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A Generalized Height Estimate for H -graphs, 
Serrin's Corner Lemma, 

and Applications to a Conjecture of Rosenberg 

John McCuan 

Abstract. 

In this note we give a generalized form of the well-known height 
estimate for constant mean curvature graphs due to J. Serrin. An 
application is also given that effectively relates the global rate of 
convergence of a family of constant mean curvature surfaces recently 
considered by A. Ros and H. Rosenberg to their convergence behavior 
on the boundary. Some information concerning boundary behavior 
is also obtained by applying reflection techniques and corner com­
parison in particular. This latter analysis allows one to construct a 
counterexample to one part of a conjecture of Rosenberg. 

§ Introduction 

Let n be a bounded domain in R 2 and u E C 2 ( n) n C 1 ( 0) satisfy 
the equation of constant mean curvature (CMC) 

(0) -divTu = 2H (=constant) on n, 

where Tu = Duj J1 + 1Dul2 and without loss of generality H > 0. If 
ulan = 0, then one has the well-known height estimate given by Serrin 
[S1] 

(1) 
1 

maxu:::; H" 
xE!1 

This bound can be obtained by noting that on g = graph u, the function 

(2) 
1 

¢=:X3+ HN3 
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is subharmonic, where X 3 = u and N3 is the third component of the 
(downward pointing) unit normal to g. More precisely, one has for the 
intrinsic Laplacian of ¢ 

where K is the Gaussian curvature of g. 
In the context of parametric CMC surfaces, the reflection technique 

of Alexandrov [A] was recently extended in [M] by noting that on a CMC 
graph s over a domain n c 8 2 , the function 

(3) 

is subharmonic, where X E R 3 denotes a point on S and N is the 
unit normal to S at X. 1 In fact, 

4 2 
~s<I> = - H (H - K)X · N ~ 0. 

While reading a recent paper of Ros and Rosenberg [R] in which the 
height estimate (1) is used extensively in conjunction with the Alexan­
drov technique, we guessed that (3) should be an appropriate general­
ization of (2) by which a "height" estimate can be obtained. We give 
such an estimate (6) for spherical graphs that yields (1) as a limiting 
special case. 

The paper of Ros and Rosenberg was partially motivated by a con­
jecture of Rosenberg which we now describe. Let r be a convex planar 
curve that bounds a domain 0 c {x3 = 0}. For each volume V > 0, let 
Mv be an embedded CMC surface with boundary r such that Mv u n 
encloses a volume V. It is clear at least for small V, that Mv exists and 
is a graph which, without loss of generality, is above the plane { x 3 = 0}. 
As the volume increases, the mean curvature will increase until the sur­
face ceases to be a graph, and sometime thereafter a critical volume is 
reached for which the mean curvature starts to decrease. Let us as­
sume that the surfaces Mv continue to enclose a volume V and that the 
normal (0, 0, 1) on n always points into v. 

Conjecture 1 (Rosenberg). If r is not a circle, then there is a 
second critical volume Vc for which the following hold: 

1Note that S is a graph over the sphere 8 2 centered at 0 E R 3 instead 
of the plane. The condition that S is a spherical graph can be expressed by 
requiring X · N < 0 in the interior of S. 
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(1) For V S Vc, Mv lies in {x3 2: 0}. 
(2) Mvc is tangent to the plane {x3 = 0}. 
(3) The point of tangency occurs at a point of minimum curvature 

ofoMvc = r. 
(4) For V > Vc, Mv intersects {x3 < 0}. 

If one assumes, by way of contradiction, that Mv lies in {x3 2: 0} for 
all V, then the result of Ros and Rosenberg applies to show that the fam­
ily {Mv }, suitably scaled, converges as V---+ oo to a round sphere. We 
use a nominally more general form (5) of the height estimate, with some 
additional assumptions motivated by the conjecture, to describe the rate 
of convergence. If the additional assumptions can be justified, then the 
result presented here should be of use in proving the first, second, and 
fourth assertions of the conjecture. In an essentially independent part of 
the p&per, we show that for certain domains the third assertion cannot 
hold. 

§ The estimate 

Let S be a spherical graph as described above.1 Since H CfJ - 1 j H is 
subharmonic, one has immediately from the maximum principle 

(4) IIXII 2 H + 2X · N S max (IIYII 2 H + 2Y · N). 
YE8S 

Let the expression appearing on the right in this inequality be denoted 
by M. Using the fact that X· N 2: -IIXII, one has 

HIIXII 2 - 2IIXII - M s 0. 

