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Relative positions of four subspaces 
in a Hilbert space and subfactors 

Yasuo Watatani 

Abstract. 

We study relative positions of four subspaces in a Hilbert space. 
Gelfand-Ponomarev gave a complete classification of indecomposable 
systems of four subspaces in a finite-dimensional space. In this note 
we show that there exist uncountably many indecomposable systems 
of four subspaces in an infinite-dimesional Hilbert space. We extend 
a numerical invariant, called defect, for a certain class of systems 
of four subspaces using Fredholm index. We show that the set of 
possible values of the defect is { ~; n E Z}. 

§1. Introduction 

This is an announcement of the joint work [EW] with M. Enomoto. 
The relative position of one subfactor in a factor has been proved 

quite rich after the work [J] of Jones. But the relative position of one 
subspace of a Hilbert space is extremely poor and simply determined by 
its dimension and co-dimension. The aim of the paper is to cover up the 
poorness by considering the relative position of several subspaces. 

It is a well-known fact that the relative position of two subspaces E 
and F in a Hilbert space H can be described completely up to unitary 
equivalence as in Dixmier [D] and Halmos [H]. The Hilbert space is the 
direct sum of five subspaces: 

H = (E nF) EB (the rest) EB (En FJ.) EB (EJ. n F) EB (EJ. n FJ.). 

In the "rest part", E and F are in generic position and the relative 
position is described only by the "angles" between them. In fact, let e 
and f be the projections onto E and F respectively. Then e and f look 
like 
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where c and s are two positive operators with null kernels and c2 +s2 = 1. 
By the functional calculus, there exists a unique positive operator e, 
called the angle operator' such that c = cos e and s = sine with 
o::;e::;~. 

Consider two self-adjoint unitaries u = 2e - 1 and v = 2f - 1. It is 
obvious that there is a bijective correspondence between the set of two 
subspaces in a Hilbert space H and the set of unitary representations 
1r of the free product G2 = Z/2Z * Z/2Z = (a, b) of the cyclic groups 
of order two on H through n(a) = u and n(b) = v. Similarly there is 
a bijective correspondence between the set of n subspaces in a Hilbert 
space H and the set of unitary representations of the free product Gn = 
Z/2Z * · · · * Z/2Z (n-times) of the cyclic groups of order two. It is well­
known that for n ?: 3 the group Gn is non-type I and non-amenable. 
Therefore it seems brave and stupid to study the relative positions of n 
subspaces for n ?: 3 up to unitary equivalence. To avoid the difficulty, 
we forget the angles and consider a weaker equivalent relation for the 
systems of n-subspaces as topological vector spaces. 

We say that two systems S = (H; E 1 , · · · , En) and S' = (H'; Ei, · · · , 
E~) of n subspaces in Hilbert spaces Hand H' are similar if their exists 
a bounded invertible operator T : H ----t H' satisfying T Ei = E~ for 
i = 1, .. · , n. 

We should study an indecomposable systemS= (H; E 1 , · · · , En) of 
n-subspaces in the sense that the system S can not be similar to a direct 
sum of two non-zero systems. Consider the case that the Hilbert space H 
is finite-dimensional. Then we have four indecomposable systems of two 
subspaces. We have nine indecomposable systems of three subspaces. 
They are trivial ones, that is, H is one dimensional, except one system. 
But, in the old paper [GP], Gelfand and Ponomarev showed that there 
exist infinitely many indecomposable systems of four subspaces with 
higher finite dimensions and surprisingly they completely classified them. 

We shall show that there exist infinitely many indecomposable sys­
tems of four subspaces in an infinite-dimensional Hilbert space H. 

