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Introduction The theorem alluded to in the subtitle is the Odd
Order Theorem of Feit-Thompson [F'T| which states that all finite groups
of odd order are solvable. For the remarkable proof, they invented a rev-
olutionary new method which was influential to the development of finite
group theory in the last 30 odd years. Recently, Bender and Glauber-
man [BG] have published a highly polished proof covering the group
theoretical portion of the proof of the Odd Order Theorem.

By design, their proof is by contradiction. From the start they work
on the hypothetical minimal simple group of odd order and study its
properties. Thus, all the wonderful intermediate results are properties
of the hypothetical group, and hence they may be vacuous. One of the
goals of this paper is to show that this is not so; their method does give
positive results and all the intermediate results are in fact properties of
some real groups.

We consider the prime graph I'(G) of a finite group G. This is the
graph defined as follows. The set of vertices of I'(G) is the set 7(G) of
the primes dividing the order |G| of G. If p,q € 7(G), we join p and ¢
by an edge in I'(G) if and only if p # ¢ and G has an element of order
pq.

The classification of finite simple groups has several interesting con-
sequences on the prime graph of a finite group. The following is one of
them.

Theorem A. Let A be a connected component of the prime graph
T(G) of a finite group G, and let w be the set of primes in A. Assume
that A #T'(G) and 2 ¢ w. Then, A is a clique.

Usually, we identify A with w and abuse the terms, saying w is a
connected component of the graph I'(G). Theorem A has not been stated
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in the literature in this form. But, the works of Gruenberg and Kegel
[GK] and Williams [W] together with properties of Frobenius groups
yield Theorem A. The classification of finite simple groups is used in
two separate places of its proof. The first is in the proof of the following
theorem.

Theorem B. Theorem A holds for a finite simple group.
The second use of the classification is to prove the following lemma.

Lemma. Let G be a finite simple group. Then, m(Out G) is con-
tained in the connected component of the prime graph I'(G) that includes
the prime 2.

This is fairly easy to check because Out G for a simple group G is
not too complicated. The checking of Theorem B is more complex.

The purpose of this work is to show that the method of Feit, Thomp-
son, Bender, and Glauberman can be adapted to give a proof of Theorem
B without using the classification of finite simple groups.

Actually, Williams [W] has checked the following result for a finite
simple group.

Theorem C. Let A be a connected component of the prime graph
I'(G) of a finite simple group G. Let w be the set of primes in A.
Assume that A # I'(G) and 2 ¢ w. Then, G contains a nilpotent Hall
w-subgroup H that is isolated in G.

A subgroup H of any group G is called isolated in G if 1 # H # G
and for every element z € H!, we have

C(;'(.’E) C H.

Theorem B is weaker than Theorem C which may be considered a local
version of the Odd Order Theorem. It would be nice if our method
would be able to prove Theorem C.

Originally, Gruenberg and Roggenkamp [GR] are led to study the
prime graph, in particular its connectivity, through their work on the
decomposition of the augmentation ideal of the integral group ring of a
finite group. Specifically they considered the following three conditions
on a finite group G.

(1) G has an isolated subgroup.
(2) The augmentation ideal decomposes as a right ZG-module.
(3) The prime graph I'(G) is not connected.
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Gruenberg and Roggenkamp [GR] proved that (1) = (2) = (3).
Using Theorem C, Williams [W] was able to prove that (3) = (1). If @
is a connected component of the prime graph I'(G) such that 2 ¢ w and
w # I'(G), it is not necessarily true that G has a Hall w-subgroup that
is isolated.

1. The Beginning of the Proof
Let G be a finite group and let @ C w(G) be the set of primes of a
connected component A of the prime graph I'(G). Assume that

w#w(G) and 2¢ w.

These conditions and notation are used throughout this paper. The
starting point of the proof is the following proposition. .

Proposition 1. Let P be a nonidentity w-subgroup of G. If
Ng(P) is of even order, then G has an abelian Hall w-subgroup that
is isolated in G.

Proof. Since 2 ¢ w, P is of odd order. By assumption, there is
an element ¢ of order 2 that normalizes P. Since w is a connected
component and 2 ¢ w, the element ¢t acts regularly on P. This yields
that

i 1

- =2 " for € P.

Thus, P is abelian. If z € P¥ Cg(z) is a w-group and is normalized
by t. It follows that A = Cg(z) is abelian and the element ¢ inverts
every element of A. If y € A¥  the same argument proves that Cg(y)
is abelian. Since A = Cg(z) C Cg(y), we have Ce(y) = A. Therefore,
A is an abelian subgroup that is isolated in G. It is known that every
isolated subgroup is a Hall subgroup. Q.E.D.

Therefore, to prove Theorem B, we may assume that every w-local
subgroup is of odd order. From now on we use the following notation
and assumptions in addition to the ones already stated.

Let G be a finite simple group. Let

M= {M | M is a maximal w-local subgroup of G},

define
MH)={MeM|HC M}

for any subgroup H of G, and assume that every subgroup M € M is of
odd order.
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The set of subgroups M satisfies properties which are similar to the
properties of the set of all maximal subgroups of the hypothetical min-
imal simple group of odd order studied by [FT] and [BG]. We remark
that the situation considered here does occur in real groups. For exam-
ple, if p is a prime such that p = 3 (mod 4), the alternating group A,
satisfies the condition for w = {p}.

2. The Local Analysis of M

We can apply the method of Bender and Glauberman to study the
subgroups in M. The subgroups in M are of odd order; hence, they
are solvable by the Odd Order Theorem. By definition, M € M is a
w-local subgroup. It follows that F (M), the Fitting subgroup of M, is
a w-subgroup. Let p € 7(G) and let P € Syfp,(M). If P is not cyclic,
P contains an elementary abelian p-subgroup A of order p?. Then, A
normalizes N = O (M) which is not 1. By a well-known proposition
(Proposition 1.16 [BG]),

N = (Cn(z) | z € AY).

It follows that p € w. Thus, if M is not a w-group, M has a cyclic
Sylow p-subgroup for every p € n(M) \ w, Thus, M € M is almost a w-
subgroup. However, I call attention to the following point. For M € M,
the set o(M) of primes is defined in [BG] as

o(M)={pen(M)| Ne(P)C M for some P € Syl,(M)}
(p.70 [BG]). The important set in our case is
oo(M)=0c(M)Nw
and the subgroup we should study is
Mg, = Ooqo(ar)-
It is proved that M,, is a Hall oq(M)-subgroup of M.

Proposition 2. All the statements of the sections 7 — 15 of [BG
hold with proper changes in the hypotheses and conclusions.

The types of subgroups in M are defined as in pp.128-129 [BG] with
the following three changes.
(IIiv) should read: V # 1 and if V is a w-group, then

Ne(V) Z M.
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(IIv) should read: Ng(A) C M for every nonidentity subgroup A of
M’ such that Cy(A) # 1.

(IITé4) should read: V is an abelian w-group and Ng(V) C M.

Then, M € M is of type I, IT, III, IV, or V. We have the following
two theorems which are the goal of the local analysis.

Theorem 1. FEither every subgroup in M is of type I or all the
following conditions are true.

(1) G contains a cyclic subgroup W = W; x Wy with the prop-
erty that No(Wo) = W for every nonempty subset Wy of W —
{Wy,Wy}. Also, W; #1 fori=1,2.

(2) There are two subgroups S and T in M such that S and T are
of type II, III, IV, or V, SNT =W, S is not conjugate to T in
G, and either S or T (it may be both) is of type II.

(3) Every M € M is either of type I or conjugate to S or T in G.

There are other conditions which S and T must satisfy. For each
M € M, two particular subsets A(M) and Ao(M) of M are defined (cf.
p-124 and p.131 [BG]). The notation My for each M € M denotes the
normal nilpotent Hall subgroup of maximal order of M.

Theorem II. For a subgroup M € M, let X = A(M) or Ao(M),
and let
D ={z € X*| Cg(z) ¢ M}.

Then, D C M,,, IM(Cg(z))| = 1 for all x € D, and the following
conditions are satisfied.

(Ti) Whenever two elements of X are conjugate in G, they are con-
jugate in M.
(T4) If D is not empty, there are w-subgroups My, ... , M, in M of
type I or II such that with H; = (M;)F,
(8) (Hil,|H) =1 for i#3],
(¢) (|Hi|,|Cm(2)]) =1 foral ze X¥
(d) Ao(M;) — H; is a nonempty TI-set in G with normalizer M;,
and
(e) #f = € D, then there is a conjugate y of z in D and an index §
such that

Ca(y) = Ch,(y)Cm(y) C M;.

>

If y € D with Cg(y) C M;, then y € A(M;).
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(Tiii) If some M; in (Tii) has type II, then M is a w-group and is a
Frobenius group with cyclic Frobenius complement, and Mp is
not a TI-set in G.

3. Application of Character Theory
We can study subgroups of M using character theory as in [FT].
The following are the major steps.

Proposition 3. There is no subgroup M € M of type V.

Proposition 4. FEvery subgroup M € M of type I is a Frobenius
group.

This is very powerful. Suppose that M € M is not a Frobenius
group. Then, any supporting subgroup M; for M in Theorem II is.of
type I by (T%ii). Then, Proposition 4 yields that M; is a Frobenius
group. However, it is easy to see that Ag(M;) = H; for a Frobenius
group. This contradicts (T'%)(d). Therefore, there is no supporting
subgroup. It follows that X is a TI-set in G. This gives a very tight
control on the imbedding of any M that is not a Frobenius group. In
particular, we can study the subgroups in M which are of type II, III,
or IV. The final result is the following.

Theorem III. Let G be a finite simple group with disconnected
prime graph I'(G). Let w be a connected component such that 2 ¢ w.
Then, one of the following two cases occurs.

(1) G contains a nilpotent Hall w-subgroup that is isolated in G.
(2) We have w = {p,q} for some primes p and q, and G has a
self-normalizing cyclic subgroup of order pq.

If the second case occurs, there are many more conditions the primes
p and ¢ must satisfy. It may be possible to eliminate the case (2) with-
out referring to the classification of finite simple groups. In any case,
Theorem IIT implies Theorem B.

Theorem IV. Let G be a finite simple group with disconnected
prime graph I'(G). Let A be a connected component consisting of odd
primes. Then, A is a clique.

4. Lemmas

For the most part, we will follow the notation and terminology in
[BG]. Exceptions are noted in the body of the paper. As usual, for a
prime p € 7(G), we denote by

Syfp(G)
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the set of all Sylow p-subgroups of G.
Let X be a group and Y a subgroup of X. As in [BG], a complement
Z of Y in X is defined to be a subgroup Z of X satisfying the two
conditions
YNZ=1 and X =YZ

We have the following well-known lemma.

Lemma. Let X be a group andY a subgroup of X. Suppose thatY
has a complement Z in X . IfU is a subgroup of X such thatY C U C X,
then'Y has a complement in U.

Proof. We will show that U N Z is a complement of Y in U. Let
W =UnNZ. Then, clearly Y N W = 1. We have

U=XNU=YZnNU.
Since Y C U, the Dedekind law yields that
YZNU=Y(ZnNU)=YW.
This proves that Y has a complement W in U. Q.E.D.

Next, we will state five lemmas which are used freely throughout
this paper. Their proofs. can be found at the end of the introduction.

Lemma A. IfP #1 is a w-group, so is Cg(P).

Lemma B. Suppose a noncyclic elementary abelian p-group E
acts on a subgroup H # 1.

(1) If H is a w-group, then p € w.
(2) Ifp€ w and H is a p’'-group, then H is a w-group.

Lemma C. Assume 2 ¢ w. If there exists a w-local subgroup of
even order, then G contains an isolated abelian Hall w-subgroup.

Lemma D. A w-group # 1 is contained in a w-local subgroup.

Lemma E.
1) If M € M and a pi-subgroup K # 1 is normal in M, then
M = Ng(K).

(2) If M e M, then Ng(M) =M.
(3) If M € M normalizes a w-group H # 1, then H C M and
M = Ng(H).
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Furthermore, we will collect here a few fundamental lemmas which
are explicitly stated in the body of the paper. The terminology and
notation are given there, as are the proofs.

Lemma F (See §4, page 9). IfM € M and p € #(M) Nw’, then
M has a cyclic p-Sylow subgroup.

Lemma G (See §4, page 12). If M € M, then M is a w-group
except when

(1) M is a Frobenius group such that the Frobenius kernel of M is
a Hall w-subgroup of M, or

(2) M has the following structure: M/M' is a cyclic w-group, My =
Mg = M,, # 1 is a nilpotent w-group, and M'/Mpg is a non-
identity cyclic @’ -group that is a Hall subgroup of M. Both M’
and M/Mp are Frobenius groups.

In the case (1), the Frobenius kernel of M is My, and it is either
M’ or My = Mj.

Lemma H (See §6, page 17). Let M € M. If o(M) # 0, then M
is a w-group. If M is not a w-group, then r,(M) <1 for allp ¢ oo(M).

We also need some lemmas about the fusion of elements (§11, page
66). Our hypotheses are weaker than those in [BG]|, and these lemmas
guarantee that the same results still hold.

Lemmal. Let M € M and let X be an F-set of M. Every element
of X! is conjugate to an element of D* in M.

Lemma J.

(1) Ewvery element g of M; is conjugate in M; to an element of the
form xh = hz where x € M N M; and h € H;.

(2) Suppose that g is an element of M; with Cy,(g) # 1. Assume
that g is conjugate in M; to an element of the form ha where x €
M N M; and h € Cg,(z), and at the same time, g is conjugate
to an element of the annex A(y) with y € D;. Then, j =i and
the element = is conjugate to y in M;. In particular, x € D;
and g € A(M;).

Finally, we prove Lemmas A through E.

The first three lemmas give a few basic properties of connected com-
ponents of prime graphs.
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Lemma A. Let G be a group and let w be a connected component
(or a union of connected components) of the prime graph I'(G) of G. If
P +#£1 is a w-subgroup of G, then Cg(P) is a w-group.

Proof. Let p € w(P). Then, p € w. Take any g € n(Cg(P)). We
will show ¢ € w. We may assume g # p. There are elements x and y
such that z is an element of P of order p and y is an element of Cg(P)
of order ¢. Since z and y commute, the product xy has order pq. Thus,
(p,q) is an edge of the prime graph I'(G). This proves that g lies in the
same connected component as the prime p € w. Hence, ¢ € w. Q.E.D.

Lemma B. Let G be a group and let w be a connected component
(or a union of connected components) of the prime graph T'(G) of G. Let
p be a prime. Suppose that a noncyclic elementary abelian p-subgroup
E normalizes a subgroup H of G.

(1) IfH is a w-group # 1, then p € w.
(2) Ifp€ w and H is a p'-group, then H is a w-group.

Proof. By our assumptions, K = HF is a subgroup and H < K.
(1) Suppose that H is a w-group # 1. If p € 7(H), then p € w.
Suppose that p ¢ w(H). Then, H is a p’-group. By Proposition 1.16
[BG],
H = (Cx(z) |z € EY).

Since H # 1, P = Cg(x) # 1 for some = € E*. Then, z € Cg(P) where
P # 1is a w-group. By Lemma A, Cg(P) is a w-group, so in particular,
the order of z is a w-number. This proves p € w.

(2) Letgen(H)and Q € Syly(H). Then, g # p and Q is a Sylow
g-subgroup of K. By the Frattini argument, K = H Nk (Q). Therefore,
a conjugate of E normalizes . We may replace E by a conjugate (in
K) and assume that F normalizes Q. Since Q is a p'-group, Proposition
1.16 [BG] yields

Q= (Cq(e) |z € EY).

Since () is a w-group by assumption, Lemma A implies that Cg(z) is a
w-group. Therefore, ¢ € w. This proves that H is a w-group. Q.E.D.

Lemma C. Let G be a group and w a connected component of
the prime graph T'(G). Suppose that the prime 2 is not contained in w
and that there is a w-local subgroup of even order. Then, G contains an
abelian Hall w-subgroup A that is isolated. Furthermore, any w-element
s conjugate to an element of A and the centralizer of any w-element is
abelian.
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Proof. By assumption, there is a pair (H,t) of a w-subgroup H
and an element t of order 2 that normalizes H. We have a lemma: For
any pair (H,t) consisting of a w-subgroup H and an element ¢ of order
2 that normalizes H, t inverts every element of H and consequently, H
is abelian. This follows from the lemma of Burnside ((1.9) [S II} p. 131).
Note that since 2 ¢ @, Cg(t) = 1 by Lemma A. By a first application
of the above lemma, the element ¢ inverts every element x of HY¥, i.e.
tzt~! = 1. Tt follows that ¢t normalizes A = Cg(z). By Lemma A, A
is a w-subgroup of G. Take y € A*. A second application of the lemma
proves that Cg(y) is abelian. Since A is abelian, A C Cg(y). By the
definition of A, A = Cg(z) for some x € A*. Thus, the abelian group
Cg(y) must coincide with A, i.e. A satisfies the property that if y € A¥,
then Cg(y) = A. An easy application of Sylow’s Theorem yields that A
is a Hall subgroup of G.

If AnuAu=! # 1 for some u € G, then take a nonidentity element
y of ANuAu~"! and consider Cg(y). Then, A = Cg(y) = uAu~'. Thus,
A is isolated.

We will show that w = n(A). Suppose that @ # 7(A4). Then, there
is a pair of primes (p, q) such that p € 7w(A4), ¢ € w — w(A), and (p, q)
is an edge of the prime graph I'(G). Therefore, there are elements a,b
such that a is of order p, b is of order ¢, a € A?, and @ commutes with
b. It follows that b € C(a) = A. This contradicts the choice of ¢ with
g ¢ w(A). We have shown that A is a varpi-Hall subgroup of G that is
isolated.

If z is any w-element, (z) is conjugate to a subgroup of A by a
theorem of Wielandt [W 1954]. The last assertion follows. Q.E.D.

~ We will also need the following properties of M.

Lemma D. Let G be a group and m a set of primes. Any w-
subgroup H # 1 is contained in a mazimal 7-local subgroup.

Proof. By definition, K = Ng(H) is a m-local subgroup of G. Let
M be a m-local subgroup of maximal order that contains K. Then, M

is a maximal m-local subgroup such that H C M. Q.E.D.
Lemma E.
(1) If M € M and a w-subgroup K # 1 is normal in M, then
Ng(K) =M.

(2) If M eM, then Nog(M) =M.
(3) If M € M normalizes a w-subgroup H # 1 of G, then H C M
and M = Ng(H).



On the Prime Graph of a Finite Simple Group 51

Proof. (1) By assumption, Ng(K) is a 7-local subgroup that con-
tains M. Since M € M, we get Ng(K) = M.

(2) Let K = Or(M). Then, K is a w-subgroup # 1 of G. Hence,
M = Ng(K) by (1). Since K char M, Ng(M) C Ng(K). Hence,
Ne(M) = M.

(3) By assumption, Ng(H) is a 7-local subgroup that contains M.
Since M € M, we have Ng(H) = M. Q.E.D.

Chapter I. Local Analysis

We begin the local analysis of the simple groups G that satisfies the
basic assumptions. We need the following notation.

Notation. Let G be a simple group with disconnected prime graph
I' = I'(G). Let w be a connected component of I" that consists of odd
primes. We fix the following notation:

M = the set of all maximal w-local subgroups,
M(H) = the set of M € M such that H C M,
U = the set of all proper subgroups H C G such that [ M(H)| = 1.

The basic assumptions are

2¢w

and
the set M consists of subgroups of odd order.

Thus, if M € M, then M is a solvable group of odd order.

The above notation and the basic assumptions are in force through-
out this paper, not just in Chapter I.

Chapter I contains 10 sections and is organized as follows. Section m
of this chapter corresponds to Section m + 6 of [BG]. Lemma (Theorem,
Proposition, or Corollary) m.k of Section m of this paper corresponds to
Lemma (Theorem, Proposition, or Corollary) (m + 6).k in [BG]. Proof
may sometimes be obtained from the proof of the corresponding lemma
in [BG] simply by changing the reference to Lemma n.k to Lemma
(n — 6).k of this paper when n > 6. If this is the case, the proof is
usually omitted by referring to [BG].
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§1. The Transitivity Theorem

Hypothesis 1.1. (1) The group A is a noncyclic subgroup of G with
Ox(A) #1, and m = 7(A).
(2) Whenever X is a w-local subgroup of the group G such that
A C X, we have
O (X) = (Hx(A; 7).

Let K = O, (Cg(A)) as in [BG]. Then, K is the set of all '-
elements in Cg(A). This is proved as follows. Let B = Og(A4). By
Hypothesis 1.1 (1), B # 1. Hence, Cg(A) C Ce(B) C Ng(B). This
implies that Ng(B) = X is a w-local subgroup that contains A. Let
z be a 7'-element of Cg(A). Then, (z) is a n’-subgroup of X that is
A-invariant. By (2), {(z) C O (X). Therefore,

<l‘> - C(;(A) NOy (X) C Oy (CG(A)) =K.
Conversely, if z € K, then z is a 7’-element of Cg(A). Q.ED.

Lemma 1.1. Assume Hypothesis 1.1. Suppose, for a prime q €
' Nw, that Q1, Q2 € HUE(A;q) and that there exists a w-local subgroup
H of G such that

ACH HNQ@#1, and HNQy #1.
Then, Qg = Q1% for some k € K.

