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Abstract. 

We consider the fluctuation of the phase boundary separating 
two phases of the Widom-Rowlinson model in the plane square lat­
tice. The phase boundary is conditioned to have specified values of 
the area underneath and the height difference of two end points. Do­
brushin and Hryniv studied the phase boundary of the Solid-on-Solid 
model [DHl] and of the Ising model [DH2], and obtained the central 
limit theorem for the fluctuation of the phase boundary from the 
Wulff profile. The phase boundary of the Ising model is well approxi­
mated by that of the Solid-on-Solid model with the aid of the cluster 
expansion. Their argument seems to be applicable to the general 
models which have polymer representation. We apply their theory to 
the Widom-Rowlinson model. 

§1. Introduction 

Let Z2 be the square lattice and let AL,M be the rectangle [1, L-
1] X [-M, M] in Z2 . We consider a system of particles in AL,M. These 
particles are of two types, either A or B. There is strong repulsive inter­
action between particles of different types. Namely, a B particle can not 
occupy a site within distance y'2 from a site where an A particle sits, 
and vice versa. 

A configuration w is a function from AL,M to {-1,0,+1}. w(x) = 
+1 denotes that the site x is occupied by an A particle, w(x) = -1 
denotes that x is occupied by a B particle and w(x) = 0 denotes that 
there is no particle at x. We say that a configuration w is feasible if 
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w(x)w(y) ~ 0 for all pairs x, y with lx- Yl :S v'2, where 1·1 denotes the 
Euclidean distance. 

Let !:h,M denote the set of all feasible configurations in AL,M. The 
Hamiltonian of our system is a function on nL,M given by 

(1.1) H(w) = L p,(1- w(x) 2 ) 

xEAL,M 

for every w E nL,M. Here, 1-L denotes the chemical potential. 
Let h > 0 be fixed and assume that M > Lh. Then we can put the 

following boundary condition: 

{ 
+1, if x 2 > rhx1l, 

rl(x)= o, ifx2 =rhx1l, 
-1, otherwise, 

for every x = (x\x2 ) E 8AL,M = [O,L] x [-M -1,M + 1] \AL,M· Let 
f2i,M denote the set of all configurations W in f2L,M such that W 0 'f/h is 
feasible, where w o 'f/ is given by 

( ) { w(x), if X E AL M; 
WO'fl X - ' - ry(x), if X E 8AL,M· 

The conditional Gibbs distribution on ni M with the boundary condi-
tion 'f/h is given by ' 

(1.2) 

where S 0(w) is the set of points in AL,M such that w takes 0 value, lSI 
denotes the cardinality of a setS, and Zi M is the normalizing constant, 
which we call the partition function. ' 

For a feasible configuration w, we call a connected component of 
S0(w) a contour. Among contours we can find a unique contour which 
connects (0, 0) with (L, rhLl ). We call this the separating contour with 
the starting point (0,0) and the end point (L, rhLl), and denote it by 
r(w). Let Si M denote the collection 

' 

{r(w);w E Oi M is feasible}. 
' 

The aim of this paper is to investigate the fluctuation of the separating 
contour via Dobrushin-Hryniv theory. 

the backbone 
We say that a set c c Z2 is *Connected if for every x, y E c, there 

exist a sequence zo = x, z1o ... , Zm =yin C such that lzi-Zi-ll :::; v'2 for 
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every 1 :::; i :::; n. A hole of a connected set C C Z2 is a finite *Connected 
component of cc = Z2 \C. Let C~, C2 , .•. , Cn be connected subsets of 
AL,M. We say that contours { Ci} are compatible if they are connected 
components of the set U1:;j:;nCj. We also say that {Cj} are compatible 
with a connected set D if { D, Ci} are compatible for every j. Then the 
partition function ZE,M can be rewritten as 

z£,M = L L 2N(r)exp{-JLirl} II(2N(Cj)exp{-JLICjl}), 
rES£_M {C3} j 

where the second summation is taken over compatible families {Cj}, 
which are compatible with r, lr! is the number of points in rand N(C) 
is the number of holes in C. Therefore, we can find JLo sufficiently large 
so that we have a cluster expansion (see [KP]) 

(1.3) z£,M = L exp{ -JLir! + N(r) ln 2 + L <I>( A)} 

for JL > JLo, where Acr denotes that A is compatible with r. Moreover, 
the function <I>(A) satisfies the estimate 

(1.4) L j<I>(A)jeCIL-!Lo)IAI < 1, 
A30 

and <I>(A) = 0 unless A is connected. Let 

zt,M = exp{ L <I>(A)}. 
ACAL,M 

Dividing both sides of (1.3) by zt,M, we have 

(1.5) z£ M '""' '""' -' - L.J exp{ -JLirl + N(r) ln 2 - L.J <I>( A)}, zL+M-
' rESLh,M ACAL,M 

Air 

where Air denotes that A is incompatible with r. We use the summand 
in the right hand side of (1.5) as a statistical weight of the separating 
contour r 0 Let r E S£ M 0 We extract a self-avoiding path from r in the 
following way. ' 

First we define an order of preference among four directions; 
up > down> right > left. 
This order naturally defines an order among self-avoiding paths con­

necting (0, 0) with (L, fh£1). To be more precise, let rr = {xb x2, ... ,xn} 
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and n' = {y1 , y2 , ... , yk} be two self-avoiding paths connecting (0, 0) 
with (L, fhLl). Let jo be the first number j such that Xj =/= Yi· We 
define that 1r > 1r1 if the direction of the ordered edge { x io _ 1 , x io} is 
preferred to the direction of the ordered edge {Yjo-1, Yj0 }. Now, let 

IIr := {n: self-avoiding path in r connecting (0,0) with (L, fhLl)}. 

Let n(r) be the unique maximal element of IIr with respect to this 
order. We call n(r) the backbone of r. This backbone will play the role 
of the phase separation line of the 2D Ising model. 

For r E S£M, n(r) separates [O,L] x [-M -1,M + 1] into two 
*connected components. One is above n(r) and the other is below n(r). 
Let a-(n(r)) and a+(n(r)) be the number of points in Z2 * n [0, L] x 
[-M- 1, M + 1], which are below n(r) and above n(r), respectively. 
Here, Z2 * = Z2 + (~, ~). The area a(n(r)) is defined by 

(1.6) 

This value is independent of M if M is sufficiently large. 

free energy 
If p, is sufficiently large, (1.5) has a limit as M ____, oo: 

(1.7) 
zh 

1. L,M Im --
M--->oo zt,M 

where S£ := UM>oS£,M, AL,oo := [1, L -1] X ( -oo, oo) n Z2 . 

Let W (r) be the weight in the right hand side of ( 1. 7); 

W(r) := exp {-p,lrl + N(r)ln2- L <I>(A)} 
ACAL 00 

A if 

for r E UhERS£ = S£. For r E SL, we denote by A(r) = (0, 0) and 
B(r) = (L, k(r)) the starting point and endpoint of r, respectively. 

For ( E C, we define 

(1.8) cp(() := lim ..!:.In "' eJ.L(k(rJw(r). 
L--->oo L L... 

rESL 

if the limit exists. This is the free energy of the height of the last point 
of r. For r E SL, we define {XL(t); t E [0, 1]} = {XL(t; r); t E [0, 1]} 
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by 

{ XL (f) = max{k E Z; (j, k) E 1r(f)}, 
XL(t) = (j + 1- Lt)XL (f)+ (Lt- j)XL (if-) (j ~ Lt ~ j + 1) 

Let PL be the probability measure on SL defined by 

(1.9) PL(r) = [ L w(r')]-l W(r). 
r'ESL 

Theorem There exists J.ll > J.Lo such that for J.L > J.LI, (1.9) is well 
defined on S L and the followings hold. 

Assume that for h > 0 and a ?:: ~ there exist a 8 > 0 and a pair 
((o,(I) E R 2 with max{l(o +(II, I(II} ~ 1- ~such that 

1 rl 
M Jo V'((o,(I)'P((o(1- x) + (I)dx =(a, h). 

Then the process 

YL(t) := )r { XL(t)- £ 1t c,o'((0 (1- x) + (I)dx} 

under PL(·I a(1r(f)) = laL2l,k(f) = lhLl) converges 

11t Y(t) =- V'P"((o(1- x) + (I)dB(x) 
J.l 0 

conditioned that 11 
Y(t)dt = 0, Y(1) = 0. 

Here, { B ( t)} t2:0 is the one dimensional standard Brownian motion. 

Remark Although XL(t) is defined by the backbone 1r(f), the width 
(in the x 2 direction) of the separating contour r is negligible and, hence, 
the limiting process Y ( t) depends only on r. So, the choice of the 
backbone is for technical reasons only. 

The proof of the theorem goes along the line of [DH1,2], and we 
regard our model as a perturbation of Solid-on-Solid(SOS) model. This 
SOS model corresponds to the ensemble of (site) self avoiding paths in 
[O,L] x Z starting from (0,0) and ending at a site in {x1 = L}, which 
do not go back in the horizontal direction. Let us call such a path an 
SOS path. There are no {Aa}'s for the SOS model. 
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An SOS path will be cut into simple polymers. A simple poly­
mer is obtained from intersection of an SOS path with a vertical line 
{ x 1 = j} for some 1 ~ j ~ L, shifted so that its starting point is at 
height zero. So, it has a form {(j,O), (j, 1), ... , (j, k)} for some k ·~ 0 or 
{(j, 0), (j, -1), ... , (j, k)} for some k < 0. 

Let 
Q(() = 

E":sim.ple polymer 
startinf! from (0,0) 

where k(() and 1(1 are the height of the endopoint of (and number of 
sites in(, respectively. Then 

L e~'(k(r)W(r) = Q(()L. 
r:SOS path in [O,L]xZ 

We would like to show that 

has a form; 

(1.10) 

Q(()-L L el-'(k(r)w(r) 

rES£ 

r 

Il•··· ,IrC[O,L]; j=l 
disjoint intervals 

which admits a cluster expansion, and is equal to eLcpL(() for some func­
tion <PL analytic in(. Further, we need that the second derivative in (of 
<{; L is sufficiently small in absolute value compared to the second deriva­
tive (in () of ln Q in order to show the non-degeneracy of the covariance 
of the limit process Y(t). 