This inequality is quadratic in IIXII, and we easily obtain from it 

(5) IIXII s ~(1 + \.11 + HM). 

Note that M 2: max(IIYII 2 H -2IIYII) = max(IIYIIVH -1/VH)2 -1/ H 2: 
-1/H. Thus, the expression on the right in (5) is real (and positive). 

In order to complete our comparison to CMC graphs over the plane 
that satisfy the Dirichlet condition ulan = 0, let us assume that II X II las = 
p =constant. In this case, M S p2 Hand (5) yields 

(6) 

Just as equality in (1) holds for a hemisphere over a disc, we get equality 
in (6) when S is a portion of a sphere that meets the sphere of radius p 
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p 

Fig. 1. Extremal spherical H-graph. 

points of 
tangency 

X max 

Fig. 2. Possible CMC graph over Sp with H = 1/ p. 

orthogonally along its boundary (See Fig. 1). Notice that (1) is obtained 
from (6) by subtracting p from each side and letting p tend to +oo. 

Before considering more general boundary conditions, for which the 
form (5) is useful, we note the curious fact that, by the maximum prin­
ciple, the function u in (1) must satisfy u > 0 inn c R 2 and aujan > 0 
on an, while one expects in general the spherical graphs in (6) to have 
interior points with II XII < p and/or boundary points where Sis tangent 
to the sphere of radius p (See Fig. 2). Notice that tangency of a spherical 
graph to the sphere of radius IIXminll < p does not in general contradict 
the maximum principle (e.g., if p = 1/H), nor does a tangency to the 
sphere of radius p on as (i.e., y. N = -IIYII for some y E as) imply 
that IIXII ~ p. We use similar conditions below, however, to get some 
useful information. 

§ An application 

Some interesting estimates follow from (5) when the spherical graph 
S very nearly "encompasses" a sphere of radius 1/ H (See Fig. 3). To 
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----------~L---~1 

// 
/ 

Fig. 3. A Rosenberg Bubble. 

simplify notation, we specialize in this section to the case H = 1. To 
be even more specific, let S, = S,(V) be the appropriate E-homothety 
of Mv such that S, has mean curvature 1. Recall that { Mv} is the 
family of surfaces from Conjecture 1, and we are making the additional 
assumption that each surface lies in the half space { x 3 ;:::: 0}. We have 
then (as V ---> =) that E ---> 0 and the boundaries of the scaled surfaces 
as, = r E converge as sets to a single point p E R 3 . 

Ros and Rosenberg show, moreover, that this particular family of 
surfaces, converges smoothly to a unit sphere on any compact set in R 3 

that does not contain p. Next, we slide our coordinates up one unit 
so that p = (0,0,-1) and the boundaries r, lie in {x3 = -1}. The 
convergence of the surfaces is then to the unit sphere S(O) centered at 
the origin, and we may assume (just by scaling the original curve) that 
maxr, liP- XII :S E. 

We would like to say something about the mte of convergence of 
S, to S(O). In order to do this, we will make an assumption about the 
behavior of X· Non r,. In fact, Ros and Rosenberg show that 

max I - 1 - X · Nl ---> 0. 
r, 

We will need to assume more detailed information. As motivation, let 
S(t) denote the unit sphere with center (0, 0, t), and consider the family 
of spheres S( -1 + ~) which translate up to the unit sphere S(O) 
and intersect the plane x 3 = -1 in a circle of radius E. On the boundary 
of one of these spheres, explicit calculation yields X· N = -( ~ + 
E2 ) = -(1 + E2 /2 - E4 /8 - · · · ). In the result below, we require the 
boundary behavior to be bounded by that of these translated spheres 
up to second order. 