Proof. We proceed by induction on |G|y/|@1 N Q2]. If this number
is 1, then Q7 and Q2 are Sylow subgroups of G with |Q; N Q2| = |Q1| =
|Q2|. This implies Q; = Q2 = @Q1* with k = 1 € K. Proceed by
induction. By the basic assumptions, H is a solvable group. Hence, the
A-invariant g-subgroup H N Q; is contained (in O,.(H) by Hypothesis
1.1 and so) in an A-invariant Sylow g-subgroup R; of O (H). Similarly,
H N @y C Ry where Ry is an A-invariant Sylow g-subgroup of O, (H).
By Proposition 1.5 [BG], R* = R, for some h € O./(H) N Cg(A).
Since h is a w’-element of C(A), the remark after Hypothesis 1.1 yields
hec K.

Take Q3 € H}(A;q) such that Ry C Q3. Since h € K, QF €
Hg(A;q). We have 1 # (Q, N H)! = Q\"NnH CR"=R, CQ;and
1# Q:NHC Ry C Q3. Therefore, 1 # Q:"NH C Q:" N Q3 and
1#Q2NHCQnNQs.

If Q1 NQ2 = 1, we are done as in [BG]. Suppose that Q@ = Q;NQs #
1. Since g is assumed to be in @, Ng(Q) is a w-local subgroup that
contains A and we may assume H = Ng(Q@). The proof of Lemma 7.1
[BG] applies now without change. Q.E.D.
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Theorem 1.2. Assume Hypothesis 1.1 and let g = n'Nw. Suppose
m(Z(A)) > 3. Then, K acts transitively on H}(A;q).

Proof. By hypothesis, Z(A) contains an elementary abelian p-sub-
group B of order p® for some prime p. Since B centralizes O (A) and
Ox(A) # 1, we have p € wNw. So, p # q. The proof of Theorem 7.2
[BG] yields the result if we apply Lemma 1.1 to the w-local subgroup
Ng{{z}) at the end. Q.E.D.

Theorem 1.3. Assume Hypothesis 1.1 and let g € 7’ Nw. Suppose
r(Z(A)) > 2 and g € 7(Cs(A)). Then, K acts transitively on U} (A;q).

Proof. The proof of Theorem 7.3 [BG] applies here if we use Lemma
1.1 with the w-local subgroup Ng((z)) for some x € B with Cg, (z) # 1.
Q.E.D.

Theorem 1.4. Assume Hypothesis 1.1 and let ¢ € 7'Nw. Suppose
that P is a w-subgroup of G that contains A as a subnormal subgroup
and that K acts transitively on HE(A;q). Then,

(a) Ck(P)=O0n(Ce(P)),

(b) O (Cc(P)) acts transitively on U5(P;q),

(c) HE(P;q) € Ui(A;q), and

(d) for every Q € HL(P;q), we have PN NG(P)/ - Ng(Q), and

Ng(P) = Ox(Ca(P))(Na(P) N Na(Q))-

Proof. Since A is subnormal in P, we have Og(A4) C Og(P).
Therefore, O, (P) # 1 and P is contained in a w-local subgroup. Note
that, by the basic assumptions, | P| is odd so P is solvable. The subgroup
P satisfies the condition that is obtained from Hypothesis 1.1 replacing
Aby P.

Since Cg(P) € Cg(4), O (Cg(P)) is a set of n’-elements of Cz(A).
Hence, O,/(Cg(P)) € K N Cg(P) = Cg(P). On the other hand,
Ckg(P) = 0x(Ce(A)) N Cq(P) C O (Cq(P)). We have proved (a).

To prove the parts (b) and (c) we use induction on |P : A|. Let

1:P0<P1<"‘<Pn_,1<lpnzp

be a composition series of P through A. If A = P,_; (or A = P,), the
proof of Theorem 7.4 [BG] for the case k > n — 2 yields (b) and (c). If
A # P, 1, let B=PF,_;. Note that B satisfies the condition obtained
from Hypothesis 1.1 by replacing A by B. The parts (b) and (c) follow
by induction as in [BG].
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In order to prove (d), take any Q € H(P;q) and let L = Ng(P) N
Ng(Q). If £ € Ng(P), then Q% € H}(P;q). By (b), Q° = Q¥ for some
y € O (Cg(P)). Hence, zy~! € Ng(Q) N Ne(P) = L. Therefore,

Ne(P) = LOx/(Co(P)) = LCk (P).

Since O,/ (Cg(P)) = Ck(P) < Ng(P), we have Ng(P) = Ck(P)L.
Note that Ng(P) is contained in a w-local subgroup, so by the
basic assumptions, Ng(P) is solvable of odd order. Lemma 6.5 [BG]
with (G, K,U, H) replaced by (Ng(P),O0.(Cg(P)),L,P) yields PN
Ng(P) =PNL' C L' C Ne(Q). Q.E.D.

Proposition 1.5. Suppose p € w and A is an abelian p-subgroup
of G. Assume that either (1) A = {z € Cg(A) | 2P = 1} and every
w-local subgroup of G has p-length 1, or (2) A € SCNy(P) for some
P € Syl,(G). Then, A satisfies Hypothesis 1.1.

Proof. We can use the same method as in the proof of Theorem 7.5
[BG]. The proof in [BG] utilizes the centralizer Cg(b) of an element b of
order p. This subgroup need not be w-local. However, it is contained
in the w-local subgroup Ng((b)). Since the index |[Ng({b}) : Ca({(b))]
is prime to p, we may replace Cg(b) by Ng((b)) without affecting the
argument. Q.E.D.

Theorem 1.6 (Transitivity Theorem). Suppose p€w, A€
SCNs3(p), and ¢ € p' Nw. Then, Oy (Cg(A)) acts transitively on
n}(A; q) by conjugation.

§2. The Fitting Subgroup of a Maximal w-Local Subgroup

This section corresponds to Section 8 of [BG]. We begin with the
following remark. Let H be a w-local subgroup of G. By the basic
assumptions, H is a solvable group of odd order. Let F' = F(H) be the
Fitting subgroup of H. Since Oy (H) # 1, we have O (F) # 1. This
implies that 7(F) C w as F is nilpotent and is the direct product of its
Sylow subgroups.

Theorem 2.1. Suppose M € M, p € n(F(M)), and Ay €
Ex(F(M)). Assume that m(Ao) > 3. Let P € Sybp(M).

(a) If F(M) is not a p-group, then Cpp)(Ao) € U.

(b) If F(M) is a p-group, then P € Syl,(G) and every element of
SCN3(P) is contained in F(M) and belongs to U.
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Proof. (a) Let F = F(M), = = w(F) and A = Cp(Ap). Then
m(A) = 7 because Z(F) C Cr(Ag) = A C F. Note that for every q € ,

Cal4) € Ca(Ay) € CalZ(F)) € No(Z(F),) = M.

The last equality comes from Lemma E (1) since Z(F), is a nonidentity
normal w-subgroup of M. The notation N, stands for O,(N) of a
nilpotent group N as in [BG].

We will show that Cg(A) is a m-subgroup. Suppose that z is a 7'-
element of Cg(A). Let C = Cp(z). By the first paragraph, z € M.
Since A C C, Cr(C) C Cr(A) C Cr(4¢) = A C C. By Proposition
1.10 [BG] , z € Cy(F) = Cp(F(M)) C F. Since z is a 7'-element with
m = n(F), we get £ = 1. Thus, Cg(A) is a m-subgroup of M.

We prove the following lemma. Let p be any prime, X a solvable
subgroup of G and P a p-subgroup of X. Then,

Op (Ng(P)) N X C Oy (X).
Proof. Let Y = Op(Ng(P)) N X. Then,
Y = Op(Ng(P)) N Nx(P) € Op (Nx(P)).
Since P C X, we have [Op (Nx(P)), P] C Op(Nx(P)) NP = 1. Hence,
Op (Nx(P)) € Oy (Cx(P)).

By Proposition 1.15 [BG]|, Oy (Cx(P)) € Op (X).
This proves Y C O, (X). Q.ED.

With this lemma on hand, we verify Hypothesis 1.1 for A. Take an
arbitrary w-local subgroup X that contains A and Y € Ux(A; 7). Take
any q € m. By the first paragraph of the proof, Cy (4;) € M. Since Y
is an A-invariant 7’-subgroup,

[Cy(Ag), AJCY N[M, A=Y NF=1.

Hence, Cy (A4) C Ce(A). Since Cg(A) is a m-group, we have Cy (4,) =
1. Thus, by Proposition 1.6 [BG], Y = Cy(4,)[Y,44] = [Y, 44]. By
hypothesis, |7| > 2. Take r # ¢ in . Since Ng(Z(F),) = M by Lemma
E (1), A CF, COy(M): and: A, C Oy (Ng(Z(F)q)) N X.

Since Z(F) C A C X, Lemma implies

(1) A, COy(X) foranyq#rinm.

Since Y = [Y, A,], we have Y C Oy (X) for all ¢ € m. Hence, Y C
Nyer Oa(X) = Ox(X). This proves Hypothesis 1.1 for A.
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We will prove that H%(A;q) = {1} for every ¢ € n' Nw. Take
g € ¥ Nw. Since m(Z(A4)) > m(Ag) > 3, Theorem 1.2 implies that
O,(Cg(A)) acts transitively on H5(A;q). But, Cg(A) is a m-group,
s0 On(Cg(A)) = 1. Thus, H%(A;q) = {Q} for some g-subgroup @ of
G. Since F is nilpotent, A <<t F. By Theorem 1.4 (c), H5(F;q) C
N} (A; q). Therefore, U5(F;q) = {Q} and M normalizes Q. By Lemma
E (3), @ C M. Hence, Q < M and Q C F(M). Since 7 = w(F(M))
and g € ', we have Q = 1. Thus, H5(A;q) = {1} forge 7' Nw.

To prove A € U, take H € M(A). Let D = F(H) and o = n(D).
We will prove first 0 = w. Since A normalizes D, the last paragraph
yields ¢ C 7. By definition of D, O, (H) = 1. We have

O, (Z(F)) C Oy (A) = (A | r€mnNo’).
By (1) for X = H, Ar C Oy (H). Hence

<ATIT€7TOO',>Q qean,(H)zOd,(H)zl.

It follows that 7 N ¢’ is empty, i.e. # C 0. Thus, o = 7.
For each g € m, Oy(A) = (A, | 7 # ¢q) C Oy (H). So,

(2) [quoq’(A)] - [Dq)oq’(H)] =1

Hence, Dy C Cq(O4/(A)) € Ng(Og(A)) = M. The last equality is by
Lemma E (1). This proves D C M.

The formula (2) implies that A, centralizes O/ (D). Since Oy (D) =
F(Op (H)), Proposition 1.4 [BG] implies that A, centralizes Op (H).
Hence, Oy (H) C Cg(Ap) € M by the first paragraph of the proof. By
Lemma E (1) for H, Oy (H) C Op(Ng(Dyp)) N M. Since D, C M, the
lemma applies to get Oy (H) C Oy (M).

We will prove that O, (M) C Oy (H). Since Ag is a p-subgroup of
F, we have Oy (F) C Cg(Ag) = A. Thus, Op (F) = Op (A). By (2), Dp
centralizes Op/ (A) = Op (F) = F(Op(M)). Proposition 1.4 [BG] shows
that D, centralizes Oy (M), i.e. Op(M) C Cg(D,) € Ng(D,p) = H.
The last equality is by Lemma E (1) applied to H € M. Therefore,

Op (M) € Oy (Na(Z(F)p)) N H.

We have Z(F), C Oy(A) C Ca(Dy) C H.

The lemma gives us Op (M) C Op(H). Therefore, Op (M) =
Op(H) and M = Ng(Op(M)) = Ng(Op (H)) = H. This proves that
Ael.

(b) The proof of Part (b) of Theorem 8.1 [BG] is applicable. Note
that we must take g € p’ Nw to apply the Transitivity Theorem 1.6 and
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that an A-invariant p’-subgroup is a w-subgroup by Lemma B (2).
Q.E.D.

§3. The Uniqueness Theorem

Theorem 3.1. Suppose that p is a prime, M € M, B € &,(M),
and B is not cyclic. Assume that (a) Cg(b) C M for all b € B* or (b)
(Me(B;p')) C M. Then, B € U.

Proof. Since Og (M) # 1 and B normalizes O (M), Lemma B (1)
implies p € w. If K € Hg(B;p'), Lemma B (2) proves that K is a
w-group. In particular, O,/ (M) is a w-subgroup. It follows that if
Op (M) # 1, then M = Ng(Op(M)) by Lemma E (1). With these
remarks, the proof of Theorem 9.1 [BG] shows the validity of the con-
clusion of Theorem 3.1. Q.E.D.

Corollary 3.2. Suppose that L € U, K is a subgroup of Cg(L),
and r(K) > 2. Then, K € U if one of the following conditions holds:

(a) rp(K) > 2 for some p € w,
(b) #(L)Nw is nonempty, or
(¢) K is contained in some M € M.

Proof. Let M(L) = {H}. Take B € £2(K) for some prime p. If
(a) holds, take p € w. If (b) holds, take ¢ € m(L) N w and an element
x of L of order q. The element x centralizes B. Since ¢ € w, we have
p € w. If (c) holds, B normalizes O, (M) # 1. Then, p € w by Lemma
B (1). Thus, we have p € w in all cases.

For each b € BY, we have L C Cg(b) C Ng({b)). Since p € w,
Ng((b)) is a w-local subgroup. Since M(L) = {H}, we have

Ca(b) € No((b)) € H

for all b € BY. By Theorem 3.1, B € U and M(B) = {H}. Since B C K,
we have M(K) = {H} and K € U. Q.ED.

Corollary 3.3. Suppose that p € w, A is an abelian p-subgroup
of G, and B is a noncyclic p-subgroup of G. Assume that A € U,
m(A) > 3, and rp,(Ce(B)) > 3. Then, B € U.

Proof. Take B* € 8?,(0@(3)) and let P be a Sylow p-subgroup of

G that contains B*. Replacing A by a conjugate, if necessary, we can
assume that A C P. The proof of Corollary 9.3 [BG] shows B € U.

Q.E.D.
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Lemma 3.4. Suppose that p is a prime, M € M, and rp(F(M)) >
3. Then, U contains every abelian p-subgroup of rank at least three.

Proof. The assumptions imply p € w by Lemma B (1). Lemma
follows from Theorem 2.1 and Corollaries 3.2 and 3.3 as in the proof of
Lemma 9.4 [BG] . Q.E.D.

Lemma 3.5. Suppose p € w and A € SCN5(p). Then, A€ U.

Proof. Sincep € w, Cg(A) is a w-group (Lemma A). By Lemma D,
M(Cg(A)) is not empty. Let M be an arbitrary element of M(Cg(A4)),
and let F = F(M). We assume that A ¢ U. By Lemma 3.4, we have
rp(F) < 2.

Choose a prime g as follows: if r(F) < 2, let ¢ be the largest primes
in m(M); if r(F) > 3, let ¢ be some prime for which r(F) > 3. If
r(F) < 2, Theorem 4.20 (c) [BG] implies Og(M) € Syly(M). In all
cases, Oy(M) # 1. Then, g € w, for if ¢ ¢ w, Oy(M) would centralize
O (M) # 1 contradicting Lemma A.

Since g € w, we have M = Ng(Oy4(M)) by Lemma E (1). If r(F) <
2, then O4(M) is indeed a Sylow g-subgroup of G. Thus, re(G) < 2.
Since r,(G) > 3, we have ¢ # p. If r(F) > 3, then ry(F) > 3 while
rp(F) < 2. Thus, q # p in all cases.

Let P be a Sylow p-subgroup of Ng(A) and let R be a subgroup of
PN M that contains A. Then R normalizes O4(M). Take Q € U (R; q)
such that Oq(M) C Q. We will prove Q C Ng(Q) C M.

If 7(F) > 3, the definition of the prime ¢ implies r,(F(M)) > 3,
so Lemma 3.4 applies with ¢ in place of p. Since O,(M) contains an
abelian subgroup of rank at least three, O4(M) € U by Lemma 3.4.
Since Ox(M) C Q@ C N (Q), we have No(Q) C M. On the other hand,
if 7(F') <2, then @ = O4(M) < M. Hence, the claim holds in all cases.

We will prove next Ng(A4) € M and Ng(P) C M.

By definition, R is a p-subgroup so A << R. By Theorem 1.6,
Op (Cq(A)) acts transitively on H%(A;q). By Proposition 1.5, A satis-
fies Hypothesis 1.1. By Theorem 1.4, O, (Cq(R)) acts transitively on
HZ(R; q). Note that Cg(R) C Ca(A) C M.

Take z € Ng(R). Then, Q* € U} (R;q). Hence,

Q* =QY forsome y€ Oy (Cs(R)) C M.
We have zy~' € Ng(Q) € M. This implies that z = (zy~ 1)y € M.

Thus, Ng(R) € M. By taking R = A, we have P C Ng(A) € M. By
taking R = P, we have Ng(P) C M.
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Let Py = [P, Ng(P)] and D = O (F). Then, Py # 1 (Theorem 1.18
[BG]). We will prove that P, centralizes D. Suppose that P, does not
centralize D. By Proposition 1.16 [BG],

D= {(Cp(B)| BCMN(4), 2(A)/B cyclic).

Take B C Q;(A) such that ;(A)/B is cyclic and Py does not centralize
Cp(B). Since A € SCN3(p), B is not cyclic. Since A ¢ U, we have
B ¢ U. By Theorem 3.1, there exist y € B! and L € M such that
Ce(y) € L and Cg(y) € M. Since Cg(A) C Cg(b) C L, we can
apply the preceding argument, with L in place of M, to conclude that
N¢(P) C L. Hence,

Ng(P)CMNL and Py C (Ne(P))Y C(MNL).

Since DNL <« MNL, no subgroup of DNL liesin U. As D = Op/(F(M)),
Lemma 3.4 implies that 7(D N L) < 2. Thus, by Corollary 4.19 [BG], P,
centralizes every chief factor U/V of LN M for which U C DN L. Since
DN L is ap’-subgroup, Lemma 1.9 [BG]| shows that P, centralizes DN L.
However, DNL O DN Ca(y) 2 Cp(B) and Cp(B) is not centralized
by FP,. This contradiction shows that Py centralizes D.

We claim that {M} = M(Ng(P,)). Suppose that r(F) > 3. Since
rp(F) < 2, we have 7(D) > 3. By Lemma 3.4 applied to a prime ¢
with 74(D) > 3, D contains some subgroup in U. Thus, D € U. Since
M = Ng(D), we have M(D) = {M}. We have D C Cg(P,) C Ng(Fo)
s0 M(Na(Po)) = {M}.

Suppose that 7(F) < 2. By Theorem 4.20 [BG], M’ C F. We have
shown that P C Ng(P) C M.

Since M/F is abelian, FP < M and M = Op(M)Npu(P). Since
Py = [P,Ng(P)] 9 N¢(P) and O, (M) centralizes Py, we have Py < M.
This yields {M} = M(Ng(Fo)).

We will complete the proof as in [BG]. Since A ¢ U, it follows
that Q;(A4) ¢ U. By Theorem 3.1, there exists z € 2;(A)* such that
Cg(z) € M. Take H € M(Cg(z)). Then, Cg(A) C Ce(z) C H. Since
M was chosen arbitrary from M(Cg(A)), we can apply the previous
argument to H in place of M to conclude

{H} = M(Ng(P)) = {M}

that is a contradiction. This completes the proof of Lemma 3.5.
Q.E.D.

Theorem 3.6 (The Uniqueness Theorem). Suppose that K is a
subgroup of G with r(K) > 2. Assume that rp(K) > 3 for some p € w
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or rp(Ca(K)) > 3 for some p € w. Then, K € U. In particular, if
A€ 82(G)\ €*(G), for some prime p € w, then A € U.

Proof. Assume that rp(K) > 3 for some p € w. Take B € &3(K)
of order p®. Let P be a Sylow p-subgroup of G that contains B. By
Lemma 5.1 [BG], there exists A € SCN3(P). Since p € w, Lemma 3.5
implies A € U. Since B is abelian, B C Cg(B). Corollary 3.3 implies
B ¢ U. Therefore, K € U.

Assume that r,(Cg(K)) > 3 for some p € w. Let L = Cg(K).
Then, the first paragraph of the proof shows L € U. Since n(L) Nw is
nonempty, Corollary 3.2 implies K € U. Q.E.D.

§4. The Subgroups M, and M,

For each M € M, we define the sets of primes a(M), S(M) and
(M), and the subgroups M,, Mg, and M, as in [BG], page 70. In
addition, we use the notation

oo(M)=0c(M)Nw and M, = Ogyar)(M).

Lemma F. Let M € M and p € n(M). Ifp ¢ w, then M has a
cyclic Sylow p-subgroup.

Proof. By the basic assumptions, p is odd. If a Sylow p-subgroup
S of M is not cyclic, then S contains an elementary abelian p-subgroup
E that is not cyclic ([S], II page 59, (4.4)). The group E normalizes
O (M) which is a nonidentity w-subgroup. By Lemma B (1), we have
pEw. Q.E.D.

Theorem 4.1. Suppose M € M, p € o(M), and X is a nonempty
subset of G* such that (X) is a p-subgroup of G.

(a) If X C M, g € G, and X9 C M, then g = cm for some
c€Cq(X) andm € M.

(b) The subgroup Ca(X) acts transitively by conjugation on the set
{M9]geGandX C M9}

(¢) If X is a subgroup of M, then Ng(X) = Np(X)Cq(X).

(d) If X is a Sylow p-subgroup of M, then X C M9 implies g € M
(so M is the only conjugate of M that contains X).

() If XCM,Cq(X)CM,geqG, and X C MY, then M = MY
and g€ M.

There is only a small difference between our Theorem 4.1 and the
corresponding Theorem 10.1 [BG]. To prove (b), we may replace X by
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(X) and assume that X is a nontrivial p-subgroup of G (as in [BG]).
The argument in [BG] proves the result. Note that in the case when
r(P) > 3, we have p € w. This justifies the use of the Uniqueness
Theorem on the top of page 72 [BG].