The most important numerical invariant of a subfactor N C M is 
the Jones index [M : N] introduced in [J]. Similarly the most impor­
tant numerical invariant of a system S = (H; E1, E2 , E3, E 4 ) of four 
subspaces in a finite-dimensional Hilbert space H is the defect 

4 

p(S) = L dim Ei - 2dim H 
i=l 
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introduced by Gelfand-Ponomarev in [GP]. We shall extend their notion 
of defect p( S) for a certain class of systems S of four subspaces in an 
infinite-dimensional Hilbert space H using Fredholm index. If a pair 
N C M of factor-subfactor is finite-dimensional, then Jones index [M: 
N] is an integer. But if N C M is infinite-dimensional, then Jones index 
[M: N] is a non-integer in general. One of the amazing facts was that 
the possible value of Jones index is in { 4cos2 ~ I n = 3, 4, · · ·} U [4, oo]. 
Similarly if a systemS= (H; E 1 , E 2 , E3 , E4 ) of four subspaces is finite­
dimensional, then the defect p(S) is an integer. Gelfand-Ponpmarev 
showed that if a system S is indecomposable and finite-dimensional, 
then the possible value of defect p(S) is exactly in { -2, -1, 0, 1, 2}. We 
show that the set of values of defect for indecomposable systems of four 
subs paces in an infinite-dimesional Hilbert space is { J; n E Z}. 

Sunder also considered n subspaces in [S]. But his interest is opposite 
to ours. In fact he studied the case that the Hilbert space H is the 
algebraic sum of the n subspaces and solved the statistical problem of 
computing the canonical partial correlation coefficients between three 
sets of random variables. 

§2. Systems of n subspaces 

Our purpose is to study relative positions of n subspaces in a Hilbert 
space. Let H be a (separable) Hilbert space and E1, · · · , En be a fi­
nite family of subspaces of H. We shall write S = (H; E1. · · · , En) 
for such a system of n subspaces. Let S = (H; E1, · · · , En) and S' = 
(H'; E~, · · · , E~) be systems of n subspaces. We say that S and S' are 
similar, denoted by S ,...., S', if there exists a bounded linear operator 
T: H--+ H' such that E~ = TEi fori= 1, · · · ,n. We say that SandS' 
are unitary equivalent if there exists a unitary operator u : H --+ H' such 
that E~ = uEi for i = 1, · · · , n. We study relative positions of n sub­
spaces up to similarity to ignore angles between subspaces in a certain 
sense. We denote by StiJS' the direct sum (HtBH'; E1tiJEi, · · · , EntBE~) 
of two systems S and S'. We write S = 0 if H = 0. 

Lemma 1. Let H be a Hilbert space and S = ( H; E1, E2) a system 
of two subspaces. Then the following are equivalent: 

1. There exists a closed subspace M C H such that 

(H;E1,E2),...., (H;M,M.l..) 

2. H = E1 + E2 and E1 n E2 = 0. 

Definition. LetS= (H; E1, · · · , En) be a system of n subspaces in a 
Hilbert space H. We say that Sis decomposable if there exists non-zero 
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systems 5 1 and 5 2 of n subspaces such that 5 "' 5 1 EB 5 2. It is useful 
to note that 5 is decomposable if and only if there exist non-zero closed 
subspaces H 1 and H 2 of H such that H1 + H 2 = H, H1 n H 2 = 0 and 
Ei = Ei n H 1 + Ei n H 2 for i = 1, · · · , n. We say 5 is indecomposable if 
5 is not decomposable. 

Example 1. Let H = C 2. Fixan angle() with 0 < () < 1rj2. Put 
E 1 = C(1, 0) and E 2 = C(cos(), sin()). Then 

(H; Eh E2) "' (C; C, 0) EB (C; 0, C) 

Hence (H; E 1, E 2) is decomposable. Let e1 and e2 be the projections 
onto E 1 and E 2. Then the C*-algebra C*({e1,e2}) generated by e1 and 
e2 is exactly B(H) ~ M2(C). Thus the irreducibility of C*( { eh e2}) 
does not imply the indecomposability of 5 = ( li; E 1, E 2). 

