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Abstract.

We consider the fluctuation of the phase boundary separating
two phases of the Widom-Rowlinson model in the plane square lat-
tice. The phase boundary is conditioned to have specified values of
the area underneath and the height difference of two end points. Do-
brushin and Hryniv studied the phase boundary of the Solid-on-Solid
model [DH1] and of the Ising model [DH2], and obtained the central
limit theorem for the fluctuation of the phase boundary from the
‘Wulff profile. The phase boundary of the Ising model is well approxi-
mated by that of the Solid-on-Solid model with the aid of the cluster
expansion. Their argument seems to be applicable to the general
models which have polymer representation. We apply their theory to
the Widom-Rowlinson model.

§1. Introduction

Let Z2 be the square lattice and let Ar m be the rectangle [1,L —
1] x [-M, M] in Z2. We consider a system of particles in A, 5. These
particles are of two types, either A or B. There is strong repulsive inter-
action between particles of different types. Namely, a B particle can not
occupy a site within distance v/2 from a site where an A particle sits,
and vice versa.

A configuration w is a function from Ay ar to {—1,0,+1}. w(z) =
+1 denotes that the site z is occupied by an A particle, w(z) = —1
denotes that z is occupied by a B particle and w(z) = 0 denotes that
there is no particle at . We say that a configuration w is feasible if
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w(z)w(y) > 0 for all pairs z,y with |z — y| < v/2, where | - | denotes the
Euclidean distance.

Let Qs denote the set of all feasible configurations in Az . The
Hamiltonian of our system is a function on Qf s given by

(1.1) Hw) = Y p(l-wx?)

z€EAL M

for every w € Qr p. Here, 1 denotes the chemical potential.
Let h > 0 be fixed and assume that M > Lh. Then we can put the
following boundary condition:

+1, if 22 > [hz!],
’flh(w) = 0, if 22 = l—hml],
—1, otherwise,

for every z = (z!,22) € AL = [0,L] x [-M — 1, M + 1]\ Ap, m. Let
Q’If’ s denote the set of all configurations w in Qf, as such that won is
feasible, where wo 7 is given by

) { w(ac), ifx e AL,M;

won(@) =\ ), ifze oAy

The conditional Gibbs distribution on Q’Iﬁ’ ap With the boundary condi-
tion n” is given by

(1.2) PP a(w) = (28 ar) " exp{—p|S° ()]},

where S%(w) is the set of points in Af ps such that w takes 0 value, |S|
denotes the cardinality of a set S, and Z f, u is the normalizing constant,
which we call the partition function.

For a feasible configuration w, we call a connected component of
S%(w) a contour. Among contours we can find a unique contour which
connects (0,0) with (L, [hL]). We call this the separating contour with
the starting point (0,0) and the end point (L, [hL]), and denote it by
['(w). Let S} 5, denote the collection

{T(w);w € 0} 5 is feasible}.
The aim of this paper is to investigate the fluctuation of the separating

contour via Dobrushin-Hryniv theory.

the backbone
We say that a set C C Z? is xconnected if for every =,y € C, there
exist a sequence zg = , 21, . . . , Zm = ¥ in C such that |z;—z;_1| < v/2 for
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every 1 <4 < n. A hole of a connected set C C Z? is a finite *connected
component of C° = Z? \ C. Let C1,Cs,...,C, be connected subsets of
Ap m. We say that contours {C;} are compatible if they are connected
components of the set Ui<;j<nC;. We also say that {C;} are compatible
with a connected set D if {D,C;} are compatible for every j. Then the
partition function Z ’L‘7 au can be rewritten as

Zrm= >, > 2"Dexp{- M|F|}H (2N©9) exp{—ulC;|}),

rest ,, {C;}

where the second summation is taken over compatible families {C;},
which are compatible with T', |T'| is the number of points in I" and N(C)
is the number of holes in C. Therefore, we can find ug sufficiently large
so that we have a cluster expansion (see [KP])

(1.3) Ziwm= Y, exp{—pl[+NT)n2+ Y &A)}
TESE Ai\ALf‘M

for p > pg, where A ¢T" denotes that A is compatible with I'. Moreover,
the function ®(A) satisfies the estimate

(1.4) D 1B(A)|elrrIN <,

A0

and ®(A) = 0 unless A is connected. Let

ZEy=em{ ) (M)}

ACAL M

Dividing both sides of (1.3) by Z7 ,,, we have

ZZ M
LM résk ACAL M
1]

where A ¢ I denotes that A is incompatible with I'. We use the summand
in the right hand side of (1.5) as a statistical weight of the separating
contour I'. Let "' € S 2 M- We extract a self-avoiding path from I' in the
following way.

First we define an order of preference among four directions;

up > down> right > left.

This order naturally defines an order among self-avoiding paths con-
necting (0, 0) with (L, [hL]). To be more precise, let # = {x1,z2,... ,2,}
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and ™ = {y1,y2,...,Yx} be two self-avoiding paths connecting (0, 0)
with (L, [hL]). Let jo be the first number j such that z; # y;. We
define that = > 7’ if the direction of the ordered edge {z;,—1,z;j,} is
preferred to the direction of the ordered edge {y;,—1,¥;,}. Now, let

Iy := {7 : self-avoiding path in T connecting (0,0) with (L, [hL])}.

Let #(I'} be the unique maximal element of IIr with respect to this
order. We call 7(I") the backbone of T". This backbone will play the role
of the phase separation line of the 2D Ising model.

ForT € SZM, (') separates [0,L] X [-M — 1, M + 1] into two
xconnected components. One is above 7(I") and the other is below #(T").
Let o~ (m(T")) and a*(n(T")) be the number of points in Z2* N [0, L] x
[-M — 1, M + 1], which are below 7(I') and above 7(I'), respectively.
Here, Z%" = Z% + (3,1). The area a(r(I')) is defined by

(1.6) a(r(T)) :=a~ (x(T)) — at(x(T)).

This value is independent of M if M is sufficiently large.

free energy
If p is sufficiently large, (1.5) has a limit as M — oo:

Zh
(1.7)  lim ‘Z“i’—M: > exp{ —pT[+ N)In2— > &(A)y,
- 00 LM FESE ACAL o

Al

where SF := UM>082,M, Apoo:=[1,L —1] x (—00,00) N Z2.
Let W(I') be the weight in the right hand side of (1.7);

W(T) :=expq —uT| + N(T)In2— > ®(A)
ACAL,cc
Al
forT € UheRSQ = §;. For I € 8, we denote by A(I') = (0,0) and
B(T') = (L, k(T")) the starting point and endpoint of I, respectively.
For ( € C, we define

1
(1.8) o(¢) = ngr;ozln Z eHFDW(T).
resg

if the limit exists. This is the free energy of the height of the last point
of I'. For I" € Sy, we define {X(t); t € [0,1]} = {X.(&;T); t € [0,1]}
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by

{ Xp (%) = max{k € Z; (j,k) € 7(I)}, '
Xp(t) =@+1-L)yXp (£) + (Lt —5)Xp (F2) (G<Lt<j+1)

Let Pr, be the probability measure on Sy defined by

(1.9) PL(T) = [ > W(I")] w(D).

I’'eSp

Theorem There exists p; > po such that for p > pq, (1.9) is well

defined on Sy, and the followings hold.

Assume that for h > 0 and a > % there exist a 6 > 0 and a pair

(¢o,¢1) € R? with max{|{p + (1], |G|} < 1— % such that

1 1
L[ Veoeptaali =)+ )iz = (a,h)

Then the process

Vi) = = {0 - £ [ (et - )+ e

under Pp(- | a(w(T)) = [aL?],k(T) = [RL]) converges

Y-+ / VoG =2+ &)dB(x)

conditioned that L
/ Y(®)dt =0, Y(1)=0.
0

Here, {B(t)},-, is the one dimensional standard Brownian motion.

Remark Although X (t) is defined by the backbone 7(T'), the width
(in the z? direction) of the separating contour I is negligible and, hence,
the limiting process Y (t) depends only on I'. So, the choice of the
backbone is for technical reasons only.

The proof of the theorem goes along the line of [DH1,2], and we
regard our model as a perturbation of Solid-on-Solid(SOS) model. This
SOS model corresponds to the ensemble of (site) self avoiding paths in
[0, L] X Z starting from (0,0) and ending at a site in {z! = L}, which
do not go back in the horizontal direction. Let us call such a path an
SOS path. There are no {A,}’s for the SOS model.
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An SOS path will be cut into simple polymers. A simple poly-
mer is obtained from intersection of an SOS path with a vertical line
{z! = j} for some 1 < j < L, shifted so that its starting point is at
height zero. So, it has a form {(4,0), (5,1),...,(J, k)} for some k > 0 or
{(,0), (4,-1),..., (4, k)} for some k < 0.

Let
Q) = Z eHSR(&) —plé]

g:simple polymer
starting from (0,0)

where k(£) and || are the height of the endopoint of £ and number of
sites in &, respectively. Then

> etCh(DW(T) = Q(O)".

I:SOS path in [0,L]XZ

We would like to show that
QE)E Y e W (1)

TresSt

has a form;

(1.10) > I1xa@)

Iy,....IrClO,L]; j=1
disjoint intervals
which admits a cluster expansion, and is equal to e” ¢2(€) for some func-
tion ¢y, analytic in {. Further, we need that the second derivative in ¢ of
@1, is sufficiently small in absolute value compared to the second deriva-~
tive (in ¢) of In @ in order to show the non-degeneracy of the covariance
of the limit process Y (¢).

These two points, i.e., a) existence and analyticity of the free energy
and b) non-degeneracy of the limiting covariance are to be checked de-
pending on our model. Remaining arguments are the same as in [DH1,2],
and we present them for the sake of completeness.