Theorem 4.2. Let M € M. Then,

(a) My is a Hall a(M)-subgroup of M and of G,
(b) M, is a Hall o(M)-subgroup of M and of G,
() Mo C M,, €M, CM,

(d) r(M/M,) <2 and M'/M, is nilpotent,

() My, #1, and

(f) M,, is a Hall oo(M)-subgroup of M and of G.

Proof. The proof is the same as that of Theorem 10.2 [BG]. We
will repeat it here because the results are so basic.

The basic assumptions imply that M is a solvable group of odd
order. So, M contains a Hall a(M)-subgroup M(e). Take p € a(M)
and P € Syl,(M(«)). By definition of a(M), »(P) > 3. So, by Lemma
F, p € w. The Uniqueness Theorem implies P € U. In particular, we
have Ng(P) C M. Thus, p € o(M); in fact, p € oo(M). Since p is
arbitrary in a(M), we have a(M) C oo(M) C o(M). Also, No(P) C M
implies that P € Syf,(G). Thus, M(«) is a Hall a(M)-subgroup of G.

Let M (o) be a Hall o(M)-subgroup of M that contains M (c). Take
p € o(M) and P € Syl,(M(c)). By definition of o(M), we have
Ng(P) C M so P € Syb,(G). Hence, M(o) is a Hall o(M)-subgroup of
G.

By Theorem 1.17 [BG],

PNG' = (z 'y | z,y € P and 7 is conjugate to y in G)
PNM = {(z7'y|z,y € P and z is conjugate to y in M).

Since G is simple, PNG' = P. If z,y € P and y = 29 for some g € G,
then Theorem 4.1 (a) yields that g = cm where ¢ € C(x) and m € M.
This implies 29 = ™ = y. It follows that P=PNG' =PNM' C M.
Since p is arbitrary in (M), we have M (o) C M’.

Consider the group M/M,. Since My = Oqar)(M), we have

M, C M(a) C M(o) C M.
Consider the normal subgroup F' of M such that M, C F and F/M, =

F(M/M,). Then, F/M, is nilpotent and it is an a(M)-group. The
extension of F' over M,, splits by the Schur-Zassenhaus Theorem. Hence,
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F/M, is isomorphic to a subgroup of M. Since F'/M,, is an a( M )'-group,
we have r(F/M,) < 2. By Theorem 4.20 [BG],

M'|M, = (M/M,) C F(M/M,) = F/M,.

This implies that M’'/M, is nilpotent. Therefore, any Hall subgroup
of M’'/M, is a characteristic subgroup. Since the subgroups M (o)/M,
and M(a)/M, are normal subgroups of M/M,, both M (o) and M(c)
are normal subgroups of M. It follows that

M, =M(a) and M, = M(s).

This proves (a) and (b). The last statement (f) is proved in a similar
way. We have also (¢) and (d). To prove (e), we may assume M, = 1.
Then, r(M) < 2. By Theorem 4.20 [BG], Oq(M) € Syly(M) for the
largest prime q of 7(M). This implies ¢ € o(M). We need only to note
that ¢ € w as Ox (M) # 1. Q.E.D.

Lemma 4.3. Suppose M € M, X is an a(M) -subgroup of M,
and r(Cpr (X)) > 2. Then, Cy(X) € U.

Lemma 4.4. Suppose M € M, p € n(M), and P € Syé,(M).

(a) If p divides |M/M’|, then p ¢ o(M).

(b) Assume p ¢ o(M) and M, # 1. Then, there exists x €
Q1 (Z(P))* such that {M} # M(Cg(z)) and Cur (x) is a Z-
group.

(c) Assume p ¢ o(M) and rp,(M) = 2. Then, p is not ideal and
E2(M) C Ex(M).

The proof of Lemma 10.4 [BG] applies here. Note that the assump-
tions of Part (¢) imply p € w by Lemma F. So, the use of the Uniqueness
Theorem is justified. On the fourth line of the proof of (b) in [BG], Z
stands for 1 (Z(P)).

Lemma 4.5. Suppose that M ¢ M, p € o(M)’, and X is a non-
identity p-subgroup of G with Ng(X) C M. Then, rp(M) =2, p is not
ideal, and if | X| = p, there exists A € E2(M) that contains X.

Proof. The assumptions imply X C M. Since a(M) C o(M), we
have r,(M) < 2. Let P € Syl,(M) that contains X. If r,(M) = 1,
P is cyclic. Then, X is a characteristic subgroup of P. So, we have
Ng(P) € Ng(X) € M. This contradicts the assumption that p ¢
o(M). Therefore, r,(M) = 2 and p is not ideal by Lemma 4.4. If
X = Q(Z(P)), then we have Ng(P) C Ng(X) € M. So, if |X| = p,
X # u(Z(P)) and X4 (Z(P)) € E2(P). Q.ED.
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Theorem 4.6. Let M € M. Then, M has p—lenéth one for every
p € m(M).

We have followed the usage in [BG] so a group H is said to have
p-length one for a given prime p if H/O, ,(H) is a p’-group.

Corollary 4.7. Suppose that p € 7(G) Nw and P € Syl,(G).
The following propositions hold.

(a) TakeV to be any complement of P in Ng(P). Then we have
P=[P,V] C No(P).

(b) Suppose r(P) < 2. Then, either P is abelian or P is the central
product of a nonabelian subgroup Py of order p> and exponent p
and a cyclic subgroup P for which Q4 (P2) = Z(Py).

(c) Suppose Q C P, x € G, and Q° C P. Then, Q* = QY for some
element y € Ng(P).

(d) For every subgroup Q of P, the group Np(Q) is a Sylow p-
subgroup of Ng(Q).

(e) Suppose R is a p-subgroup of G and Q@ C PNR and Q < Ng(P).
Then Q <1 Ng(R).

Proof. Since p € w, Ng(P) is a w-local subgroup. Take M €
M(Ng(P)). By Theorem 4.6, M has p-length one, so P C O ,(M).
By the definition of o(M), we have p € o(M). Theorem 4.2 shows that
P C M, C M'. The rest of the proof is the same as that of Corollary
10.7 [BG). Q.E.D.

Lemma 4.8. Let M € M. Then the following hold.

(a) Mg is a Hall B(M)-subgroup of M and of G.

(b} M’ and M, have nilpotent Hall B(M)' -subgroups.

(c) For each prime p € (M) \ (M), M’ and M, have normal p-
complements and p is the largest prime divisor of |M /Oy (M)|.

Corollary 4.9. Let M € M.

(a) Suppose that p and q are distinct primes in w(M) \ (M) and
X is a g-subgroup of M. Assume X C M’ or p < q. Then,

(1) X centralizes a Sylow p-subgroup of M,

(2) fpea(M) and X #1, then ¢ € w and Cy(X) € U, and

(3) if X € Syly(M'), then Np(X)' contains a Sylow p-subgroup of
M.

(b) If He M\{M} and Ng(S) C HNM for some Sylow subgroup
S of G, then M = (HNM)Mg and o(M) = B(M).
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The proof of Corollary 10.9 [BG] can be used to prove this corollary.
We shall add a few lines to verify the statement (2).

Suppose that p € a(M) and X # 1. By (1), X centralizes a Sylow
p-subgroup P of M,,. Since p € a(M), we have P # 1 and r(P) > 3. By
the Uniqueness Theorem, P € U. Note that p € w. Since a nonidentity
g-subgroup X centralizes a p-subgroup P, we have ¢ € w. Since P C
Cu(X), P € U implies Cpy(X) € U.

Lemma G. IfM €M, then M is a w-group except when

(1) M is a Frobenius group such that the Frobenius kernel of M is
a Hall w-subgroup of M, or

(2) M has the following structure: M /M’ is a cyclic w-group, M, =
Mg = M,, is a nilpotent ww-group, and M' /Mg is a nonidentity
cyclic w’-group.

In the case (1), the Frobenius kernel is M,, and it is either M’ or
Mg. If it is Mg, then we have M, = Mg. In the case (2), both M’ and
M/Mpg are Frobenius groups with Frobenius kernels Mg and M'/Mg,
respectively.

Proof. By definition of 3(M), we have Mg C M, C M’ and Mg
is a w-group. By Lemma 4.8, M’/Mg is nilpotent. Hence, M'/Mjg is
either a w-group or a @w’-group.

Suppose that M’/Mpg is a w-group. Then, M’ is a w- group. If
M/M’ is a w-group, so is M. If M/M’ is a w’-group, then by Lemma
A, z € (M')! satisfies Cg(x) C M’. This shows that M is a Frobenius
group with Frobenius kernel M’. In this case, M’ is nilpotent by a
theorem of Thompson. If p € 7(M'), a Sylow p-subgroup P of M’ is a
Sylow p-subgroup of M and P < M. It follows that Ng(P) = M and
p € ap(M). This proves that M’ = M,,.

Suppose that M’/Mpg is a w'-group. If M/M' is a w’-group, so
is M/Mg. We see that M is a Frobenius group with Frobenius kernel
Mg. In this case, M, = Mp because M, is a w-group, and Mg = M,,
because My is nilpotent.

Finally, assume that M /M’ is a w-group. Then, M’ is a Frobenius
group with Mg as Frobenius kernel and M /Mg is a Frobenius group with
Frobenius kernel M'/Mpg. Thus, M’/Mg is nilpotent (as a Frobenius ker-
nel) and r(M’/Mpg) =1 (as a Frobenius complement in M’). It follows
that M'/Mg is cyclic. The abelian group M/M’ satisfies r(M/M') =1
because it is a Frobenius complement in M/Mg. Thus, M/M’ is cyclic,
too. This proves Lemma G. Q.E.D.

Proposition 4.10. Suppose that p and q are distinct primes, A €
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E2(G) N &X(G), and Q € H4(A;q). Assume that p € w and q €
w(Cq(A)). Then for some P € Syl,(Q) that contains A,

(a) Ne(P) = Op(Ce(P))(Na(P)NNa(Q)),

(b) P C Ng(Q), and

(c) if Q is cyclic or E2(Q) N E*(Q) is not empty, then P centralizes
Q.

Proof. Sincep € w and q € m(Cg(A)), we have ¢ € w. Since Aisa
maximal elementary abelian p-subgroup of G, we have A = {z € Cg(A) |
P = 1}. Hence, by Proposition 1.5, A satisfies Hypothesis 1.1. Since
m(Z(A)) = 2, Theorem 1.3 yields that O, (Cg(A)) acts transitively on
nkL(A;q). Take Pi € Syly(G) such that A C P;. Then, Theorem 1.4
shows

H&(Pisq) € Ha(Ajq)

and for every Q1 € HE(P1;q), we have Py N Ng(P1)' € Ng(Q1)" and
Ng(P1) = Op (Ca(P1))(Ng(P1) N Ne(Q1)).

Since both @ and Q@ lie in 4}(4;q), we have QF = Q for some z €
Op (Ce(A)). Let P = Pf. Then, P satisfies (a).
Since p € w, Corollary 4.7 shows that P C Ng(P)’. Therefore,

P=PnN Ng(P)/ c Ng(Q)'.

This proves (b). To prove (c), note that the hypothesis of (c) im-
plies that @ is narrow. Apply Theorem 5.5 (a) [BG]| to the subgroup
Ne(Q)/Cq(Q) of Aut Q. Tt follows that (Ng(Q)/Ca(Q)) is a g-group.
Since P C Ng(Q)', we have P C C(Q). This proves (c). Q.ED.

Proposition 4.11. Suppose M € M and K is a 09(M)’-subgroup
of M. Then

(a) if M is a w-group, K ¢ U,

(b) (Crc(Myy)) < 1; |

(¢) Cx(My,)NM' is a cyclic normal subgroup of M; and

(d) i p € oo(M), P € &) (Nu(K)), Cum, (P) =1, and K is an
abelian p'-group, then [K, P] centralizes My, and is a cyclic
normal subgroup of M.

Proof. There is a small difference between this and Proposition
10.11 [BG]. If M is a w-group, we have oo(M) = o(M) and for every
subgroup P of M, Ng(P) is a w-local subgroup. The proof of Part (a)
in [BG] is valid in our case.
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To prove (b), suppose r,(Cx(Ms,)) > 2 for some prime p. Then,
p € n(K) Coo(M).

By Lemma G, M is a w-group. Thus, oo(M) = o(M) and Part (a)
implies K ¢ U. The argument in the proof of Part (b) of Proposition
10.11 [BG] gives us p € o(M). However, p € n(K) C o(M)". This
contradiction proves (b).

For (c) and (d), read o for ¢ in the proof of Proposition 10.11 [BG].
The assertions are proved. Q.E.D.

~ Lemma 4.12. Suppose M, H € M and H is not conjugate to M
in G. Then,
(a) MyNH, =1 and a{M) is disjoint from o(H), and
(b) if M, is nilpotent, then M,NH, =1 and o(M) is disjoint from
o(H).

Proof. The proof is similar to the one of Lemma 10.12 [BG].

Suppose that p € go(M) N o(H). Then some Sylow p-subgroup S
of G lies in M and in a conjugate HY of H. Then, S € M N HY and
M # HY by assumption. Since p € o, the Uniqueness Theorem yields
that r(S) < 2. Thus, p ¢ a(M). This proves (a).

Assume that M, is nilpotent. Suppose o(M) N o(H) is not empty.
Take a prime p in o(M) No(H). As before, some Sylow p-subgroup
P lies in M and in some conjugate H* of H. Then, M # H? and
Ng(P) € M n H*®. In particular, P is not normal in M, so M, is not
nilpotent. Q.E.D.

Lemma 4.13. Suppose p € w, A € E2(G) N E3(G), and P is a
nonabelian p-subgroup of G that contains A. Let Zg = 4 (Z(P)) and
Ap € EY(A) such that Ay # Zy. Then,

(a) Zy € gl(A),

(b) Cp(A) = Ay X Z with Z a cyclic subgroup that contains Zy, and

() Np(A) acts transitively by conjugation on E*(A)\ {Zy}.

Proof. Let S be a Sylow p-subgroup that contains P. Since p € w,
we can apply Lemma 4.7 (b) when 7(S) < 2. The proof of Lemma 10.13
[BG] will prove this lemma. Q.E.D.

Proposition 4.14. Let M e M, p € (M), and P € Syl,(M).

(a) The sets E2(P)NEX(P) and E2(G) N E4(G) are empty.
(b) Every p-subgroup R of G such that v(R) > 2 lies in U.



On the Prime Graph of a Finite Simple Group 67

(¢) If X is a subgroup of P, then Np(X) € U.
(d) For every nonidentity B(M)-subgroup Y of M, Ng(Y) C M.

Proof. (a) By the definition of 8(M), E2(G) N €;(P) is empty for
the Sylow p-subgroup P of M. If A € E?,(G) N &5(G), take a Sylow
p-subgroup @ of G such that A C Q. Then, Q9 = P for some g € G.
Thus, A9 C Q¢ = P and A9 € €2(P) N &;(P). This is a contradiction.

(b) We can assume R C P by choosing a conjugate of R. Take
A € E2(R). By (a), there is B € &;(P) such that A C B and m(B) > 3.
Since B C Cg(A), we have r,(Cg(A)) > 3. Since p € B(M) C w, the
Uniqueness Theorem yields A € U. Therefore, we have R € U.

(c) Let @ = Np(X). If 7(Q) > 2, then Q € U by (b). Suppose that
r(Q) = 1. Then, Q is cyclic, X chra @, and Np(Q) C Ng(X) = Q.
Since P is a p-group, this implies ¢ = P contrary to the assumption
that p € B(M).

(d) Let ¢ € n(F(Y)) and X = O,(Y). We can assume that ¢ = p
and X C P. Then, by (c), Np(X) € U. Since Ng(X) is w-local, we
have Ng(X) € M and Ng(Y) C Ng(X) C M.

§5. Exceptional Subgroups of M

The following conditions and notation are used throughout this sec-
tion.

Hypothesis 5.1. Suppose M € M, p € o(M)’, Ay € (M), and

Ng(Ao) C M.

By Lemma 4.5, rp(M) = 2 and Ag C A for some A € E2(M). Let
P be a Sylow p-subgroup of M that contains A. Since r,(M) = 2 for
p € o(M)’, Lemma G implies that M is a w-group. As p € o(M),
Ng(P) ¢ M and since Cg(A) € Ce(Ao) € Ng(Ao) € M, we have
A€ &(Q).

We will fix the subgroups A and P throughout this section.

Lemma 5.1. Suppose that g € G\ M, A C M9, q € o(M), and
that Q1 and Q2 are A-invariant Sylow q-subgroups of M, and M,?,
respectively. Then,

(a) @Q1NQ2=1, and
(b) if X € E(A), then Cg,(X) =1 or Cg,(X) =1.
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Proof. As remarked at the beginning of this section, Hypothesis
5.1 implies that M is a w-group. Thus, if @; N Q2 # 1, the subgroup
Q1N Q2 is a w-group # 1. Also, Cg(X) is a w-group by Lemma A.
Thus, if either (a) or (b) is false, there is a w-local subgroup H such
that
HﬂQl7é1 and HﬂQz?él

(Cf. Lemma D.) By Lemma 1.1, we have Q; = Qlk for some element
k € Cg(A). The rest of the proof is the same as that of Lemma 11.1
[BG]. Q.E.D.

Corollary 5.2. Suppose g € G\ M and A C M9. Then,

(a) M,NM9=1, and
(b) My N Cg(Ae?) = 1.

Theorem 5.3. The group M, is nilpotent.

Corollary 5.4. Suppose H € M(A) and M, N H, # 1. Then,
M=H.

Theorem 5.5. The Sylow p-subgroups of M are abelian.

Corollary 5.6. We have

(a) A=M(P),

(b) Cun,(A)=1, and

(c) there exist subgroups Ay, Ay € 8},(A) such that A1 # A and
Cu, (A1) = Cpy, (A2) = 1.

Theorem 5.7. We have M;A <1 M.

§6. The Subgroup E

Let F denote a complement of M, in M, which will be fixed for
discussion. We use the notation 7; and E; as defined in [BG], Section
12.

Lemma 6.1. (a) E’ is nilpotent.

(b) FE3 C E' and E3 < FE.

(c) If E; =1, then Ey # 1.

(d) E1 and E3 are cyclic.

(e) E =E\EyE3, F1o = E\Ey, B3B3 < E, and E5 < Ej5.

(f) Cg,(E)=1.

(8) Ifpe€ (M) and A€ E2(M), then A € E%(G) and p ¢ B(G).
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Lemma 6.2. Suppose that M € M, p is a prime, X is a noniden-
tity p-subgroup of M, and M* € M(Ng(X)). Then,

(a) peo(M*)Um(M*), and
(b) ifpe€o(M)and M # M*, or ifpe r(M)U13(M), then M*
s not conjugate to M in G.

Proof. (a) Suppose that p ¢ o(M*). Then, Lemma 4.5 applied to
M* implies that r,(M*) = 2. This proves p € »(M*).

(b) Suppose that M* is conjugate to M. Then, o(M) = o(M*)
and 7;(M) = 7;(M*) for ¢ = 1,2,3. Therefore, if p € 7 (M) U 13(M),
we have a contradiction to (a). Suppose that p € o(M). Then, by
Theorem 4.1(b), M* and M are conjugate by an element z of Cg(X):
M = (M*)®. Since Cg(X) C Ng(X) € M*, we have M = M*. This
proves (b). Q.E.D.

Remark. If p € w, a subgroup M* is available; however, if p € w
is not assumed, Lemma 6.2 holds only when there is a w-local subgroup
that contains Ng(X).

Lemma 6.3. Suppose M* € M\ {M}, p is a prime, A € 8]2,(Mﬂ
M*), and Ng(Ao) € M* for some Ap € E(A).

(a) Ifp¢ o(M), then A centralizes M, N M*.
(b) Ifpeo(M)\a(M), then A centralizes M, N M*.

Proposition 6.4. Suppose M € M, p is a prime and A € Ef,(M ).
Then,

(a) Cg(A) C M, and
(b) if M(Ng(Ag)) # {M} for every Ay € EY(A), then p € o(M),
" M, =1, and M, is nilpotent.

Proof. By assumption, r,(M) > 2 so p € w. Thus, for every
X € &Y(A), Ng(X) is a w-local subgroup. The proof of Proposition
12.4 [BG] can be adapted to yield the results. However, this is basic so
we repeat the argument.

Suppose that M(Ng(Ap)) = {M} for some Ay € E'(A). Then,
Cg(A) C Cg(Ag) € Ng(Ag) € M. This proves (a) in this case.

For the remainder of proof, we may assume that M(Ng (X)) # {M}
for every X € E(A). For a fixed X € €1(A), choose

M* = M*(X) € M(Ne(X)) \ {M}.
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Since Cp(X) € M N M*, the Uniqueness Theorem implies
r(Cu(4)) < r(Cu(X)) < 2.

We claim that p € o(M). Suppose p ¢ o(M). Then, Lemma 6.3(a)
implies that Cpr, (X) € M, N M* C Cy(A). This holds for every
X € €Y(A). By Proposition 1.16 [BG], M, = (Cp, (X) | X € EL(A)).
Since Cr, (X) C Cu(A) for every X € E(A), we have M, C Cpr(A)
which contradicts Proposition 4.11 (b). Thus, we have p € o(M).