Finally, before stating the main result we mention that in the case 
considered in [R] the method of [M] applies to show that S, is a graph 
over S(O) when E is sufficiently small. 
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Theorem 1. If S, is a family of spherical graphs over S(O) of 
CMC H = 1, and 

(1) maxas.IIX -pll ~ E, wherep= (0,0,-1), while 
(2) maxas. X· N ~ -(1 + E2 /2- a( E)), where 0 <a( E)= o(E2), 

then maxs. IIXII ~ 1 + v'2a. 
Proof. From the first bound in the statement of the theorem, it 

follows that IIYII ~ v'1 + E2 for each yEas .. Using this and the second 
bound to estimate M = maxyEr. (IIYII 2 +2Y·N), we get M ~ -1+2o:(E). 
Thus, (5) gives the conclusion of the theorem. 0 

§ Generalities 

It should be remarked that Serrin's result was actually stated in [S1] 
as follows. 

Theorem S. If u E C 2 (!1) n C0 (0) is a solution of (0) on the 
bounded plane domain n, then 

(7) min u(y) < u ~max u(y) + H1 inn 
yEan yEan 

with the equality being attained only if graph u is a hemisphere. 

We now discuss how this theorem can be generalized to spherical 
graphs. The proofs of this section are straightforward applications of 
the reasoning above and that of [S1], and we omit them. Our main 
result along these lines is the following. 

Theorem 2. If X parameterizes a spherical H -graph S over a 
domain n C 8 2 and S extends continuously to fi, then for each X E int S 

(8) 
1 

IIXII~ H+ 
1 

H 2 +max 11¥112. 
YE8S 

Moreover, the equality is obtained only if S is a portion of a sphere. 

By a limiting argument, (8) can be used to obtain the upper bound 
in (7). The equality condition, however, does not survive the limiting 
procedure. 

A more serious omission is the lower bound, and one sees immedi­
ately that a spherical graph S can come arbitrarily close to the origin, 
while as lies on S(O); consider spheres of radius 1/ H that intersect S(O) 
at its equator and have H \, 0. Nevertheless, the following result shows 
that Fig. 2 should not be taken too literally. 
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Theorem 3. If S is a spherical H -graph over a domain in a 
hemisphere of 8 2 and minyEaS IYI 2:: 1/ H, then 

min IIYII :::; IIXII YE8S 

for every X E int S with equality only if S is a portion of a sphere. 

(9) 

Finally, Serrin noted that for a minimal graph u 

u(x):::; maxu(y), 
yE80. 

while the upper bound in (7) tends to +oo as H --+ 0. Thus, he gives a 
complementary result. 2 

Theorem S'. If u is described by Theorem S, and 0 is contained 
in a disc of radius a :::; 1/ H, then 

(10) 1 ~ u( x) :::; max u(y) + - - - - a2 
yE80. H H 2 

with equality only if graph u is a hemisphere. 

Notice in particular that, for a fixed domain 0, (9) follows from (10) 
by letting H tend to 0. 

For a spherical graph, the disc with boundary on the equator of 8(0) 
displays the futility of trying to bound II XII away from 0. For an outer 
bound we have the following. 

Theorem 2'. Let S be a spherical H -graph described by Theorem 
2 and let B be the expression on the right in (8). Let D = {~ E 8 2 : 0:::; 
¢ < arctan(H2 B 2 - 1)-112 }, where¢=¢(~) is the angle that~ makes 
with the positive X3 -axis. If n c D' then 

!lXII:::; max{~~ IIYII, 

Note that H B --+ 2 as H --+ 0. In particular, as a set D converges to 
Do:={~ E 8 2 : 0:::; ¢ < 1rj6}. Thus, if 0 is compactly contained in D0 , 

then the theorem can be used to conclude that IIXII :::; maxyEaS IIYII 
when S is a minimal surface. While the bound in Theorem 2' looks 
complicated, it is completely elementary and can be read off from Fig. 
4 and a straightforward application of Serrin's argument. 

2The lower bound, of course, is no problem. 
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Fig. 4. Diagram for proof of Theorem 2'. 

§ Serrin's corner lemma 

For this section we assume r is a non-circular convex curve and that 
{ Mv} is a family of surfaces as in Conjecture 1. We assume furthermore 
that the family {Mv} satisfies conclusions (1) and (2) of Conjecture 1. 

Now, let M = Mvc be the bubble of critical volume which is tangent 
to the plane II containing r =aM. We apply the Alexandrov reflection 
procedure (see, e.g., [W]) to M with planes that are orthogonal to II. 
Recall that as the reflection plane P begins to cut M, the small cap 
M- that is cut off reflects across P into V. We can continue to push P 
parallel to itself farther through M until the procedure terminates (with 
the reflection M of M- about to exit V). At this terminal point, there 
are several possibilities. 