These two points, i.e., a) existence and analyticity of the free energy 
and b) non-degeneracy of the limiting covariance are to be checked de­
pending on our model. Remaining arguments are the same as in [DH1,2], 
and we present them for the sake of completeness. 

Finally, recent progress of understanding the fluctuation of interfaces 
provides us a beautiful and systematic approach using the renewal theory 
([ Ioffe ], [KH] ). For our problem, it seems also possible to follow this 
new line. However, what we have to check are the same, and at this 
stage we are not able to present our result in a compact form following 
this general approach. 

Acknowledgement. The authors thank D.Ioffe for many valuable com­
ments and stimulating discussions. He pointed out that this approach 
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is possible for the continuum Widom-Rowlinson model, which should be 
true, but we have not completed the whole story, yet. 

§2. Local limit theorem 

We will first show the existence of the limit (1.8) and its analyticity. 
Let r E SL, A(r) = (0, 0), B(r) = (L, k(r)) be its starting and ending 
points. Let 1r(r) be the backbone of r connecting A(r) with B(r). We 
decompose r \ 1r(r) into connected components { Cj} ;=l. As in [DH2] 
we expand 

Then 

(2.1) 2: eJL(k(r)w(r) 
rESL 

00 

=2: 
k=-oo ?r;(O,o)-(L,k) Cl•··· ,C8 ;co7npatible Alt-··At; 

self-avoiding Cv i "'r, Cvnw=0 Aaisconnected 
1rCAL,oo 1r;backbone of 1rUC1U ... UC8 Aa i1rUC1U ... UC8 

t 
eJLCke-JLI1TI+N(1r,Cl,··· ,c.) ln2-JL L:~=l ICvl II ( e-<P(Aa) - 1), 

a=l 

where N(1r, C1. ... , Cs) denotes the number of holes of 1r u u~=1C11 • 

polymers 
Defining polymers is to cut the separating contour r into elementary 

pieces according to the additional information of {Aa}· A simplest way 
to do it would be to cut 'Y at lines { x1 = £ + ! } of dual lattice such that 
they intersect only one edge of r and intersection with edges of A"' 's 
is empty. But the resulting pieces, say polymers, do interact. Even a 
"simple polymer" can interact with some polymers. 

For example, a part of r like Fig 1 will be separated into two parts: 
one having C shape and one point to the right of it. If instead of one 
point, there comes a simple polymer of height three to the right of C, 
then they are put together and there is no natural way to cut them (Fig. 
2). 

Thus, in a natural way of cutting procedure, r will be cut into 
interacting polymers. This causes us to introduce a polymer chain below, 
working with which we can use usual cluster expansion. The idea is to 
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I ooo--
0' --oo: 

Fig. 1 

000 
0 0 

--ooo--
Fig. 2 

treat a cluster of polymers interacting each other possibly through simple 
polymers which are at neiboring sites of such 'active' polymers. 

Let i ~ f be positive integers. A polymer e with base [f, f] is a 
collection e = ('y, C1, ... , Cs, A1, ... , At) such that 

(a) 'Y is a self-avoiding path in {i ~ x1 ~ f} starting from (i, 0) and 
ending at a point (f, k) in {x1 = f}. Here, we understand 'Y as 
an edge set. 

(b) { Cv} ~=l is a compatible family of connected subsets of { x E 

AL,ooi i ~ x1 ~ f} such that 
(b-1) Cv n V('y) = 0, where V('y) is the set of vertices in 'Y· 
(b-2) Cv U V('y) is connected. 
(b-3) 'Y is the backbone of 'Y u C1 u ... u Cs with starting point 

(l,O) and endpoint (f,k). 

(c) {AaJ~=l is a collection of connected subsets of {x E AL,oo;i ~ 
x 1 ~ f} such that 

Besides these conditions, we need a technical condition for a polymer. 
This condition is to subtract 'simple polymers' from the phase separating 
contour r as much as possible. 

An edge e is called an edge of e if 
e E 'Y U £(u~=l Cv U U~=l Aa) U £('y, U~=l Cv U U~=l Aa), 

where £(U~=1Cv U U~=1Aa) is the set of nearest neighbor edges in 
U~=l Cv U U~=1Aa, and £('y, U~=1 Cv u u~=1Aa) is the set of edges that 
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connect 'Y with U~=1Cv U U~=1Aa. An edge e = {x, y} of e is not ad­
missible if it is a horizontal edge in £('Y, U~=1Cv U U~=1 Aa), such that 

(1) The left vertex x is in a connected component D of U~=1 Cv U 
U~=1Aa and the right vertex y is in V('Y), 

(2) further, there exists a horizontal edge e' = {x',y'} of e such that 
x' E V('Y) andy' ED, where x' is the left vertex of e'. 

Other edges of e are admissible. Also, we identify an edge { x, y} of 
Z2 with the line segment connecting x and y. Now we introduce the 
remaining condition (d) for a polymer e. 

(d) If i < f, then for i:::; j < f, j E N, the line fj = {x1 = j + H 
intersects at least two admissible edges of e. 

We call 'Y the backbone of e. For two disjoint self-avoiding paths 'Y1> 'Y2 
such that the starting point of "(2 is nearest neighbor of the endpoint 
of "(1 , we can define the concatenation "(1 o "(2 of these paths by simply 
connecting them. 

Let e = ('Y, Cb ... , Cu, A1, ... , Av) and e' = ('Y', 0{, ... , C:V, Ai, ... 
, A~) be two polymers with bases [i, f] and [Z', f'] (i:::; Z'), respectively. 
We say that e and e' are compatible if either of the following conditions 
holds; 

(1) f + 1 < i', 
(2) Z' = f + 1, the backbone of 

f' := "(UC1 U ... UCuU('Y' +(0, k('Y)))U(C~ +(0, k('Y)))u ... u(C:V+(O, k('Y))) 

is the concatenation 'Yo ('Y' + (0, k('Y))), and connected compo­
nents of the set f' \'Yo ('Y' + (O,k('Y))) are {Cl>··. ,Cu,C~ + 
(0, k('Y)), ... , C:V + (0, k('Y))}. Here, k('Y) is the hight of the end­
point of 'Y· 

The family {ep};~~ is compatible if eP and ep' (p -1- p') are compatible. 

Let 1r be a self-avoiding path in AL,oo connecting (0, 0) with (L, k(rr)), 
{c .. } ~= 1 be a compatible family of connected subsets of AL,oo such that 

(1). Cv i rr and Cv n rr = 0, 
(2) 1r is the backbone of V(rr) u U~=1 c ... 

Let also {Aa}~=1 be a collection of connected subsets of AL,oo such that 
Aa i 1r U U~=1 Cv for each a. We say that the line fj = { x1 = j + ! } 
(0:::; j:::; £-1) is a cutting line of (rr, {Cv}~=1 , {Aa}~=1 ) if lj intersects 
only one admissible edge of (rr, {Cv} ~= 1 , {Aa}~=1 ). 

Let fo < fil < ... < fin < fin+l = fL-1 be all the cutting lines 
of (rr, {Cv}~= 1 , {Aa}~=1 ). For each m E {0, 1, ... ,n + 1}, there is a 
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unique edge em= {Bm,Am+l} of 71' which intersects Cjm· Let "'fm be the 

portion of 71' starting from Am and ending at Bm. Also let {C~m)}:::) 
~t~ s t 

and {Aa }a=1 be the set of elements of {Cv}v=1 and {Aa}a=1 such 
that they are subsets of [jm-1 + 1,jm] X (-oo,oo) n Z2 . Then Am= 
Um-1 + 1,p) for some p E Z. Thus we obtain the m-th polymer ~m by 
setting 

_ _ (m) _ s(m) (m) _ t(m) 
~m- bm (O,p), {Cv (O,p)}v=1 '{An (O,p)}a=1). 

By definition, {~o, 6, ... , ~n+1} are compatible. 
For a polymer ~m = ("Ym, {C~m)}, {A~m)} ), let km = k(~m) = k("'tm) 

be the hight of the endpoint of the self-avoiding path "Ym· Then the 
hight k(11') of the endpoint of the original path 71' is given by 

n+1 

k(11') = L k("'tm)· 
m=O 

v 

(2.2) \II(~) = e-1-'i"YI+N*('y,Cl, ... ,Cu) ln2-Jt L:~=l ICvl X II (e-<P(Aa)- 1), 

a=1 

Where 

N("Y, C1, ... , Cs) 

+ Nl("Y,C1, ... ,Cs)+Nr("Y,C1,· .. ,Cs) 

and N1("'1, C1 , ... , Cs) is the number of new holes created by V("Y) U 

U~=1 Cv and the line { x 1 = f - 1}, where base(~) = [f, f]. Similarly, 
Nr("Y, C1, ... , Cs) is the number of new holes created by V("Y) U u~=1 Cv 
and the line {x 1 = f + 1}. 

A polymer~ is called simple if base(~) is one point and~= ("Y, 0, 0). 
Thus, the weight \II(~) is given by \II(~)= e-Jtbl. A polymer~ is called 
decorated if it is not simple. 

A decorated polymer~ = ( "'(, { Cv}, { Aa}) with base(~) = [f, f] is said 
r-active if there exists a simple polymer 6 = ("'11 , 0, 0) with base(6) = 
{f + 1} such that 6 is incompatible with ~ or the concatenation of "Y 
and "'(1 together with UvCv produces a new hole. ~ is said l-active if 
there exists a simple polymer 6 = ("'12 ,0,0) with base(6) = {f- 1} 
such that 6 is incompatible with ~ or the concatenation of "YZ and "Y 
together with UvCv produces a new hole. If~ is both r-active and 1-
active, we call it bi-active. A polymer chain is a family of decorated 
polymers C = { 6, ... , ~m} such that 
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(1) {6, ... ,~n} are compatible. 
(2) If base(~u) = [Zu, fu], 1 ::::; u ::::; n, then lu+l = fu + 1 or fu + 2 for 

every u. 
(3) If lu+1 = fu +2 for some u, then ~u is r-active and ~u+l is 1-active. 