Remark. Let 5 = (H; E 1, · · · , En) be a system of n subspaces in a 
Hilbert space H. Let ei be the projection of H onto Ei fori= 1, · · · , n. 
If 5 = ( H; E1, .. · , En) is indecomposable, then the C* ( { eh .. · , en}) 
generated by e1, · · · , en is irreducible. But the converse is not true as in 
Example 1. 

Example 2. Let H = C 2. Put E 1 = C(1, 0), E 2 = C(O, 1) and 
E3 = C(1, 1). Then 5 = (H; E 1, E 2, E3 ) is indecomposable. 

Example 3. Let H = C 3 and { a1, a2 ,· a3} be a linearly independent 
subset of H. Put E1 = Ca1, E2 = Ca2 and E3 = Ca3. Then 5 = 
(H; Eh E2, E3) is decomposable. In fact, let H1 = E 1 V E 2 -=1- 0 and H2 = 
E3 -=1- 0. Then H1 +H2 = H, H1 nH2 = 0 and Ei = Ei nH1 +Ei nH2, 
fori= 1,2,3. 

Example 4. Let H = C 3 and {b1, b2, b3 , b4} be a subset of H. Put 
Ei = Cbi fori= 1, · · · , 4. Consider a system 5 = (H; E1, E 2, E3, E4) of 
four subspaces. Then the following are equivalent: 

1. 5 is indecomposable. 
2. Any three vectors of {b1, b2, b3, b4} is linearly independent. 
3. The set {bh b2, b3} is linearly independent and b4 = .X1b1 +.X2b2+ 

.X3b3 for some scalars Ai -=1- 0 (i = 1, 2, 3). 

Assume that {u1,u2,u3,u4} CHand {v1,v2,v3,v4} C H satisfy the 
above condition (2). Then 5 = (H; Cu1, Cu2, Cu3, Cu4) and T = 
(H; Cvh Cv2, Cv3, Cv4) are similar. 

Example 5. Let H = C 3. Put E 1 = CEBCEBO, E 2 = C(1, 1, 1) and 
E3 = C(1,2,3). Then a system 5 = (H;E1 ,E2 ,E3) is decomposable. 
In fact, let E~ = (E2 v E3) n E 1 and H1 = E 1 n (EDj_ -=1- 0. Let 
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H2 = E2 V E3 =/= 0. Then H1 + H2 = H, H 1 n H 2 
Ei n H1 + Ei n H2, fori= 1, 2, 3. 
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Example 6. Let H = C 3. Put E 1 = C EEl C EEl 0, E 2 = C(O, 0, 1), 
E3 = C(O, 1, 1) and E4 = C(1, 0, 1). Then a system S1 = (H; E 1, E 2, E 3, 
E4) of four subspaces is indecomposable. 

Example 7. Let H = C 3. Put E 1 = C EEl C EEl 0, E 2 = C(O, 0, 1), 
E3 = C(1, 0, 0) EEl C(O, 1, 1) and E4 = C(1, 0, 1). Then a system S2 = 
(H; E1, E2, E3, E4) of four subspaces is indecomposable. 

Example 8. Let H = C 3. Put E 1 = C EEl C EEl 0, E 2 = C(O, 0, 1), 
E3 = C(1, 0, 0) EEl C(O, 1, 1) and E4 = C(1, 0, 1) EEl C(O, 1, 0). Then a 
system S3 = ( H; E 1, E2, E 3, E 4) of four subspaces is indecomposable. 

Example 9. Let H = C 3. Put E 1 = C(1,0,0) EEl C(O, 1,0), E 2 = 
C(O, 1, 0) EEl C(O, 0, 1), E3 = C(1, 0, 0) EEl C(O, 1, 1) and E4 = C(O, 0, 1) EEl 
C(1, 1, 0). Then a system S4 = (H; E 1, E 2, E 3, E 4) of four subspaces is 
indecomposable. 

Remark Any two of the above indecomposable systems S 1, · · · , S4 

of four subspaces are not similar. 