Finally, recent progress of understanding the fluctuation of interfaces
provides us a beautiful and systematic approach using the renewal theory
([ Toffe ], [KH] ). For our problem, it seems also possible to follow this
new line. However, what we have to check are the same, and at this
stage we are not able to present our result in a compact form following
this general approach.

Acknowledgement. The authors thank D.Ioffe for many valuable com-
ments and stimulating discussions. He pointed out that this approach
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is possible for the continuum Widom-Rowlinson model, which should be
true, but we have not completed the whole story, yet.

§2. Local limit theorem

We will first show the existence of the limit (1.8) and its analyticity.
Let T € Sg, A(T') = (0,0), B(T') = (L, k(I")) be its starting and ending
points. Let 7(I") be the backbone of I" connecting A(T") with B(T"). We
decompose I' \ w(T") into connected components {C; };=1' As in [DH2]
we expand

n

I S SR SR | (S R

ACAY, o n=0 A1, AnCAL o v=1
Al Ay il
Then
21) ) eHOw(r)
resp
[o ]
k=—00 =;(0,0)—(L,k) cl,..A ,Csicompatible Ay, Ay
self—avoiding Cyim, Cpynn=0 Aqisconnected
ﬂ'CAL,oo m;backbone of TUC1U...UCg Aq imUC1U...UCs
t
eMCke—ulﬂ'l'HV("f,C& 1o sCs)In2—p 2.‘1:1 ICul H (e_Q(Au) — 1)7
a=1
where N(m,Cy,...,Cs) denotes the number of holes of T UUS_,C,,.
polymers

Defining polymers is to cut the separating contour I' into elementary
pieces according to the additional information of {A,}. A simplest way
to do it would be to cut «y at lines {z' = £+ 3} of dual lattice such that
they intersect only one edge of I' and intersection with edges of A,’s
is empty. But the resulting pieces, say polymers, do interact. Even a
“simple polymer” can interact with some polymers.

For example, a part of I like Fig 1 will be separated into two parts:
one having C shape and one point to the right of it. If instead of one
point, there comes a simple polymer of height three to the right of ,
then they are put together and there is no natural way to cut them (Fig.
2).

Thus, in a natural way of cutting procedure, I' will be cut into
interacting polymers. This causes us to introduce a polymer chain below,
working with which we can use usual cluster expansion. The idea is to
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Fig. 2

treat a cluster of polymers interacting each other possibly through simple
polymers which are at neiboring sites of such ‘active’ polymers.

Let [ < # be positive integers. A polymer ¢ with base [Z, 7] is a
collection ¢ = (v,C4,...,Cs, A1, ..., Ay) such that

(a) v is a self-avoiding path in {I < z! < #} starting from (I,0) and
ending at a point (7, k) in {z! = 7#}. Here, we understand ~ as
an edge set.

(b) {C.,};_, is a compatible family of connected subsets of {z €
AL oo; [ < #! < #} such that
(b-1) C, NV (y) =0, where V(v) is the set of vertices in 7.
(b-2) C, UV (v) is connected.

(b-3) ~ is the backbone of vy U C; U ... U C; with starting point
(1,0) and endpoint (7, k).

(c) {Aa},_, is a collection of connected subsets of {z € AL oo;l <
z! < 7} such that
AyiV(y)uug

v=1

Cy,.

Besides these conditions, we need a technical condition for a polymer.
This condition is to subtract ‘simple polymers’ from the phase separating
contour I' as much as possible.

An edge e is called an edge of £ if

e €yUE(US_1C, UUL_ 1 AL) UE(y,Us_1C, UUL_1Ay),

where £(US_,;C, U U! _;A,) is the set of nearest neighbor edges in
Us_1C, UUL_ Ay, and E(v,Us_,C, UUE_1A,) is the set of edges that
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connect v with US_;C, UUL_;A,. An edge e = {z,y} of £ is not ad-
missible if it is a horizontal edge in £(vy,US_;C, UUL_;A,), such that
(1) The left vertex z is in a connected component D of Us_,C, U
Ut _, A, and the right vertex y is in V(),
(2) further, there exists a horizontal edge ¢’ = {z’, ¥’} of £ such that
' € V(y) and y’ € D, where 2’ is the left vertex of ¢'.
Other edges of £ are admissible. Also, we identify an edge {z,y} of
Z? with the line segment connecting = and y. Now we introduce the
remaining condition (d) for a polymer &.
(d) If i < #, then for [ < j < #, j € N, the line ¢; = {z! = j + 1}
intersects at least two admissible edges of £.

We call v the backbone of £. For two disjoint self-avoiding paths 1,72
such that the starting point of 5 is nearest neighbor of the endpoint
of 71, we can define the concatenation 7; o v of these paths by simply
connecting them.

Let ¢ = (7,C1,... ,CuyAq, ... Ay and & = (+/,C1,... ,Cl, AL, ...
,A") be two polymers with bases [I,#] and [I",#] (I < I"), respectively.
We say that £ and & are compatible if either of the following conditions
holds;

1 F+1<l,
(2) I’ = # + 1, the backbone of

[ = AUCLU. . .UC U +(0, k(7))U(CL4(0, k(7). . .U(CL+(0, k(7))

is the concatenation v o (7' + (0, k(7))), and connected compo-
nents of the set T'\ v o (v + (0,k(v))) are {Cy,...,Cy,C} +
0,k(v)),...,Cl +(0,k(7))}. Here, k() is the hight of the end-
point of .

The family {Ep};lié is compatible if £, and &y (p # p’) are compatible.

Let 7 be a self-avoiding path in Ay, o, connecting (0,0) with (L, k(w)),
{C’,,}i:1 be a compatible family of connected subsets of A, o, such that
(1) Cyimand C,N7m =90,
(2) = is the backbone of V(7)) UUS_;C,,.
Let also {Aa}flz1 be a collection of connected subsets of Ay o, such that
AgimUUS_,C, for each . We say that the line ¢; = {z* = j + %}
(0 < j < L—1)is a cutting line of (m,{Cy}’_,{Aa},_,) if ¢; intersects
only one admissible edge of (7, {C,}’_;, {Aa}\_y)-
Let £y < €5, < ... < ¥, <U¥,., = £r_1 be all the cutting lines
of (m,{C,}>_1, {Aa},—,). For each m € {0,1,...,n + 1}, there is a
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unique edge €, = {Bm, A1} of m which intersects £;, .. Let v, be the
s(m)

portion of 7 starting from A,, and ending at B,,. Also let {C’,Sm)},:1

and {A,(,m)}:f;n) be the set of elements of {C,}°_, and {A,}',_, such
that they are subsets of [j;,—1 + 1, jm] X (—00,00) N Z2. Then A,, =
(jm—1 + 1,p) for some p € Z. Thus we obtain the m-th polymer &,, by
setting

m s(m) m t(m)
&m = (’Ym - (Oap)a {CIS ) — (O’p)}ljzl 7{A$1 ) — (Ovp)}a.—:l .

By definition, {&o, &1, ... ,&n+1} are compatible.

For a polymer &, = (Ym, {C,Sm)}, {ASJ”)}), let k= k(&Em) = k(Ym)
be the hight of the endpoint of the self-avoiding path ~,,. Then the
hight k(7) of the endpoint of the original path 7 is given by

n+1

m=0‘
For a polymer &€ = (v, {C,}._;, {Aa}o_,), set

(22) \IJ(E) = e'_”‘l'YI‘!'N*('Y»Cl"" ’Cu)lnz_.‘“ 211::1 |CV| X H(e_q)(Aa) — 1),

a=1
Where

N*(’Y,Cl,“' 7Cs) = N(’Y7Ch"~ ’Cs)
+ Nl('YaCl?'-‘ ’Cs)+N’r‘(77CI:"' 705)

and Ni(v,Cy,...,Cs) is the number of new holes created by V(vy) U
Us_,C, and the line {z' = I — 1}, where base(¢) = [I,#]. Similarly,
Ny(v,Ch, ... ,Cs) is the number of new holes created by V(y) UUs_,C,
and the line {z! = 7 + 1}.

A polymer £ is called simple if base(£) is one point and £ = (v, 0, 0).
Thus, the weight ¥(¢) is given by ¥(£) = e #I"l. A polymer ¢ is called
decorated if it is not simple.

A decorated polymer ¢ = (v, {C, }, {Aa}) with base(£) = [I, 7] is said
r-active if there exists a simple polymer & = (v1,0,0) with base(&;) =
{# + 1} such that &; is incompatible with £ or the concatenation of v
and v; together with U,C, produces a new hole. £ is said l-active if
there exists a simple polymer & = (ys,0,0) with base(&) = {I — 1}
such that £; is incompatible with £ or the concatenation of v, and -~
together with U,C, produces a new hole. If £ is both r-active and 1-
active, we call it bi-active. A polymer chain is a family of decorated
polymers C = {&;,... ,&n} such that



The Dobrushin-Hryniv theory for the Widom-Rowlinson model 243

(1) {&,...,&} are compatible.

(2) If base(£y) = [lu,Pu], 1 <u < n,then lypq =7y +1 or fy+2 for
every u.

3) It iu+1 = 7y, +2 for some u, then £, is r-active and £, is l-active.

Let C; and Cs be two polymer chains. We say that C; and C; are compat-
ible if C; UCs is a compatible family of polymers, but it is not a polymer
chain.

For a polymer chain C = {£;,...,&n}, let

base(C) = base(£1) U ... U base(&,,).