It may be that the reflected surface M is tangent to M at a point 
interior to M. In this case, it follows that the terminal plane P is a 
symmetry plane for M. Another possibility is that M is tangent to M 
at a point on aM- but away from II. In this case, P is again a plane 
of symmetry (which follows from the Hop£ boundary point lemma). In 
both of these first two cases, the curve r, in particular, must possess a 
symmetry, and we say that this is a symmetry in the direction of P. 

Of course, it may be the case that r does not have a symmetry in 
a certain direction. In this case, the touching described above cannot 
occur. One alternative is that M touches M along r but away from 
P. This touching may be tangential (in which case there must be a 
symmetry) or non-tangential (which case we ignore). 
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The last possibility is that M is tangent toM at a point pin IInP. 
Each of the two surfaces may be expressed locally as a graph over a 
corner domain in the common tangent plane at p. It is customary at 
this point to apply a version of the Hopf boundary point lemma at a 
corner due in various forms to Serrin [S2] and Gidas, Ni, and Nirenberg 
[G]. Let u be the nonnegative difference of the two graphs over the 
corner domain K. A simple version of the corner lemma is as follows. 

Lemma S. If u satisfies 

(1) u ~ 0 inK, 
(2) u(p) = 0 (where p is the corner point), 
(3) Du(p) = 0, and 
(4) D1111u(p) = 0 for every non-tangential direction 'f/ pointing into 

K fromp, 

then u = 0 inK. 

If the hypotheses (1)-(4) hold, then the conclusion yields that M, 
and hence r, has a symmetry. Furthermore, note that if the II n P 
touching occurs, then conditions (1)-(3) automatically hold. Also, re­
call that the function to which we apply Lemma S is a difference u = 
f(x, y)- }(x, y), and one of the functions, j, is obtained from the other 
by reflection so that in the appropriate coordinates }(x,y) = f(-x,y). 
It follows that Uxx(P) = Uyy(P) = 0 and Uxy(P) = 2fxy(p). 

On the other hand, if 'f/ = ('fit, 'f/2 ) is a non-tangential direction, then 
since u ~ 0 and Du(p) = 0, one has 

We conclude that either (1) there is a symmetry or (2) fxy(p) > 0. 
Notice that the x-direction in this discussion is the direction of re­

flection and is tangent to r = 8M at p. Let us assume that M is a 
graph over n locally near p. Let¢= ¢(x, n) represent the graph where 
x is measured in the tangent direction to r as before and n is measured 
in the inward normal direction to n. An elementary computation shows 
that 

1 
fxy(P) = - 1 + ¢;, (c/Jn)x, 

where ¢n is the usual inward normal derivative of ¢. This means that 
either there is a symmetry in the x direction or the angle between M 
and II measured within V is strictly increasing along r in the direction 
of reflection at p. 

Similarly, and more interesting for what we say below, the same 
conclusion holds when M is locally a graph over R 2\0 near p. 
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/ 
/ 

Fig. 5. Modified ellipse. 

§ Counterexample 

Consider what happens if conclusions (1) and (2) hold when r = £ 
is an ellipse. In this case, there are only two symmetries of r and 
hence of M = Mvc. Consequently, in every other direction of reflection, 
the reflection procedure described above terminates due to a boundary 
touching. Furthermore, due to the monotonicity properties possessed 
by the curvature of an ellipse as the boundary is traversed, one can 
check (as we do in the next section for all curves with two symmetries 
and four vertices) that the procedure must end in a II n P touching 
without symmetry. One concludes that the angle between M and II is 
increasing with decreasing curvature along the boundary of the ellipse 
and, in accord with the conjecture, the maximum angle which occurs 
at the tangency must be at the minimum point of curvature. We have 
shown that conclusions (1) and (2) of Conjecture 1 imply (3) when r is 
an ellipse. 

It is possible, however, to construct a smooth convex curve r with 
the following properties; see Fig. 5. 

(1) r n {xi :::; 0} is half of an ellipse£ given by xifa2 + x~jb2 = 1 
with b <a. 

(2) r n {x1 ~ 0} is a curve that is symmetric with respect to the 
x1-axis and has monotone curvature which increases with XI 

to a vertex (a', 0) with a'> a. 
(3) The domain n bounded by r contains the half of£ with XI > 0. 