Example 10. Let K = f2(N) and H = KEEl K. Consider a 
unilateral shift S : K --> K. Let E1 = KEEl 0, E 2 = 0 EEl K, E 3 = 

{(x, Sx) E Hlx E K} and E4 = {(x, x) E Hlx E K}. Then a system 
S4 = (H; E 1, E 2, E 3, E 4) of four subspaces in His indecomposable. 

Example ll.(Harrison-Radjavi-Rosental [HRR]) Let K = £2(Z) 
and H = KEEl K. Consider a sequence (o:n)n given by O:n = 1 for 
n :::; 0 and O:n = exp( ( -1 )nn!) for n > 1. Consider a bilateral weighted 
shift S : Dr --> K such that T(xn)n = (o:n-!Xn-dn with the do­
main Dr = {(xn)n E £2(Z)I Ln lo:nxnl 2 < oo}. Let E1 = KEEl 0, 
E2 = 0 EEl K, E3 = {(x,Tx) E Hlx E Dr} and E4 = {(x,x) E 
Hlx E K}. Since {0, H, E 1, E 2, E 3, E 4} is a transitive lattice, a system 
S4 = (H; E1, E2, E3, E4) of four subspaces in His indecomposable. 

Definition. Let S = (H; E1, · · · , En) be a system of n subspaces 
in a Hilbert space H. Then the orthogonal complement of S, denoted 
by 5.1., is defined by 5.1. = (H; E:j-, · · · , Ej; ). 

Proposition 2. Let H be a Hilbert space and S = (H; E 1, · · · , En) 
a system of four subspaces in H. Then S is indecomposable if and only 
if sJ. is indecomposable. 
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§3. Classification of two subspaces 

Let S = (H; E 1 , · · · , En) be a system of n subspaces in H. We say 
that S is trivial if dim H = 1. 

Gelfand-Ponomarev [GP] claim that if His finite-dimensional, then 
every indecomposable system of S = (H; E 1 , E 2 ) of two subspaces is 
trivial and similar to one of the following four systems: 

S1 = (C; C, 0), S2 = (C; 0, C), S3 = (C; C, C), S4 = (C; 0, 0). 

Any system of two subspaces is similar to a direct sum of a finite 
number of indecomposable systems above. 

We consider the case that H is infinite-dimensional. 

Proposition 3. Let H be a separable infinite-dimesional Hilbert 
space and S = (H;E1,E2 ) a system of two subspaces in H. If Sis 
indecomposable, then S is similar to one of the following four systems: 

S1 = (C; C, 0), S2 = (C; 0, C), S3 = (C; C, C), S4 = (C; 0, 0). 

§4. Classification of three subspaces 

Gelfand-Ponomarev ([GP]) also claim that if His finite-dimensional, 
then there exist nine different indecomposable system S = ( H; E 1 , E 2 , 

E3) of three subspaces in H. The eight of them are trivial and similar 
to one of the following systems: 

s1 = (C; o, o, o), s2 = (C; c, o, o), s3 = (C; o, c, o), 

S4 = (C; 0, 0, C), Ss = (C; C, C, 0), S6 = (C; C, 0, C), 

S1 = (C; 0, C, C), Ss = (C; C, C, C) 

The only non-trivial indecomposable system of three subspaces is 

S = (C2 ; C(1, 0), C(O, 1), C(1, 1)) 

up to similarity. 

§5. Classification of four subspaces 

The classification of indecomposable systems S = (H; E 1 , E 2 , E 3 , 

E4) of four subspaces in a Hilbert space H is a central problem. If 
H is finite-dimensional, Gelfand-Ponomarev [GP] completely classified 
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them and gave a complete list of their canonical forms. Their important 
numerical invariants are dim H and the defect 

4 

p(S) = Ldim Ei- 2dim H. 
i=l 

Proposition 4 (Gelfand-Ponomarev [GP]). If a systemS of four 
subspaces in a finite-dimensional H is indecomposable, then a possible 
value of the defect p(S) is exactly in the set { -2, -1,0, 1, 2}. 