Let P be a Sylow p-subgroup of M, that contains A and let Z7 =
Q1 (Z(P)). Since r(Cp(A)) < 2, we have Z C A. Take X € EY(2).
Then, P C Cy(X) and r(P) < r(Cm(X)) < 2. This proves that
p € a(M)\ a(M). We apply the same argument as before to M,,. Again
for any X € E!(A), choose M* € M(Ng(X)) \ {M}. Then, Lemma
6.3 (b) implies that Cp (X) C My N M* C Cy(A). Tt follows that
M, = {(Cp, (X) | X € E(A)) C Cp(A). This implies M, = 1 because
r(Cu(A)) = 2. By Theorem 4.2 (d), M’ = M'/M,, is nilpotent. Since
M, C M’, M, is nilpotent. This proves (b).

Since M, is nilpotent, we have P << M. Hence,

Z =Q,(Z(P)) < M.

Since Z C A, we have Cg(A) C Cg(Z) € Ng(Z) = M. The last equal-
ity comes from Lemma E (1). This completes the proof of Proposition
6.4. Q.E.D.

We state a corollary of Lemma G.

Lemma H. Let M € M.

(1) Ifro(H) #0, then M is a w-group.
(2) If M is not a w-group, then rp(M) <1 for all p ¢ oo(M).

This follows immediately from the structure of subgroups in M
which are not w-groups given in Lemma G.

Theorem 6.5. Suppose M € M and 7o(M) # 0. Let p € 1o(M)
and A € E2(M). Then, M is a w-group and the following hold:

(a) M, is nilpotent,

(b) M has abelian Sylow p-subgroups and every Sylow p-subgroup P
of M such that A C P satisfies Q1(P) = A and Ng(P) ¢ M,
M,A<a M,

Cum, (A) =1,

M, NM* =1 for every M* € M(A) \ {M}, and

(c
(d
(e
(f) there exists Ay € E(A) such that Cpr, (A1) = 1.
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Proof. Since 75(M) # 0, M is a w-group by Lemma H. Hence,
for any X € €'(A), Ng(X) is a w-local subgroup. Since p ¢ o (M),
Proposition 6.4 (b) implies that M(Ng(Ag)) = {M} for some Ay €
EY(A). Thus, we have Hypothesis 5.1 for A9 and M. The results of
Section 5 prove Theorem 6.5 except (e).

To prove (e), take M* € M(A) \ {M}. If Ng(4g) € M* for some
Ap € &(A), Lemma 6.3 (a) shows that A centralizes M, N M*. On
the other hand, Cjs, (A) = 1 by (d). This proves M, "N M* = 1. If
Ng(X) € M* for every X € €'(A), the hypothesis of Proposition 6.4 (b)
is satisfied for M*. Hence, we have p € o(M*) and M*, is nilpotent.
It follows that A C O,(M*) and [M, 0 M*, A] C M, N Op(M*) = 1
because p ¢ o(M). So, M, " M* C Cp,(A) = 1. Q.E.D.

Corollary 6.6. Suppose M € M and 72(M) # 0. Let p € 7(M)
and A € E2(E). Then,
(a) A< E and EL(E) = &'(A),
(b) Ca(A) C Nar(A) = E and Ng(A) ¢ M,
() M(Cg(X)) ={M} for each X € E(A) such that Car, (X) # 1,
(d) Cu,(z) =1 for each x € Es®,
(e) Cwm,(z) =1 for each x € Cg, (A)*, and
(f) #f M* € M is not conjugate to M, then M, N M*, = 1 and
o(M*) is disjoint from o(M).

Proof. As before, Lemma H implies that M is a w-group. Since E
is a complement of M,, Theorem 6.5 (c) implies A < E. If X € E1(E),
then AX is a p-subgroup of E. Let P be a Sylow p-subgroup of E
such that AX C P. By Theorem 6.5 (b), we have Q;(P) = A. Since
X C 0 (P), X C A. This proves &(E) = £'(A). This proves (a).

We have Cg(A) € M by Proposition 6.4 (a). Thus, Cg(4) C
Ny (A). By (a), E C Np(A). It follows from the Dedekind law that

N (A) = Ny (A) N M,E = Ny, (A)E.

We have [N, (A),A] C M, N A =1, s0 Ny (A) C Cp,(A) =1 by
Theorem 6.5 (d). This proves that Ny(A) = E. If P is any Sylow
p-subgroup of M that contains A, then A = Q4(P) by Theorem 6.5 (b).
Hence, Ng(P) C Ng(A). Since Ng(P) ¢ M by Theorem 6.5 (b), we
have Ng(A) € M. This proves (b).

Suppose Cpy, (X) # 1 and M(Cg(X)) # {M} for some X € E'(A).
Take M* such that Cg(X) € M* # M. Since A C Cg(X), Theorem
6.5 (e) implies that M, N M* = 1. Hence,

Cum, (X) C M, NCa(X)C Myn M* =1.
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This contradiction proves (c).

For (d) and (e), we may assume that (z) = X is a g-group for some
prime g € 7 (M) U 73(M). As remarked at the beginning of the proof,
g € @ so we can take M* € M(Ng(X)). By Lemma 6.2, M* is not
conjugate to M. In particular, M* # M. Since A and Fj3 are normal
subgroups of E with AN E3 = 1, A centralizes E3. Thus, A C Cg(X) C
M* in all cases. By Theorem 6.5 (e), we have M, N M* = 1. Therefore,

Cu, (X) S M, NCe(X) S MyNM* =1.

This proves (d) and (e).
Since M, is nilpotent (cf. Theorem 6.5 (a)), Lemma 4.12 (b) yields
(f). Q.E.D.

Theorem 6.7. Suppose that M € M, p € 7o(M), A € E2(E), and
assume that G has nonabelian Sylow p-subgroups. Then,

(a) (M) ={p},

(b) Ag = Ca(M,) has order p and satisfies F(M) = M, x Ao,

(c) every X € EL(E)\{Ao} satisfies Cpr, (X) =1 and Co(X) & M,
(d) Ao has a complement Eq in E, and

(e) 7(Cg,(x)) C (M) for every z € M,".

Proof. The assumptions of this theorem imply that M is a w-group
(by Lemma H). The argument of the proof of Theorem 12.7 [BG] proves
the assertions. We paraphrase a few points in the argument.

The subgroup Ap was defined as an element of E1(A) such that
Cum, (Ao) # 1. It is proved to be the unique element with Cys (Ag) #
1. We have Ay = C4(M,). Since A < E by Corollary 6.6 (a), E
normalizes Ag. Note that M, <« M. Clearly, M, normalizes Ay, so
M = M,FE normalizes Ag. Thus, Ag <« M and Aq is a part of the
Fitting subgroup F(M). Apply Lemma 6.2 taking each ¢ € w(F(M))
and X = Oy,(M). Then, M € M(Ng(X)) and q € o(M) U o(M). This
proves that 7 (F(M)) = o(M)U{p} as M, is nilpotent (Theorem 6.5 (a))
and 1o(M) = {p} by (a). Q.E.D.

Lemma 6.8. Suppose that M € M, p € 7o(M), A € E2(E), and
S is a Sylow p-subgroup of G that contains A. Assume that S is abelian.
Then,

(a) F» is an abelian normal subgroup of E,

) Fs is a Hall 7(M)-subgroup of G,

() SC Ng(S) CF(E)CCg(S)CE and S = O,(F), :
) Ng(A) = Ng(S) = Ne(E2) = Ne(E2E3) = No(F(E)) € M,
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(e) every X € EY(E1) for which Car, (X) =1 lies in Z(E), and
(f) we have Cs(X) < Ng(S) and [S, X] < Ng(S) for every sub-
group X of Ng(S).

Proof. As before, the assumptions imply that M is a w- group. By
Theorem 6.7 (a), each p € 72(M) satisfies the assumption that G has
abelian Sylow p-subgroups. Since S C Cg(A) C E by Corollary 6.6 (b),
E, is a Hall 75(M)-subgroup of G. This proves (b).

By Corollary 6.6 (a), we have E C Ng(A).

Clearly, A C O,(Ng(A)) C S. Hence, A is contained in the center
of F(Ng(A)). Thus,

F(Ng(A)) € Ca(A) € E C Ne(4).

This proves two properties. One is F(Ng(A)) C F(Cg(A)) C F(E),
and the other property is r(F(Ng(A))) € r(E) < 2. By Theorem 4.20
[BG], we have Ng(A) C F(Ng(A)). It follows that E < Ng(A4), so
F(E) C F(Ng(A)). We have F(Ng(A)) = F(Cg(A)) = F(F). By
Theorem 6.5 (b), we have A = Q;(S5), so Ng(S) C Ng(A). Moreover,
Corollary 4.7 (a) shows S C Ng(S)'. It follows that

S € Na(S)' € Na(A) € F(Ng(4)) = F(E).

This implies that S = O,(F) and F(E) C C¢g(S) C Cg(A) C E. We
have proved (c). As remarked earlier, S = O,(E) for every p € m(M).
This implies E5 <1 E and (a) holds.

Let K = F3FE3. Then, E5 < E by Lemma 6.1 (a). Since Ep < E
and F; N E3 =1, we have K = E9FE3 = E5 X E3. Since Ej3 is cyclic by
Lemma 6.1 (d) and E3 is abelian, K is a Hall subgroup of F(FE). Each
subgroup in the series

ACSCE, CEE3 CF(E)

is characteristic in its successor. Since F(E) = F(Ng(A)), we have (d).

By (d), K < Ng(K) = Ng(S). Also, Ne(S)' € F(E) € Cg(K)
by (c). Let X € &(E;) be a subgroup such that Cypr, (X) = 1. Then,
Ng(S) X <1 Ng(S) and Ng(S)' € Cg(K). Consider Y = [K, X]. Then,
it is a subgroup of K and

Y = [K, X] = [K, Ng(S)' X] <t Na(S).

Thus, Ng(Y) 2 Ng(S) so we have Ng(Y) € M. On the other hand,
Proposition 4.11 (d) applies to X and shows that Y = [K, X] < M. If
Y # 1, then Y is a nonidentity normal wo-subgroup of M. This would
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imply Ng(Y) = M by Lemma E (1). However, we have shown that
Ng(Y) ¢ M. This contradiction proves [K,X] = 1. Since E = E; K
and FE1 is cyclic (Lemma 6.1), we have X C Z(E). This proves (e).

To prove (f), note that for any subgroup X of Ng(9),

Cg(S)X < N(;(S)

because Ng(S)" C Cg(S) by (¢). Then, Cs(X) = Cs(Cg(S)X) <«
Ng(S) and [S, X] = [S, Ca(S)X] < Na(S). Q.ED.

Corollary 6.9. Suppose M € M, p € 1o(M), A € 812,(E'), q €
(M), Q € EL(E), Cn,(Q) =1, and [A4,Q] # 1. Let Ay = [A,Q] and
A1 =Ca(Q). Then, G has nonabelian Sylow p-subgroups. We have

(a) Ag € EY(A) and Ag = Ca(M,) < M,
(b) Ao is not conjugate to Ay in G, and
(c) A€ &Y(A) and Cq(A1) € M.

Proof. 1If G has abelian Sylow p-subgroups, Lemma 6.8 (e) implies
either Cp, (Q) # 1 or [A,Q] = 1. Thus, G has nonabelian Sylow p-
subgroups.

Since A is abelian, we have A = Ay X A; by Proposition 1.6 [BG].
Proposition 4.11 (d) with (p, P, K) replaced by (¢, Q, A) yields that Ay =
[A4,Q] # 1 is a cyclic normal subgroup of M. It follows that Ag C
Ca(M,). Theorem 6.7 (b) yields (a).

This implies that A; € €'(A). Then, Theorem 6.7 (c) proves (c).
Since ry(M) = 1 and @ does not centralize Ay, Cz(Ao) is a ¢’-group.
Therefore, (b) holds. Q.E.D.

Corollary 6.10. Let M € M.

(a) Every nilpotent o(M)’-subgroup of M is abelian.

(b) The groups Es and E' are abelian.

(c) Supposep € 7o(M) and A € EZ(E). Then, E3E3 C Cp(A) 9 E
and ©(E/Cg(A)) C 1(M).

(d) Supposep € a(M) and P is a noncyclic p-subgroup of M. Then,
Ng(P)C M.

(e) Suppose z € M*, n({z)) C 72(M), and Cn,(z) # 1. Then,
M(Cg(z)) = {M}.

Proof. We will paraphrase the proof of Part (e); the remainder is
straightforward (cf. the proof of Corollary 12.10 [BG]).

The group M contains an abelian Hall m5(M)-subgroup E (Theo-
rems 6.7 (a) and 6.5 (b), and Lemma 6.8 (a)). This implies that any
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T9(M)-subgroup of M is conjugate to a subgroup of Es. Since (z) is a
72 (M )-subgroup of M, (z) is conjugate to a subgroup of Ey in M. Thus,
we may assume that x € Fs.

We have (M) # 0. By Lemma H, M is a w-group. So, Cg(z)
is contained in a w-local subgroup and contains A € EZ(E) for some
p € o(M). If Ca(z) C M* € M(Cg(x)) \ {M}, Theorem 6.5 (e) yields
that Chy, () C M, N N* = 1. This proves (d). Q.E.D.

Lemma 6.11. Suppose M € M, p € (M), A € EX(E), and
M* € M(Ng(A)). Then,
(a) m=(M) < o(M*)\B(M"),
(b) w(E/Cg(A)) C i (M*)Ur(M*), and
(¢) ifqen(E/Ce(A)Nn(Ce(A)), then g € T2(M*), some Sylow
p-subgroup of G is normal in M*, and M* contains an abelian
Sylow q-subgroup of G.

Proof. As before M is a w-group. The proof of (a) and (b) is
similar to the corresponding proof of Lemma 12.11 [BG]. We paraphrase
the proof of Part (c).

Let ¢ € n(E/Cg(A)) N m(Cg(A)) and Q € Syly(E). Corollary
6.10 (c) yields ¢ € 71 (M). It follows that @Q is cyclic. Since A < E
by Corollary 6.6 (a), we have Cg(A) < E. Hence, Q@ N Cg(A) is a
Sylow g-subgroup of Cg(A). Thus, we have Q¢ = 21(Q) C Cg(A) and
Qo # Q.

By Corollary 6.6 (b), Cq(A) € E so Cg(A) has a cyclic Sylow
g-subgroup. The Frattini argument yields

Ne(A) = Ca(A)(Né(A) N Na(Qo))-

Take M** € M(Ng(Qo)). Since Qo C Cg(A), we have A C Ng(Qo).-
Proposition 6.4 applied to M** yields that Cg(A) € M**. The above
displayed formula shows Ng(A) € M**. By (b) and Lemma 6.2 (a)
both applied to A and M**, the prime q lies in o(M**) U np(M**) and
in 71 (M**) U 1o(M**). Therefore, g € To(M**). The part (a) applied to
M* and then to M** shows that p € o(M*) and p € o(M™**). Since g €
To(M**), we can apply Corollary 6.6 for M**. The part (f) implies that
M* is conjugate to M**; otherwise we would have o(M*)No(M**) = 0.
Since A C M* N M**, Theorem 4.1 (b) shows that M** is conjugate to
M* by an element of C(A). But, Ca(A) C M*™ so we have M** = M*.
Thus, g € To(M*).

It follows from Theorem 6.5 (a) that (M™), is nilpotent. Since
p € o(M*}\ B(M*) by (a), O,(M*) is a Sylow p-subgroup of M* and
of G. This proves the second statement.



76 M. Suzuki

Since q € T2(M™*), Theorem 6.5 (b) applied to M* yields that M ™ has
abelian Sylow g-subgroups. Note that Qg <1 @ so Q@ C M™** = M*. Let
E* be a complement of (M*), in M* that contains Q). Let S be a Sylow
g-subgroup of E* that contains @. We will show that S € Syf,(G).

Suppose that G has nonabelian Sylow g-subgroups. Theorem 6.7
applied to M* yields the following. Among the elements of £1(S), there
is a unique subgroup Xy such that Cp«(Xo) # 1 (Theorem 6.7 (c)).
This subgroup X, has a complement Ey in E* (Part (d)). We have
A C M} N Cs(Qo). Therefore, we must have Xy = Qq. Since Qo has
a complement Fy in E*, the Dedekind law shows that Eg N Q) must be
a complement of Qp in Q. Since @ # Qo and @ is cyclic, Qo has no
complement in Q. This is a contradiction. Thus, G has abelian Sylow
g-subgroups. By Lemma 6.8 (b), we have S € Syl,(G). This completes
the proof. Q.E.D.

Theorem 6.12. Suppose M € M and Cpy, (e) = 1 for each
(11(M) U 73(M))-element e € E*. Then,

(a) FE contains an abelian normal subgroup Ay such that Cg(z) C
Ay for every z € (My, ), and .

(b) E contains a subgroup Ey of the same exponent as E such that
EoMg, is a Frobenius group with Frobenius kernel M, .

Proof. If E5 =1, then E = F; E5 acts regularly on M,,,. Therefore,
with Ag =1 and Ey = E, (a) and (b) hold.

Assume that 75(M) is not empty. Then, by Lemma H, M is a w-
group. Take p € 7»(M). If G has nonabelian Sylow p-subgroups, then
Theorem 6.7 provides subgroups Ag and Ep as required. Note that (c)
implies that Ciy, (x) = 1 for every p-element x of FEof. Thus, we can
assume the hypotheses, notation and conclusions of Lemma 6.8.

By assumptions, Cg(z) is a 72(M)-group for every z € M,*. By
Lemma 6.8 (a) and (b), E contains an abelian normal Hall 7(M)-
subgroup E». Hence, we have Cg(z) C E» for every z € M,*. Thus,
Ao = E satisfies (a).

For each p € 75(M), we have a normal abelian subgroup S of rank
two such that S is a Sylow p-subgroup of FE and of G (Lemma 6.8 (a)
and (b)). We will prove that for each p € 72(M) there is a cyclic normal
subgroup Z = Z, of E having the same exponent as S and satisfying
the condition Cyy, () = 1 for every z € Z*.

We remark that the last centralizer condition is equivalent to

Cum, ((2)) = L.
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and this condition is automatically satisfied if Z is a nonidentity cyclic
subgroup of S such that Q;(Z) <t Ng(S). The first claim is trivial. To
prove the second, suppose that Cys (©2:1(Z)) # 1. Corollary 6.6 (c) for
X =0 (Z) yields M(Cg(X)) = {M}. Since 24(Z) < Ng(S), we have

Ng(S) € Ne(©4(Z2)) € M.

This contradicts Lemma 6.8 (d).

Assume that Cg(S) = E. Since S is abelian of rank 2, S = Y x Z for
some cyclic subgroups Y and Z. We choose the notation |Y| < |Z|. If
Y| < |Z|, 21(Z) is characteristic in S. Then, Q:(Z) < Ng(S)so Z = Z,
satisfies the required property. (Since Cg(S) = E, any subgroup of S is
normal in E.) If |Y| = |Z|, we can take a factor Z in such a way that
0,(2) is equal to any given A; € &!(S) and, by Theorem 6.5 (f), at
least one such A; satisfies Cps_ (A4;) = 1. This completes the proof in
the case Cg(S) = E.

Assume that Cg(S) # E. Take ¢ € n(E/Cg(S)) and let Q1 €
Syly(E) and Q € Syly(Ng(S)) such that Q1 C Q. The definition of g
implies Cs(Q1) # S. Let A = Q,(S). Then, A € €2(S). By Proposition
1.6 [BG], Q1 does not centralize A. Therefore, by Corollary 6.10 (c),
g € 11(M) and @, is cyclic. Since Cs(Q1) # S and Cg C E, we have

Qo =Cq(S) G Q1.

Suppose that Q/Qo acts regularly on S. Then, Proposition 3.9 [BG]
shows that Q/Qp is cyclic. Hence, 2;(Q/Qo) C Q1/Qo and 24(Q) C Q1.
Since @; is cyclic, 2:1(Q) C Q: implies that @ is cyclic, too. Thus,
r¢(NG(S)) = 1. On the other hand, since g € 71(M), the assumption of
this theorem implies that Cypz, (21(Q1)) = 1. Hence, by Lemma 6.8 (e),
01(Q1) lies in Z(E) so Q1(Q1) centralizes A.

If M* € M(Ng(A)), S C Ng(A) € M*. So, S is a Sylow p-
subgroup of M*. Now,Lemma 6.11 (c) yields ¢ € m(M*), S < M*,
and M* contains an abelian Sylow g-subgroup of G. This implies that
rq(Ng(S)) > 2. This contradiction proves that Q/Qo does not act
regularly on S. Therefore, 1 # Cgs(X) # S for some subgroup X of Q.
By Proposition 1.6 (d) [BG], we have S = Sy x S; where Sp = Cs(X)
and S; =[S, X]. Since 7(S) = 2, both Sy and Sy are cyclic. By Lemma
6.8 (f), both S and S; are normal in Ng(S). Define Z = S if | So| > |S1]
and Z = S if |Sp| < |S1|- Then, Z has the required properties.

Define Ey to be the product of E1E3 and [][ Z, for all p € 7(M).
Then, Ey satisfies the requirements of (b). Q.E.D.

Theorem 6.13. Let p € w. Then, every nonabelian p-subgroup
of G lies in U.
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Proof. The proof of Theorem 12.13 [BG] works. We just add some
details. Let p € w and let P be a nonabelian p-subgroup of maximal
order that lies in two distinct subgroups M and M* of M. Then, by
Corollary 6.10, Ng(P) C M n M*. It follows that P € Syf,(G) and
r(P) = 2. By Corollary 4.7 (b), P contains a nonabelian subgroup @
of order p? and of exponent p and Z(Q) = Q,(Z(P)). Let Z = Z(Q)
and K = Cy, (Z). It is proved that K C M*. By Corollary 4.9 (b),
M = (M N M*)M,. This implies that M, # 1. Similarly, we have
(M*)o # 1.