For a polymer £, we define
\i/(f; ¢) = euCk(E)@({)Q(O—Ibase(ﬁ)l7

where |base(¢)| = # — [ + 1 when base(£) = [I, 7], and Q() is the gener-
ating function of the hight of the endpoint of a simple polymer ;

Q) =e* i etCh o—lklu
k=—o0

Also, for a polymer chain C = {{1,... ,&m}, we put

Fy(C;0) = [[ #(6ws0) x Ti(6) T Em) T] T(€wrus),

u=1 u=1

where for base(£) = [I,7] and base(&;) = [¢,d] with ¢ > #, Ji, Ty, J are
defined in the following way.

i1

(g 0)2NEO-NECn.Cs) if ¢ i l-active
e = EZS (€3¢ ¢
1, otherwise,
i-1 .
where Z means over simple polymers £ = (7,0, 0) with base {{ — 1}
1323

compatible with &, and N(¢',€) is the number of new holes created by
the concatenation of 4’ and v together with U,C,, which is not larger
than Ny(v,C1,...,Cs). Similarly,

741
Z‘i’(flé C)2N(§’€,)_N'(7’Cl"“ Co) | if € is r-active
*7 7‘(5) = &ce

1, otherwise,
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and J(&,&;) is defined in two cases.
(i) If c =7+ 2, £ is r-active and &; is l-active, then

1 ) )
T, &) = Z \I;(fl;c)gN(ﬁ,S Y+N(€,6)—Nr(7,C1,... ,Cs)—Ni(71,C1y-..,Cs;)

§'cg
(ii) f c=++41, and £ and &’ are compatible, then

?

J(€, &) = 2N EE)=No(v.Cre ,Cs)=Ni(11,C1,...,Csy)

Let K1, be the set of all decorated polymers with base in [0, L], and CPr,
be the set of polymer chains with base in [0, L]. Then we have

Z u(k(F)W(F) Z HF (Cs; ).

oL
(C) res;, C1,...,.Cr€CPL;  4=1

compatible

(2.3)

Lemma 2.1 Let § > 0 be given. Then there exists pg > 1o such that

for g > pa, the free energy ¢(¢) in (1.8) exists and is analytic in ¢ if
Re¢( <1— ,%'

Proof. Tt is sufficient to show that

LN S 1 LTS

Cy,...,Cr€CPr; =1
compatible

converges as L — oo and its limit ¢(¢) is analytic for Re¢ < 1 — %.
Then we have

9(0) = ¢(0) +mQ(0),

which is analytic in this region.

In order to verify the convergence and analyticity, we have to check
that there exist functions ¢*,d* : CP = {C; polymer chain} — [0, c0)
such that

(2.4) Y L OHOR(C;¢)] < ¢ (Co)
CECP:CiCo

for any polymer chain Cp and for any ( € C with Re( < 1 — % (see
e.g. [KP)). For a decorated polymer & = (v,{C,},{Aa}), we put c¢(§) =
3|base(€)] and

d(e) = {(u — pa)lbase(€)| + §lv| = (u—p2 — 1), if [base(§)| > 2,
(1 — pa)lbase(€)] + §ll, if [base(¢)| = 1.
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Then we set

(€)= c(§), d ()= d(§)

fec éec

The constant py4 is specified later. We will first show that

(2.5) Y OO Q)] < eléo)

£ekr;€iéo

for every polymer &;. Note first that
(2.6) vl = No(y) + Na(v) + 1,

where N, () is the number of vertical edges in vy, and Ny () is the num-
ber of horizontal edges in . Also, by definition of decorated polymers,
if base(&) is one point, then

s t
(2.7a) Na() + D 1G]+ > 1Aal 2 1,
v=1 a=1

since either {C,} or {A,} is non-empty if base(§¢) is one point. If
|base(&)] > 2, then we have

t

@75)  Na) + 301G + 3 Aal > 2(Jbase(®)] ~ 1).
v=1 1

a=

Let v be a self-avoiding path S}lCh that it is the backbone of some deco-
rated polymer with base I = [[,#]. We estimate the following sum.

G(v) == Z [T (E)er|.
&;visthebackboneof €

From (1.4), |®(A)| < e~(#=#0)IAl < 1 and therefore we have

|e—‘1>(A) -1 < e~ (=—po—1)|Al
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Using this, if | = #, i.e., |[I] = 1, then we have N*(v,Ch,...,Cs) =0
and

(2.8) G(fy)ge"“Wle”k(‘/)ReC Z ek, IC
{C.}:Cu iy

X Z e—(”"‘ﬂﬂ“l) Ea [Aal
{Aa}Aa i7YUCLU---UC,
< e~ blvl+uk(v)Re(—(n—p2—1)

x Y emEe

{C.};Cu iy

X E e~ (B2—10) 2o, 1Aal
{Aa} A iyUC1U---UC,

The summation over {A,} is estimated as follows.

3 o~ (w2—t0) T 1Aal

{Aa}iAa i yUCLU---LC,

< i % Z - Z e~ (H2—p0) 22, 1Aa]

t=0 Ay tyUCLU---UC At iyUCLU---UC,

<expQ4lyUCIU---UC| ) e wemmolldl
AD0;connected

= exp {(M + Z |C. ) g1 (12, ,Uo)} .

Since there exist constants K1, > 0 such that the number N, of con-
nected sets of n points in Z? which contain the origin is bounded as

Nn S Klfin ('I’L Z 1),

we know that g1(k2, #0) = 42 550.connected e~ (B2=ro)lAl goeg to zero
exponentially fast as po — 0o. Thus, summing up the RHS of (2.8) over
{A4}’s we obtain

G(y) < e~ (B—g1(p2,10)) 7| +uk(v) Rel

« e (u—H2=1) Z e~ (B2—91{p2,00)) 30, |Cy |

{C.}:Cu iy
<o~ (r=g1(p2,10) ~g2(p2,000)) |7+ pk(y) Re(— (n—p2—1) ,
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where 92(N27/l'0) = 42C90;connected e~ (p2—g1(p2,0o))IC| If 7 > i’ ie.,
|I| > 2, then since N*(vy,Cy,... ,Cs) < Np(v) + >, |Cy|, we have from
(2.7b) as in (2.8),

(2.9) G(y) e Hhrl+uk(v)Re Z e~H X, ICuIgN*(7,Cy,...,Cs)
{C}iCu iy
X Z e~ (B—po—1) 32, |Aal
{Aa}iAq iYUCLU...C,
<e HIIHpE(Y) Re¢—(u—p2—1) (21| =Nn(7)=2) 9N (7)

x Z e~ (p2—In2) 37, |G,
{C.};C.inv
X Z e~ (H2—no) 2, |Aal
{Aa}iAq i4UCLU...UC,
Se—(u—gx(ua,no))I'rl+uk(7)REC—(u—u2—-1)(2|1I—Nh(7)—2)
% Z e~ (r2—g1(p2,10)—In2) 37, |Co| o Ni(7) In2
{¢.}
_<_e—(u—g1(ua,;to)—gs(uz,no))l'v|+uk('v)ReC

x g~ (=p2=D)|=Nn(v)=2)+Nn(7) In2

where g3(12, 40) = 4 c50.connected e~ (B2=91(k2,10)~1n2) 'We take py suf-
ficiently large so that g1 (u2, to), g2(12, o) and g3(use, to) are all smaller
than g.

Assume that Re( < 1 — -&. Then since N,(v) > |k(y)|, from (2.6)
we have

(2.10) G(fy) < e‘ng(’Y)—(M—g)(Nh(’y)+1)—(p-—“2_1)(2|1|_1),
if |I| > 2, and
(2.11) G(vy) £ e~ 5 No (V) =~ (H2—$)—2(p—p2~1)

if |I| = 1. Since ¢(€) and d(£) depend only on the backbone v, we write
them c(v) and d(vy). Then

(2.12) Z | W (€)eHkMS |ect)+dle)
&5y isthe backboneof &
= G(fy)ec(”Y)er(‘Y)

< e N (M~ (2= ) (N (MHD) o= (wHpa—2p2—5) lbase(7)|
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where base(y) = base(£) for any £ such that + is the backbone of &.
Therefore we have for a fixed interval I,

(2.13) Z G(y)ecM+d)
base(v)=I
<e(wtra=2u2=5)|1| Z e~ SNu (M= (k2= F)(Nn(1)+1)
base(y)=1I

To estimate the RHS of (2.13) we separate v into fragments following
the idea of [DKS]. Let v = {zg,Z1, ... ,Tn} be a self-avoiding path with
base(y) = I. Let jo = 0, and for ¢ > 1, let

Ji ==min{j > j;_1; {z;—1,z;} is a horizontal edge}.

Each vertical part {z;,_,,%j,_,+1,...,Z;,—1} of v with the direction of
the exit vector {xj,—1,x; } is called a fragment. For a fragment f =
{Zo0,Z1,... ,Zp} with exit direction e(f), we define

W(f) — e—gNu(f)“(ltr-Zgi) — e—%6~(u2—23—’5 .
Then the decomposition of v into fragments {f1,..., f-} leads to the

identity

.
e ENo (=YD — TT W ().
j=1

Therefore we have

Z e—gNu(’Y)—(#z-*%)(Nh(’Y)‘i-l)= i Z fIW(fJ)

vibase(v)=I r=|I| f1,....fr 3=1
oo oo T
< Z <2 Z e—%l’d) % e~ (m2=%)r
r=|I| \ k=—o0
_ R(”Zaé)lll
1- R‘(/'l‘27 6)’

if po is sufficiently large. Thus, if Re( < 1 — % and p > pa, where pg is
sufficiently large, we have

R(/'L% 5)”'

G(~)ecM+d7) < g=(utpa—2p2-5)|1| .
2, Gl s T= R(u9)

base(vy)=1I
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Since
(214) Q)] = e#| S
cosh pp — cosh u(
e *tanh po NE——
T 1+4ef

if Re( < 1— % and p > pa, we have

(2.15) Z I\i,(f; C)'ec(£)+d(§) < e~ (Ha—2p2—ps—5)|I| R(pz, )" )
base(£)=1 1 — R(p2,6)

Let pg > 2ug + p3 + 5. For p > py we will estimate the RHS of (2.5).
Fix & and write base(&) = [I,7]. Then we have