Let C1 and C2 be two polymer chains. We say that C1 and C2 are compat­
ible if c1 u c2 is a compatible family of polymers, but it is not a polymer 
chain. 
For a polymer chain C = {~1 , ... , ~m}, let 

base( C)= base(6) U ... U base(~m)· 

For a polymer ~, we define 

~(~; () := e!L<.:kW\[f(~)Q(()-Ibase(~)i, 

where lbase(~)l = f- f + 1 when base(~)= [f,f], and Q(() is the gener­
ating function of the hight of the endpoint of a simple polymer ; 

00 

Q(() =e-lL L e!L(ke-lki!L. 
k=-oo 

Also, for a polymer chain C = {~1, ... , ~m}, we put 

m m-1 

F ~(C; () := II ~(~u; () X Ji(6)Jr(~m) II J(~u, ~u+I), 
u=1 u=1 

where for base(~) = [f, f] and base(6) = [c, d] with c > f, Ji, Jr, J are 
defined in the following way. 

_ L~((; ()2N(e',~)-N1 (~,c1 , ... ,Cs) if~ is 1-active 
Ji(~) - ~'c~ 

{ 

f-1 

1, otherwise, 

f-1 
where L: means over simple polymers e = b',0,0) with base {i -1} 

ec~ 

compatible with ~, and N (e, ~) is the number of new holes created by 
the concatenation of 'Y' and 'Y together with U..,C..,, which is not larger 
than Nz(rr, C1, ... , Cs). Similarly, 
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and 3(~,~1 ) is defined in two cases. 

(i) If c = f + 2, ~is r-active and 6 is 1-active, then 

f+l 
3(~, 6) = L ~(e; ()2N<e.e')+N(e',ell-Nrb.Cl, ... ,c.)-NzbdJl,. .. ,c.1 ), 

e'ce,el 

(ii) If c = f + 1, and~ and~' are compatible, then 

3(~, 6) = 2N(e,6)-Nr("Y.Cl.· .. ,C.)-Nz("Yl.Cl, ... ,0. 1 ). 

Let ICL be the set of all decorated polymers with base in [0, L], and CPL 
be the set of polymer chains with base in [0, L]. Then we have 

r 

(2.3) II F ,p(Ci; (). 
i=l 

Lemma 2.1 Let 8 > 0 be given. Then there exists I-L4 > 1-Lo such that 

for 1-L > /-L4 , the free energy It'(() in (1.8) exists and is analytic in ( if 
Re~" < 1- §_ '> p,' 

Proof. It is sufficient to show that 

1 
- ln 
L 

Cl•··· ,CrEC'PL; 
com.patible 

r 

IlF,p(Ci;() 
i=l 

converges as L ---+ oo and its limit if'(() is analytic for Re( < 1 - ~· 
Then we have 

It'(() =if'(()+ ln Q((), 

which is analytic in this region. 
In order to verify the convergence and analyticity, we have to check 

that there exist functions c*, d* : CP = { C; polymer chain} ---+ [0, oo) 
such that 

(2.4) L ec*(C)+d*(C)IF,p(C; ()I ~ c*(Co) 
CEC'P;CiCo 

for any polymer chain C0 and for any ( E C with Re( < 1- ~ (see 
e.g. [KP]). For a decorated polymer ~ = ('y, { Cv}, { Aa}), we put c( ~) = 
3lbase(~)l and 

d(~) = {(1-L -I-L4)ibase(~)l + ~!rl- (1-L -I-L2- 1), if !base(~) I 2 2, 
(1-L -I-L4)Ibase(~)l + ~!rl, if !base(~) I= 1. 
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Then we set 

c*(C) = Lc(~), d*(C) = Ld(~) 
EEC EEC 

The constant 114 is specified later. We will first show that 

(2.5) L ec(E)+d(E)I~(~;()I::::; c(~o) 
EEICL;EiEo 

for every polymer ~0 . Note first that 

(2.6) 

where Nv('-y) is the number of vertical edges in"(, and Nh('-y) is the num­
ber of horizontal edges in 'Y· Also, by definition of decorated polymers, 
if base(~) is one point, then 

s t 

(2.7a) Nh('-y) + L ICvl + L IAal;::: 1, 
v=l a=l 

since either {Cv} or {Aa} is non-empty if base(~) is one point. If 
lbase(~)l ;::: 2, then we have 

s t 

(2.7b) Nh('-y) + L ICvl + L IAal;::: 2(lbase(~)l-1). 
v=l a=l 

Let 'Y be a self-avoiding path such that it is the backbone of some deco­
rated polymer with base I = [f, f]. We estimate the following sum. 

G('-y) := 
E;'Y is the backbone of E 

From (1.4), I~~>(A)I::::; e-CJL-JLo)IAI < 1 and therefore we have 
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Using this, if i = f, i.e., III = 1, then we have N*('y, cb ... , Cs) = 0 
and 

(2.8) G('y):::; e-JLI'YieJLk('y)Re( L e-JLEv ICvl 

{Cv };Cv i-y 

X 

{Aa};Aa i-yUC1U···UC8 

:::; e-JLI'YI+JLk('Y)Re(-(JL-JL2 -1) 

X 

X 

The summation over { Aa} is estimated as follows. 

L e-(JL•-JLo) Ea IAal 

{Aa};Aa i -yUC1U···UC8 

00 1 
< " " " e-(JL•-JLo) Ea IAal - L,.. t! L,.. L,.. 

t=O A1 i-yUC1U···UC;. At i-yUC1U···UCs 

:::; exp {4h· u 01 u ... u Csl L e-(JL•-JLo)IAI} 
A30;connected 

= exp { (bl + ~ ICvl)91(f.1.2,f.J.O)} · 

Since there exist constants Kb"' > 0 such that the number Nn of con­
nected sets of n points in Z2 which contain the origin is bounded as 

we know that 91(f.1.2,f.to) = 4EA::lO;connectede-(JL•-JLo)IAI goes to zero 
exponentially fast as f.l-2 ---+ oo. Thus, summing up the RHS of (2.8) over 
{Aa}'s we obtain 

G('y) :::; e-(JL-91(JL•,JLo))I'YI+JLk('Y)Re( 

{Cv};Cv i-y 

<e- (JL-91 (JL• ,JLo)-92 (JL• ,JLo)) I'YI+JLk( -y)Re(- (JL-JL• -1) 
- ' 



The Dobrushin-Hryniv theory for the Widom-Rowlinson model 247 

h ( ) - 4~ -(JL2-Yl(JL2,JLo})!c! If • z' · w ere 92 /L2, /Lo - LJC30;connected e · r > ' 1.e., 
Ill ~ 2, then since N*('y, Ct. ... , C8 ) ~ Nh('y) + L:.., IC..,I, we have from 
(2.7b) as in (2.8), 

{C.,};C., i-y 

X e-(JL-JLo-1) Ea !Aal 

{Aa};A"' i7UC1U ... c. 

~e -JL!'Y!+JLk( 7)ReC: -(JL-1'2 -1) (2\I\-Nh ( 7) -2) 2N h ( 7) 

X L e-(JL2-ln 2) 2:., \C.,\ 

{C.,};C.,i'f' 

X 

{Aa}iAa i 7UC1u ... uc. 

~e -(JL-Yl (JL2,JLo)) !'Y!+JLk( 7 )ReC: -(JL-1'2 -1 )(2\I!-Nh ( 7) -2) 

x L e-(JL2-Yl(JL2,JLo)-ln2) 2:., \C.,\eNh('Y)ln2 

{C.,} 

~e -(JL-Yl (JL2,JLo) -ga(JL2,JLo )) !'Y!+JLk( 7 )ReC: 

X e-(JL-JL2-1)(2\I\-Nh('Y)-2)+Nh('Y) In 2 

' 
h ( ) - 4 ~ -(JL2-Yl(JL2,JLo)-ln2) ur take uf W ere 93 /L2, /Lo - LJC30;connected e · vve /L2 s -

ficiently large so that 91 (IL2, fLo), 92 (/L2, /LO) and 93 (IL2, fLo) are all smaller 
than£. 

Assume that Re( < 1 - ~- Then since Nv("Y) ~ lk('r)l, from (2.6) 
we have 

(2.10) 

if Ill ~ 2, and 

(2.11) 

if III= 1. Since c(~) and d(~) depend only on the backbone"(, we write 
them c( 'Y) and d( 'Y). Then 

(2.12) 
e;'Y is the backbone of e 
= G('y)ec('Y)+d('Y) 

< e- !Nv ('Y)-(JL2- ¥ )(Nh('Y)+l) e-(JL+JL4-2JL2-5)\base('Y)\ 
- ' 
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where base(!) = base(~) for any ~ such that 'Y is the backbone of ~· 
Therefore we have for a fixed interval I, 

(2.13) L G('Y)ec(-y)+d(-y) 

base('Y)=I 

:::;e-(l'+l'c21'2-5)III L e- ~Nv('Y)-(!'2-¥ )(Nh('¥)+1). 

base('Y)=I 

To estimate the RHS of (2.13) we separate 'Y into fragments following 
the idea of [DKS]. Let 'Y = {x0 , x1 , ... , xn} be a self-avoiding path with 
base('Y) =I. Let jo = 0, and fori ~ 1, let 

ji := min{j > ji_1; {xj_1,xj} is a horizontal edge}. 