Apply Lemma 6.5 (b) with (K,U, H,G) replaced by (M,,M N
M*,Z, M) to conclude Ny (Z) = Cy (Z)(Nym(Z) N M*) C M*. Tt
follows that

M(Ne(2)) #{M};
otherwise, we would have Ng(Z) = Ny (Z) C M N M*.

Take any A € Eg(Q) and apply Proposition 6.4 (b) to M, and then
M*. Since M, # 1, the hypothesis of Proposition 6.4 (b) does not hold.
Thus, there is a subgroup Ay € €'(A) such that M(Ng(4o)) = {M}.
Since Z does not satisfy this condition, we have Ay # Z. Similarly, there
is a subgroup A§ € €'(A) \ {Z} which satisfies M(Ng(Ag)) = {M*}.
By the property of the group @, Aj is conjugate to Ay in . This
would imply that M(Ng(Ag)) would be conjugate to M(Ng(Ag)) by
an element of @ C M N M*, so M* = M. This contradiction proves
Theorem 6.13. Q.E.D.

Corollary 6.14. Suppose M € M, p € o(M), X € E,(M), and
P e Syt,(M,). Assume that p € (M) or X C M,'. Then, p € w and
M(Ca(X)) = M(P) = {M}.

Proof. We may assume that X is a subgroup of P. First, we prove
a lemma: under the assumptions of Corollary 6.14, if p ¢ B(M), then
we have X C P'. If p ¢ B(M), the assumption implies that X C M,’'.
The group M, /Mg is nilpotent by Lemma 4.8 (b). Since PN Mg =1,
we have X C M, N P = P’ proving the lemma.

This lemma implies that if p ¢ 3(M), P is nonabelian; in particular,
P is not cyclic so r(P) > 2. Thus, p € w by Lemma F. If p € 8(M), we
have p € w. This proves p € w in all cases.

Suppose that r(Cp(X)) > 3. By the Uniqueness Theorem, we have
Cp(X) € U. Since Cp(X) = Ce(X) N P, both Cg(X) and P lie in U.
Then, we have

M(Ca(X)) = M(P) = {M}.

Suppose that (Cp(X)) < 2. If r(P) > 3, P is narrow by Corollary

5.4 [BG|; so p ¢ B(M). By the lemma, we have X C P’. On the other
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hand, if p is narrow and r(Cp(X)) < 2 for some X € €!(P), Theorem
5.3 (d) shows X N P’ = 1. This contradicts X C P’. Hence, r(P) < 2
and p ¢ B(M). The lemma yields that P is nonabelian.

By Corollary 4.7 (b), P is the central product and satisfies P’ C
Z(P). We have P C Cp(X) because X C P’. Since P is nonabelian,
P € U by Theorem 6.13. This implies that C¢(X) € U and completes
the proof. Q.E.D.

Proposition 6.15. Suppose M € M, q € o(M), X 1is a noniden-
tity q-subgroup of M, and M* € M(Ng(X))\ {M}. Let S be a Sylow
g-subgroup of M N M* that contains X. Then, S, M, and M* satisfy
the following conditions.

(a) M* is not conjugate to M in G.

(b) Ng(S)C M.

(¢) S is a Sylow g-subgroup of M*.

(d) If g € o(M*), then (1) M* = (M N M*)M3, (2) n(M*) C
71 (M)U a(M), and (3) Mz = M, # 1.

(e) Ifgq¢a(M”),then (1) g € (M), (2) m(M)No(M*) C B(M~),
and (3) M N M* is a complement to M} in M*.

Proof. The assertions follow as in the proof of Proposition 12.15
[BG]; we will paraphrase the proof of (e).

Suppose that ¢ ¢ o(M*). By Lemma 6.2 (a) applied to ¢, we
have ¢ € 7(M*). Lemma H shows that M* is a w-group. Since
S € Syly(M*) by (c), Theorem 6.5 proves A = 2;(5) € €2(9).

Let E* be a complement of M} in M* that contains A. By Theorem
6.5 (e) and Corollary 6.6 (a) with (p, M) replaced by (¢, M*), M}NM =
land A <1 E*. By Corollary 6.10 (d), we have Ng(A) € M. This implies
that E* C Ng(A) C M. Thus,

MAM*=MnM:E*=(MnM)E* =E*.

This proves (3).

Suppose that p € 7(M) N o(M*) and p ¢ G(M*). By Corollary
6.6 (b) applied to M*, we have Cg(A) C E*. Since p € o(M*), the
group Cg(A) is a p’-group.

By (a), M is not conjugate to M*. Therefore, Corollary 6.6 (f)
applied to M* and q proves that o(M™*) is disjoint from o(M). This
implies first p # q because p € o(M*) and ¢ € o(M), and secondly
p ¢ B(M) as B(M) C o(M). By (1), q € 3(M*) 50 q ¢ B(G) by
Lemma 6.1 (g) with p replaced by g. ‘We can apply Corollary 4.9 to
M*. If p < q, the g-subgroup A of M™ centralizes a Sylow p-subgroup of
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M. Since p € 0(M?*), Ca(A) has order divisible by p. This contradicts
the earlier statement that Cg(A) is a p’-group. Thus, we have ¢ < p.
We apply Corollary 4.9 to M interchanging p and q. We conclude that
a Sylow p-subgroup P of M centralizes a Sylow g-subgroup @ of M,.
Since p € 7(G), we have P # 1. We may replace @ and P by conjugates
and suppose that A C Q. We get a contradiction that 1 # P C Cg(A).
This completes the proof of (e). Q.ED.

Corollary 6.16. Let M € M and E a complement of M, in M.
Suppose that Y is a o(M)-subgroup of G such that O5(Y) # 1. Then,
Y is conjugate to a subgroup of M, and for every p € w(E)N B(G)" and
every H € M(Y") not conjugate to M in G,

(a) m(Nu(Y)) <1, and
(b) if p e (M), thenp ¢ m(Nu(Y)').

Proof. With the extra condition that O4(Y) # 1 Y is contained
in a w-local subgroup, so it is solvable. We can take a nonidentity
characteristic g-subgroup X of Y for some prime g € go(M). Since M
contains a Sylow g-subgroup of G, we may replace Y by some conjugate
if necessry, and assume that X C M,.

First we prove the following lemma as part of the proof of (a). Let
H e M(Y). If H is not conjugate to M in G, then for any prime
p € n(E)N B(G), we have rp(HN M) < 1.

Suppose 7, (HN M) > 2 and take A € EZ(H N M). Then p € 7o(M)
and by Theorem 6.5 (e) we have M, N H = 1 in contradiction to

1#XCM,NH.

This proves the lemma.

To prove Corollary 6.16, we assume first that Ng(X) C M. In this
case we have Y C Ng(X) C M. Since M/M, is a o(M)'-group and
Y is a o(M)-group, we have Y C M,. Let p € n(E) N B(G)’ and let
H € M(Y) such that H is not conjugate to M in G. By the lemma,
rp(HN M) < 1. Since Ng(Y) € Ng(Y) € Ng(X) € M, we have
Ng(Y) € HN M. This implies r,(Ng(Y)) < rp(H N M) < 1. If
p € (M), M’ is a p-group (by definition of 71 (M)). Then, (b) holds
because Ng(Y) C (HNM)' C M'.

In the remainder of the proof we assume that Ng(X) ¢ M. Since
X is a w-group, there is M* € M(Ng(X)). Since Ng(X) € M, we
have M* # M. By Proposition 6.15, M* is not conjugate to M in G,
g € o(M*)Urp(M*), and if g € 7o(M*), then (M) No(M*) C B(M*).
Moreover, if K is defined to be Mj or M7 according as ¢ € o(M™) or
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q € o(M™), then M* = (MNM*)K. We claim that K is a o(M)’-group.
Ifg€o(M*), K=MjC M; and by Lemma 4.12 (a), a(M*) is disjoint
from o(M). If g € T5(M™*), we have K = M} and o(M*)No(M) =0 by
Corollary 6.6 (f) with M replaced by M*. Thus, K is a o(M)’- group.

Since Y C N¢(X), the o{(M)-group Y is contained in M* = (M N
M*)K. Since K is a normal o(M)’-group, the Schur-Zassenhaus The-
orem shows that Y is conjugate to a subgroup of M N M*. Since YV
is a o(M)-group, Y is contained in M, N M* which is a normal Hall
o(M)-subgroup of M N M*. This proves the first assertion of Corollary
6.16.

Take p € n(E)NB(G) and H € M(Y) that is not conjugate to M in
G. We claim that K is a p/-group. This is clear if K = (M*)g because
p ¢ B(G). On the other hand, if K = (M*),, we have g € 7o(M*) so p
cannot divide |(M™*),| because n(M)No(M*) C B(M™*) and p ¢ B(M*).
Thus, K is a p’-group. Since Ngy(Y) C Ng(Y) € M* and M* is not
conjugate to M in G, we may assume H = M*. In this case, we have
H = (HNn M)K. Since K is a p’-group, H N M contains a Sylow p-
subgroup of H. The lemma at the beginning of the proof shows that
rp(H N M) < 1. Thus, we have r,(Ng(Y)) < rp(H) < 1. This proves
(a).

Ifp € 7 (M), then p ¢ w(M'). It follows that (HNM)' is a p’-group.
Clearly, we have Ny (Y) C H' C (HN M)’ K. Therefore, Ng(Y)' is a
p’-group. Q.ED.

Lemma 6.17. Let M € M and E a complement of M, in M.
Then, we have Cp, (E) C (M), [Ms,E] = My, and for every g €
G\ M, the group M, N M9 is a cyclic B(M)'-group intersecting (M, )’
trivially.

Lemma 6.18. Suppose M € M, p € (M), P € &,(M), g € p/,
and Q) is a nonidentity P-invariant q-subgroup of M such that Cq(P) =
1 and M(Ng(Q)) # {M}.

(a) If M, # 1 andq ¢ a(M), then Cpr, (P) # 1 and Cu (PQ) = 1.
(b) If Q € Syly(M), then a(M) = B(M) and we have the situation
of (a).

Proof. We will rewrite the first paragraph of the proof of Lemma
12.18 [BG]; the remainder of the proof can be adapted directly.

Suppose that M, # 1 and q € a(M). We will prove that

r(Cum,(Q)) < 1.
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Suppose that r(Cpr (Q)) > 2. Then, Cp (Q) is a w-group so by
Lemma A, Q is a w-group. Lemma 4.3 with X replaced by @ yields
that Cp(Q) € U. Since ¢ € w, M(Ng(Q)) is not empty and, by as-
sumption, contains H € M different from M. Thus,

so Cu(Q) ¢ U. This contradiction proves r(Chr, (Q)) < 1.

We prove 7(Cyy, (P)) < 1. Suppose that r(Cyy, (P)) > 2. The same
argument as above yields that p € w and Ca(P) € U. Since p € 71 (M),
P is contained in a cyclic Sylow p-subgroup S of M. Since p ¢ (M),
we have Ng(S) € M Thus, Ng(S) C Ne(P) £ M.

We can find H € M(Ng(P)) because p € w. Then, H # M and

Cu(P) € No(P) C H # M.
Thus, Cp(P) ¢ U. This proves r(Ca, (P)) < 1. Q.E.D.

Lemma 6.19. Let M € M and E a complement of M, in M.
Then, the group E' centralizes a Hall 3(M)’-subgroup of M,.

§7. Prime Action

This section corresponds Section 13 of [BG]. Troughout this section,
s subgroup M € M and a complement E of M, in M will be fixed.

Lemma 7.1. Suppose that M* € M, p € w(E)nw(M*), p ¢
T (M*), [M, " M*, MO M*| # 1, and M* is not conjugate to M in G.
Then,

(a) every p-subgroup of M N M* centralizes M, N M*,
(b) p ¢ m(M*), and
(¢) ifp€wnmn(M), then p € B(G).

Proof. Since [M,NM*, MNM*| C M,N(M*)', thereis g € o(M)}N
w((M*)"). Then, q # p because p € m(E). Let Y be a Sylow g-subgroup
of (M*)". By Lemma 4.8, (M*)'/(M*)s is nilpotent so (M*)gY < M*.
The Frattini argument yields M* = (M*)gNpy«(Y).

In order to prove (b), suppose p € To(M*). Then, r,(Np-(Y)) = 2
because Nps+(Y) covers M*/(M*)s. Moreover, M* is a w-group by
Lemma H. It follows that ¢ € w. Lemma 6.1 (g) yields that p ¢ 8(G).
Corollary 6.16 (a) can be applied to get 7,(Np-(Y)) < 1. This contra-
diction proves (b).

To prove (c), suppose that p € 8(G)’. By (b) and the assumptions,
p € o(M*) U m3(M*). Therefore, p € w((M*)'). We have (M*) =
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(M*)g(Np+(Y))'. Hence, Npy+(Y)' contains a p-subgroup P # 1. We
will show that this is a contradiction. Let S be a Sylow p-subgroup
of (M*)'. Since (M*)'/(M*)g is nilpotent, (M*)gS < M* and P C
(M*)sS. We claim that ¢ € w. If ¢ € B(M™*), this is trivial. If ¢ ¢
B(M*), (M*)gS is a ¢’-group. Recall that p # ¢. Now, [Y,P] C Y n
(M*)gS =1 because P C Ng(Y) and P C (M*)gS. Since P # 1is a
p-group and p € w, we have ¢ € ww. We can apply Corollary 6.16 (b)
which yields that if p € 71 (M), then p ¢ 7(Np+(Y')). This contradiction
proves (c).

The statement (a) follows as in [BG]. Q.ED.

Corollary 7.2. Suppose that p € m(M)Ur3(M), P is a noniden-
tity p-subgroup of M, and M* € M(Ng(P)). Then,
(a) every p-subgroup of M N M* centralizes M, N M*,
(b) every 1 (M*) -subgroup of EN M* centralizes M, N M*, and
(¢) #f [Me N M* M N M*| # 1, then p € o(M*) and in the case
p € wNT (M), we even have p € B(M*).

Corollary 7.3. The following statements hold.

(a) Let P € Syl,(E) for some p € m(E) Nw. Assume that P is
cyclic. Then, P acts in a prime manner on M,.
(b) Ifwnts(M) # 0, E5 acts in a prime manner on M,.

Proof. Let P, = Qi(P). If z € P* then P, C (z) C By
assumption, p € 7 (M) U3(M). Therefore, we have Ng(P) 7¢_ Slnce
p € w, there exists M* € M(Ng(P)). We have P C M N M*. By
Corollary 7.2 (a), P centralizes M, N M*. Thus,

M, N M* C Cy, (P) C Cu, () € Ca, (Py).

On the other hand, Cpr, (P1) C Ng(P1) € M*,s0 Ca, (P1) € MsNM*.
It follows that Cyr, (z) = M, N M* for every z € P*. This proves (a).

The proof of (b) is similar. Take X € E!(E3) with p € w and
M* € M(Ng(X)). We have E3 C E’ by Lemma 6.1 (b). Since £ C
Ng(X) C M*, E;5 is a subgroup of (M*)'; in particular, E3 is a 71 (M*)'-
subgroup. If ¢ € E5" satisfies X C (z), then we have

Cu, (Es) = Ca, (z) = Cpr, (X) = My 0 M*.

If p € w for one prime p in 73(M3), then 73(M) C w. Hence, for any

element = € F3*, we have Cyy, («) = Caz, (E3). This proves (b).
QED.
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Theorem 7.4. Suppose that p € w, p € (M), P € E(E),
r € n(E), and R € EL(Cg(P)). Then, Cp, (P) C Car, (R).

Proof. By assumption, we have RP = R X P sor € w. Since p €
71(M), we have Ng(P) ¢ M. We can take M* € M(Ng(P)) because
Ng(P) is a w-local subgroup. By Lemma 6.2, p € o(M*) U 79(M%)
(by (a)) and M* is not conjugate to M in G (by (b)), In particular,
M*+£ M.

By Corollary 7.2 (a), P centralizes M, N M*. as in the proof of
Corollary 7.3, we have Cy, (P) = M, N M*. This implies that M, N M*
is a w-group by Lemma A. Since R C M N M*, the o(M)’-group PR
normalizes M, N M*. Therefore, for each q € m(M, N M*), there is a
PR-invariant Sylow g-subgroup S of M, N M*. Then, S ¢ U so S is
abelian by Theorem 6.13. Note that ¢ € w.

We have to show that R centralizes S. We will derive a contradiction
by assuming that R does not centralize S. Let Q = [S, R] and assume
that Q@ # 1. Then, S = @ x Cg(R) and Co(R) = 1 (because S is
abelian). Since S C M, N M*,

Q=[SSRIC[M,nM*" MNM*|#1.

By Corollary 7.2, we obtain p € 3(M*) from (c) and r € 7, (M*) from
(b).

We check that all the assumptions of Lemma 6.18 (a), except the
one about M(Ng(Q)), are satisfied for (M*,r,R,q,Q) in place of
(M,p,P,q,Q). But, since p € 8(M*), one of the conclusions is vio-
lated, i.e. P C Cupx:(RQ) # 1. Tt follows that M(Ng(Q)) = {M*}.

By Lemma 6.2 (a), we have ¢ € o(M*) U 7(M*). We can apply
Proposition 6.15 for Q@ = X. If ¢ € o(M*), Part (e) applies so M N M*
is a complement of (M*), in M*. However, this is not true because

PC(M)enNM=(M)Y%nN(MnNM")# 1.
It follows that ¢ € o(M*). Hence, by Proposition 6.15 (d), we have
ren(E)N(n(M)Ua(M)) =7(M)
and M, # 1. Since ¢ € o(M*), Lemma 4.12 (a) yields ¢ ¢ a(M).
Thus, if R does not centralize S, we have ¢ ¢ a(M). It follows that

Cum, (P) € Cup (R) and r € 71 (M). We can interchange p and r to get
Cum.(R) C Cp,, (P). Then, C = Cypy, (P) = Cpr (R), s0

CICMOL(P) :CM,(P) NM, =M, NM*
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because C, (P) = M, N M*. The group S normalizes C. Hence,
[C,R,S]=][S,C,R] = 1.

By the Three Subgroup Theorem we have [R,S,C] = 1. Thus, Q =
[R, S] centralizes C. It follows that C = Cpr, (R) = Cpr, (RQ). On the
other hand, Lemma 6.18 (a) for M, r, R, q and Q in place of M, p, P, q
and Q yields Cyr, (R) # Cum, (RQ). This contradiction proves Theorem
7.4. Q.E.D.

Theorem 7.5. Suppose that wN (M) # 0. Then, Ey acts in a
prime manner on M,.

Proof. Since Ej is cyclic, the assumption yields that E; is a w-
group. For each p € (M), let P € E!(E;). By Theorem 7.4, the group
C = Cy, (P) does not depend on p. If P; is any p-subgroup of Fi, we
have Cyr, (P1) = C by Corollary 7.3 (a). It follows that Cp (X) = C
for any subgroup X of E;. Q.E.D.

Lemma 7.6. Suppose 1 # P C E;, q € o(M), and X €
Ex(Cum, (P)). Let S € Syly(M,). Assume either P = E1 or wNmy (M) #
0. Then, g € w and M(Cg(X)) = M(S) = {M}.

Proof. Ifqe€ (M) or X C (M,)’, Corollary 6.14 yields the conclu-
sion of the lemma. We will derive a contradiction by assuming q ¢ 8(M)
and X ¢ (M,)". if wN (M) # 0, Ey acts in a prime manner on M,
by Theorem 7.5. Therefore, we may assume that P = Fj.

Since ¢ ¢ B(M), by Lemma 6.19, E’ centralizes some Sylow g-
subgroup of M,. The group E is a o(M)-group that normalizes a
o(M)-subgroup Cys, (E’). Hence, E normalizes some Sylow g-subgroup
of Cps, (E'). We may replace S by a conjugate without affecting the con-
clusion. Thus, we may assume that S is normalized by E and centralized
by E’.

The group SE; C SE is a Hall {q, 71 (M) }-subgroup of M. There-
fore, the subgroup X E; of M is conjugate to a subgroup of SE;. Thus,
for some ©z € M, (XE;)* = X*E¥ C SE; Then, Ef and E; are Hall
subgroups of SE;, so they are conjugate in SE;. We may assume that
E? = E;. Since XE; = X x E1, we have X* C Cp(EY) = Cy(E4).
Also, we have X* C S because S is a normal Sylow g-subgroup of SE;.
It follows that X* € EL(Cp, (P)) and X® C S. By replacing X and S

by conjugates, we may assume that

X CSCCy(E).
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By Lemma 6.17, Cpr, (E) C (M,)'. Since X ¢ (M,)’, X does not
centralize E, but does centralize F; and E'. It follows that F # E FE'.
Since F3 C E' and E = E{E3FE3 by Lemma 6.1, we have Ey # 1. By
Lemma H, M is a w-group.

Take p € 72(M) and A € E2(E). We have A < E by Corollary
6.6 (a) and Cpy,(A) = 1 by Theorem 6.5 (d). Since A is abelian, A =
Ag X [A, Ey] with Ag = Ca(F1). Since [A, E1] C E', [A, E4] centralizes
X. Furthermore, Theorem 7.4 shows that Ag centralizes X. Thus,
X C Cpy, (A) and Chy, (A) # 1. This contradicts Theorem 6.5 (d).

Q.E.D.

Lemma 7.7. Suppose that Eq # 1, FE5 # 1, and that Ey does not
act reqularly on FEs. Then, we have one of the following two cases.

(1) We have r3(M)YNw =0, M is a Frobenius group with Frobenius
kernel Mo = Mg = Mo,,, Ma is a w-group, and M/M, is a
w' -group.