The defect characterizes an essential feature of the system. If p( S) = 
0, then there exists a pair of linear operators A : E --+ F and B : F --+ E 
and the systemS= (H; E 1, E 2 , E 3, E4 ) is described up to permutation 
by H = EtBF, E1 = EtBO, E2 = OtBF, E3 = {(x,Ax) E Hlx E E} 
and E 4 = {(By,y) E Hly E F}. If p(S) = ±1, then Sis given up to 
permutation by H = E fB F, E1 = E fB 0, E2 = 0 fB F, E3 and E4 are 
subspaces of H that do not reduced to the graphs of the operators as in 
the case that p(S) = 0. A system with p(S) = ±2 cannot be described 
in the above forms. 

Following [GP], we write down the canonical forms of indecompos­
able systems S = (H; E 1, E 2 , E 3, E4 ) of four subspaces in an finite­
dimensional space H up to permutation. We first consider the case 
when dim His even and 2k for some positive integer k. There exist no 
indecomposable systems S with p(S) = ±2. Let H be a space with a 
basis {e1,··· ,ek,h,··· ,fk}. 

The system S3(2k, -1) = (H; E1, E2, E3, E4) has the defect p(S) = 
-1 and given by 

E3 = [(e2 +h),··· , (ek + fk-1)], E4 = [(el +h),··· , (ek +h)]. 

The system S3(2k, 1) = (H; E 1, E 2, E 3, E4) has the defect p(S) = 1 and 
given by 

E3 = [e1, (e2 +h),··· , (ek + fk-d, !k], E4 = [(e1 +h),··· , (ek + fk)]. 

The system S1,3(2k, 0) = (H; Ell E2, E3, E4) has the defect p(S) = 0 
and given by 
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The system S(2k, 0; .X) = (H; E1, E 2, E3, E4) has the defect p(S) = 0 
and given by 

E1 = [e1, · · · , ek], E2 = [h, · · · , !k], 

E3 = [(e1 + .Xh), (e2 + h + .Xh), · · · , (ek + fk-1 + .Xfk)], 

E4 = [(e1 +h),··· , (ek + !k)]. 

Every other system Si(2k,p), Si,j(2k,O) can be obtained from the 
systems S3(2k, p), Si,3(2k, 0) by a suitable permutation of the subspaces. 
Let 0' be a permutation on the set {1, 2, 3, 4} and S = (H; E1, E2, E3, E4) 
a system of four subspaces. We define 

O'S = (H; E,r1(1)• E,r1(2)• E,r1(3)• E,r1(4J)· 

Let O'i,j be the transposition (i,j). We put Si(2k, p) = 0'3,iS3(2k, p) 
for p = -1, 1. We also define Si,j(2k, 0) = 0'1,i0'3,jS1,3(2k, 0) for i,j E 

{1,2,3,4}. 
We next consider the case dim H = 2k + 1, odd (for some positive 

integer k). Let H be a space with a basis {e1, · · ·, ek, ek+1• h, · · ·, fk}. 
The system S1(2k + 1,-1) = (H;E1,E2,E3,E4) has the defect 

p(S) = -1 and given by 

E3 = [(e2 +h),··· , (ek+l + !k)], E4 = [(e1 +h),··· , (ek + fk)]. 

The system S2(2k + 1, 1) = (H; E1, E2, E3, E4) has the defect p(S) = 1 
and given by 

E3 = [e1, (e2+ h),···, (ek+1 + fk)], E4 = [(e1 +h),···, (ek+ fk),ek+1l· 

The system S1,3(2k+ 1, 0) = (H; E 1, E2, E3, E4) has the defect p(S) = 0 
and given by 

E3 = [e1, (e2 +h),··· , (ek+1 + fk)], E4 = [(e1 +h),··· , (ek + !k)]. 