Each vertical part {xj;_uXj;_ 1 +1•··· ,Xj;-1} of7 with the direction of 
the exit vector {xj;-I,Xj;} is called a fragment. For a fragment f = 
{xo, X1, ... , xp} with exit direction e(f), we define 

Then the decomposition of 'Y into fragments {/1, ... , fr} leads to the 
identity 

r 
e-~Nv('Y)-(1'2-¥-)(Nh('Y)+l) = 11 W(IJ). 

j=1 

Therefore we have 

oo r L e-~Nv('Y)-(!'2-¥-)(Nh('Y)+l) = L L 11 W(IJ) 

-y;base('Y)=I r=III fl, ... ,Jr j=1 

:::; f (2 f e-~lkl)r X e-(1'2 ~¥-)r 
r=III k=-oo 

R(J.L2, 8)111 
1- R(J.L2,8)' 

if J.L2 is sufficiently large. Thus, if Re( < 1- ~ and J.L > J.L2, where J.L2 is 
sufficiently large, we have 
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Since 

(2.14) IQ(()I - e-~-'1 sinhf..L I 
cosh f..L - cosh f..L( 

e-P tanh f..L2 _,_, > := e r r-3 

- 1 + e-8 

if Re( < 1 - ~ and f..L > f..L2, we have 

(2.15) 2: j~(e; () jec(e)+d(e) ~ e-(pr2P2-P3-5)III R(f..L2, 8) 111 . 
base(e)=l 1- R(f..L2, 8) 

Let f..L4 > 2f..L2 + f..L3 + 5. For f..L > f..L4 we will estimate the RHS of (2.5). 
Fix eo and write base( eo) = [f, f]. ·Then we have 

"'i~(e; () iec<el+d(e) ~ "' "' R(f..L2, 8)1II 
L...i _L...J L...i 1- R(f..L2, 8) 
eieo xE[!-1,7'+1] 13x 

= (f - f + 3) ~ kR( 8)k 
1 - R( 8) L...i f..L2' 

f..L2' k=1 

~ 3lbase(eo)l R(f..L2' 8) 3 ~ c(eo). 
(1- R(f..L2, 8)) 

if f..L2 is large. Thus, (2.5) is proved. From (2.5) to (2.4), we argue in the 
following way. We call a family of intervals h = [fl> f1], ... , In= [ln, fn] 
linked intervals iffor each 1 ~ u ~ n, f u < lu+ 1 ~ f u + 2 holds. The base 
of a polymer chain forms linked intervals. For a fixed polymer chain Co, 
let [base( Co)] = [f0 , f 0 ] be the smallest interval including base(C0 ). Then 
noting that the distance of base( Co) and base( C) is less than 2 if C0 and 
C are incompatible, we have 

I: IF .r,(C; ()lec"(C)+d*(C) 

CiCo 
00 

< 
xE[lo-2 fo+2] n=1 h, ... ,lnC[O,L];U/,3x el>··· ,enEX:::L; 

' linkedintervals, base(e,)=l.,,1~u~n 

n n-1 
II [ ~(eu; ()ec<e .. )+d(e .. )] .:Jz (6).7r(en) II .r(eu, eu+l) 
u=1 u=1 

By definition and (2.14), there exists f..La > 0 = f-L3(8) such that l.7rl, 
I.:Jzl, 1.71 are all bounded bye~-'; from above if Re(() < 1- ~- Therefore 
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from the estimate (2.15), we have 

n n-1 
L II [~(.;u; ()ec(e,.)+d(e,.)].1i(6)3r(.;n) II .7(.;u,eu+1) 

e1o ... ,enEICL; u=1 u=1 
base(e,)=1, ,1::;u::;n 

n • R(u 8)11ul < II e-(1'4-21'2-!'s-21'3 -5)11,1 ,-2, . 

- u=1 1 - R(M2, 8) 

Assuming that M4 > 2M2 + M3 + 2M3 + 5, we have 

L JF >ir(C; ()Jec*(C)+d*(C) 
CiCo 

A A oo n n R(M2, 8)11,1 
::;(ro -lo + 4) L L L II 1- R(M2 , 8) 

n=1 u=1 11>··· ,1nC[O,L];1.,3x, u=1 
linked intervals 

A A R(M2, 8) ~ ( 2R(M2, 8) )n-1 

::;(ro -lo + 4) (1- R(M2,8))3 ~ n (1- R(M2,8))2 

< (fo- lo + 4) 
- 2 

if M2 is large. Since L:eECo Jbase(.;)l ~max Hfbase(Co)], 1 }, the RHS of 
the above inequality is not larger than c*(Co). 

This allows us to apply general theory of cluster expansion so that 
there exists a function 

FI : 'PJ(C'P) X c -t c 

such that FI is analytic for Re( < 1 - ~ and it satisfies 

(2.16) 

and 

(2.17) L IFI(~; ()ied*(6.) :::; c*(Co), 
6-iCo 

where 'PJ(C'PL) is the collection of all finite subsets of C'PL and d*(~) = 
L:cE6. d*(C). If~ is decomposed into two disjoint subsets ~1 and ~2 
such that {C1,C2} are compatible for every pair C1 E ~b C2 E ~2, then 
FI(~; () = 0. We call ~ E 'PJ(C'PL) a cluster if there are no such 
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decomposition ~ = ~1 u ~2 . Also, we note that Fr(~; () is invariant 
under horizontal translation of~- For ~ E PJ(CP), put base(~) = 
Uce.o.base(C). Then (2.16) and (2.17) implies that the limit 

<P(() = £~~ ~ ln L IT F .r,(Cu; () 
C., ... ,CrEC'PL u=1 

L: Fr(~;() 
<l.E"P f (C"P);(base(<l.)[=(O,k] 

for sotne k2:0 

exists and analytic for ( < 1 - ~ if IL > /-L4. 

free energy for a joint distribution 

Let q 2:: 1, and let 0 < t1 < · · · < tq+l = 1. For ( = ((o, (1, ... , (q+l) 
E Cq+1 let -

' 
(2.18) 

if the limit exists. Here, the random vector xiq) (h, ... , tq+l) is defined 
by 

(2.19) 

'(q) _ (a(1r(r)) (lLhJ) (lLtqJ) ) XL (t1, ... ,tq+1)- L ,XL -r;- , ... ,XL -r;- ,X£(1) . 

With a slight change of the proof of Lemma 2.1, we can prove existence 
and analyticity of the limit <p(q)((; t 1 , ... , tq+l)· To be more precise, we 
decompose a( 1r(r)) into terms c~rresponding to polymers appearing in 
the decomposition of r. Let ~ = ( 'Y, { Cv}, { Aa}) be a polymer with base 
[a, b]. The area area(~) is then defined by 

area(~) =#{x E [Z,f] X [-M,M] n Z2*; X is below"(} 

- #{x E [f, f) X [-M, M] n Z 2*; xis above"(}. 

This is independent of large M. For arE SL, denote V(r) all polymers, 
which obtained through any triple (7r(r),{Cv},{Aa}) with its cutting 
lines, where { Aa} is taken over all families of connected sets such that 
Aair for each a. We have 

(2.20) a(1r(r)) = L {area(~)+ k('Y)(L- f(~))}, 
€EV(r) 
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where base(~) = [i(~), f(~)] for~ E V(r). Therefore, 

.(·Xiq)(tt.··· ,tq+l)=(o L {are;(~) +k('Y)(1- f~))} 
~EV(r) 

. q+1 

+ L (i L 1[r(~)<Lt;]k(/') 
i=1 ~EV(r) 

q+1 

+ L (i L 1[i(~)~Lt;~r(~)Jk(l'; tiL), 
i=1 ~EV(r) 

where k( l'i tiL) is the maximal hight of the intersection of polygonal line 
I' and the vertical line { x 1 = tiL}. 

Proposition 2.2. Let J.-L > J.-L4 • If_( satisfies 

(2.21) { max{IRe((o + (qt1)1, IRe(q+II}:::; 1- ~, 
IRe(il :::; 4 (q+1)JL, i = 1, 2, ... , q, 

then the limit cp(q) (_(; h, ... , tq+l) exists and is analytic in _(. 

Proof Let ~be a polymer with base [i(~), f(~)] C [0, L]. We decompose 
~into fragments {fp}:=1. The hight of a fragment f = {x1, ... ,xu} is 
defined by 

h(j) =X~- X~ 

and the position of f is given by 

(f) - 1- 1 pos - x1 - xu. 

Then we have as in [DH2], 

p 

area(~)= L h(fp)(r(~)- pos(fp)). 
p=1 

are;(~) + k(l') (1 _ r~)) = t h(fp) (1 _ posifp)). 
p=1 
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Thus, we have 

I [ area(~) r(~) ~ 
Re (o( L + k(')')(l- L )) + 8 (il[f(~)<Lt;Jkb) 

i=l 

i=l 

Set 

X(L)((· ") _ X(L) ((· ") 
_, ~ - tl,··· ,tq+l _, ~ 

area(~) r(~) ~ 
=(o( L +k('-()(1-L))+L._..,(il[r:(~)<Lt;Jk(')') 

i=l 
q+l 

+ L(il[f(~):SLt;:Sf(~)]k(')'; Lti)· 
i=l 

As before, let 

r(O 

(2.22) II Q-1((£(£)), 

R=l(~) 

where(£(£) = (o(l-f )+ L:i~f (il[t:SLt;]· For simplicity we write~(~;~) 
for~(~;~; t1, ... , tq+I) for the moment. Then for a polymer chain C = 
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{6, ... , em}, we define Fq,(C;~) = F q,(C; ~' t1, ... , tq+l) analogously to 
Fq,(C; (). Namely, 

m m-1 

Fq,(C;Q =II ~(eu;Q.Ji(q)(6).1;q)(em) II .1(q)(eu,eu+I), 
u=l u=l 

where .Ji(q), .1}q) and .J(q) are defined as .Ji, .1r and .1 by replacing 

~(e; () with ~(e; (). If ( satisfies (2.21), then Q((L(.e)) is analytic in ( 
and satisfies the estimate -

IQ((L(.e))-ll:::=;e~-'+1-'a .e=0,1, ... ,L 

if f-L > f..L2 • Therefore as in the proof of Lemma 2.1, for f-L > t-L4 we have 
convergent cluster expansion: 

(2.23) 
1 
-ln 
L 

such that F~(D.;~,t1 , ... ,tq+l) = 0 unless Do is a cluster, and (2.17) 
holds uniformly in ( satisfying (2.21). So, if (2.23) converges uniformly 
in ( satisfying (2.2:1), then the limit is analytic in this region. 