(2) We have 3(M)Nw # 0, M is a w-group and the group EF3
acts in a prime manner on M,.

Proof. By assumption, there exist primes p and r such that P €
EY(E,) centralizes R € EL(E3). These primes p and r lie in the same
connected component of the prime graph of G.

Suppose that 73(M) Nw = @. Then, M is not a w- group. By
Lemma G, we have (1).

Suppose that 73(M) N w # 0. Since Ej3 is cyclic by Lemma 6.1 (d),
we have 13(M) = m(FEs3) C w. Since M'/Mgp is nilpotent by Lemma 4.8
and 13(M) C 7(M’/Mpg)by Lemma 6.1 (b), the group M'/Mp is a w-
group. The remark at the beginning of the proof shows 7 (M) N # 0.
Since (M) C w#(M/M"), M/M’ is a w-group. This proves that M is a
w-group.

The remainder of the proof is similar to that of Lemma 13.7 [BG].
Since M is a w-group, we can apply Corollary 7.3 and Theorems 7.4
and 7.5. We assume

Cm, (P) # Cp, (R)

and we will obtain a contradiction. We have 1 # R C E3 and Cyy, (R) #
1. If 5(M) # @, Corollary 6.6 (d) would yield Cps, (R) = 1. Therefore,
To(M) = 0 and E = E1FE5. Since R char F3 < E by Lemma 6.1, we
have R <« E. We can take M* € M(Ng(R)) since Ng(R) is a w- local
subgroup. We have Ng(R) € M so M* # M. By our hypothesis,

1 7é [CMU(R)vP] - [Ma m]\4*7E1]'
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If C = Cg,(M, N M*), the above displayed formula yields C # Ej.
On the other hand, C centralizes M, N M*. Since E; acts in a prime
manner on M, by Theorem 7.5, we have C = 1, Corollary 7.2 with p and
P replaced by r and R yields n(E1) C 7,(M*) from (b) and r € o(M*)
from (c). Thus, E; is contained in a Hall 71 (M*)-subgroup (E*); of M*
and 1 # P C Cg: (R) where R C (M*),. Since y(M*)Nw # @, E} acts
in a prime manner on (M*), by Theorem 7.5. Therefore, E} centralizes
R. Since Ey C E7, R centralizes E;. It follows that R C Cg,(FE) because
R C E3 and E = E, E3. Recall that Ej is cyclic. However, Cg,(E) =1
by Lemma 6.1 (f). This proves Lemma 7.7. Q.E.D.

Lemma 7.8. The following configuration is impossible:

(1) M,M*CM and M™ is not conjugate to M in G,

(2) pen(M)N7(M*) and P € (M N M*),

(3) @ and Q* are P-invariant Sylow subgroups (possibly for different
primes) of M N M*,

(4) Co(P)=1 and Cy-(P) =1, and

(5) Ng(Q) € M* and Ng(Q*) € M.

Proof. Assume this configuration. It follows from (3) and (5) that
QQ is a nonidentity Sylow g-subgroup for some prime ¢ different from
p and Q* is a Sylow subgroup of M*. By Lemma 6.18 (b), we have
a(M) = (M), M, # 1, and ¢ ¢ «(M). Furthermore, by (a) of the
same lemma, Cyr, (P) # 1 and Cp (PQ) = 1. Since Cpr, (P) # 1 and
a(M) C w, we have p € w by Lemma A.

Proposition 1.6 [BG] yields that Q = Cq(P)[Q, P]. By (4),

Q=[Q,P|C M n(M")"

Theorem 4.2 (d) shows that M’/M, is nilpotent. It follows that M,Q <
M and the Frattini argument yields M = M, Ny (Q).

This implies that Nas(Q) contains a Hall a(M ) -subgroup K of M.
Since ¢ ¢ a(M) and p € 7 (M), PQ is an a(M)’-subgroup of Ny (Q).
We may choose K so that PQ C K. Note that we have

M=MKM,NK=1, and PQC K C Ny (Q).

We claim that Cpr(P) = Cp, (P)Ck(P). Take an element of Cas(P)
and write it zy with x € M, and y € K. This is a unique expression of
this sort. For any z € P,

zy = 2z Hay)z = (27 z2) (27 Yy2).
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Since z 'zz € M, < M and 2z 'yz € K, we have z7lzz = x and
2~lyz = y. This proves Cp(P) C Cpr, (P)Ck(P). The reverse contain-
ment is obvious. This proves the claim.

Let H be a Hall (8(M) U 8(M*))-subgroup of C(P). Recall that
p € w, so Cg(P) is contained in a w-local subgroup and it is solvable.
Take any s € n(F(H)) and t € wF(Cp,(P))). By symmetry between
M and M*, we may fix notation and can assume s € B(M). We may
choose H so that Ca,(P) € H. Let X = Os(H) and Y = O(Cp, (P)).
We will show that H C M.

Since s € 8(M), M contains a Sylow s-subgroup of G. Hence, some
conjugate MY with g € G contains X. By Proposition 4.14 (d), applied
to M9 and X, we have M9 D Ng(X) 2 H2Y.

The same argument applied to M and Y yields M D Ng(Y) D
Cg(Y). Since Y € M N M9, it follows from Theorem 4.1 (b) that
M9 = M" for some element h € Cq(Y) C M. Thus, M = M9 D H.

Take r € B(M*) N w(H). By Lemma 4.12 (a), r ¢ o(M). Note
that M* is not conjugate to M by (1). Moreover, since H C M, r €
W(CM(P)) Since CM(P) = CMOL(P)CK(P), K g NM(Q), and r ¢
a(M) C o(M), we have r € m(Cg(P)). Therefore, there is a subgroup
R € EX(Nu(Q) N Ce(P)). Then, R C Ng(Q) C M* and r € B(M*).
Proposition 4.14 (d) applied to R C M* yields Ng(R) C M*.

The subgroup PR = P x R is a o(M)’-subgroup of M. Hence, PR is
conjugate to a subgroup of F in M. Since p € w, we can apply Theorem
7.4 to obtain

1# X C Cpm,(P) S Cum,(R) C M.

We claim that [X, Q] = 1. We have X C M, N M* and M, N M* is
a @Q-invariant ¢’-subgroup because q¢ ¢ a(M). Therefore, [X, Q] is a q'-
group. We have Q C (M*)" and (M™*)'/(M*), is nilpotent by Theorem
4.2 (d). Hence, (M*),Q < M*. .

It follows that [X,Q] C [X,(M*)aQ] C (M*)aQ. Since [X,Q] is
a ¢'-group, we have [X,Q] C (M*),. On the other hand, X C Mg
because s € B(M). Therefore, [X,Q] C [Mg,Q] € Mg C M,. Lemma
4.12 yields M, N (M*), = 1. Thus, we have [X,Q] = 1.

Since X C H C Cu, (P), we have 1 # X C Cip, (PQ). This
contradicts the fact that Cys (PQ) = 1. Q.E.D.

Theorem 7.9. Suppose M, M* € M and M* is not conjugate to
M in G. Then, (M) is disjoint from o(M*).

Theorem 7.10. Suppose that some P € EY(E) does not centralize
E5. Then, (M) C w and the following hold.

(a) E; acts regularly on Es.
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(b) Es acts regularly on M, .
(c) Cm,,(P)#1.

Proof. We remark that the assumption implies E3 # 1. Suppose
T1(M)Nw = (. Then, by Lemma G, M is a Frobenius group. The
Frobenius kernel is either M’ or M,,. In the first case, we have M’ = M,
and F3 = 1. On the other hand, if the Frobenius kernel is M,,, the group
E is a subgroup of a Frobenius complement. Hence, by the structure of
a Frobenius complement, every subgroup of prime order in E is normal
in E. In particular, P centralizes F5. Thus, we have 71 (M)Nw # 0. In
this case, we have 71 (M) C w because E; is cyclic.

Suppose that (M) C @ but M is not a w-group. Then, Lemma
G yields that M/M’ is a w-group, M' /M, is a @w'-group and M, is a
w-group. Since E3 C E' C M’ by Lemma 6.1 (b), E5 is a w’-group.
Since Ej is a w-group (11(M) C w), we have (a).

Lemma G yields M, = M,,,. Hence, M,, is a w-group and we have

b). The Frobenius group PEj3 acts on M, with Cpr (E3) = 1. Theorem
3.10 [BG] yields that Cyps, (P) # 1. This proves (c).

If M is a w-group, the proof of Theorem 13.10 [BG] shows the

validity of (a), (b) and (c). Q.E.D.

Corollary 7.11. Suppose E3 # 1 and E5 does not act regularly
on My,. Then, M is a w-group with 72(M) = (. We have (a) E; # 1,
(b) E = E1Es, (c) E acts in a prime manner on M,, and (d) every
X € €Y(F) is normal in E.

Proof. If 7o(M) # 0, Corollary 6.6 (d) yields that E5 acts regularly
on M,. This is false, so we have 75(M) = 0. Lemma 6.1 yields (a) and
(b). It follows from Theorem 7.10 (b) that every P € €1(E;) centralizes
Es5. This implies (d) because E = EyE3 and Ej is cyclic.

By assumption some nonidentity element of F3 centralizes a two-
subgroup. Therefore, 75(M) Nw # @ by Lemma A. By Lemma 7.7 (2),
M is a w-group and (c) holds. Q.E.D.

Lemma 7.12. Suppose p € 71(M), P € EY(E), q € (M), A €
EZ(E), and C4(P) # 1. Then, Cp, (P) = 1.

Proof. Since 12(M) # 0, M is a w-group by Lemma H. The proof
of Lemma 13.12 [BG] may be adapted to this case. Q.E.D.

Lemma 7.13. Suppose that p € 1 (M) U t3(M), P € EY(E), and
Cu, (P) # 1. Then, for every M* € M(Ng(P)), we have p € o(M*).

Proof. Once p € 1o(M*) is assumed, M* is a w-group by Lemma
H. The proof of Lemma 13.13 [BG| works. Q.E.D.



90 M. Suzuki

§8. Subgroups of Type P and Counting Arguments Prime Ac-
tion

Warning. 'We will use the notation of [BG] with one magjor change.
Let k(M) be the set of primes p € 71 (M) U 73(M) such that

Cum,,(P)#1 for some P € &,(M).

This definition makes k(M) C w. Since we never use the set defined
to be k(M) in [BG], we use the same notation for a different meaning.
We divide the set M into three parts Mg, My, , and My, just as in [BG].
However, the set k(M) is used in the sense defined above.

The notion of o-decomposition and of o-length of an element must
also be modified: we replace o(M) used in their definitions in [BG] by
oo(M). For example, we define

My(9) ={M e M| g e M}

However, we use the same notation as that of [BG]. Note that our def-
inition coincides with theirs if g is a w-element. As in [BG], we have
£5(g) =1 for a w-element g € G if and only if M,(g) is not empty.

Lemma 8.1. Suppose that M € M\ Myp,. Take any p € n(M) \
{o(M),s(M)}, let S € Syl,(M) and let A = Q1(S). Then, |A| < p?,
Cum,, (A) =1, and M,, is nilpotent.

Proof. We have n(M)\ o(M) = n(M)Un(M)Ums(M). If pe
T2(M), M is a w-group by Lemma H. Lemma 8.1 follows from (b), (d)
and (a) of Theorem 6.5.

If p € m(M)U 73(M), we have rp,(M) < 1 so |A|] = p. Since
p ¢ k(M), Cuy, (A) = 1 and this implies that M,, is nilpotent by
Thompson’s Theorem 3.7 [BG]. Q.E.D.

Proposition 8.2. Suppose M € Myp. Let K be a Hall x(M)-
subgroup of M and define K* = Cp (K). Then, K* C M,, and the
following hold.

(a) The group K acts in a prime manner on M, and acts regularly
on some abelian Hall (k(M) U oo(M)) -subgroup U of M.
(b) For every X € EY(K),
(1) Ny(X) = Nyg(K) = K x K*, and
(2) X C (M*)s for each M* € M(Ng(X)). In particular,
we have Ng(X) € M.
() K*#1 and every X € EY(K*) satisfies M(Cg(X)) = {M}.
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(d) Every g € G\ M satisfies K*N M9 =1 and every g € M\ (K X
K*) satisfies KN K9 = 1.
(e) For every prime p € w(K*) and every S € Syl,(M,,),

M(S) = {M} and S¢K*.

(f) Every oo(M)-subgroup Y of G satisfying Y N K* # 1 lies in
M,,.

(g) If M € Myp,, then oo(M) = B(M), K has prime order, and
M,, is a nilpotent TI-subgroup of G.

Proof. Although the proof of Proposition 14.2 [BG] is applicable,
we include some details.
We prove (a) and (bl). Take a complement E of M, that contains
K. Suppose that
k(M) NT3(M) # 0.

Then, E3 # 1 and E3 does not act regularly on M,,. By Corollary 7.11,
M is a w-group, E, # 1, E = E 1 FE3, FE acts in a prime manner on M,,
and every X € E(E) is normal in E. Since E = E;E3 acts in a prime
manner on M,, we have k(M) = n(FE). Therefore, K = F and K acts in
a prime manner on M, . In this case, 7(M) = c(M)Uk(M). So, U =1
satisfies (a). If X € €}(K), we have X < E. It follows from M = M,E
that
Nu(X) = Nm, (X)E = Cp, (X)E.

Since K acts in a prime manner on M,, we have Cpy_(X) = Cpr, (K) =
K*. Thus, Ny (X) = K x K*. Therefore, (a) and (b) hold in the case
k(M) N73(M) # 0.

Suppose that x(M) N 73(M) = 0. Then, x(M) C (M) and wnN
71(M) # 0. Theorem 7.5 shows that E; acts in a prime manner on M,.
Thus, k(M) = 11 (M) and we may choose K = E;. To prove (a), we need
to find U. Suppose that M is not a w-group. Since 71 (M) = k(M) C w,
M is a group of type (2) in Lemma G. Then, we have

7(M)\ {k(M),00(M)} =n(M)Nw'.

There is an F;-invariant complement U of M,, in M’. Since U = M’ /Mg
is cyclic, U satisfies (a).
Assume that M is a w-group. Then, 0o(M) = o(M) and
(M) \ {k(M),00(M)} = 72(M) U 73(M).

We will show that U = FyFEs5 satisfies (a). Since K = Fy, U is K-
invariant. Assume Fs # 1. If E; does not act regularly on E», some
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P € E(E,) satisfies Ca(P) # 1 for some A € €?(E;). Lemma 7.12
yields Cps, (P) = 1 contrary to the fact that K = E; acts in a prime
manner on M,. Thus, FE; acts regularly on E,. If E; does not act
regularly on E3, some P € E1(E;) centralizes some R € £'(E3). Since
M is assumed to be a w-group, Theorem 7.4 yields that

1# Cum, (P) € Cu, (R).

This would imply 73(M) N k(M) # 0 in contradiction to the hypothesis
of this case. Thus, F; # 1 acts regularly on FsF3. It follows from
Theorem 3.7 [BG] that E>Ej is nilpotent. By Corollary 6.10 (a), E3FEs
is abelian. This proves (a).

It follows from the structure of the group M discussed in the proof
of (a) that every X € (K is normal in K, M is the semidirect product
of M,, and UK, and Nyg(X) = K. We have

NM(X) = NMaO(X)K: CMUO(X)K= CMUO(K)KZK* x K.

This proves (bl).

Lemma, 7.13 yields the first part of (b2). We have M ¢ M(Ng(X)),
since X C E;. This proves (b2).

The parts (c), (d), (e) and (f) are proved as in the proof of Propo-
sition 14.2 [BG]. For (f), recall that M,, is a normal Hall subgroup of
M,. Hence, M, contains all go(M)-subgroup of M,.

For the proof of (g), suppose that U # 1. Then, (a) implies that
KU is a Frobenius group with Frobenius kernel U. Suppose that M is
not a co-group. Then, by Lemma G, U is a w’-group, so M, U is a
Frobenius group with Frobenius kernel M,,. Hence, Cps (U) = 1 and
M, is nilpotent. Thus, the nonidentity Frobenius group KU acts on a
nilpotent group M,, and K acts in a prime manner on M,,. It follows
from Theorem 3.10 [BG] that K has prime order. By Lemma G, we
have Mg = M,,. Lemma 6.17 shows that for every g € G \ M, the
group M,, N M9 is a §(M)’-group. Since M,, = Mg, M,, " M9 is a
B(M)-group. This proves that M,, N M9 = 1 for every g € G\ M. Thus,
M,, is a TI-subgroup of G. '

Suppose finally that M is a w-group In this case, we have U = EsE;3.
Lemma 8.1 shows that Cp, (U) = 1 and M, is nilpotent. Since K acts
in a prime manner on M, by (a), Lemma 3.10 [BG] yields that K has
prime order. We have U = [U, K| C E’. By Lemma 6.19, U centralizes a
Hall B(M)'-subgroup of M,. Since Cps, (U) = 1, a Hall 3(M)’-subgroup
equals 1. Therefore, Mg = M, and (M) = o(M). Lemma 6.17 implies
that My, N M9 = 1 for every g € G\ M. This completes the proof of
Proposition 8.2. Q.E.D.
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Corollary 8.3. Suppose M € M, x € M,,O’t , and =’ is a noniden-
tity o(M)'-element of Cpy(x). Then, either

(1) 7({z')) € w(M) and Cg(z) C M, or
(2) 7({(z)) C 1=2(M), £y(z") =1, and M(Cg(z')) = {M}.

Theorem 8.4. Suppose that x is a w-element of G* such that
M, (x) is not empty. Then, Cg(x) has a normal Hall subgroup R(z)
that acts sharply transitively on M, (z) by conjugation. Furthermore, if
|Mo ()| > 1, then Cg(z) lies in a unique subgroup N = N(z) € M and
for every M € M,(z),

(a) R(z) =Cn,(x) #1,

(b) Cag(x) = Cu(z)R(z),

(c) m((z)) € m2(N) S oo(M),

(d) m(M)no(N) < B(N),

() M NN is a complement of N, in N, and
(f) N is a w-group in Mg UMsp,.

Proof. The proof of Theorem 14.4 [BG] may be modified with some
changes to yield this theorem. We will present the details here. If
My (z)| = 1, we can let R(z) = 1 and finish the proof. So, we will
assume |M,(z)| > 1 in the remainder of proof. :

Since z is a w-element with M, (z) # 0, we can take M € M, (),
g € 7({z)), X € &l((z)), and N € M(Ng(X)). Note that My (x) C
M,(X) and

Ca(z) € Na((z)) € Ne(X) C N.

We will show that Ms(X) consists of conjugates of M and that
Cg(X) acts transitively on M, (X) by conjugation. Let L € M, (X).
Then, X C M, N L,. Theorem 7.9 yields that L is conjugate to M.
Since ¢ € 0(M) and X is a g-group, Theorem 4.1 (b) yields that Cq(X)
acts transitively on M, (X). In particular, Co(X) € M and N # M.

Since N # M, Proposition 6.15 (a) applies to N and yields that N
is not conjugate to M. Then, by Theorem 7.9, o(N) is disjoint from
o(M). It follows that ¢ ¢ o(N). Proposition 6.15 (e) now yields that
g € 12(N) and the conditions (d) and (e) of this theorem hold. Since
q € 72(N), 2(N) is not empty. Therefore, N ¢ My, and N is a w-group
by Lemma H. This proves (f).

We will prove that R(z) acts sharply transitively on M, (z). We
have shown that if L € My(z), then L = M™ with u € Cg(X) C N.
Since N = (M N N)N, by (e), we may choose u € N,. Then,

(z7 uz) M (z7uz) = M = L® = L = M“.
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However, if M* = M" for u,v € N,, then uv~! € Ng(M) N N,. Since
Ng(M) = M by Lemma E, we have uv™! € M NN, = 1 by (e). We
apply this twice. First, the displayed formula yields that if L = M™
with w € Ny, then u € R(x). Thus, R(z) acts transitively on M (x).
Secondly, M* = M with v € R(z) implies u = 1. Thus, R(x) is sharply
transitive. Since |M,(z)| > 1, we have (a). Since R(z) C Cg(z) and
R(x) is transitive on M, (z), we have

Ca(z) = (Ca(x) ﬂ‘NG(M))R(m) = Cum(z)R(z).

This proves (b).

We prove next M(Cg(z)) = {N}. Since R(x) # 1, there is an
element y € N,,* such that y € Cg(z). Apply Corollary 8.3 to (N, y, )
in place of (M, z,z’). Since z is a o(M)-element, it is a o (/N ) -element.
Since ¢ € m{{x))N712(N), we have the second case of Corollary 8.3. Thus,
©((z)) € 72(N) and M(Cg(x)) = {N}.

It remains to prove (c). We have just proved 7({z)) C 72(N). Take
p € T2(N). By (e) and Corollary 6.6 (a), there is A € EZ(M N N) such
that A <« M N N. Then, z € Np,(A). Since r,(M) > 2, we have
p€o(M)Umn(M). If pe (M), Ny (A) = Cp, (A) = 1 by Corollary
6.5 (d). This contradiction proves p € o(M). In fact, p € o¢(M) because
N is a w- group by (f). Q.E.D.

We will use the notation M to mean
{zz' |z € M,,' and '€ R(z)}.
This is slightly different from the usage in [BG].

Lemma 8.5. The following hold.

(a) Ifz and y are distinct w-elements of Gt of o-length one, then
zR(z) NyR(y) = 0.

(b) If My and M, are elements of M not conjugate in G, then Ml n
My = 0.

(c) If M €M, then |€a(M)| = (|M,,| - 1)|G : M.