M JEE Qe OO < 3 Zl_'ﬁ(’m 5

£iéo ze[l—1,7+1] I22
(F—1+ (F-1+3)
kR(u2,
,UQ, Z 'U2
R(“’Qa )

< 3|base(&o)| < c(&o)-

(1 — R(ps,6))°
if py is large. Thus, (2.5) is proved. From (2.5) to (2.4), we argue in the
following way. We call a family of intervals Iy = [Iy,71],... , In = [In, ]
linked intervalsif foreach 1 < u < n, 7, < iu+1 < 7, +2 holds. The base
of a polymer chain forms linked intervals. For a fixed polymer chain Cy,
let [base(Co)] = [lo, 7o] be the smallest interval including base(Co). Then
noting that the distance of base(Cy) and base(C) is less than 2 if Cy and
C are incompatible, we have

Y IFg(C; Qe OF©

CiCop

<Y Y ¥ >

zeflo—2,70+2] *=L I1,.. JnC[0, LUl £y, ,6n€KL;
lznkedznter’uals, base(£,)=I,,1<u<n

n n—1
[T ¥ (s Q)ec@ 44D 71(60) ) [T T (6us i)
u=1 u=1

By definition and (2.14), there exists p§ > 0 = p}(6) such that |7,
|71l |7 are all bounded by e*3 from above if Re(¢) < 1 — £. Therefore
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from the estimate (2.15), we have

n n—1

> TT [ (u; Qe+ 4E9] 71(81) T (€n) [ T (us but)
u=1

€1, ,§n€KL; u=1
base(€n)=I4,1<uln

< e~ (Ha—2p2—p3—2p;3 S| 2227/

Assuming that ps > 2p2 + p3 + 2p3 + 5, we have
D Fg(C;Q)|e” @+

CiCo
o© n n
7 R(u2’ 6)|Iu|
SPo-lbo+4)) ), | Ll
n=1lu=1 I,...,I,C[0,L};I, >z, u=1 1- R(Nz’é)
linked intervals

. ,6 2R(ps, 8) "t
<(io — o +4) R(p2, ) 32 (1&‘

0= R(ua ) ~ R(ua, 07

< (fo — lo+ 4)

- 2
if iy is large. Since Y ¢, [base(€)] > max {2[base(Co)], 1}, the RHS of
the above inequality is not larger than ¢*(Cp).

This allows us to apply general theory of cluster expansion so that
there exists a function

F] : Ps(CP)xC —C

such that F?I: is analytic for Re( <1 — % and it satisfies

(2.16) > JIFs€i0) —eXp{ >, Fg(A;C)}

C1,...,Cr€CPL; A€P;(CPL)

compatible

and

(217) D [FEA; 0”@ < e*(Co),

AiCo
where P;(CPL) is the collection of all finite subsets of CPy, and d*(A) =
Y cead*(C). If A is decomposed into two disjoint subsets A; and Ay

such that {C;,Cs} are compatible for every pair C; € Ay, Cy € Ay, then
Fg(A;C) = 0. We call A € P#(CPL) a cluster if there are no such
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decomposition A = A; U A,. Also, we note that Fg(A; ¢) is invariant
under horizontal translation of A. For A € P¢(CP), put base(A) =
Uceabase(C). Then (2.16) and (2.17) implies that the limit

@(¢) = lim %m > JIFsCus)

L—oo
Ciy...,Cr€CPL u=1

T
= > F;(4;0)
AEP;(CP);[base(A)]=[0,k]

for some k>0
exists and analytic for { <1 — % if > pa.

free energy for a joint distribution

Letg>1,andlet 0 < t; <--- <tg41 = 1. For { = (¢o0,¢1,--- ,{g+1)
€ C1tL et

1 N
N A - A DY S XL (b tar ) Py ()

rest
if the limit exists. Here, the random vector )A(g) (t1,... ,tqt+1) is defined
by
(2.19)
XD(ty,. .. tgs1) = (a(ﬁf)),XL(LLzlJ),... ,XL(LquJ),XL(l)).

With a slight change of the proof of Lemma 2.1, we can prove existence
and analyticity of the limit ¢(@ (¢;t1,--- ytg+1). To be more precise, we
decompose a(m(T')) into terms corresponding to polymers appearing in
the decomposition of . Let & = (v, {C, }, {A4}) be a polymer with base
[a,b]. The area area(§) is then defined by

area(¢) =#{z € [I,#] x [-M, M] N Z*"; z is below~}
—#{z e [i, 7] X [-M, M| N Z%" zis above~}.

This is independent of large M. For aT € Sr,, denote D(T") all polymers,
which obtained through any triple (7(T'), {C.,},{A}) with its cutting
lines, where {A,} is taken over all families of connected sets such that
A, il for each a. We have

(2.20) a(r(D)) = Y {area(§) + k(y)(L — #())},

£eD(I)
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where base(£) = [i(£), #(€)] for £ € D(T). Therefore,

Q.Xéq)(tl,... tg+1) = Co Z {g_e_;_gz_}_k(,y)(l_f'(ll_f))}

£eD(T)
g+1
+ZC¢ Z Lipe)<rtk(7)
i=1 ¢eD(T)
a+1
+ZQ‘ Z Liey<pes<aen k(i tiL),
i=1  ¢eD(I)

where k(v;t;L) is the maximal hight of the intersection of polygonal line
v and the vertical line {z! = ¢;L}.

Proposition 2.2. Let pu > pg. If ¢ satisfies

(2.21) { max{| Re(Co + Cq+1)| |ReCqq1]} <1 - 22

IReCl|< 1=1,2,...,q,

4(q+1)u’

then the limit <p(q)(( st1,... ytq41) exists and is analytic in (.

Proof. Let € be a polymer with base [{(€),#(£)] € [0, L]. We decompose
¢ into fragments { fp}le. The hight of a fragment f = {z1,... ,z,} is
defined by

h(f) = o — 23
and the position of f is given by

pos(f) =z; = z,,.

Then we have as in [DH2],

area(§) = Z h(fp)(#(&) — pos(fp))-

Since k(v) = Z:::l h(fp), we have
A P
area(f) + k’(’}’)(]. _ C@) h(fp)( pOS(fp))'

L L’ = L
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Thus, we have

g+1

lRe [Co(ge—z(—g—) +k(n)(1 - f—%—))) + Zﬁil[f(skui]k(“ﬁ

a+1
+ 2 Gl susee kO Lti)} |
=1

P

pos(f,) = pos(f,)
<|Re(¢o + Cq-l—l)I;h(fp)(l i 22} + Re(y1 ;::Ih(fp) 7 22|
+ Z |ReGi|Nw(v)
=1
r 0s(f,) os(f )
<IRe(Go + Goa)| D IR(p)] (1 = B25722) + [ReGyia S
p=1 p=1
q
+ 3 [ReGiI Ny ()
=1

q
< |max{|Re(Co + Cqr1)l, |ReCaual} + > |ReGi| | Ny().

1=1
Set
XOe=x .. (&9
A g+1
= Co(ﬂez@ +k(y)(1 - ﬁ%‘_))) + Y Gl <ral k()
=1

g+1
+ ) Cilie<re <ren k(i Lta).
=1

As before, let

(&)
222) W& Gtayenntgrr) = U(EXTE ] @71 (9,
e=i(¢)

where (1, (£) = (1——)+Zfi'11 Cilp<re,)- For simplicity we write (g <)
for \il(ﬁ;g; t1,... ,tqy1) for the moment. Then for a polymer chain C =
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tg+1) analogously to

254
"‘F\iJ(C7§_)tla ’

{&1,... ,&m}, we define F(C; ()
F4(C;¢). Namely,
m m—1
4(C0) = H U6, O T2 (€) T Em) T] T@ (Ewr €urr),
u=1 u=1
where .7l(q), JT(Q) and J@ are defined as J;, J. and J by replacing
(&;¢) with W(&;¢). If ¢ satisfies (2.21), then Q((z(£)) is analytic in ¢

¥(g;
and satisfies the estimate
L

Q¢ (€))7 < ettrs £ =0,1,

if 4 > po. Therefore as in the proof of Lemma 2.1, for p > py we have

convergent cluster expansion

(2.23)
1 " 1 T
Zlnc ; _HF@(CJ-;Q =7 S FL(A G, )
Uomparinte 1 It A€Ps(CPL)
tg+1) = O unless A is a cluster, and (2.17)

such that Fg(A;g,tl,...
holds uniformly in ¢ satisfying (2.21). So, if (2.23) converges uniformly
in ¢ satisfying (2.21), then the limit is analytic in this region.

" For an interval I C [0, L], set
é(-[;_g_,tla”- 7tq+1) = Z HF\I,(C“C:th q+1)
eieneridigm =

Then by cluster expansion we have
InE(I; ¢t ) = Z FL(A;¢ b,y tg41)
AEP;(CP);base(A)CT
if { satisfies (2.21), where base(A) = Ucecabase(C). Writing
FL(A ¢t tg41)

>

220) B0 =
AEP;(CP);[base(A)]=J

for an interval J C I, we obtain
lné(I;g,tl,... tg+1) Z@
JciI
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From Mébius’ inversion formula, we also have
(2.25) o(J;¢) = Y ()W ET ¢ b, tgn):
Icy

Let us also define

®0(J;¢) == > FI(A;0),

AEP;(CP);[base(A)|=J

where F?i:(A; () is given in (2.16) through cluster expansion. Then by
(2.17) and the definition of d*(A), ®(J;¢) and ®o(J;() satisfy the fol-
lowing estimate.