-For an interval I C [O,L], set 

m 

II F q,(Ci; ~' ti, ... 'tq+l)· 
C1o ... ,Ctn; compatible i=l 
base(Ci)Cl,l~i~m 

Then by cluster expansion we have 

lnS(I;~,tb··· ,tq+l) = L F~(D.;~,tt, ... ,tq+l) 
.C!.EPJ (CP);base(.C!.)CI 

if~ satisfies (2.21), where base(D.) = UcE.o.base(C). Writing 

(2.24) q,(J; Q := L F~(D.; ~' tb ... 'tq+l) 
.C!.EP1 (CP);[base(.C!.)]=J 

for an interval J C I, we obtain 

ln S(I; ~' t1, ... , tq+l) = L q,(J; ~). 
JCI 
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From Mobius' inversion formula, we also have 

(2.25) ci>(J;~) = ~)-1)!JI-I11lnB(i;~,t1 , ... ,tq+d· 
lcJ 

Let us also define 

cl>o(J; () := 
I:!.E'Pf(C'P);[base(t!.)]=J 

where FI(D.; () is given in (2.16) through cluster expansion. Then by 
(2.17) and the definition of d*(D.), ci>(J; () and c1>0 (J; () satisfy the fol-
lowing estimate. -

(2.26) max{lci>(J; ~)I, lci>o(J; ()I} :::; 3e-(tt-2tt4+tt•+1H 1ill 

if J.L > 2J.L4- J.L2 - 1, IRe(l :5 1- ~ and~ satisfies (2.21). 

Lemma 2.3. Let J.L > 2J.L4 - J.L2 - 1. If~ satisfies (2.21), then 

(2.27) 2~~ i L lci>(J;~)- cl>o(J;(L(f))l = 0, 
J=[l,r]C[O,L] 

Lemma 2.3 implies that 

lim ..!:_ ~ ci>(J; () = lim -£1 ~ cl>o(J; (L(f)). 
L-+oo L L....t - L-+oo L....t 

J=[l,r]C[O,L] J=[Z,r]C[O,L] 

Note that for (satisfying IRe(l < 1- ~' 

which implies that 

(2.28) 

<P(() = 
J=(-k,O] 

for so1"ne k2:0 

cl>o(J; (), 

uniformly in ( satisfying (2.21). As a result of Proposition 2.2 and 
Lemma 2.3, we obtain 
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Corollary 2.4 For J.t > f..t4, 

(2.29) 
1 q+1 

cp(q)(~; h, ... , tq+l) = 1 (<P + lnQ) ((o(1- x) + ~ (i1[o,t;J(x))dx 

if~ satisfies (2.21). This function is analytic in~ in this region. 

Proof of Lemma 2.3. We first introduce an intermediate weight {if(~;~) 
by 

{if(~;~) 

[ area(~) f(~) ) ~ }] 
:= w(~) exp J.t{ (o ( L + (1- L )k('y) + t:t (i1[r(e)<Lt;]k('Y) 

b(e) 

X II Q-1((£(£)). 
l!=a(e) 

It is easy to verify that {if(~;~) also satisfies (2.5) if~ satisfies (2.21), 

and therefore we have corresponding <i> by 

ln 
m 

clt••• ,C7ni C0'1npatible p=l 
base(Cp)Cl, l:=;p::;m. 

JCI;interval 

for every interval I C [0, L]. <i> also satisfies the estimate (2.26). By 
the Mobius inversion formula <I>(J; () = <i>(I; () if I contains none of 

{Lti}j!i. This means by (2.26) that -

1 "" -(2.30) E.m
00 

L L..J I <I>( J; ~) - <I>( J; ~)I = 0. 
JC[O,L] 

For s E [0, 1], let us define 

and let <i>s be the corresponding function defined through cluster expan­
sion. Then we have 
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Like (2.25) we have 

~s(J;_Q = (-1)1JI-II'llnB(I'), 
I' CJ;interval 

where 
m 

B(I') := 
Cl·---,CrnEC'P p=1 

base(Cp)Cl 1 , l~p~m 

For a polymer chain C with base(C) C I', we have 

lolnB(I')I { 
oF- (C) ::::: exp 

'lis ~iC; 
base(A.)CI 1 

:::; exp{ c* (C)e-C~'- 2~'4 +~'2 + 1)}. 

Therefore for a polymer~ with base(~) C I', we have 

1 a1~s(I')I 
8\ll s(~) 

< 
CEC'P,C3,;, 
base(C)Cl 1 

n,m~O {Il·--- ,In}; Un+l·--- ,In+rn}; 
!1•··· Jn,base(~) form base(e),In+l•··· ,In+m forrn 

linked intervals linked intervals 

n+m 

X II ( 2:.:: l~s(~p;,()led(~p)+c(~p)) 
p=1 base(~p)=lp 

:::; 4 exp{ c(~)e-C~'-2~'4 +~'2+ 1 ) }, 

if /--l2 is sufficiently large. This implies the uniform bound 

(2.32) I 0~8 ( J; ,()I :::; 4IJI 2 exp{ 3lbase(~) le-C~'-2~'4 +1'2+ 1)} 
o'lls(~;,() 

for s E [0,1], ~ E K(J) and (satisfying (2.21). Let J = [Z,f] be an 
interval in [0, L] with IJI :::; (ln-L )2 and Lti ¢:_ J for any i = 1, ... , q + 1, 
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and let e E K(J) be such that Nv(e) ::::; (ln£)2 • Let K > 0 be an 
arbitrary positive number and we fix it. We assume that ~ satisfies 

(2.21) with llm(ol ::::; K. By analyticity, fori::::;£::::; f we have 

(ln£)2 
logQ((L(f)) -logQ((L(£))::::; Const.-L-. 

uniformly in ~ in this region. From this and the fact that 

1-L are~( e) + t-L( f- f~) )k('y) ::::; ~ ~ lh(f)l(f- pas( e)) 

(ln£)2 
::::; t-L-L-Nv(e)::::; t-L(ln£) 4 /L, 

using the inequality lez - 11 ::::; lzleizl we have 

(2.33) lw(e; ()-: ~(e; (L(f))l 

lw(e; ~)I 
_

1 
Q((L(f))lbase(e)l [ area(e) f_ _ r(e) ] _ I 

- r(e) exp t-L(o L + t-L(o(L L )k('y) 1 
nf=i(e) Q((L(£)) 

(ln£)4 
:::;Const.-L-. 

The constant does not depend on L or ( satisfying llm(ol ::::; K and 
(2.23). Hence we have -

l<i>(J; ~)- <I>o(J; (L(f))l 

::::; Canst. L 

+ 

~; base(~) C J 
Nv (~)S(ln L) 2 

e;base(E)CJ 
Nv(0~(1nL)2 

:=I +II. 
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Since IJI :::; (lnL)2 and (satisfies (2.21), we can bound I and II in the 
following way. -

I:::; Const.IJI3{ L l~(~;~)lec(~)+d{e)} (lnf)4 
~; base(<)=[O,k] 
for satne k2::0 

= o((ln210 ), 

II:::; IJI2e-~{ln£)2 

~; base(~)CJ 

:::; 6(lnL)6e-~{lnL)2. 

Using this and (2.26), we have 

~ _L ici?(J;~)-<I>o(J;(L(r))l 
J=[l,r]C[O,L] 

< 6 "" e-(~-t-2~-t4+J.t2+1H 1 ; 1 l + ~ -£ LJ L 
JC(O,L]; 

IJI>(lnL) 2 
JC(O,L]; 

[J[~(ln L) 2 , 
Lti E J for some i 

1 
+­L 

L lci?(J; ~)- <I>o(J; (L(f))l 
J=[i,r]C[O,L]; 
IJI~(lnL)2, 

Lti ft.J for any i=l, ... ,q+l 

uniformly in ( satisfying (2.21) with Jm(0 ::; K. Since we can take 
K > 0 in an arbitrary way, we proved (2.27). 

the limiting quadratic form 
Let~ satisfy (2.21). We introduce a (q + 1) x (q + 1) matrix VL(~) 

by 

VL(() = - 1-Hess ln "" e~-'~·xt><tlo··· ,tq+l>w(r). 
- p,2L LJ 

rESL 

This is analytic in~ satisfying (2.21). 

Lemma 2.5. Assume that p, > 2p,4 - p,2 - 1 and that ( E Rq+2 and 
~ satisfies (2.21). Then uniformly in ~ and !1. = (TJo, ... , ryq+l) E Rq+2 
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such that I!ZI = 1, 

as L ----t oo, where 

(2.34) V(~) = : 2 Hess 11 
(lnQ + <P)(((x))dx, 

and 

q+1 
(2.35) ((x) = (o(1- x) + L (i1[o,t,J(x). 

i=1 

Further, there exists p,5 > 2P,4 - p,z - 1 such that V(() is uniformly 
positive definite for p, > /-L5· -

Proof. Let p,5 > p,4 + 1 be fixed and let p, > p,5 • It is easy to see that 
lnQ(((x)) is analytic in~ for every x E [0, 1], and 

The uniform convergence of 

to 

± ln L e~-'~·xiq)(t1, ... ,tq+Ilw(r) 

rESL 

11 
(lnQ + <P)(((x))dx 

assures the convergence VL(() ----t V(() by Cauchy's formula. What 
remains to prove is the non-d;generacy-of V((). First, note that for any 
( E R with 1(1 < 1, -

(2.36) __!:_ (ln Q)" ( () = cosh p, cosh p,( - 1 > e-J.L cosh p,5 - 1 
p,2 (cosh p, - cosh p,()2 - cosh p,5 

holds if p, > p,5. 
We prove the lemma in two different cases depending on whether 

l(o + (q+11 and l(q+ll are both small or not. 