Proof. (a) Suppose that g = zz’ with £,(z) = 1 and 2’ € R(z) lies
in yR(y) and = # y. Write g = yy’ with ¥ € R(y). Since y is a o-factor
of the element g, we have y = 2/, so 2’ # 1. Therefore, [M,(z)| > 1.
Take M € M(Cg(y)). Then, vy’ = z € M, and M € M,(z). Take
N € M(Cg(x)). Then, ' =y € N, " M which is 1 by Theorem 8.4 (e).
This contradicts y # 1.

The parts (b) and (c) follow as in the proof of Lemma 14.4 [BG].

Q.E.D.
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Lemma 8.6. Each nonidentity w-element g satisfies exactly one
of the following two conditions:
(1) g ==z’ withfl,(z) =1 and 2’ € R(x), or
(2) 9 =uyy with;(y) =1 and vy’ is a nonidentity x(M)-element of
Crm(y) for some M € M,(y).

Proof. Suppose that both (1) and (2) hold for some w-element g #
1. We will derive a contradiction. Take N € M(Cg(z)) and L € M, (z).
Since y is a o-factor of g, we have y = z or y = z’. Suppose y = z. We
may choose L = M. Since y = x, we have ' = 3y’ # 1. By Theorem 8.4,
My (z)| = |R(z)| > 1 and. by Part (e),

=y €eN,N"M=1.

This contradicts ¥’ # 1. Suppose next y = 2’. Then, we have ¢y’ = x and
it is a k(M )-element and at the same time a 75(N)-element by Theorem
8.4 (c). Since 1 # y =2’ € M, N N,, N is conjugate to M by Theorem
7.9. Therefore, we have 12(N) = 7(M) Since k(M) N (M) = 0, we
have a contradiction 3/ = 1.

We will prove that either (1) or (2) holds for every g. Suppose that
no decomposition of type (1) or (2) is possible and we will derive a
contradiction. We have £,(g) > 1 since the choice of z = g and 7’ = 1
provides (1) if £,(g) = 1. Let z be a o-factor of g with £;(z) = 1,
and write ¢ = xz'. We prove a lemma: under the hypothesis of this
paragraph, no subgroup M € M, (x) contains g.

Suppose g € M. Then, ' € M and z’ # 1 because £,(g) > 1.
Since z is a o-factor of the element g, z’ is a o(M ) -element but not
a k(M)-element because g = zz’ does not satisfy (2). Therefore, we
must have the case (2) of Corollary 8.3. Thus, we have £,(z’') = 1 and
M(Cqg(z")) = {M}. It follows that

z € M, N Cq(z') = R(z').

This implies that g = zz’ is a decomposition of type (1) with (z/,z) in
place of (z,z’). This is a contradiction and proves the lemma.

Let = be a o-factor of the element g with £,(z) = 1 and write
g = zx'. Then, z is a power of g. Take M € M, (z) and N € M(Cg(z)).
Then, g € Cg(z) € N. By the lemma, none of the o-factor of g of
o-length one lies in N,. It follows that g is a o(/N)’-element of N. We
have z = 29 € M N M9 and g ¢ M (by the lemma). Thus, |[M,(z)| > 1
and, by Theorem 8.4 (e), M N N is a complement of N,, in N. Since g is
a o(N) -element, g € (M NN)“ for some element v € N. Thus, g € M™.
Since z is a power of g, we have x € M*. However, z is a (M )-element.
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Since o(M) = o(M™"), we have € M,*. This contradicts the Lemma.
Q.E.D.

Theorem 8.7. Suppose M € My and K is a Hall k(M)-subgroup
of M. Let K* = Ca(K), k = |K|, k* = |[K*|, Z = K x K*, and
Z = Z\(KUK?™). Then, for some other M* € My that is not conjugate
to M, we have

(8) M(Ca(X)) = (M} for every X € E(K),

(b) K* is a Hall s(M*)-subgroup of M* and a Hall 0o(M)-subgroup
Of M*, .

(¢) K =Cunx(K*) and k(M) = 171(M),

(d) Z is cyclic and for every x € K* and y € (K*)t,

MnM*=Z=Cu(z) =Cu-(y) = Ce(zy),

(e) Z is a TI-subset of G with Ng(Z) = Z, Z N M9 empty for all
g€ G\ M, and
1 1 1

1
= Gl> =

Ca(2)| = (1

(f) M or M* lies in My, and, accordingly, K or K* has prime
order, »

(g) every H € My is conjugate to M or M* in G, and

(h) M’ is a complement of K in M and M' = M, ,U where U is
the subgroup defined in Proposition 8.2 (a).

Proof. Although the proof of Theorem 14.7 [BG] is adequate to
cover this theorem, we will paraphrase their proof of this miraculous
theorem. By the hypothesis, M € Mp. Thus, k(M) is not empty and
K+#£1.

We begin the proof with the following lemma which is not really nec-
essary. If X € E1(K), then Ng(X) € U. Suppose H, L € M(Ng(X)).
By Proposition 8.2 (b2), X C H, N L,. It follows from Theorem 7.9
that L = HY for some g € G. Since Cg(X) C Ng(X) C H, Theorem
4.1 (e) with H in place of M yields L = HY9 = H. This completes the
proof of the lemma.

Let My, Ms,..., M, be the distinct subgroups in M that contain
Ng(X) for some X € &(K). For each i, take X; € E!(K) such that
M, € M(N¢(X,)). By Proposition 8.2 (b), we have 7(X;) C oo(M;) and

Z=Kx K* gN(;(XZ) ng
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Since m(X;) C 7n(K) = k(M) C o(M)’, none of M; is conjugate to M in
G. Therefore, by Theorem 7.9, o(M) is disjoint from o(M;). Thus, K*
is a 0(M;)'-subgroup of M;.

Take X* € €}(K*). By Proposition 8.2 (c), M(Cg(X*)) = {M}.
Apply Corollary 83 to M; € M, z € X;*, and 2/ € X**. All the
assumptions of Corollary 8.3 are satisfied. Since M(Cq(X*)) # {M;},
we have the first case: 7(X*) C k(M;). We can take X* arbitrary in
EY(K™), so m(K*) C k(M;).

Let K; be a Hall x(M;)-subgroup of M; that contains X*, and define
K} = Cwm,(K;). Recall that K; is a Z-group and that, by Proposition
8.2 (bl) for M;, every subgroup in €!(K;) is normal in K;. We claim that
K* C K;. This is proved as follows. Since K* is a k(M;)-subgroup of a
solvable group M;, K* C (K;)9 for some g € M;. Then, X* and X*9 are
normal subgroups of the same prime order in the Z-group (K;)?. Hence,
we have X* = (X*)9. Thus, g € N, (X*) = Ny, (K;) by Proposition
8.2 (bl) for M;. This implies K* C (K;)9 = K.

Since X* C K* and K C M;, we have

K C Cp (X*) € Nag,(X*) = K; x K7

Therefore, K x K* C K; x K. Similarly, with M;, K;, X*; M, K, and
X; in place of M, K, X;; M;, K;, and X*, we have K; x K} C K x K*.
We need to check a few relations: X* C K;, M € M(Ng(X*)) and

X; CK where X;e€ &Y(K}).

We check the last one. We have X; C K C K; x K¥, n(X;) C 0o(M;),
and K7 is a Hall 0o(M;)-subgroup of K; x K. Therefore, X; C E'(K}).
It follows that K x K* = K; x K} for each . Let My = M, Ko = K,
and K} = K*. Take X} € &'(K*). Then, by Proposition 8.2 (c),
M(Ca(X3)) = {Mo}. For each X} € EY(K}) we have M(Cq(X})) =
{M;}. Tt follows that K} N K; = 11if i # j. Otherwise, we would have
{M;} = M(Ce(X)) = {M;} for X € EL(K} N K).

We claim that Z = K§ x Kf x --- x K. Let Z, be the subgroup
of Z generated by the subgroups K. For each i, we have Z = K; x K}
where K} is a o(M;)-group and K; is a o(M;)"-group. Therefore, K} is a
normal Hall subgroup of Z. If i # j, we have shown K} NK} = 1(i # j).
Then, K} and K with i # j have relatively prime orders and centralize
each other. It follows that

Zo=K{x K{ x---x K.

We will show that Z = Z,. First, we prove that every X € €}(2) is
contained in some K}. Since Z = Ko x K§ and (|Ko|, |Kj]) = 1, either
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X C K} or X C Ko. Suppose X C Ko = K. It follows from the
definition of the subgroups M; that

M(Ne(X)) = {M;}

for some 7 {cf. the lemma at the beginning of the proof). By Proposition
8.2 (b1) for M;, we have X C (M;),. Since K is the normal Hall o(M;)-
subgroup of Z, we have X C K. Take any element x € Z of order p°®
where p is a prime. Let X € €' ((z)). Then, X C K} for some i. Hence,
p € 7(K}) and (z) is a o(M;)-subgroup. This implies z € K as before.

Finally, let y be an arbitrary element of Z of order n. If n = [[ p;* is
the canonical decomposition of the integer n into the product of powers
of distinct primes p1,...,pm, we have y = x; ...z, where x; is a power
of the element y and the order of z; is p;*. Then, x; € Z so each z; lies
in Zy and we have Z = Zj.

The subgroups K are distinct and each is a normal Hall subgroup
of Z. It follows that the groups M; are pairwise not conjugate in G.
By Theorem 7.9, o(M;) is disjoint from o(Mj;) if j # 4. Since K is
a o(M;)-group, K is a o(M;)'-group for j # i. Therefore, we have
K; C K, for j # 1, so if we let W = HJ.#K;, W C K;. The groups K;
and W are complements of K} in Z. This implies K; = W.

For every element z € Z, the factorization z = [[ z; with z; € K} is
the o-decomposition of z.

Define T = Z\ {K§,Ky,...,K:}. Note that z € Z is in T if and
only if z = yy’ with y € Ki*rj and 3’ € K;* for some index 4. In this
case, y' is a nonidentity x(M;)-element of Cypy, (y) with £, (y) = 1. Thus,
we have the case (2) of Lemma 8.6. It follows that T N H = § for any
H € M. Thus, Cg(T)N Gg(]\Z) = { for each i. Since M; are not
conjugate to each other, Lemma 8.5 yields

Co(M;) NCa(M;) =0 if i#j.

We will prove that T is a TI-subset of G with Ng(T') = Z. Suppose
that t € T, g € G, and t9 € Z. Write t = yy = ¢y with y € K}
and y/ € K;! for some i. Then, y9 and (y')? are powers of t9. Hence,
y? € K} N(M;)?. By Proposition 8.2 (d) for M;, we have g € M;. Then,
y'? € K; N (K;)9. The same proposition yields that g € Z. This proves
that T is a TI-subset of G with Ng(T) = Z.

We count the number of elements in C(T'). With z = |Z|, k; = | Ky,
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and k] = |K}|, we have
ICc(T)| = |T||G : Na(T)|

=(z—1=) (kf —1)|G: Z|
1=0

=(1+§—Zkii)|a|.

=0

Suppose that all the subgroups M; lie in P;. Then M; = M,,,K; so
|M;| = | Mo, || K;i|- By Lemma 8.5,

|Ca(M;)| = (|Misy| — 1)|G : M|
1 1 1 1
= (k_i - m)|G| > (E - £)|G|-

The last inequality comes from Z & M;. Since the sets Cq(T), Ca(Mo),

..., Ca (Mn) are pairwise disjoint,

G > [Ca(T)] + Y |Ca (M)

i=0
R | “1 1
Z((1+5_ZF)+Z(F_Z)‘GI
i=0 " =0 ¢

> |G|

and this contradiction proves that some M; is of type Ps.

If M; is of type Py, Proposition 8.2 (g) yields that K; is of prime
order and M,,, is nilpotent. Therefore, K; = K; for j # i and we have
n=1.

Since K C M,,,, K is nilpotent. Furthermore,

Z:K1XK:=KJXK;,

K; = K}, K; = K5 and 7(K) = 1. It follows that the nilpotent group
K; is cyclic. Since K; is of prime order, Z = K; x K} is cyclic. This
proves the first statement of (d).

Since n = 1, we have T = Z. Suppose g € G\ M and TN M9 0.
Take uv € TN M9 with v € K! and v € K**. Then, any power of uv
lies in M9 so in particular, v € K *# M9. This contradicts Proposition
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8.2 (d). We have
1 1 1

ICa(T)| = (1 — 7 — = + 521Gl
= (1- (- 26| > 161> (6l

because k and k* are odd integers > 3 and k # k*. This proves (e).

With M* = M;, we have proved (f). We will prove (g). Suppose
that H € Myp. Let L be a Hall x(H)-subgroup of H, L* = Cg,(L), and
S =L x L*\{L,L*}. We have |Ca(T)| > |G|/2 and |Ca(S)| > |G|/2.
It follows that Cq(T) N Cg(S) # 0.

Replacing M and H by conjugates, we may assume that TN S is
not empty. Then, L* N K} # 1 for some i. If Y € &Y(L* N K}) then
Proposition 8.2 (c) yields {H} = M(C¢(Y)) = {M;}. This proves (g).

We will prove (a) If X € E(K), then X € EY(K}) because K§ =
K. Proposition 8.2 (c¢) yields M(Cg(X)) = {M1} = {M*}.

Since K* = K1, K* is a Hall x(M*)-subgroup of M*. This is the
first statement of (b). Clearly, K* is a oo(M)-subgroup of M*. Let H
be a Hall go(M)-subgroup of M™* that contains K*. The subgroup H is
a og(M)-subgroup such that H N K* # 1. By Proposition 8.2 (f), we
have H C M,,. Hence, [H, K] C [My,, K] C My,. On the other hand,
HC M* and K = K C (M*),. It follows that

[H, K] C [M*,(M")s] € (M")s,

and [H,K] C My, N (M*),. But, M is not conjugate to M*, so by
Theorem 7.9, [H, K] = 1. Therefore, H C Cp, (K) = K*. This proves
H = K*. Thus, (b) holds.

To prove (c) and (h), let U be the subgroup defined in Proposi-
tion 8.2 (a). Since K acts regularly on U, we have U = [U, K] C M’.
Since My, € M’', M,,U C M’'. On the other hand, M, U is a normal
subgroup of M with M/M,, = K. Since K is cyclic by the first part
of (d) which we have proved, M,,U contains M’. Therefore, we have
M,, U =M’ and K is a complement of M’ in M. This proves (h).

Moreover, K is a cyclic Hall subgroup of M such that 7(K) N
m(M’) = 0. By defintion, we have

k(K) =n(K)=7(M).

Since K = K{ and K* = K;, we have K = Cp;_,+(K*). This proves
(c).

It remains to prove the second part of (d). By (b), K* is a Hall
oo(M)-subgroup of M*. Therefore, K* = M,, N M*. It follows that
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K* = M,,NM* 9 M N M* and, by Proposition 8.2 (bl),
MNM"C Ny-(K*)=K x K.

Since K x K* CMNM*, wehave MNM*=K x K*=27.
If z € K and y € K** (a) yields Co(z) € M* so Cy(z) C
M N M* = Z. Since Z is cyclic by the first part of (d), we have

CM(.TZ)= Z.

Similarly, Cp+(y) = Z. Moreover, Cg(zy) = Ca(z)NCq(y) C MNM*.
This implies Cg(zy) = Z and completes the proof of (d). - Q.E.D.

Remark. From now on, we reserve the notation M* or K* to denote
the subgroups given in Theorem 8.7 for the subgroup M in Msyp.

Corollary 8.8. The subgroups in My, , if any, are all conjugate
in G and, if My is not empty, then My contains exactly two conjugacy
classes of subgroups.

Corollary 8.9. Choose a system of representatives My, My, ...,
M, € M from each conjugacy class of subgroups of M.
(a) If My is empty, then the set of w-elements of G¥ is the disjoint
union of the sets GG(]’\Z;') fori=1,2,...,n.
(b) If My is not empty, the set of w-elements of G* is the disjoint
union of Cg(Z) and the sets Gg(J\/;.f;) fori=1,2,...,n with Z
as in Theorem 8.7.

Corollary 8.10. For every w-element g € G we have £,(g) < 2.

Lemma 8.11. Suppose that M € Mg, E is a complement of M,
in M, q € n(E), and Q € EJ(E). Assume that Q € F(E). Then, M
is a w-group with T2(M) # 0. Take p € (M), A € EX(E) and H €
M(Ng(A)). Then, Ag = [E,Q] = Ca(M,) € E1(A)and E = ACr(Q).
Moreover, either

(1) g€ m(H) and M(Ce(Q)) = {H}, or

(2) g€ x(H) and H € Myp,.

Proof. Suppose 15(M) = @. Then, M is a Frobenius group and E
is a Frobenius complement. From the structure of Frobenius comple-
ment, we get @ C F(E). This contradicts the assumption Q ¢ F(E).
Therefore, 75(M) # () and, by Lemma H, M is a w-group.



102 M. Suzuki

Let p € 72(M) and take A € E2(E). By Corollary 6.6 (a), we have
A < E and E)(E) = &,(A). Since Q £ F(E), we have ¢ ¢ mo(M).
By Lemma 6.1, Ej3 is a cyclic normal Hall 75(M)-subgroup of E. Thus,
q ¢ 73(M). Therefore, we have q € 71 (M).

Let S be a Sylow p-subgroup of G that contains A. Suppose that
S is abelian. Since ¢ € 7(M) and M is a Frobenius group, we can
apply Lemma 6.8 (e) to conclude that Q lies in Z(F) C F(F). This
contradiction proves that S is nonabalian.

By Theorem 6.7 (b), Ag = C4(M,) has order p and satisfies F(M) =
M, x Ag. Let K = [E,Q]. Then, K C E’ and E’ is abelian by Corollary
6.10 (b). It follows that K is an abelian ¢’-group. Therefore, because
KQ < E, the Frattini argument yields F = K Ng(Q). Since [Q, Ng(Q)]
is a ¢’-subgroup of Q, we have Ng(Q) = Cg(Q) and E = KCg(Q). This
implies K = [E, Q] = [K,Q]. Now, Proposition 4.11 (d) with ¢ and Q
in place of p and P yields that [K, Q] = K is a cyclic normal subgroup
of M that centralizes M, It follows that K C F(M)NE = Ag. We
have K # 1 because Q ¢ Z(E). Therefore, we have K = Ao.

Take H € M(Ng(A)). Since A = [4,Q] x Ca(Q) and [A, Q] = Ay,
we have Cy(Q) € €1(A). Lemma 6.11 yields that p € oo(H) \ B(H) and
q € 1(H)U2(H). Recall that p € (M) and p € w.

Suppose ¢ € 1o(H). Since Ca(Q) # 1 and A C H,,, Corollary
6.10 (e) for H and @ in place of M and (z) yields M(Cq(Q)) = {H}.
This is the case (1).

If g € n(H), Ca(Q) # 1 and A C H,, imply g € x(H). Since
q € oo(H), we have og(H) # B(H). Proposition 8.2 (g) for H yields
that H € Myp,. Thus, we have the case (2). Q.ED.

Corollary 8.12. Suppose M € Myp,. Let K, M*, and K* be as
in Theorem 8.7 and U as in Proposition 8.2 (a). Suppose r € w(U) and
R e Syt,.(U).

(a) If M is not a w-group, there is no H € M(Ng(R)) and H # M.

(b) If M is a w-group, M(Ng(R)) is not empty. For any H €
M(Ne(R)), H is a w-group in Mg such that U C Hy, M N
H = UK, Ng(U) ¢ M, K C F(HNM*), and HO M* is a
complement of H, in H.

Proof. Suppose that N € Myp,. Then, U # 1 and there exists
r € m(U). Let H € M(Ng(R)) and H # M. We will prove that H is
not conjugate to M or M*.

Suppose that H = M9 for some g € G. Then, R € Syl,.(H). Since
Ng(R) C H, we have r € o(H). Since Cg(R) C Ng(R) C H, Theorem
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4.1 (e) with R and H in place of X and M yields H = M9 = M. Thus,
H is not conjugate to M in G.

Suppose H = (M*)9 for some g € G. Then, K C (M*)? = H.
Proposition 8.2 (d) with M and K* replaced by M* and K (cf. The-
orem 8.7 (b) and (c)) yields g € M*. Thus, H = (M*)9 = M*. The
nonabelian group KU is contained in M N H. However, H = M* so
MnNH =M n M~ that is cyclic by Theorem 8.7 (d). Hence, H is not
conjugate to M* either.

To prove (a), suppose that there is a subgroup H # M such that

Then, H is not conjugate to M or M*. By Theorem 8.7 (g), we have
H € Mg. By assumption, M is not a w-group. Hence, by Lemma G,
U is a w’-group. It follows that H is not a w-group. Lemma G yields
that H is a Frobenius group with Frobenius kernel that is a ww-group.
In particular, H is wo-closed. However, UK C H and the subgroup UK
is not w-closed. This contradiction proves (a).

To prove (b), take H € M(Ng(R)). Since M is a w-group, we have
r ¢ o(M) so Ng(R) ¢ M. It follows that H # M. The first part of the
proof shows that H is not conjugate to M or M*. By Theorem 8.7 (g),
we have H € Mg.

Since M € Myp,, we have U # 1. Proposition 8.2 (g) implies that
K has prime order, say q. Note that ¢ € w because M is a w-group.
We will prove that H is a w-group. If H is not a w-group, Lemma G
implies that H is a Frobenius group and the Frobenius kernel of H is
a Hall w-subgroup. Since UK is a w-subgroup of H, UK is contained
in the Frobenius kernel of H. Since UK is not nilpotent, we have a
contradiction. Thus, H is a w-group.