(2.26) max{|@(J; )1, |@(J; )|} < Be~U2mermr DS
ifu>2ug—ps—1, |Rel] <1— % and ¢ satisfies (2.21).
Lemma 2.3. Let p > 2u4 — pp — 1. If { satisfies (2.21), then
.1 .
G Jimp Y [RiQ - ()] =0,
J=[l,'f‘]C[0,L]
where () = (1(75¢) = Go(1 = £) + 7 Giljo, e (7).
Lemma 2.3 implies that
) 1 . 1 R
lim Z ®(J;0) = Jim I Z ®o(J;¢L(7)).

L—oo L R R
J=[l,#]C[0,L] J=([l,7]C[0,L]

Note that for ¢ satisfying |Re(| < 1— %,

e = > @I,

J=[~k,0]
for some k>0

which implies that

(2.28)
1 g+1
Lhm f Z ®6(J; CL(7)) =/ Pl —z) + Zgl[m (z))dz
—s 00 R 0
J=[L7]Clo, L] =t

uniformly in ¢ satisfying (2.21). As a result of Proposition 2.2 and
Lemma 2.3, we obtain
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Corollary 2.4 For p > py,

(2.29)
gt+1
D (Gt ,tq+1)=/0 (¢ +1nQ) (o 1—m)+2mm (z))dz
=1

if ¢ satisfies (2.21). This function is analytic in ¢ in this region.

Proof of Lemma 2.3. We first introduce an intermediate weight ¥(¢; <)
by

¥(&¢)
~ g+1
= ¥({) exp lM{Co(greLa—(é) + (1~ iLE))’C( ) + ZCil[i(§)<Lti]k(7)}
b(&) B
X H Q!
£=a(§)

It is easy to verify that \i'(f,g) also satisfies (2.5) if { satisfies (2.21),
and therefore we have corresponding ® by

In > HF CuO)= > B¢

C1,.-- ,Cmjcompatible p=1 JCIiinterval
base(Cp)CI,1<p<m

for every interval I c [0,L]. ® also satisfies the estimate (2.26). By
the Mdbius inversion formula ®(I;¢) = ®(I;() if I contains none of

{Lti}g:i. This means by (2.26) that

(2.30) im = Y [0(J5¢) - 8(J5Q)] =0,

Looo L =

For s € [0,1], let us define
Uy(65€) = sU(& Q) + (1 - )T (& (7)),

and let &, be the corresponding function defined through cluster expan-
sion. Then we have

(2.31) |®(J;¢) — ®o(J; CL(7))]
0% 9%,(J;¢)
T, (&¢)

< sup
gex(J) * ’<

'I (&¢) — ¥(& ¢ ®)].
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Like (2.25) we have
(0= > (-nVMImED),
I'CJ;interval
where o
é(II) = Z H Fg, (Cps _Q
Ci,o s Cm€ECP  p=1
base(Cp)CI/,1<p<m

For a polymer chain C with base(C) C I', we have

8l E(I) { r }

—— | <exp FI (A;¢

IaF@S(@ AZ Fa, (856)
base(A)CI!

< exp{c* (C)e= (1 2matpat1) ).

Therefore for a polymer £ with base(¢) C I, we have

lalné(l')I
o, (¢)
OFy (C;¢) (o
< — e V20 oxp{c*(C)e (W 2uathatl)
cecpz,cas,| 0V, (&: ) o2t }
base(C)CI’
<> > 2
n,m>0 {I1,... . In}; {Ingt1s s Ingmds

I1,...,In,base(€) form bpase(€),I PR form
linked intervals linbtdinterats

> exp{c({)e_(”“2“4+”2+1)}e("+m+2)“;

n+m

XH( Z I\ils(gp;g)[ed(ﬁp)“(gp))

p=1 base(&x)=1,

2R ,6 2u% n+m o
< 2 {(1—‘_(’;:@2@2,6‘5))‘2} exp{e(g)e™ (Tt}

< dexp{e(g)e(mati D},

n,m>0

if po is sufficiently large. This implies the uniform bound
9®,(J;¢)

(2.32) 8,(&;¢)

‘ < 4|J)? eXp{3|base(§) |e—(u—2u4+u2+1) }

257

for s € [0,1], £ € K(J) and ( satisfying (2.21). Let J = [i, 7] be an
interval in [0, L] with |J| < (InL)? and Lt; ¢ J forany i =1,...,q+ 1,
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and let ¢ € K(J) be such that N,(¢) < (InL)2. Let K > 0 be an
arbitrary positive number and we fix it. We assume that ¢ satisfies

(2.21) with |Im(p| < K. By analyticity, for [ < €<+ we have

log Q(C1(7)) — log Q(CL(8)) < const.%z-.

uniformly in ¢ in this region. From this and the fact that

LU AL ) < 3 IHAIG = oste)

n 2
<l f) No(€) < p(ln LYY/,

using the inequality |e* — 1| < |z|el?l we have

1065 ¢) — ¥ ()]

(2.33) 17 ( ol
7)) [base(8)] ar P
e b e~
SConst.(l—nLIL)i.

The constant does not depend on L or ( satisfying [Im{p| < K and
(2.23). Hence we have

|&(J;¢) — ®o(J;CL(7))]

< Const. Z IJ|2 3|base(£)|e™ ™ 2u4+u2+1)| ( )

&; base(§)CJ
Nu (§)<(In L)?

Y J|Pedlbase(©)le™ TN (1§ 60 )] 1 (€5 ¢ (7))

&;base(€)CJ
Ny(€)>(n L)2

=I+1I

({nL)? (ln L)*
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Since |J| < (InL)? and ( satisfies (2.21), we can bound I and IT in the
following way.

1< CO'nSt.!JIB{ Z |\il(§;£)|66(£)+d(£)} (ln;)4

€; base(§)=[0,k]
for some k>0

_o(n?)

IT< |JPem 8D 3™ [F(g; )] + [F(&5 ¢ (7))]] e +©
& base(§)CJ

< 6(InL)Se= 80 D),

Using this and (2.26), we have

1 ~ N
=2 8050 — 20(J5 ()]
J=[i,#]c[o,L]
SE Z e~ (= 2patpat [ 6 Z e~ (u—2uatuat ) 151]
L Jclo,L]; Jclo.Ll;
1J1>(n L)2 Lt|<']el.]sg]ox:lslgx21‘:e i
1 ~ ~
.- 3 |(75) ~ @o(J; ¢ ()]
J=[I,#]C[o,L];
|J1<(In L)2,
Lt;¢J for any i=1,...,q+1
(In L)0
=0
(e

uniformly in ¢ satisfying (2.21) with Im(p < K. Since we can take
K > 0 in an arbitrary way, we proved (2.27).

the limiting quadratic form
Let ¢ satisfy (2.21). We introduce a (g + 1) x (g + 1) matrix V,(¢)
by

1 .
VL(_C;) = TLHGSS In Z e”S'XI(j)(tl’-n7tq+1)W(Iw).
H TeSe

This is analytic in ¢ satisfying (2.21).

Lemma 2.5. Assume that p > 2u4 — iz — 1 and that ( € R+ and
¢ satisfies (2.21). Then uniformly in ¢ and 5 = (no,... ,7g+1) € RIT?
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such that |n| =1,
n-Ven —n-V(On

as L — oo, where

(2.34) V() = %Hess /o (InQ + ¢)(¢(z))dz,
and
g+1
(2.35) ((@) =C(l—=) + Z Gilpo,t(2)-
i=1

Further, there exists us > 2u4 — p2 — 1 such that V(¢) is uniformly
positive definite for u > us.

Proof. Let us > pyg + 1 be fixed and let p > ps. It is easy to see that
In Q(¢(x)) is analytic in ¢ for every x € [0, 1], and

1 1 qg+1 )
n-V(On = 2 /0 (n0(1 —z) + Z milj0.4(2))2 (0 Q + ¢)" (¢(z))da.
i=1
The uniform convergence of
%ln Z e“g'X(Lq)(tlv--v ’tq+1)W(F)
resy
to

/0 (InQ + ¢)((z))dz

assures the convergence VL({) — V/({) by Cauchy’s formula. What
remains to prove is the non-degeneracy of V(). First, note that for any
¢ e R with [¢] < 1,

cosh pcosh u¢ — 1 —pCoshps —1

1 My
(2'36) ;i(ln Q) (C) - (coshp, — cosh ,UC)z - cosh s

holds if u > ps.
We prove the lemma in two different cases depending on whether
|Co + Cg+1] and |{g+1| are both small or not.

Case 1)  |Co+ Gg+1l <1/5, [¢g4a| < 1/5.
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In this case, we have

q
[C(x)] < (1 = z)|Co + Cq1l + |Cga| + Z Gl
i=1
)

<
< .

+

Ut =

for every z € [0,1]. By Cauchy’s formula, we have

5 (C (e :_1_ —Sb(Z)‘—“ z
=gl e

261

If |z —{(x)| = %, then |Rez| < $ < 1- %. Therefore by (2.26) and (2.28)

we have -
le(z)| <9 Z e~ (n=2uatpz+)n

n=1
Therefore as y — oo
1 . 1852 _
(2.37) ngw”(C(w))I <— g #(1+0(1))

uniformly in z € [0, 1]. Taking ps sufficiently large, we have
1 Y e ¥
ZImQ+¢)(((=) 2 5= >0

for p > ps.

Case 2) |Cq+1| > % or |C0 +<q+1| > %

We assume that |[Co + (4+1] > £. The argument for the case where

5.
|¢q+1| > £ is the same. For = € [0, s%] we have

q
C@) > (1= 2)|Co + Caal — zlCqral = > 1l
=1
1

>
- 10

LIS
4p

0| =

for p > ps, if ps is sufficiently large. This means that

1 e 10K cosh s — 1
2

2 Q)"({(=)) =

4 cosh p5
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for z € [0, %] and p > ps. Therefore by (2.36)

& 1 g+1
@38) [ Q) €)1 —a)+ Y milpu() s
i=1
2 q+1
e 10* cosh s — 1
> 1— ;1
2161 coshps /0(770( z +;7I 0,6:1(2)) *dz

Since ¢ € R satisfies (2.21), [((z)| < 1 — % for every z € [0,1]. By
Cauchy’s formula,

ety < 1 o(2)
=5 [ TG

Since the circle {|z—((z)] = %} lies entirely in the region {Rez < 1— % H
by (2.26) and (2.28) we have

Y1, 12 _
(2:39) [ 0" C@da] < e 1+ o).
Thus, by (2.38) and (2.39) V(() is uniformly positive definite.