Case 1) l(o + (q+11 < 1/5, l(q+ll < 1/5. 
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In this case, we have 

q 

i((x)l :S (1-x)l(o+(q+ll+xl(q+II+ Ll(il 

1 8 
<-+­
- 5 4J.L 

for every x E [0, 1]. By Cauchy's formula, we have 

i=l 

<P"(((x)) =· _!:_ 1 <P(z) dz 
7ri lz-((x)l=t (z- ((x))3 

If lz-((x)l =~,then IRezi < ~ < 1- ~- Therefore by (2.26) and (2.28) 
we have 

00 

I<P(z)l :S 9 L e-(JL-2JL4+JL2+1)n. 

n=l 

Therefore as J.L ~ oo 

(2.37) 

uniformly in x E [0, 1]. Taking J.L5 sufficiently large, we have 

1 e-JL 
J.L2 (lnQ + <P)"(((x)) 2: T > 0 

for J.L > J.L5· 

Case 2) i(q+ll >~or l(o + (q+II > ~-
We assume that l(o + (q+ll > ~- The argument for the case where 

l(q+II > ~is the same. For x E [0, l6 J we have 

q 

i((x)l 2: (1- x)l(o + (q+II- xl(q+ll- L l(il 

1 8 1 
>--->­
- 8 4J.L 10 

i=l 

for J.L > J.L5, if J.L5 is sufficiently large. This means that 

_!_(lnQ)"(((x)) 2: e-!oJL coshJ.L5- 1 
J.L2 4 coshJ.L5 
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for x E [0, 116 ] and f.L > f.L5· Therefore by (2.36) 

r.l. 1 q+1 
Jo 16 2(lnQ)"(((x))(ryo(1- x) + L 1Ji1[o,t,j(x)) 2dx 

0 f.L i=1 

(2.38) 

9 1 q+1 
e-wM coshf.Ls- 11 "" )2 2 -- h (7Jo(1- x) + L..,.1Ji1[o,t,J(x) dx. 
16 . 4 cos f.L5 0 i=1 

Since ( E Rq+2 satisfies (2.21), l((x)l < 1- !6 for every x E [0, 1]. By 
- 1-' 

Cauchy's formula, 

<P"(((x)) = !_ r <P(z) d(. 
7ri Jlz-((x)l=~ (z- ((x))3 

Since the circle {I z- ( ( x) 1· = 2~ } lies entirely in the region { Rez < 1- ~}, 
by (2.26) and (2.28) we have 

(2.39) 111 
: 2 <P"(((x))dxl:::; ~~e-~-'(l+o(1)). 

Thus, by (2.38) and (2.39) V(() is uniformly positive definite. 
'(q) - '(q) '(q) 

Let PL be the distribution of XL (tt, ... , tq+1 ) under PL, and PL,c; 

be given by -

.Pi;~('!l) = EL [ e~-'~·Xiq)(tl> ... ,tq+l) r1 e~-'~':!lPiq) ('!1.) 

for f.L > f.Ls, ~ E Rq+2 satisfying (2.21). 

Lemma 2.6. Let 8 > 0 be small and f.L > f.Ls· Assume that~£'~ E 

Rq+2 satisfy (2.21) and ~L --t ~ as L --t oo. Then, under .Pi;L the 

centralized random vector 

converges weakly to a centered Gaussian random vector y( q) ( tt, ... , tq+l) 

of which covariance matrix is given by V(Q. 

Proof. Let 

Then 



The Dobrushin-Hryniv theory for the Widom-Rowlinson model 263 

where ~ L(~) is given by 

~L(~) = ± ln :l: e~-'~·xi_qJ(tl,··· ,tq+dw(r). 

rESL 

Since ~L satisfies (2.21), so does ~L + J.l~!J.., and we have 

Since 

this term converges to -~77· V(Q!J..· So it remains to show that LRL -+ 0 
as L-+ oo. Formally, RL has the following integral representation. 

(2.40) 
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where for j < k < m, 

Rj,j,j = rJ]_ { cpL(~L ~ ~ej- ~L/)~~+ ~~-=j+l;(~.)rJvev) dej, 
21rz lei (eJ (L, J) (eJ (L,J C .. rr)'flJ) 

"'J"'k 1 ~j r 
Rj,j,k = (27ri) 2 cj (ej- (L,jP lck dek 

x cpL((,L + La=j,k(ea- (L,j)ea + L:;=k+1(;7z)rJ,ee,e) 

(ek- (L,k)(ek- (L,k- (,~)'fJk) ' 

R "'j"'~ 1 dej 1 de 
j,k,k = (27ri)2 Ci ( ej - (L,j )2 Ck <,k 

x <p L ( ( L + La=j,k (ea - (L,a)ea + L,B=k+l ( ~ )rJ,ee,e) 

(ej- (L,j)(ek- (L,k- (,.~)'fJk) ' 

Rj,k,m 'f/j'f/k'f/m 1 de1 1 dek { de 
(27ri)3 Ci (ej- eL,j)2 Ck (ek- (L,k) 2 lc.,. m 

cpL((,L + La=j,k,rn(ea- (L,a)ea + L:;=m+l(~)rJ,ee,e) 
x (em- (L,m)(em- (L,m- (,~)'fJm) . 

Here, Cp is a curve composed of the lower half of the circle { 1eP - (L,p I = 
p }, upper half of the circle {leP- (L,p- ( JL~ )'fJpl = p}, and vertical line 
segments connecting them, and pis a small positive 

number. Let us estimate IR1,1,11. Other terms can be estimated 
similarly. Set 

n . 

1lh(j) := f_L + (ej- (L,j)ej + L 'jy_rJvev. 
v=j+l M 

Then it is easy to see that 

max{IRe(wL(j)o+wL(j)q+l)l, IRe(wL(j)q+l)l}:::; 1- 28 +p(80 ,1+8q+l,j) 
J-t 

and IRe(wL(j)a)l :::; ( 8 ) + p8<> 1·, where 83· k = 1 if j = k and= 0 4q+1J-t , , 
if j =/= k. Note that 

L 

<pL(wL(j)) = cp(wL(j)) + ± 2)nQ(!h(j;£)), 
l=O 
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where 
c q+l 

WL(j;C) := WL(j)o(1- y) + LwL(j)p1[R:SLtvl' 
p=1 

and that 

If p < 8/ 4J.t, then we have analyticity of the integrand in the expression 
of Rj,j,j as in the proof of Proposition 2.2. This is true when <;__L satisfies 
(2.21) and ~j E Cj. Thus, we can assume that I'Pd:!!h(j))l . From this 
we easily obtain that 

IR-. ·I< 2MI77jl3 
J,J,J - p3 

for some M > 0, which is independent of L. This means that LRL = 
O(L - 112 ) uniformly in !1· 

Let gc:; be the density function of the Gaussian vector y(q)(h, ... , 
tq+1 ) give; in Lemma 2.6. 

Proposition 2.7. Let x_iq) = (L- 1Z) X zq+1. For each :J2L E x_iq) and 
<;__L E Rq+2 satisfying (2.21), let 

•- 1 A (q) A (q) 
YL .- !T(:r_L- EL r XL (t1, ... , tqH)). 
- v£ '"-L 

Then we have 
2£(q+4)/2 p_iq)(;r_L)- g£_L (1j__L) ___, 0 

uniformly in :f2L E XL and <;__L E Rq+2 satisfying (2.21). 

The proof is a complete repetition of the proof of Theorem 6.3 in 
[DH2], so we omit it. Let h > 0 and a 2: ~ be such that 

(2.41a) 111 - (1- x)cp1((1- x)(; + (;)dx =a 
J.t 0 

(2.41b) 1 11 - cp'((1- x)(; + (~)dx = h 
J.t 0 
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hold for some ( (0, (i) E R 2 with 

(2.42) 

where cp = ln Q + cj:;. Let also aL > 0 and hL > 0 satisfy 

(2.43a) 
1 BcpL aL 
P, a(o ((L,o, 0, ... , 0, (L,I) = £2 

(2.43b) 
1 OcpL hL p, a(I ((L,o, 0, ... , 0, (L,I) = L 

for some ((L,o, (L,I) satisfying (2.42), and 

For simplicity, we write cp£((0, (I) for cp£((0, 0, ... , 0, (I)· By the ar­
gument in the proof of Lemma 2.5, for a sufficiently small p > 0, 
cpL((L,o, (L,I) and 

are analytic in ((0 ,(1) E Dp, where 

Also, 'PL((o,(I) converges to .C((0 ,(I) uniformly in Dp. Therefore we 
also have the convergence; 

This convergence is uniform in ((0,(i) satisfying (2.42). By Lemma 2.5 
for q = 0, there exist £ 0 ;:::: 1 and c = c(p, J.l, 8, (0, G) > 0 such that 

I 

L [HesS((0 ,(1)'PL((o, (I)]j,k17j17k 2: c(l17ol 2 + 117II 2 ), 

j,k=O 

I 

L [Hess((0 ,(1).C((o,(I)]j,k17j17k 2: c(l17ol 2 + 117II 2 ), 

j,k=O 
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for ((0 , ( 1 ) E DP n R 2 , L 2:: L 0 and ry0 , ry1 E R. This implies that 
V ((o,(1 )'PL and V((o,(I).C are one-to-one bicontinuous maps on Dp n R 2 

for every L 2:: L0 . In particular, we have 

(2.45a) 

II (V((o,(I)'PL)((o,(1)- (V((o,(I)'PL)((~,(;) 112:: ~II ((o,(1)- ((~,(;)II 

and 

(2.45b) 

II (Vc(o,(d.c)((o,(1)- (vc(o,(d.c)((o,G) 11:::::: ~II ((o,(!)- ((o,(i) II 

for every ((0 , ( 1 ) E Dp n R 2 . By (2.44) and the definition of (a, h) and 
(aL, hL), we have 

II ~v((L,o,(L.d'PL((o,(i)- (~~, i;) 11--. o. 