The system S(2k + 1, -2) = (H; E 1, E2, E3, E4) has the defect p(S) 
= -2 and given by 

E1 = [e1, · · · , eko ek+1], E2 = [h, · · · , !k], 

E3 = [(e2 +h),··· , (ek+1 + fk)], 

E4 = [(e1 +h),··· , (ek-1 + fk), (ek + ek+l)]. 
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The system S(2k + 1, 2) = (H; E1, E 2 , E3, E4) has the defect p(S) = 
2 and given by 

E 1 = [e1, ... , ek, ek+l], E 2 = [!b ... , fk], 

E3 = [e1, (e2 +h),··· , (ek+l + !k)], 

E4 = [h, (e1 +h),··· , (ek-1 + !k), (ek + ek+l)]. 

We put Si(2k + 1,-1) = 0'1,iS1(2k + 1,-1), Si(2k + 1,+1) 
0'2,iS2(2k + 1, 1), Si,j(2k + 1, 0) = O'l,i0'3,jS1,3(2k + 1, 0) for i, j E 
{1,2,3,4}. 

Theorem 5 (Gelfand-Ponomarev [GP]). If a systemS of four sub­
spaces in a finite-dimensional H is indecomposable, then S is similar to 
one of the systems Si,j(m, 0), (i < j, i,j E {1, 2, 3, 4}, m = 1, 2, · · · ); 
S(2k, 0, A.), (A. E C, A. -1- 0, A. -1- 1, k = 1, 2, · · · ); Si(m, -1), Si(m, 1), 
(i E {1, 2, 3, 4}, m = 1, 2, · · · ); S(2k+ 1, -2), S(2k+ 1, +2), k = 0, 1, · · ·) 

We would like to investigate the case when His infinite-dimensional. 
The complete classification is at present far from being solved. But we 
can show the existence of plenty of examples. 

Theorem 6 ([EW]). There exist uncountably many indecompos­
able systems S = (H; E1, E2, E3, E4) of four subspaces in an infinite­
dimensional Hilbert space H. 

We shall extend the notion of the defect for a certain class of systems 
using Fredholm index. 

Definition. LetS = (H; E 1, E 2 , E3, E4) be a system of four sub­
spaces in a Hilbert space H . For any i -1- j E {1, 2, 3, 4}, define a 
bounded linear operator Tij = Ei fB Ej ---+ H by Tij(x, y) = x + y. If Tij 
is a Fredholm operator, then ind Tij = dim ( Ei n Ej) - dim ( Ei + Ej) j_. 

We say that S is a Fredholm system if Tij is a Fredholm operator for 
any i "1- j E {1, 2, 3, 4 }. We also say that Sis a weak Fredholm system if 
ker Tij and ker Ttj is finite-dimensional for any i -1- j E {1, 2, 3, 4}. It is 
clear that if S is a Fredholm system, then S is a weak Fredholm system. 
For any weak Fredholm systemS we define the defect of S, denoted by 
p(S), by 

1 
p(S) = 3 L Ind Ti,j· 

l::;i<j::;4 

The new definition of the defect agrees with the original one when H is 
finite-dimensional. In that case the value of the defect is an integer. 

Proposition 7 ([EW]). If S is a weak Fredholm system, then the 
orthogonal complement Sj_ is also a weak Fredholm system and p(Sl_) = 
-p(S). 



328 Y. Watatani 

Recall that one of the amazing fact in sub factor theory was that the 
possible value of the Jones index for a subfactor is in { 4cos2 ~ I n = 

3, 4, · · ·} U [4, oo]. We shall determine the possible value of the defect for 
an indecomposable system S of four subspaces in an infinite-dimesional 
Hilbert space. 

Theorem 8 ([EW]). The set of possible values of the defect for in­
decomposable systems of four subspaces in an infinite-dimesional Hilbert 
space is {~;n E Z}. 
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