Let Péq) be the distribution of X}Jq) (t1,... ,tg+1) under P, and 131(2
be given by -

. o -1 A
B () = By [er6 X e tasn) | 7 e pl ()

for pn > ps, ¢ € RI*? satisfying (2.21).

Lemma 2.6. Let § > 0 be small and g > ps. Assume that ¢ ¢ €

R%*? satisfy (2.21) and {; — ¢ as L — oo. Then, under Pé'% the
= = 2L

centralized random vector

VPt ten) = = T (ROt tg) — B, X0, b))
converges weakly to a centered Gaussian random vector Y@ (t1y.-. s tg+1)

of which covariance matrix is given by V({).

Proof. Let
gL ( ) E(Q) l:eiy_~17£q)(t1,...,tq+1)] )
L. >L

Then

éq,)gL [Xé,q)(tly-“ ,tq+1)] )

ﬁlw

Ingr(n) = Ler((, +—F— \/— n)—Ler({)—
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where ¢ (() is given by

pL(Q) = 7l 3 KL Gt (r),
res,

Since ¢, satisfies (2.21), so does ¢, + —=n, and we have

\/f

wn((, + #L.g) — ()

gq+1

T OREZC) 1
L\/—ELC [XL (tl,..- ,tq—l-l)] 2L2 Z ﬂ]nkagjac IC C RL.

Since

q+1

2L Z T 5¢,0¢, acgack

g+1

= > mmeVi(C, )ik
L

Jk=1

this term converges to —3n- V(¢)n. So it remains to show that LRy, — 0
as L — oo. Formally, Ry, has the following integral representation.

(2.40) Ry = (m/f) > Rikm,

1<j<k<m<n
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where for j < k& < m,

dgj s

5,05

77_?/ YL (QL + (& —Crj)ej + ZZ=j+1(uf/z)77veV)
2mi Jo (& —CL,)3(& — ¢y — (z)m)

Mk d¢; p
Bi (2mi)? / (& —Crs)? /c,c o

<PL (C + D amjpla = CLj)ea + > = k+1(;i—\/z)77ﬂeﬁ)
(& — CLa)(€k — Cre — (2 )me)
_ MMk dg;
Fuss =gt |, & o
« (PL(QL + Z a=j, k,(é.oz - CL o ea + Zﬁ k+1(ﬁﬁ)77ﬂeﬁ)
(& — Cr,i) (& — Coe — (iz)me) ’

MM dg; o d
Bk (2mi)3 / (& —&L.4)? /ck (6 — CL.k)? / £m

90L (C + 2 amipm(€a —CLa)ea + Zﬂ=m+1(m)"7ﬁeﬂ)
(€m — CLm)(Em — CLom — (;L—\/z)nm) .

?

Here, C, is a curve composed of the lower half of the circle {|¢, —(1p| =
p}, upper half of the circle {|¢, — (L p — (ﬁ)%l = p}, and vertical line

segments connecting them, and p is a small positive
number. Let us estimate |R;;;|. Other terms can be estimated
similarly. Set

n

i
?ﬂL(J) =¢ +(£'_€L,‘)e'+ ——=ey-
2L J J/%3 arrt 'u\/z
Then it is easy to see that

. . . 26
max{|Re(wr (§)o+wr(f)g+1)l, |Re(wr (§)g41)|} < 1- ;+P(50,j +6g+1,5)

and |Re(wr,(f)a)| < G+ n + pba.j, where §;, =1if j =k and =0

if j s k. Note that

pr(wi(f)) = ¢(we(j) Zan @1 (5: ),
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where
q+1
W (5;€) = wr(F)o(1 — Z) + ) wi(i)plie<rt,),
p=1
and that

|Rety (5; )] < max{lRe(wL( o+ wr(f)e+1)]; [ Re(wi(f)g+1)[}

76
+Z|RewL |<1—4—~+p

If p < §/4p, then we have analyticity of the integrand in the expression
of R; ; ; as in the proof of Proposition 2.2. This is true when ¢ satisfies
(2.21) and &; € C;. Thus, we can assume that |y (w;(7))| . From this
we easily obtain that
|771 ®
|Rjj5] < 2M =5~

for some M > 0, which is independent of L. This means that LR, =
O(L~1/%) uniformly in 7.

Let g¢ be the density function of the Gaussian vector Y@ (t1,.-.,
tg+1) given in Lemma 2.6.
Proposition 2.7. Let XI@ = (L7YZ) x Z97'. For each z € Xéq) and
¢, € R satisfying (2.21), let
1 5@ %@
QL = E(EL - Lg, 'L (tl’ v 7tq+1))-

Then we have
2L(q+4)/2P£Q) (z) — g, (QL) =0

uniformly in z; € A7 and ¢, € R7*? satisfying (2.21).

The proof is a complete repetition of the proof of Theorem 6.3 in
[DH2], so we omit it. Let A > 0 and a > 2 be such that

(2.41a) % / (1 - 2)g (1 - 2) + ¢)dz =

1
(2.41b) ﬁ / o (1 - 2)¢§ + () = h
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hold for some ((},(}) € R? with

1)
(2.42) max{|¢§ + 71, 1¢ 1} < 1 - 3#—

where ¢ = InQ + ¢. Let also ag > 0 and hy, > 0 satisfy

1 8(,0[, _ar
(243&) 0 aCO (CL,O)O, ey 0y CL,I) - 1.2
1 ach _ hL
(2.43b) ;—821—(&,0,0, 0, GLa) = 7

for some ((z0,¢r,1) satisfying (2.42), and

ar hg

(ﬁ’ L ) - (a’ h)

For simplicity, we write ¢ (o, (1) for ©1((,0,...,0,¢;). By the ar-
gument in the proof of Lemma 2.5, for a sufficiently small p > 0,

©r(¢L,0,¢r,1) and

1
£ )= [ olGalt = a)+¢)da
0
are analytic in (¢o,¢1) € D,, where

D, :={(¢o, 1) € C*;max{|¢o — ¢31,1G — 71} < o}

Also, ¢1,(¢o,¢1) converges to £({o,¢1) uniformly in D,. Therefore we
also have the convergence;

(2'44) (V(C()sCl)(pL) (CE;: Cik) - (V(Co,Cl)‘C) (Cg’ Cf)

This convergence is uniform in ({F, {;) satisfying (2.42). By Lemma 2.5
for ¢ = 0, there exist Lo > 1 and € = (p, 11,6, (5, ¢7) > 0 such that

1

Z [Hess¢o,c)Pr(Co, SOk = e(|mol® + ml?),
3,k=0

1
> [Hessgy ) £(Cos C0)ljnime = e(lmol? + n[2),
Jrk=0
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for (¢o,¢1) € D,NR? L > Lo and mo,m; € R. This implies that
V¢o,c)®r and V(¢ o)L are one-to-one bicontinuous maps on D, N R?
for every L > Lg. In particular, we have

(2.45a) :
I (Ve L) (€0, C1) = (Vicorc)#r) (655 €1) 12 -;Z | (Cos¢1) = (¢5,¢) |l

and
(2.45b)
* % 2 * %k
1 (Vo £) (G0, G1) = (Vo) £)(G55 61 12 5 11 (G0, G1) = (&5,¢0) |
for every (o,¢1) € D, NR2. By (2.44) and the definition of (a, k) and
(ar,hr), we have

1 * ok ar, hL
” EV(CL,OyCL,l)(pL(C07C1) - (‘L"Z‘a T) ”_" 0.

This means that we can find ({z,0,{z,1) € D, which solves (2.43a, 2.43b)
and by (2.45a, 2.45b) it converges to ((§,(T)-

In order to discuss convergence of X,(t) from Proposition 2.7, except
tightness we need one more estimate which assures that the separating
contour itself neither fluctuates a lot nor is fat. To do this, let us define

(2.46) vol(€) := |+ ) _ |Cal

a+1

for a polymer & = (v, {Ca} oy, {A8}5_1)-

Lemma 2.8. Let u > ps, h >0, a > % and a,h,ar,hy be given as
above such that (4, %f‘) — (a,h) as L — oo. Then for every k € N,
there exists a constant Ly > 1 such that for L > Lo,

(2.47)
Py, (ma.x{vol({);{ e AN} > glnL +k|a(xD) =ar, k()= hL)

<1-— exp(—4e_%k).

Proof. Let ({5, () solves (2.41a, 2.41Db) satisfying (2.42) and ({z,0,¢L,1)
be a solution of (2.43a, 2.43b) satisfying (2.42) such that (¢10,{r,1)
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converges to (¢§,¢) as L — co. Put

£0@) = (A1) xry)

- % (24D k- TEhkm)

£ea(l)

Then for N := $InL +k,
(2.48)  Pp(max{vol(¢);¢€ € A} < N | a(r(I)) = ar, k(L) = hr)

= 3 eu(cL,o,cL,l)X,ﬂ‘”(F)W(p)] -
reSp;a(n(l))=ar,k(T)=hg
x v elCeo6L ) X Oy (1),

reSp,a(m(I))=ar,k(l')=hr
vol(§)<N for every £€A(T)

By Proposition 2.7 we have

(2.49) Z eH(CL,o,CL,1)-X,£0) (F)W(F)
reSp;a(n(I'))=ar,k(I')=hg
(0 ay,
—elvr (CL’O’CL’I)Pl(/,zCL,OyCL,l)(f’ hL)

—eLlPr(Cr06L,1) w{l +0o(1)}

212

as L — oo.
Let (o, ¢1) satisfy (2.42) and

<P(LN)(C0,C1) 1= = In Z e”(40’41)'X(LO)(F)W(F).