This means that we can find ((L,o, (£,1 ) E Dp which solves (2.43a, 2.43b) 
and by (2.45a, 2.45b) it converges to ((0,(i). 

In order to discuss convergence of XL(t) from Proposition 2. 7, except 
tightness we need one more estimate which assures that the separating 
contour itself neither fluctuates a lot nor is fat. To do this, let us define 

u 

(2.46) val(~):= h'l + L !Cal 
a+1 

for a polymer~=(!', {Ca}~=1 , {A,a}~= 1 ). 

Lemma 2.8. Let p, > P,5, h > 0, a 2:: ~ and a, h, aL, hL be given as 
above such that (r,, ¥-) ---> (a, h) as L ---> oo. Then for every k E N, 
there exists a constant L0 2:: 1 such that for L 2:: Lo, 

(2.47) 

PL (max{ val(~);~ E ~(r)} 2:: ~ lnL + k I a(rr(r)) = aL, k(r) = hL) 

Sl- exp(-4e-~k). 

Proof. Let ((0, (i) solves (2.41a, 2.41b) satisfying (2.42) and ((L,o, (£,1 ) 

be a solution of (2.43a, 2.43b) satisfying (2.42) such that ((L,o, (£, 1 ) 
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converges to ((0,(i) as L --too. Put 

XiO) (r) := (a( 7rir))' k(r)) 

= L (are~(~)+k(/)(1-f~)),k('y)). 
eE~(r) 

Then for N := ~ lnL + k, 

rESL ,a(1r(r))=aL ,k(r)=hL 
vol(e)~N for every eE~(r) 

By Proposition 2.7 we have 

(2.49) 
rESL ;a( 1r(r) )=aL ,k(r)=hL 

=eL'PL((L,o,(L,l) ft(O) ( aL' hL) 
L,((L,o,(L,l) L 

=eLcpL((L,o,(L,I) 9((L,o,~~~) (0, 0) {1 + o(1)} 

as L --too. 
Let ((o, (1) satisfy (2.42) and 

(N) ·- 1 "' cpL ((o,(l).-Lln L...t 
rES L ,a( 1r(r) )=aL ,k(r)=hL 
vol(e)~N for every eE~(r) 

It is straightforward to check that the estimate (2.4) is still valid when 
we replace d(~) with 

The only change is that we introduce 

e; 'Y is the backbone 0 f e 
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in place of G("y), and in estimating G 1 (-y), we have to put 

g2(P,2, J-Lo) = 4 
C30; connected 

Therefore we have convergent cluster expansion; 

where CPL(N) := {C E CPL; vol(C) _::::: N} and 

(2.50) 

Therefore we have 

(2.51) 

I (N) I 1 "' I T I 'PL((o, (1)- 'PL ((o, (I) _::::: L ~ F ,y,(~; (o, (1) . 
!::..EPJ(Ch)\PJ(Ch(N)) 

If~ E Pt(CPL(N)), then ~ contains at least one ~ E ICL such that 
vol(~) 2: N. Therefore by (2.50) the RHS of (2.51) is bounded by 

L 
L IFr(~; (o, (I) le-d,(e:..) _::::: 3e-~N. 

!::..EPJ(CPL) 

This estimate is uniform for ((0 , (I) satisfying (2.42). By analyticity of 

'PL and <p~N), we have for a,/3 E {0, 1}, 

(2.52a) 

and 

(2.52b) 

where 0 < p < 4:. Since N--+ oo as L--+ oo, 

H ess(t,0 ,t,l)'P~N) ((L,o, (£,1) -+ H eSS(t,0 ,t, 1 )L((~, (;) 

as L --+ oo. Let PL,((L,o,C,L,l)(r) be the probability weight which is 

proportional to eJ.L((L,a,(L,,)·x<ol(r)W(f) restricted to the ensemble 

{r E SL; vol(~) _::::: N for every ~ E ~(f)}. 
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Then by (2.52a, 2.52b) as in the proof of Proposition 2.7, we see that 

_1 ((a(n(f)), k(f)) _ ~E(N) (a(n(f)), k(f))) 
y7 L p, L,((L,o,(L,l) L 

converges to a centered Gaussian vector with covariance matrix 

as far as N---+ oo as L---+ oo. Further, since N- ~ ln L ---+ oo, 

as L ---+ oo and by this we have 

ft(N) ((a(n(f)) k(f)) = (aL h )) = g((L,o,(L,l)(O,O) {l+o(l)} 
L,((L,o,(L,l) L ' L ' L 2£2 

as in the proof of Proposition 2.7. Combining this with (2.48) and 
(2.49), we see that there exists an L 0 ~ 1 such that for L ~ L 0 and 
N = ~lnL+k, 

PL(vol(~) :=:; N for every~ E .6.(f) I a(n(f)) = aL, k(r) = hL) 

~ exp{ -LI'PL((L,o, (L,d- 'P(j;l)((L,o, (L,dl} exp{ -e-~k} 

~ exp{ -4e-~k}. 

Theorem 2.9. Let p, > p,5 , h > 0, a~ ~and aL, hL be given as above. 

Further, we assume that aL2 - aL = o(v'"V) and hL- hL = o(VL) as 
L---+ oo. Then the process YL(t) under PL(· I a(n(f)) = aL, k(f) = hL) 
converges in finite dimensional distribution to the process 

lit Y(t) =- V'P"((l + (1- x)(o)dB(x) 
p, 0 

conditioned that 11 
Y(t)dt = 0, Y(l) = 0. 

Proof Let q ~ 1, and 0 < h < · · · < tq+l = 1 be given arbitrarily. 
We take ((0 , (I) E R 2 which satisfies (2.42) and solves (2.41a, 2.41b). 
Also, we take ((L,o, (£, 1 ) as a solution of (2.43a, 2.43b) which satisfies 
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(2.42). Then by the above argument ((L,o, (L,I) ---> ((o, (I) as L ---> oo. 
Let C ,C E Rq+2 be 

-L-

~~ = ((L,o, 0, · · · , 0, (L,l) 

r = ((o,O, ... ,O,(I)· 

From the assumption of the theorem and (2.45a) and the uniform bound­
edness of H esst;_t.p L, we have 

A (q) A (q) 
EL,t;_~XL (tJ, ... ,tq+I) 

=(aL j;(q) X ( lLtiJ) . . . F;(q) X ( lLtqJ) h ) 
L ' L,<;_~ L L ' ' L,<;_~ L L ' L 

=£ (vr t;_'PL)(G) 

=!:_ (\7 ('P(q)) (C; t1, ... , tq+l) + o( v'L). 
J1 - -

By proposition 2.7 we have for -oo < lj < Tj < oo, 1 :::; j:::; q, 

Let 

. aL ) 
1 :::; J :S q I xo = L' Xq+l = hL 

1 :::; j :::; q I xo = a;;, Xq+l = hL) 

_ frf1 ,i\Jx···x[fq,fqJ gt;_o (0, Y1, · · · , Yq, O)dy1 · · · dyq 

fRq gt;_o (0, Y1, ... , Yq, O)dy1 · · · dyq 

be a Gaussian random vector with distribution density g<:(y0 , ... , Yq+1). 
Then its covariance matrix is given by -

for j, k = 1, ... , q + 1, where a A b =min{ a, b }, and 
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for j = 1, 2, ... , q + 1. This means that {Yo, {Y(t)}tE[O,l]} is a Gaussian 
system with covariance given above for every 0 < t 1 < ... < tq+l = 

1, q 2: 1. Finally, by Lemma 2.8 we can replace El~h XL(tj) with 

El~h XL( LL~jJ) for every 1 ::; j ::; q in the above argument. 

§3. Tihgtness 

As usual, we will estimate the fourth moment of YL ( t) - YL ( s) for 
every s, t E [0, 1]. First, we show the following one polymer estimate. 
For an integer x E [0, L] and f E SL , let ~(x) = ~(x, f) be the unique 
element of D(r) whose base contains x. 

Lemma 3.1 Let f.L > /15, h > 0, a 2: ~ and aL, hL be given as in 
Lemma 2.8. Then there exist constants C > 0 and L 1 2: 1 such that for 
L 2: L1, 

EL [e~d(e(x)) I a(1r(f)) = aL, k(f) = hL] ::; C. 

Proof Let ((~, (i) satisfy (2.41a, 2.41b) and (2.42), and ((L,o, (L,d 

satisfy (2.42) and (2.43a, 2.43b) such that ((L,o,(L,l)-+ ((~,(i) as L-+ 
00. For r E SL such that D(r) :3 ~. let r'(~) denote the set of elements 
of SL such that D(r'(~)) = D(r) \ {0. Also we put for a polymer~' 

xlo)(~) = (are~('y) +k('y)(1- f~\k('y)), 

and 1lf(~;(o,(l) := 1lf(~)exp{f.LXl0)(~) • ((o,(l)}, where"'( stands for the 
backbone of ~. Then 

PL,((L,o,(L,d [{D(r) ::J 0 n {Xl0l(r) =(a;;, hL)}] 

=e-L<pL((L,o,(L,1)1lf(~; (L,O, (L,d 

x 2.:::: eM((L,o,(L,d·Xl0l(r'Wlw(r'(~)). 
rESL; D(r)3e, 

a( 7l'(r) )=aL ,k(r)=hL 

By the cluster expansion we have 

(3.1) PL,((L,o,(L,,) [ {D(r) :3 0 n { xlO) (r) = (a;;' hL)} J 

= 2.:::: Fq,(C;(L,o,(L,l)exp{- 2.:::: Fr(.6.;(L,o,(L,l)} 
c~c~L; AEPt(CPL);AiC 

x PL,((L,o,(L,d [a(1r(f)) = aL, k(r) = hL I D(r) :3 ~], 
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where 

L 
~ . II 1 £ W(~; (L,O, (L,t) := W(~; (L,O, (L,l) Q- ((L,o(1- y) + (£,!). 

l=O 

Since the final term in the RHS of (3.1) is not larger than 1, by the same 
argument to derive (2.32) we have for C > 0, 

L e!d(e) PL,((L,o,(L,d [fD(r) 3 ~} n {X},0)(r) = (7_, hL)}] 
e;base(e)3x, 
I"YI~ClnL 

~4 

As in the proof of Lemma 2.1, 

(3.2) 

e; base(e)3x 

By (2.49), we have for a constant C1 > 0 and a sufficiently large L, 

EL,((L,o,(L,l) [e!d(e(x))1{1-y(x)I~ClnL} I _X}_O)(r) = (7_, hL)] 
<C L2e--f2CinL 
- 1 ' 

which goes to zero as L ~ oo. Here, 1(x) stands for the backbone of 
~(x). 