It is not at all difficult to believe that such a modification of an 
ellipse exists (though Fig. 5 actually shows two ellipses and hence the 
resulting modification is not smooth). We give an explicit construction 
in the next section. For now, observe that, given such a curve, the points 
of minimum curvature still occur at (0, ±b) and have the same value b/ a2 

as £. Reflection in the positive x1 direction, however, does not result in 
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Fig. 6. The line l normal to & at p. 

a symmetry, but in a II n P corner touching without symmetry. Thus, 
the angle between M and II is increasing along r at (0, ±b); it cannot 
be a maximum there as required by Conjecture 1 part (3). 

§ Details 

We first show that any curve £ with the symmetries of an ellipse 
and four vertices must reflect strictly inside the domain it bounds until 
a tangency occurs on the plane of reflection P. 

Suppose that £ is symmetric with respect to the x1 and x 2-axes 
with minimum curvature at (0, ±b) and maximum curvature at (±a, 0). 
of£ in the j-th quadrant. Let l be a line of negative slope whose normal 
points into the first quadrant. We move l parallel to itself in the direction 
of its normal through the domain n bounded by £. (The line l may be 
thought of as II n P in our previous discussion.) There are two points of 
£where the normal to£ is parallel to l. There is one, p2 , in the second 
quadrant and another, p4 , in the fourth quadrant. 

Lemma 1. The portion &- of£ through which l has passed when 
l contains p = P2 is the graph of a function u(x) over l. 

Proof. Since there are only two points where l can be normal to 
£, the statement is equivalent to saying P2 is reached first-before P4· 
When the slope of l is very close to -oo, this is clear because the radius 
of curvature near (0, b) is greater than b. We conclude by continuity that 
the only way for the assertion to fail is if, for some slope, P2 and P4 are 
reached at the same time. 

In this case, it follows from symmetry that the circle centered at the 
origin and passing through p2 and P4 is tangent to £ at both of these 
points. A comparison of the curvature of £ with the curvature of this 
circle yields a contradiction. If, for example, the curvature of £ at P2 is 
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less than that of the circle, then since the curvature of £ decreases up 
to (0, b), one sees that the slope of£ at (0, b) must be less than that of 
the circle when it crosses the x2-axis (which is zero). This contradicts 
the fact that£ is smooth at (0, b) and completes the proof. D 

We position l as indicated in Fig. 6, passing through the point p = 
p2 . Denote by q the other point of intersection of l with £. We need to 
prove the following. 

Theorem 4. The reflection £ of£- lies strictly inside the domain 
n except at the endpoints p and q. 

Let us slightly abuse notation by letting l be the first axis of a plane 
coordinate system with real coordinates p and q corresponding to the 
points p and q. The entire curve£ is then the union of the graphs of two 
smooth functions u and v defined on some interval p ::::; x ::::; q', where 
(q', u(q')) = (q', v(q')) = p4 . In harmony with the notation of Lemma 1, 
we require that £- C graph( u). In order to prove the theorem, it is 
enough to show that u(x) = -u(x) < v(x) for each X between p and q. 

Let ~~;u(x) be the curvature of graph (u) at (x, u(x)) and ~~;v(x) that 
of graph ( v) at ( x, v ( x)). Due to the simple nature of the curve £ the 
curvatures satisfy some simple relations. 

Lemma 2. Let x 0 = (p + q')/2. Then the following hold: 

(1) ~~;u(p) = ~~;v(p). 
(2) ~~;u(x) > ~~;v(x) for p < x < Xo. 
(3) ~~;u(xo) = ~~;v(xo). 
(4) ~~;u(x) < ~~;v(x) for Xo < x < q'. 

Proof. For x near p, it follows from the monotonicity of curvature 
that ~~;u ( x) > ~~;v ( x). Since ~~;u is increasing and ~~;v decreasing initially, 
this inequality will be maintained at least until ( x, u( x)) or ( x, v ( x)) is a 
vertex-and for some time thereafter. There are three cases determined 
by whether a vertex of minimum curvature is reached first, one of max­
imum curvature, or both at the same time. In all cases, one sees that 
the assertions of the lemma hold. D 

The key points from Lemma 2 are (1) ~~;u is initially greater than 
~~;v, and (2) ~~;u may become smaller than ~~;v, but once the curvatures 
are equal at xo, ~~;u will always be less from there on. 