L resSy,a(n(l'))=ar,k(l')=hr
vol(§)<N for every £E€A(T)

It is straightforward to check that the estimate (2.4) is still valid when
we replace d(£) with

41(8) = d(€) ~ S+ guolle).

The only change is that we introduce

(0) &

Ga(y) = Z |‘I’(§)e“@°’<1)'5‘b €6 XalCal|,
&; v is the backbone of £
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in place of G(v), and in estimating G;(v), we have to put
g2(12, o) = 4 Z e~ (n2—g1{p2,p0)—In 2-6/6)|C|
C30; connected
Therefore we have convergent cluster expansion;

W=7 X FLaG0),

AEP;(CPL(N))
where CPL(N) := {C € CPr; vol(C) < N} and
(2.50) S FE(A G, )|t < e (Co).
AiCo, AEP;(CP)
Therefore we have

(2.51)
lor (o, ¢1) — SO$;N)(§0,C1)| < 1 Z [FT(45¢,¢)-
L

A€P;(CPL\Ps(CPL(N))

If A € Ps(CPL(N)), then A contains at least one { € K such that
vol(§) > N. Therefore by (2.50) the RHS of (2.51) is bounded by

€ © _ 8
L S FL(A o, G)|em B < 378N,
AeP;(CPL)

This estimate is uniform for ({p, (1) satisfying (2.42). By analyticity of
pr and cpg-dN), we have for o, 8 € {0,1},

1 0 3 _s
(2.52a) ;f[m — o(Cr0,Co1)| o s
and

1 8? N 3 _s
(2.52b) Fae.ac; e oL )G Gra)| < SenEY

where 0 < p < 2. Since N — 00 as L — o0,
P< 1

N * ok
Hess(co»CI)(p(L )(CL»()? CL,l) - HCSS(C(]’CI);C(CO,Cl)

as L — oo. Let pL,(CL,O,CL,l)(F) be the probability weight which is
roportional to e#(¢z.0.¢r,1)-X (MW (T) restricted to the ensemble
p

{I' € Si; vol(§) < N for every £ € A(T)}.
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Then by (2.52a, 2.52b) as in the proof of Proposition 2.7, we see that

1 a(w(l 1 a(w(l
2 (D k) - LB, e, o (T k)

converges to a centered Gaussian vector with covariance matrix

1 * ok
;EHeSS(CO,Cl)‘C(CO e )

as far as N — oo as L — oco. Further, since N — %lnL — 00,

1 (N) ar, hp _ 1
H‘|V(CO,C1)(pL (CL,07€L,1) (L27 L )I - O(\/_L—)
as L — oo and by this we have
H(N) a(w(l")) __saL _ 9L ,1)(070)
Pp ¢roce) ((—L k() = (-E,hL) _ e 222 {1+0(1)}

as in the proof of Proposition 2.7. Combining this with (2.48) and
(2.49), we see that there exists an Ly > 1 such that for L > Ly and
N=SInL+k,

Pr(vol(¢) < N for every £ € A(T) | a(w(I")) = ar, k(T') = hyr)

>exp{—L|or({r,0,CL,1) — ‘P(LN) (Cp0,Cra)l} exp{—e 8%}
> exp{—4e"%k}.

Theorem 2.9. Let u > us, h > 0,a > % and ay, hy be given as above.
Further, we assume that aL? — ay, = o(V/L3) and hL — hy, = o(V/L) as
L — co. Then the process Y1 (t) under Pr(- | a(z(I")) = ar, k(T) = hyr)
converges in finite dimensional distribution to the process

Y - / VoG T (1= 2)G0)dB(z)

conditioned that .
/ Y(t)dt=0, Y(1)=0.
0

Proof. Letg>1,and 0 <t <--- < tgy1 = 1 be given arbitrarily.
We take ((o,¢1) € R? which satisfies (2.42) and solves (2.41a, 2.41b).
Also, we take ({r0,Cr,1) as a solution of (2.43a, 2.43b) which satisfies
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(2.42). Then by the above argument ((r0,¢z,1) — (¢0,¢1) as L — oo.
Let ¢7,(° € R%*2 be

Cz (CL 0707 .. aO’ CL,I)
CO (COv 70741)'

From the assumption of the theorem and (2.45a) and the uniform bound-
edness of Hess¢pr, we have

Egﬂc XD(ty,...  tgs1)

=(%E B X, (LLtlJ) B0 x, (Bl g
=§<ng)<§2>
7

=; (Vgp(q)) (go; tla .o ,tq+1) + o(\/f)

By proposition 2.7 we have for —oo < l} <f; <o0,1 <j<yq,

. . a
hm P(q)(yje[ljarj] 1Squl$0:fLaxq+l—hL)
. A . ar,
=L11_I)I;OPIE?éz(yj €llj,f] 1<y §q|x0=f,xq+1—hL)
_-ﬁil,fl]x~~-x[fq,fq] g¢e (0’ Yis--- 1 Ygs O)dyl cee dyq
qu g_(_° (07 Y, Yq O)dyl e dyq
Let
Y(Q)(tlv .. q+l) (YE),Y(tl)7Y(t2)7 7Y(tq+1))
be a Gaussian random vector with distribution density g¢ (Yos -+ s Yg+1)-

Then its covariance matrix is given by
1 ti ALk .
BYG)Yw) = [ ¢ (Gl -a)+G)ie
0
for j,k=1,...,q+ 1, where a A b = min{a, b}, and

E [YoY (t)] :;le / " (Co(1 = 2) + 1)

1
B[] =z [ ¢(G-2)+ )i
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for j =1,2,...,¢+1. This means that {Yo, {Y (¢)},c[y} is & Gaussian

system with covariance given above for every 0 < t; < ... < g4 =

1, g > 1. Finally, by Lemma 2.8 we can replace E'(LQ)CO Xip(t;) with
2L

EA'I(—j)gL X L(LLLt—JJ) for every 1 < j < g in the above argument.

§3. Tihgtness

As usual, we will estimate the fourth moment of Y.(t) — Y1(s) for
every s,t € [0,1]. First, we show the following one polymer estimate.
For an integer z € [0,L] and T € St , let &(z) = £(z,T") be the unique
element of D(I") whose base contains z.

Lemma 3.1 Let ¢ > ps,h > 0,a > % and ay,hy be given as in
Lemma 2.8. Then there exist constants C' > 0 and L; > 1 such that for
L > L4,

o [e%dw(m))

Proof. Let ((5,() satisfy (2.41a, 2.41b) and (2.42), and ({r,0,¢r,1)

satisfy (2.42) and (2.43a, 2.43b) such that (¢10,¢r,1) — (¢},¢F) as L —
oo. For I' € 8y, such that D(T") 3 &, let [V(£) denote the set of elements
of Sy, such that D(IV(€)) = D(T') \ {¢}. Also we put for a polymer ¢,

£ = (20 4 i) - M) ki),

a(z(I) = ar, k(T') =hy| < C.

and U(&; (o, G1) 1= P(§) exp{u)?éo)(f) . (CO,Q»)}, where v stands for the
backbone of £. Then
PLcrocen [{DT) 3 &0 (X (D) = (F,h0))]
—em Lo DU Cr g, Cr)

X > eﬂ@L,o,CL»l)-Xi“)(F’(s)>W(F’(§)).

rese; D(I)a¢,
a(w(T))=ar,k(I")=hg

By the cluster expansion we have
5 a
(D) Prcrocen [{DI) 2 8 N {XPT) = (F,h)}]
= Y Fyg(Ci¢ro,Cr)exp{— >, F1(A5¢00,¢00)}

cecPy; A
CBEL AEP;(CPL);ALC

x PL:(CL,OyCL,l) [a(ﬂ'(F)) =ar, k(F) =hg | D(F) 2 6]7
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where

L
B(E: o, Con) = W6 G, o) [] @7 (€l — 1)+ o).

£=0

Since the final term in the RHS of (3.1) is not larger than 1, by the same
argument to derive (2.32) we have for C' > 0,

S HOPL (00 (D) 36 N {XPT) = (B hn))]

&;base(€)dz,
[v|[>C1InL

<4 Z e OT24MOU (&5 ¢p0,Cp)-
&;base(€)dz,|y|>CIn L

As in the proof of Lemma 2.1,

(3.2) 3 OO (€; 0, ()
&; base(€)3z, |v|>CInL

<e 120l Z e“ OO (¢ ¢L0,Cp)
&; base(£)dz

Sge—%CIHL.

By (2.49), we have for a constant C; > 0 and a sufficiently large L,

X0 = (%)

i x
EL,(CL,O,CL,l) [ezd(‘f( ))1{|7(x)|ZCInL}
SCILZe—l—‘Sz—ClnL’

which goes to zero as L — co. Here, v(z) stands for the backbone of

§().
Assume that |y| < C'ln L for the backbone v of £&. Then since

1 ~
Prlroea Q=T 3 e XOW)
resy;D(I)>¢

= ¢r(Cr,0,CL,1) — % > FL(AilLo,Cra),

AEKyr; Aif

[HeSS(Co,Cl)(pL(' | 6)](CL,07CL,1) converges to [Hess(Co,Q)‘c](CgaC{() uni-
formly in ¢ with |y| < Cln L. Therefore there exist constants Cy > 0
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and Lg > 1 such that for L > L,

(3'3) PLv(CL,O:CL,l)(a(ﬂ-(F)) =ar, k(r) =hr | D(F) > f) <

uniformly in £ such that |y| < C'ln L. Combining (2.49) with (3.3), we
can find L; such that for L > L4,

1 > ag,
(34)  Eruocen [eéd“(m”l{mgmr,L} XPC) = (Fha)

<C1C, > 1B (£)|e24O+@) < 3¢,C,.
base(¢)dz,|y|<CInL

This together with (3.3) proves Lemma 3.1.