Assume that lrl ~ ClnL for the backbone 1 of~- Then since 

'PL((L,o, (L,l I~):= ~ ln L e~-'((L,o,(L,l)·Xio)(r)w(r) 
rESL;V(r)3e 

1 
= 'PL((L,o, (L,l)- L L F~(~; (L,o, (L,l), 

f::..EICL; t::..ie 

[Hess((o,(l)'PL(· I ~)]((L,o, (L,l) converges to [Hess((o,(1 )£]((0, (i) uni­
formly in ~ with Ill ~ C ln L. Therefore there exist constants C2 > 0 
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and L0 2 1 such that for L 2 L0 , 

(3.3) PL,((L,o,c;L,l) (a(1r(r)) = aL, k(r) = hL I V(r) 3 ~) ::::: ~~ 
uniformly in~ such that h'l ::::: ClnL. Combining (2.49) with (3.3), we 
can find L1 such that for L 2 L1, 

( ) [ ld((;(x)) I x' (O)(r)- (aL h )] 3.4 EL,((L,o,(L,d e 2 1{hi:5ClnL} L - L' L 

:S:C1C2 L l~(~)le~d(€)+c(€)::::: 3C1C2. 
base((;)3x,hi:5Cln L 

This together with (3.3) proves Lemma 3.1. 
Now let us turn to the estimate of the fourth moment of YL(t) -

YL(s). It is sufficient to consider the case where Ls,Lt are integers and 
8 < t. 
Lemma 3.2 There exist constants C3 > 0 and L2 2 1 such that for 
L 2 L2, if It- sl::::: L-~, then 

Proof Since 

YL(t)- YL(s) = ~ [XL(t)- XL(s)- !:_1t cp'((~(1- x) + (~)dx], 
vL f-L s 

we estimate 

and 

separately, where ( (~, (i) solves (2.41a), (2.41b) and satisfies (2.42). By 
analyticity the latter is bounded by C(Lit- sl) 4 for some positive con­
stant C. Also, by Lemma 3.1, the former is bounded by 

for some positive constant C'. It remains to check that 
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which is true when It- sl :::; L -!. 

To handle the case where It- sl :2: £-!, we introduce a moment 
generating function 'PC:,,t) by 

'PC:,,t)((o,(1,(z) := ~ln L e~-'xi_··')(r)·~w(r), 
rESL 

where 
_xcs,t)(r) ·= (a(n(r)) k(r) XL(t)- XL(s)) 

L 0 L ' ' .,;r=s 
and r;_ = ((o, ( 1 , (z) E R 3 such that ((0 , ( 1 ) satisfies (2.42) and 

(3.6) 
8 

l(zl:::; 2JL ~-

To complete the proof of the tightness of {YL(t), 0 :::; t :::; 1}, it is 
sufficient to show that there exists a constant Eo independent of L such 
that (3.5) holds for all s, t E [0, 1] with It- sl :::; Eo. 

Let a, h, aL, hL, ((0, (;), ((L,o, (L,I) be taken as before; i.e., 

1. ((0,(i) and ((L,o,(£,1) satisfy (2.42), 
2. ((0,(i) solves (2.41a), (2.41b), and 
3. ((L,o, (£,1) solves (2.43a), (2.43b). 

Put 

(3.7) 
1 a (s,t) 

V£ := -;;, ~(2 ((L,o, (£,1, 0). 

Then as in the proof of Lemma 2.3, we can show that 

(3.8) 

Therefore 

So, we will show that for some Eo > 0 and for all s, t E [0, 1] such that 
It- sl <Eo, 
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converges and is bounded from above by a constant independent of 
(k) ( (k) (k) (k)) . L, s, t. For k E N, let ~L = (L,O' (L,l, (L,z be the solutiOn of 

1 [ (s,t)] (k) _ (aL hL k ) 
-;;, v((o,(I.(2)1PL (~L ) - £2' L' V£ + VI 

and (l0) = ((L,o, (L,b 0). For !1. = (ryo, 'f/b 'TJz), let <p~(s,t) (!J.) be the Le­

gendre transform of ~<pt't). Then by duality, 

and 

Therefore 

From Proposition 2. 7, the RHS of (3.9) is bounded by 

{ [ *(s,t) ( aL hL k ) *(s,t) ( aL hL )] } 
exp -Lf.l. IPL L2'L'vL+ VI -<pL L2'L'VL 

x Const.L2 • 

as L--+ oo. 
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Lemma 3.3. There exist positive constants a1 , a2 , £ 0 such that every 
eigenvalue of 

is in the interval [a1, a2] if L ~ Lo and 

(3.10) 

For the moment we take it for granted that Lemma 3.3 is true. Then, 
since ((L,o, (L,t) satisfies (2.42), by Lemma 3.3 and the continuity, we 

can find c: > 0 such that if Jr < c:~, then ld~b- (L,ol, lei~~- (L,ll, 
lcik~l are all bounded by 46 and every eigenvalue of , ~ 

[ *(s,t)] ( aL hL k ) 
Hess'!l<pL £ 2 , L'VL + v'L 

is in the interval [a2\a:t1]. Thus, we have 

if k :::; c:JL(t- s). By convexity, this means that the LHS of (3.9) is 
not less than 

(3.12) proves that 
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for large L. Also, fork :S eJL(t- s), Hess((o,(1 ,(2 )[cp}:•t)((o, (1, A)J 
is uniformly positive definite and by Lemma 3.3, 

PL ,<kl (XL(t)- XL(s) ;:::: V£ v'L + k, a(1r(r)) = aL, k(r) = hL) 
•_L JL(t- s) 

:SPL,~1k) (a(1r(r)) = aL, k(r) = hL) 

Canst. 
:S---v:-· 

This and (3.9) together with (3.8) prove 

I: (k + 1)4 

k~e.jL(t-s) 

x pL (XL(t)- XL(s) ;:::: vL v'L + kla(1r(r)) = aL, k(r) = hL) 
JL(t- s) 

00 2 

:SConst. L(k + 1)4e- 2';,.2 < oo 
k=O 

Proof of Lemma 3.3. Put 

\IJ(s,t)(c· /" /" ~) 
L "'' '>0, '>1, ...;r:::s 

=W(~) exp{(o(f~) + (1- f~) k(!)) + (1k('y) + Jt(~ /b; Ls, Lt)} 

where 

(3.13) 

{ 

k(!) 

k("'· Ls Lt) = k(!)- k(!; Ls) 
" ' k(!; Lt) 

k('y; Lt) - k(!; Ls) 

if base(~) C [Ls, Lt], 
if f(~) < Ls :S f(~) :S Lt 
if Ls :S f(~) :S Lt < f(~) 
if f(~) < Ls < Lt < f(~). 
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Then as in the proof of Proposition 2.2, we have a convergent cluster 
expansion 

cpL((o,(1, y't(~) 
1 "" (~)( . (2 ) L L... <P J,(o,(1 'y't-s 

J=[a,b]C[O,L] 

1 
L . L <P(J; (L(r)) 

J=[!,f] C[O,LJ\[s,t] 

1 , (2 (ln L) 10 

+L .L <P(J;(L(r)+ Jt_)+O( L ) 
J=[!,f]C[O,L] 

Ls5of5oLt 

11 (2 (ln£)10 
= cp((0 (1- x) + (1 + ~1[s,tJ(x))dx + 0( L ). 

o vt- s 

Note that 

~<P(s,t)(J·I" ;- ~) _ 0 
8(2 ,.,o,.,1, ~ -

if J n [s, t] = 0. By analitycity, this means that for '!1 E R 3 

as long as t- s > L -!. If ((0 , ( 1 , ( 2 ) satisfies (3.10), then as in the proof 
of Lemma 2.5, we have some a~ > 0 depending only on JL and 8 such 
that 

a~::::; cp"((o(1- x) + (1 + ~1[s,tJ(x)) 

for every x E [0, 1]. Also, by analyticity, there exists ag > 0 depending 
only on JL and 8 such that 
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for every x E [0, 1]. Therefore we have 

(3.15) 

a~ 11 
{ '1Jo(1- x) + '1]1 + ylt'l]~ /[s,t] (x)} 2 dx + O(L -~ (ln£?0) · 1.212 

::; the RHS of (3.14) 

{1 '/]2 2 1 

::;a~ Jo {'IJo(l- x) + '1]1 + ylt _ /[s,tJ(x)} dx + 0(£-5 (ln£) 10) ·1.21 2. 

Further, since 

11 '/]2 2 
{'1Jo(1- x) + '1]1 + ~1[s,tJ(x)} dx 

0 yt- s 

= {
1 

{'IJ0(1- x) + 'IJl} 2dx +'I]~+ . ~it {'IJ0(1- x) + 'IJ!}dx 
Jo v t- s s 

Since we know that the first term in the RHS of the above equality is 
bounded from below by a~ ( 'IJ6 + 'IJr), the RHS is bounded from below by 

a~('IJ5 + 'IJi)- 2v't=S(I'1Jo'IJ21 + I'1J1'1]21) +'I]~ 

2':(a~- v't=S)('IJ5 + 'IJi) + (1- 2v't=S)'IJ~. 

Set 2a1 := minHa~, n. It is obvious that the RHS of the above in­
equality is larger than a 11'1JI 2 if Vf=8 < 2a1. The existence of a2 is 
obvious from (3.14). -
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