). 
Then G(Lw) o G(Lw-l) = G(Lw') o G(Lw-l). Since Hom(G(Lw) o 
G(Lw-l),id) f. 0 we have that Hom(G(Lw') o G(Lw-l),id) f. 0 and 
by the Proposition 5.3 w' = (w- 1)-1 = w. 

Since we proved (i) (ii) and (iii) the Theorem 4 is proved. D 

5.5. Examples 

The Corollary 5.2 can be applied in the following cases: 
(a) Let G be a simply connected group and let c be the lowest cell. 

In this case Ue = e E G and Fe = G. In this case Corollary 5.2 is a 
result of [16]. 

(b) Let G = G Ln. In this case all groups Fe are connected and 
have no nontrivial projective representations (these groups are products 
of various GLm)· In this case we get a result of [18]. 

(c) Let G be a simply connected group of rank 2. In this case one 
easily verifies that the condition of Corollary 5.2 is satisfied and we get 
a result of [17]. 

(d) Let G be a simple simply connected group. Let c be the sub­
regular cell, that is the cell corresponding to the subregular nilpotent 
orbit. Again one easily verifies that the condition of Corollary 5.2 is 
satisfied except if G is of type Cn. In the latter case Fe = Z/2Z x Z/2Z 
where one of the factors comes from the center of G. One can exlude 
centrally extended points in this case by considering a reductive group 
G1 = G x T / ( z, -1) where T is the one dimensional torus, z E G is the 
unique nontrivial central element and -1 E T is the unique nontrivial 
involutive element. So we get another result of [17]. 

Finally note that centrally extended points naturally appear in the 
description of truncated convolution categories for simple non simply­
connected groups, see in [18] 8.3 example with G = PSL2 • 
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