Now let us turn to the estimate of the fourth moment of Yy, (¢) —
Y1 (s). It is sufficient to consider the case where Ls, Lt are integers and
s <t

Lemma 3.2 There exist constants C3 > 0 and Ly > 1 such that for
L> Ly, if|t—s| < L~%, then

3.5)  EL(|Yp(t) = Yi(s)[*a(r(T)) = ar, k(T) = hr) < Cs|t — s|3.

Proof. Since
1

YL(t) - YL(S) = \/f

X0 - Xu()~ £ [ G0+ ciyas],
we estimate
EL(X2(t) ~ Xo(o)[* | aln()) = az, k() = o)
and
BLE [ (G0~ ) + Gl aln(x)) = o1, () = ho)

separately, where ({3, (7) solves (2.41a), (2.41b) and satisfies (2.42). By
analyticity the latter is bounded by C(L|t — s|)* for some positive con-
stant C. Also, by Lemma 3.1, the former is bounded by

C'(L|t - s])*
for some positive constant C’. It remains to check that

Lt —s|* < It — s|2,
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which is true when |t — s| < L5,

To handle the case where |t — s| > L™#%, we introduce a moment
generating function ¢ (s.2) by

1 ¢(s:t)
wf’t)(CO,Cl’Cz) = fln Z et XY Ly (1),
TeSy

where
a(n(I)) Xp(t) — Xi(s)

t) —
L (F) T ( L 7k(F)a \/t——s )

and ¢ = (Co,¢1,¢2) € R® such that (o, 1) satisfies (2.42) and

(3.6) G| < ;\/t—s

To complete the proof of the tightness of {Y1(t), 0 < t < 1}, it is
sufficient to show that there exists a constant ¢ independent of L such
that (3.5) holds for all s,t € [0,1] with |t — s| < &o.

Let a,h,ar, hr, ((5,¢7), (CL,0,Cr,1) be taken as before; i.e.,

1. (¢35, ¢7) and (CL,0,Cr,1) satisfy (2.42),
2. (¢5,¢t) solves (2.41a), (2.41b), and
3. (¢L0,Cr,1) solves (2.43a), (2.43b).

Put
(9 (3 t)
P 3(

Then as in the proof of Lemma 2.3, we can show that

(3.7) vp = ——=>—((1,0,¢L,1,0)-

/ (G —z)+¢)dx = O(L_%(lnL)lo).

1
3.8 vy, —
(3.8) =l |

Therefore

Yi(t) —Yi(s) _ Xp(t) — Xi(s)
is NI — VL + o(1).

So, we will show that for some €9 > 0 and for all s,¢ € [0,1] such that
[t — s| < eo,

oo 4 X ._X aln a
I;)(k-l-l) PL(LI)/\/__(tT—Sj(-)-—vL\/_>k kgfgfyz))hll L )
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converges and is bounded from above by a constant independent of
L,s,t. For k € N, let gg“) = (Cék()), gfi, gf%) be the solution of

(aL hL

L23L7 v + —=

)
VL
and (g)) = (¢£,0,(r,1,0). For n = (n0,m,7m2), let go*(s t)( ) be the Le-
gendre transform of igo(Ls’t). Then by duality,

P [V(CmChCz)(P( ’ )] (gék)) =

«(s,t)1/0L hL k k) (k) A(k
722 (25, 2+ ) = ¢,
and o)
(k) s 82 * aL 23 S
= 0.
Therefore
(3.9)
Xp(t) — Xr(s) a(r(T)) =ar,
P B2 > oy VI + k ’
L( Lt-s) - k(L) = h
PP — (% hr,g) ¢
- Z Lsaf"”(g(f))—m 'L h,Lvg) ¢

5> Loy vi—s+ky/L{t—s) ©
Py e (Xp(t) — Xp(s) = j,a(n(l)) = ar, k(T') = hr)
PL C(o) (CL(ﬂ'(F)) =ay, k(I‘) = hL)

w(s,8),0L h k «(s,t), 0L P
Sexp{ Luler ( ”(LZ, LL, L+~\/—z)—*<,0L( t)(—E%,TL,vL)]}
Py (0 (X—“%J > v VI + k,a(r(T)) = ag, k(T') = hL>

: P, ;o (@(m(D) = az, k(L) = hz)

From Proposition 2.7, the RHS of (3.9) is bounded by

)
*(s, h k *(8 h’
[0 (2L, 2Ly ——) — D (2L 2L 4]}

L
eXp{ (P L27 i3 \/Z L27 I

x Const.L?.

as L — oc.
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Lemma 3.3. There exist positive constants a;, as, Ly such that every
eigenvalue of

/J_Hess(Co,ChCz) [SOL (CO,CI’ ‘/fT)]

is in the interval [a;, ag] if L > Ly and

{ Gl < —¢|‘t‘—7|

(8.10) max{|Go+ G, |Gl} <1- 2

For the moment we take it for granted that Lemma 3.3 is true. Then,
since ((r,0,(r,1) satisfies (2 42), by Lemma 3.3 and the continuity, we

can find € > 0 such that 1f = < eVt — s, then IC —CL0l, ICgfi —Cal,

1< (k)| are all bounded by 2 i and every eigenvalue of

*(s, h k
[Hess,,cp ( t)] ((—IL%,—LE,UL-I— ﬁ)

is in the interval [o3*, a7}]. Thus, we have

«(s,t) 0L hp k *(s,8) (0L hr
(311) Py, (Lz’ L , VL + ﬁ) —¥L (LQ’ L ) L)
£ k 52 *(s,t) h k‘2
_ AR A e 7 >
_/O (\/f u) o I T —,vp +u)du > oy 5T

if £ < e4/L({t — s). By convexity, this means that the LHS of (3.9) is
not less than

(3.12)
*(s,t) 1 a *(s,t) ra;p, h -
kop™0 (8, 5, vp + ev/E—3) — ;" (35, B ur) 5%
\/f eVt—s -
(3.12) proves that
X(t)— X =
S e (KX s Ty olrll) =an
k>e\/L(t—s)
-1
=O(L* exp{~p 2" L#})
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for large L. Also, for k < ey/L(t — s), Hess«mgl,gr‘,)[sof’t)((mCl, \/%)]
is uniformly positive definite and by Lemma 3.3,

PL’Q(L'“) (M > v VL + k,a(x(T) = ar,, k(L) = hL)

v/ Lt — s)
SPL’QM (a(m(T)) = ar, k(L) = hr)
SC’Z’anst.'

This and (3.9) together with (3.8) prove

> (k+1)*

kge\/m
< P, (X_“%;) > v VL + kfa(n(T)) = ar, k(T') = ’u)

0 2
<Const. Z(k + 1)46_2’;—2 < 00
k=0

Proof of Lemma 3.3. Put

(& ¢o, Ca, \/—52—125)
~(©)exp{Go("E + (1= “E00) + k(o) + — (i L, L)
where
(3.13)
k() if Abase(ﬁ) C [Ls, L],
o K ke i Q) <L <) < Lt
ROiLs, L) =9 i) if Ls < () < Lt < #(€)

E(vy; Lt) — k(v; Ls) if i(€) < Ls < Lt < #(£).
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Then as in the proof of Proposition 2.2, we have a convergent cluster

expansion

WL(CO,Cl,%)

1
= — Z q)(A)(‘] CO?Cl) /—)
L J=l[a,b]C[0,L]
1 .
=7 Z ®(J;¢L(7))
J=([I,Aclo,L]\[s,¢]
1 (In L)°
t1Y el + ) +O( )
I L
Ls<r<Lt
(In L)1

= [ oot -9 + 6+ ot g@nde + o ().

Note that
o -0

O a(st)( T, C2
8C2¢ (J,CO’Ch\/t_——E)

if J N [s,t] = 0. By analitycity, this means that for € R3

s, C2
(3.14) n- [Hess(cy,c, e es ™ (CO’CI’\/{TS)]Q

:/0 {(1 - 93)770 +m + _—tn\/_z__:sl[svt]($)}2
X @Gl = )+ G+ Tl ()
+ |n|?0(L ™% (In L)°)

as long ast—s > L3, If (Co, €1, ¢2) satisfies (3.10), then as in the proof
of Lemma 2.5, we have some o > 0 depending only on y and § such

that
of <¢"((o(l—x)+ G+ \/C—wl[s 4(x))

for every z € [0,1]. Also, by analyticity, there exists a3 > 0 depending
only on p and 6 such that

(Gl —z)+ G+ \/{C__l[s t](:c)) < a2
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for every x € [0,1]. Therefore we have

(3.15)

2
al/ {770 1—x)+771+\/—..1[st] )} cla:—i—O(L“%(lnL)m)‘|ﬂ|2
< the RHS of (3.14)
1

<a 1- 21 dz + O(L™%(In L)) - 5%
<af [ (1= a) 4 m+ (@)} o+ O(L D)) Iy

Further, since

/ {mo(1—2) +m+\/__1[3t m)} dz

:/ {770(1~a:)+n1}2d:c+7]§+ }dw
0

Since we know that the first term in the RHS of the above equality is
bounded from below by of (72 + n#), the RHS is bounded from below by

o) (mg +m3) — 2Vt — s(|nomz| + [mmzl) + n3
>(af —VEt=s8)(mg +n3) + (1 — 2Vt —s)n3.

Set 2a; = min{%aé, %} It is obvious that the RHS of the above in-
equality is larger than ai|n|® if V£ —s < 2a;. The existence of ay is
obvious from (3.14).
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