In the event that q::::; x 0 , we can easily finish the proof of Theorem 4 
since the reflection£ of£- is given by the graph of u(x) = -u(x) and 
the curvature ~~;u = ~~;u ~ ~~;v. The two graphs are tangent at p and 
that of u has greater curvature at each point. Hence, u(x) ::::; v(x) for 
p ::::; x ::::; q with equality only at p as required. 
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In the other case (x0 < q) we proceed by contradiction and use 
Lemma 3 below. If Theorem 4 is to fail, then there must be a first value 
XI with p < XI < q for which u(xi) = v(xi)· Moreover, we have that 
xo <XI < q and u'(xi) 2:: v'(xi). This is enough. 

Lemma 3. Ifu(xi) = v(xi) and u'(xi) 2:: v'(xi), but the curvature 
of graph (u) is less than the curvature of graph (v) on some interval 
XI <X::::: q, then u(x) > v(x) for XI <X :S: q. 

Since we know that u(q) < v(q), we have a contradiction-and a 
theorem. D 

We now turn our attention to constructing a modification r of an 
ellipse as described above. 

By symmetry it is enough to construct the portion of r in the fourth 
quadrant. We recall furthermore that a curve can be constructed from 
its curvature. In our case, if () denotes the angle made by the tangent 
to the curve with the positive XI-axis and we specify a positive function 
11,( ()) on [0, 1r /2], then the formula 

t' 1 X(())=(O,-b)+ Jo K,('!?)(cos'!?,sin'!?)d'!? 

defines a convex curve that extends £ from the third quadrant into the 
fourth; see Fig. 7. Various other conditions must by satisfied by 11, as 
described below. In order to introduce these conditions, we consider the 
curvature 11,0 and parameterization X 0 of the corresponding portion of 
the ellipse £. 

In order for r to be a smooth extension of£ at (0, -b), we need 

(1a) 11,(0) = 11,0 (0) and 11,'(0) = 0. 

The condition on monotone curvature is 

(1b) 
7f 

11,1 (()) > 0 for 0 < () < 2. 

In order for r to close smoothly with it's reflection at a point (a', 0), we 
need 

(2a) 
r/2 1 

x2(7r/2)=-b+ Jo K,('!?)sin'!?d'!?=O, 

and 

(2b) K,' (~) = 0. 
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Fig. 7. Shown on the left are E and a quarter of the oscu­
lating circle at (0, -b). On the right are the cor­
responding curvature functions. A possible modi­
fication is shown (dashed) which stays close to the 
circle for 0:::; e:::; Oc(a). 

In order to describe a sufficient condition that £ be enclosed by r, we 
note that given a positive function t£, the function 

1(} 1 
~(e)= 0 t£('!9) cos'I'Jd'I'J 

has an inverse. In particular, this is the case for t£0 , and we denote 
the corresponding inverse, defined on the interval [0, a], by e0 . Let the 
inverse of the function ~ defined by "' be denoted by e, then we will 
require 

(3) l'£(e(xl)) < t£o(eo(xl)) for 0 < x1 <a. 

Thus, we are done, if we can find a positive function t£ defined on 
[O,K/2] such that (1a), (1b), (2a), (2b), and (3) are satisfied. 

We begin by considering the circle shown in Fig. 7. It has parame­
terization 

Xc(e) = (O,-b)+1
8 _2_( )(cos'I'J,sin'I'J)d'I'J. 

o "'o 0 

This curve does have the virtue that it satisfies (3), i.e., it encloses the 
part of£ in the fourth quadrant. We have already considered the inverse 
e of the x1 -coordinate ~. Similarly, the x 2-coordinate 

[(} 1 
ry(e) = -b+ Jo x:('I'J) sin'I'Jd'I'J 
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has an inverse, which we denote by e. We denote quantities corre­
sponding to the circle by a subscript c. Note that Bc(a) < ec(O). Let 
81 =(Be( a)+ ec(0))/2 >Be( a). 

In order to make sure that (3) is satisfied, we will require that K 

stay close to Kc for 0 ::; 8 ::; 81. 
To be precise, we choose a function K of the form 

K(B) = "'o(O) + EA(B) + hB(a(B- (3)). 

In this definition E < 1, h, a, and (3 are positive numbers to be chosen. 
A( B) is a fixed smooth increasing function that satisfies A( B) ::; ( Ko (B) -
Ko(0))/2 for 0 ::; e ::; el and A'(B) = A'(BI) for el ::; e ::; 7r/2. B(JL) 
is a bump function to be chosen with the standard properties (B ~ 0, 
suppB = [-1, 1], symmetric, one inflection on [0, 1)). 

If we stipulate that (3 -1/a = el, then K(B) = Ko(O) + EA(B) for 0::; 
8 ::; 81 and, for E small enough, conditions (1a) and (3) will be satisfied. 
Condition (1a) follows immediately from the properties of A and Ko. To 
see that (3) holds, note first that the restriction of~ to the interval [0, el] 
has a well-defined inverse B. Secondly, ~(B) converges uniformly to ~c(B) 
on [0, 81] as E---+ 0. In particular, ~c(BI) >a so that for E small B(xl) is 
well-defined on [O,a]. Thirdly, Ko(B) ~ K(B) = Ko(O) +EA(B) for 0::; e::; 
el. In fact, Ko(B)-K(B) ~ (Ko(B)-Ko(0))(1-E/2) = BK~(B*)(1-E/2) ~ 0 
for some B* E (0, B), and equality holds only for B = 0. It follows that 
whenever ~(1.9) = ~o('f?), one must have 19 < 4?, i.e., B(x1) < Ba(xl). 
Finally then, we see that K(B(xl)) < Ko(B(xl)) < Ko(Ba(xl)). Let E1 > 0 
be such that (1a) and (3) hold whenever E < E1. 

Let /Ll be the unique value in [0, 1) such that B"(JLI) = 0. We then 
have B'(JLI) < B'(JL) < 0 for 0 < JL < /Ll· For any JL E (0, JL1], we can 
define a= a(JL) and (3 = f3(JL) by the equations 

JL 7r 1 - + (3 = - and (3 - - = el 0 

a 2 a 

Consider 
K = K1(B) = Ko(O) + EA(B) + hB(a(B- (3)), 

as before except that we have substituted the values a(JL) and f3(JL). 
Consider conditions (1b) and (2b). If 0::; e::; el, then K~ = EA'(B) ~ 0 
with equality only at B = 0. For 81 ::; B ::; 1r /2, 

K~(B) = EA'(BI) + haB'(a(B- (3)) > EA'(BI) + haB' (a(~- !3)). 
Thus, there is a value 

EA'(Bl) 
h = h(E, JL) =- aB'(a(1r /2- (3)) 
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for which the last expression is zero and, hence, (lb) and (2b) are satis­
fied. 

The only remaining condition is (2a). Notice that for fixed JL we 
have h( E, J1) __... 0 as E __... 0. It follows that A:1 ( 8) converges uniformly to 
Ko(O) as E __... 0. Hence, 

171 (~) = -b+ 11r/2 K1 ~1'J) sin1'Jd1'J __.17c (~) > 0. 

Consequently, there is a pair (E2, J12) E (0, E!} x (0, JLd for which (la), 
(lb), (2b), (3), and 171(nj2) > 0 are satisfied. 

On the other hand, the same reasoning concerning convergence of 
K1 to Ko works for 0 :::; 8 :::; 81 to show that for some E = E3 small enough 
one has 171 ( 81) < 0. But when E = E3 is fixed and J1 is small, then a is 
small, (3 is close to 1r /2, and h gets monotonically large. More precisely, 
K1 ( 8) is a decreasing family of functions in JL, and we can make K1 ( 8) 
uniformly large on any interval [81 + 8, 1r /2]. If we choose 8 small enough 
so that 171 ( 81 + 8) < 0, then it follows that 

(7r) L7r~ 1 171 - = 171 ( 81 + 8) + -(-0) sin{) d{) __... 7)1 ( 8!) < 0 
2 () 1 +8 K1 'U 

as JL __... 0. Thus, for some (E3 ,JL3 ), we have (la), (lb), (2b), (3), and 
171(n/2) < 0. 

By continuity, there is a point ( E*, JL*) on the line segment between 
(E2, J12) and (E3, J13) for which all the conditions (la)-(3) hold. D 

Acknowledgment. I would like to express my thanks to David 
Hoffman for several comments that improved the presentation above. 
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