Since H is not conjugate to M*, Theorem 7.9 implies that o(M™*)
is disjoint from o(H). By Theorem 8.7 (c), we have ¢ = |K| € o(M™).
Hence, ¢ ¢ o(H). It follows that K lies in some complement D of H,
in H. We will prove that K C F(D).

Suppose K ¢ F(D). By Lemma 8.11 with (H, D, K) in place of
(M, E,Q), there is a subgroup L € M such that either g € 75(L) and
M(Ce(K)) = {L}, or ¢ € (L) and L € Myp,. If L € Myp,, then L
must be conjugate to M or M* by Theorem 8.7 (g). Note that L is
not conjugate to M™* because g € o(M™*). Hence, L is conjugate to M.
This contradicts the assumption that M € Myp,. Therefore, we have
M(Cg(K)) = {L}. However, Theorem 8.7 (a) yields Cq(K) C M*.
This is a contradiction as M* # L. Thus, we have K C F(D).

It follows that K is subnormal in D. We claim that this implies
D C M*. We will prove that if K C L C M*, then Ng(L) C M*. If
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g € Ng(L), then K C L = L9 C (M*)9. Then, Proposition 8.2 (d) with
(M, K*) replaced by (M*, K} yields g € M*. By obvious induction, if
K is subnormal in D, then D C M*.

The subgroup U is a ¢’-group satisfying U = [U, K]. Since

K C O4(D)H, < H,

we get
U=[U,K|CUNOyD)H; C H,.

We will prove next M N H = UK. Clearly, UK C M N H. Since
UK is a complement of M, in M, we have M N H = XUK where
X=M,nNH<aMnH. Then, since U C H,,

(X,U CM,NH, =1

because M is not conjugate to H (by Theorem 7.9). On the other hand,
Lemma 8.1 with M and p € n(U) yields that Cpr, (U) = 1. Thus, X =1
and we have M N H =UK.

By Lemma 8.1 with H and ¢ in place of M and p yields that H, is
nilpotent. Since MNH = UK and U C H,, we have MNH, = U. Thus,
if U is a proper subgroup of H,, then Ny(U) € M by a fundamental
property of nilpotent groups. On the other hand, if U = H,, Ng(U) =
H and certainly Ng(U) € M.

It remains to show that D = H N M*. We have seen that D C
H N M*. Suppose that H " M* # D. Then, H, N M* # 1. Since
K C (M*),,

[H, "M*, K| C Ho N (M*); = 1.

It follows from the definition of the set My that H € Mg implies g €
12(H). Then, Theorem 6.5 (e) for H yields H; N M* =1 contradicting
the earlier inequality. This proves D = H N M™*. Q.E.D.

Lemma 8.13. Assume that = is a w-element such that M, (z)| >
1. Let N = N(z) be as in Theorem 8.4 and M € M,(x).
(a) Ifo(N)Nnw(M) # 0, then M € Mg and 7o(M) = 0. In this
case, M is a Frobenius group with Frobenius kernel M, .
(b) Ify € (My,)" and Co(y) € M, then |My(y)| > 1 and N(y) is
defined. If N(y)? = N for some g € G, then N(y)™ = N for
somem € M.

Proof. (a) By Theorem 8.4 (f), N is a w-group in Mg U Msg,.
Take ¢ € o(N) Nw(M), Q € €(M), and H € M(Ng(Q)). Since o(M)
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is disjoint from o(N), ¢ ¢ o(M) so @ lies in some complement E of M,
in M. By Theorem 8.4 (d),

g€ a(N)Nx(M) S B(N) € B(G).

Therefore, N contains a Sylow g¢-subgroup of G. By Sylow’s Theorem,
@ C NY for some g € G. Corollary 6.14 with N9, q, and @ in place
of M, p, and X yields M(Ca(Q)) = {N9}. Note that ¢ € G(N9). It
follows that H = N9. By Lemma 6.1 (g) and Theorem 8.4 (c),

m((z)) € 72(N) C oo(M) \ B(M).

In particular, oo(M) # B(M). Hence, Proposition 8.2 (g) yields M ¢
Myp,. Suppose that M € Myp,. Then, n(M) = o(M) U x(M). Since
q ¢ o(M), we have ¢ € k(M). There is a subgroup M* € M with
properties stated in Theorem 8.7. We may take a Hall x(M)-subgroup
of M that contains Q. Define Q* = Cjy, (Q). Then, @* C M,, and by
Proposition 8.2 (bl) and Theorem 8.7 (b), Q* is a Hall ¢(M)-subgroup
and a Hall x(M*)-subgroup of M*. It follows that M,, N M* = @Q*and
ao(M)Nm(M*) = x(M*). On the other hand, Theorem 8.7 (a) yields

M(Ce(Q)) = {M"}.
Therefore, M* = N9 and n(M*) = n(N). Since z € My, N N,
m((z)) C go(M) N7(N).

By Theorem 8.4 (c), 7({z)) C 72(N) € &(N). Since M* = N9, we have
k(N) = k(M*) and oo(M) N 7(N) € x(M*). This contradiction proves
that M ¢ Myp. Thus, M € My.

Suppose that 75(M) is not empty. Take any p € 72(M). By Lemma
6.1 (g), p ¢ B(G). Theorem 8.4 yields

7(M)Nao(N)C B(N) and 72(N) C ao(M).

Therefore, p ¢ o(N) U 2(N). It follows that r,(IN) < 1. The rest of
proof is as in [BG]. Q.ED.

89. The Subgroup Mg

Let M € M. We will choose a Hall k(M )-subgroup K and a comple-
ment U of KM,, in M that is K-invariant. If M € My, the subgroup
U is defined in Proposition 8.2 (a). If M € Mgy, k =1 and U can be any
complement of M, in M. We will choose one and fix it throughout the
discussion. In addition, Mr denotes the largest normal nilpotent Hall
subgroup of M. The notation is fixed in the rest of this paper. The
subgroup UK is a complement of M, in M.
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Lemma 9.1. The following conditions hold.

(a) UM,, < M = KUM,,, K is cyclic, My, € M', and M' /My,
is abelian.
(b) If K #1, then M/ =UM,, and U is abelian.
(c) If X is a nonidentity subgroup of U such that Cp, (X) # 1,
then
M(Cqa(X)) = {M}

and X is a cyclic To(M)-subgroup.

(d) The group (Cy(z) | x € (M,,)*) is abelian.

(e) IfU # 1, then U contains a subgroup Uy of the same exponent as
U such that UyM,, is a Frobenius group with Frobenius kernel
M,,.

Proof. Since U is K-invariant, UM,, < M. If K # 1, Theorem
8.7 (d) implies that K is cyclic. By Theorem 4.2 (c),

M, C M., C M, C M.

Part (d) of the same theorem implies that M’/M,, is nilpotent. By the
definition of the sets 7;,(M), Theorem 6.5 (b), and Lemma F, the group
M’ /M, has abelian Sylow subgroups. Therefore, M'/M,, is abelian.
This proves (a).

If K # 1, we have U = [U,K] C M'. Then, M’ = UM,, and
U = M'/M,,. Hence, U is abelian and we have (b).

To prove (c), take nonidentity elements z’ and x such that

€ X and z € CMUO(X)ﬁ.

Since z' € U*, m({z')) ¢ x(M). By Corollary 8.3, we have 7((z')) C
T9(M) and M(Cg(:r')) = {M}. Tt follows that X is an abelian 7o(M)-
subgroup. If r,(X) > 1 for some prime p, take A € €2(X). Theorem
6.5 (d) yields Cp, (A) = 1. Then,

CMao (X) CCum

- -4

(4) =1

contrary to the hypothesis. Therefore, r,(X) < 1 for all primes and
X is cyclic. Taking the element z’ to be a generator of X, we have
M(Ce(X)) = {M}.

If K # 1, U is abelian by (b). In this case, (d) is trivial. Suppose
that K = 1. In this case, U is a complement of M,,. Let V =U N M,.
Then, V is a complement of M, in M,, and V is a Hall (M )-subgroup
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of U such that V < U. There is a complement E of V in U. It follows
that F is a complement of M, in M.

If 09(M) = 0(M), we have U = E and Theorem 6.12 yields (d) and
(e). If 0o(M) # o(M), V is a nontrivial @’-group that acts regularly
on M,,. By Lemma H, (M) = 0. Since K = 1, the group E acts
regularly on M, . It follows that U = E'V acts regularly on M,,. Thus,
U = Uy satisfies (e), while the subgroup defined in (d) is 1.

It remains to prove (e) in the case K # 1. If M is not a w-group, U
is a w’-group by Lemma G. It follows that Uy = U satisfies (e). Suppose
that M is a wo-group. Then, M,, = M, and (M) = (M) by Theorem
8.7 (c). We may assume that U = FE»F;.

Since k(M) = 71(M), E5 acts regularly on M,. The group Fs is
an abelian group of rank 2. We use the same argument as that of the
proof of Theorem 6.12. Take p € 75(M) and S € Syl,(E,). If G has
nonabelian Sylow p-subgroups, then Theorem 6.7 provides a subgroup
Sy of the same exponent as S that acts regularly on M. Furthermore,
we have E; = S (by Theorem 6.7 (a)). So, Up = SpEs5 satisfies the
condition (e). We can assume that S is a Sylow p-subgroup of G for
every p € 72(M). We write S =Y x Z for some cyclic subgroups with
Y| <|Z|. Y] < |Z], then Cpr, (€1(Z)) =1 (cf. the proof of Theorem
6.12). If |Y| = | Z|, we can choose Z to satisfy the same condition. Then,
the product Uy of all those cyclic factors and FEj3 satisfies the condition
(e). Q.E.D.

Theorem 9.2. For every M € M, we have
1# Mp CM,, CM, CM.

Suppose Mp # My,, and let p = |K|, K* = Cp (K), and g = |K*|.
Then, '

(a) M eMyp, and M, = M/,

(b) p and q are primes and q € m7(Mg) N (M),

(¢} M has a normal Sylow g-subgroup @, so K* C Q,

(d) a complement D of Q in M’ is nilpotent,

(&) Qo=Co(D)<M,

(f) Q= Q/Qo is a minimal normal subgroup of M/Qo and is ele-
mentary abelian of order ¢P, and

(&) M = (M,) C F(M) = QCum(Q) = (@) = Car, () C
M,.

Proof. This theorem has assumptions slightly different from those
of Theorem 15.2 [BG]. However, the proof is almost identical. Since M
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is a w-local subgroup, O4(M) # 1. Therefore, the Fitting subgroup
F(M) of M is a w-group. It follows that Mp C M,,. Since M,, # 1
by Theorem 4.2 (e), we have Mg # 1 if Mp = M,,. Therefore, we may
assume Mg # M,,. Lemma 8.1 yields that M € Myp,, i.e. K # 1 and
M = KM,. Then, M/M, = K. Since K is cyclic by Theorem 8.7 (d),
we have M’ C M,,. Therefore, M, = M’ and (a} is proved.

We can continue the proof along the line adapted from the proof of
Theorem 15.2 [BG]. Q.ED.

Corollary 9.3. Suppose H is a Hall subgroup of My, such that
m(H)Nw# 0. Then,
(a) Cm(H) = Cum,,(H)X with X a cyclic 72(M)-subgroup, and
(b) if H is a w-group, any two elements of H conjugate in G are
already conjugate in Nps(H).

Proof. Since H contains a nontdentity w-subgroup, Cps(H) is a w-
group by Lemma A. If z # 1 is a k(M )-element, Cps_ (x) is conjugate to
K* and does not contain any Hall subgroup of M, by Proposition 8.2 (d).
It follows that Cp(H) = Cu,, (H)X where X is a (0o(M) U k(M))'-
subgroup . By Lemma 9.1, X is conjugate to a subgroup of U and, since
Cum,,(X) # 1, X is a cyclic 72(M)-subgroup.

Suppose that z,y € H, g € G, and z = y9. Then, x € M N M9
and M = M?9° for some element ¢ € Cg(z) by Theorem 8.4. Then
m = gc € M by Lemma E (2) and z = y™. This proves (b) in the case
HaM.

Suppose the H is not normal in M. Then Mg # M,, and we can
use Theorem 9.2 as in the proof of Corollary 15.3 [BG] to finish the
proof. Q.E.D.

Corollary 9.4. Suppose that H is a nonidentity nilpotent Hall
subgroup of G. If H is a w-group, then there is a subgroup M € M such
that H C M,,.

Proof. Let S be a nonidentity Sylow subgroup of H and let M €
M(Ng(S)). Then, we have S C M,,. By Corollary 9.3 (a), Cpm(S) =
Cum,, X where X is a cyclic 7o(M)-subgroup of M. If p € (M), Sylow
p-subgroups of M are not cyclic. Hence, X contains no Sylow subgroup
of G. A nilpotent Hall subgroup H is written H = S x L where L is
a product of Sylow subgroups of G. Since H C Ng(S) C M, we have
L € Cu(S). It follows that L C Cu, (S) because X is a go(M)'-
subgroup that contains no Sylow subgroup of G. This proves that H =
SxLCM,,. Q.E.D.
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Corollary 9.5. Let H= Mp and Y = Oy ary (F(M)). Then,

(a) Y is a cyclic 72(M)-subgroup of F(M),

(b) M" C F(M) = Cy(H)H = F(M,,) XY = F(M,) x Y,
(c) HC M and M'/H is nilpotent, and

(d) fK#1, then F(M)C M'.

Proof. (a) We have H C F(M) C HCy(H). By Corollary 9.3 (a),
a Hall oo(M)’-subgroup of Cy(H) is a cyclic 7o(M)-subgroup. This
implies (a).

(b) Clearly, we have F(M) = F(M,,) xY = F(M;) X Y. Suppose
H = M,,. Then, M" C M,, by Lemuma 9.1 (a). Thus,

M"CFM)=HxY CHCy(H)=M,, x X <M

where X is a cyclic 7o(M)-group by Corollary 9.3 (a). Since H = M,,,
M,, x X is a nilpotent normal subgroup of M. Hence, M,,x X C F(M).
Thus, HCy(H) = F(M) in this case. Suppose H # M,,. By Theorem
9.2, M has a normal Sylow g-subgroup @ such that Q@ C H and

M" CF(M)=F(My,)xY C HCy(H) C HCp(Q) CQCx(Q)=F(M).

Theorem 9.2 (g) yields the first containment and the last equality.

(c) If H = M,,, Theorem 4.2 {c) and (d) yield the conclusions. If
H # M,,, Theorem 9.2 yields that M’ = M, contains H and M'/H is
nilpotent (Part (d)).

(d) If K # 1, M’ is a complement of K in M by Theorem 8.7 (h).
Thus, M/M’ is a k(M)-group. By (c), we have H C M, C M'. By
Corollary 9.3, Cp(H) C M, X where X is a 7(M)-group. It follows
that F(M) = HCy (H) C M’ QED.

Corollary 9.6. Suppose M € Myp. Then, K* = Cp (K) is a
nonidentity cyclic subgroup of My and M". Furthermore, Mg is not
cyclic.

Proof. By definition, K is a w-group. Therefore, K* C M,,. If
Mp = M,,, certainly K* C Mp. If Mg # M,,, Theorem 9.2 yields
that K* C Q for some Q C Syl,(M). Since @ <1 M, we have Q C Mp.
Thus, K* C Mp in all cases.

Since M € My, we have K # 1. Theorem 8.7 (h) yields that M’ is
a complement of K. Thus, M’ is a normal Hall x(M)’-subgroup of M.
By Lemma 6.3 [BG], K* C Cy(K) C M”.

By Proposition 8.2 (c) and Theorem 8.7 (d), K* # 1 and K* is
cyclic. Finally, we will prove that Mg is not cyclic. If Mg is cyclic,
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Theorem 9.2 yields that M,, = Mr because ) in Theorem 9.2 is non-
cyclic (by (f)). Then, F(M) = Mr x Y is cyclic by Corollary 9.5 (a)
and (b). This implies M"” = 1 which contradicts K* C M". Hence, MF
is not cyclic. Q.E.D.

Theorem 9.7. Suppose that F(M) is not a TI-subset of G. Let
H = Mg and define

X=FM)NF(M) #1 forsome ge&G\M.

Let E, Ey1, E5> and E3 be as in Section 6. Then,

(a) MeMgsUMyp, and H = My;
) X CH, X is cyclic, and H is a (M) -group;
(¢) M'CF(M)= M,,timesY whereY is as in Corollary 9.5;
(d) E3=1, E3 9 E=EE,, and E, is cyclic; and
(e) ome of the following conditions holds:
(1) M € Mg and H is abelian of rank 2,
(2) |X| = p is a prime in oo(M) \ B(M), Oy(H) is not
abelian, O, (H) is cyclic, and the exponent of M/H
divides q — 1 for every q € n(H), or
(3) |X| =p is a prime in oo(M) \ B(M), Op (H) is cyclic,
O,(H) has order p* and ezponent p and is not abelian,
M € Myp,, and |M/H| divides p+ 1.

Proof. We remark first that F(M) is a w-group so any prime in
7(X) lies in w. Take p € n(X) and X; € &}(X). We will show that
Op(M) is not cyclic. If O,(M) were cyclic, X; would be the unique
subgroup of order p in F(M) as well as in F(M)¢. This would imply
M = Ng(X1) = M9 so g € M. Thus, Op(M) is not cyclic. Corollary
9.5 (a) yields that p € go(M). Since p is arbitrary in 7(X), we have
m(X) C 6¢(M). Hence, X C M,, N M9. By Lemma 6.17, X is a cyclic
B(M) -subgroup. In particular, oo(M) # B(M) and by Proposition
8.2 (g), we have M ¢ Msyp,. Thus, the first part of (a) is proved.

Since X1 € MNM?Y, Theorem 4.1 yields Co(X1) € M. This implies
that Cy(X;) ¢ U where H = Mp. Since (H,X;) C F(M), Oy (H)
centralizes X;. Theorem 6.13 and the Uniqueness Theorem yield that
every Sylow subgroup of O, (H), and hence O, (H) itself, is abelian of
rank < 2. Let P = Oy(H). Then, X; C P and Cp(X1) is abelian
of rank < 2. Therefore, H is a 8(M)'-group. If H # M,,, Theorem
9.2 (b) and (c) yield that a Sylow g-subgroup @ is normal in M and
g € 1(Mp)NB(M). This contradiction proves that H = M,,. Thus, (a)
holds.
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If M is a w-group, certainly M, = M,,. If M is not a w-group,
M is not a group of type (2) in Lemma G because a group of type (2)
satisfies oo(M) = B(M). Similarly, if M is a group of type (1) in Lemma
G, we have M’ = M, = Mp. Thus, we have M, = M,, even if M is
not s w-group. Since M,, = H, M, is a nilpotent 3(M)’-subgroup of
M. By Lemma 6.19, the group E’ centralizes M,. Since E' is nilpotent
by Lemma 6.1 (a), we have

M' = M,E =M, x E' C F(M) =M, xY

where Y is a cyclic 72(M)-subgroup (by Corollary 9.5). Hence, E’ is a
T2(M)-group. Since E3 C E’, we have E3 = 1. This proves (c) and (d).

The last part (e) can be proved by adapting the proof of the corre-
sponding part of Theorem 15.7 [BG]. Q.E.D.

Theorem 9.8. Suppose that we have the situation of Corollary
8.12 and assume that M is a w-group. Thus, M € Myp,, K, M*, and K*
are as in Theorem 8.7 and U is as in Proposition 8.2 (a). Suppose that
R € Syl (U) for some r € n(U) and H € M(Ng(R)). Furthermore,
suppose that 2(H) is not empty. Then, for |K| = q, q is the unique
prime in o(M) and 72(M) is empty.

Proof. By Corollary 8.12, H is a w-group such that
UCH, MNH=UK,KCFHNM"),

and H N M* is a complement of H, in H. By Theorem 8.2 (g), q = |K|
is a prime. Let D = HN M*. Then, D is a complement of H, in H by
Corollary 8.12 (b).

By assumption, 7»(H) is not empty so we can choose A € £2(D).
Corollary 6.6 (a) yields A C F(D). Since K C F(D), [A,K]=1if A is
not a g-group. If A is a g-group, Theorem 6.5 (b) implies that K C A
so [A, K] = 1 trivially. If A C M7, then n(A) C 1o(M*). Theorem
6.5 (d) for M* yields Cyx(A) = 1. This contradicts [A, K] = 1 because
K C M. Hence, we have A C M}.

We claim that F'(M*) contains A as well as a Sylow ¢-subgroup @
of M*. If (M*)r = (M*),,, this is certainly true because (M*),, C
F(M*). On the other hand, if (M*)p # (M*)s,, F(M*) contains a
Sylow g-subgroup @ of M* by Theorem 9.2 (c). Also, the part (g) of
the same theorem quoted above yields that F(M*) = Cy:(K) which
contains A. This proves the claim.

We prove next that ¢ ¢ 3(G). If A is a g-group, Lemma 6.1 (g)
implies ¢ ¢ B(G). If A is not a g-group, then we have [Q, A] = 1 because
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both @ and A are subgroups of a nilpotent group F'(M*). Since A ¢ U,
we have @ ¢ U by Corollary 3.2 (a). This proves q ¢ B8(G).

Theorem 9.2 (b) yields (M*)p = (M*),,. Since oo(M™*) # B(M*),
M* € My, by Proposition 8.2 (g). Therefore, we have M* = (M*),,K*.
By Lemma 6.17,

K = Cugz, (K*) € (M),

Since (M*)og = (M*)r is nilpotent, K C @’. Hence, Q is nonabelian
and, by Theorem 6.13, @ € U. Since A ¢ U, Lemma 3.2 yields that
[@Q, A] # 1. Therefore, A is a g-group. Since @ is nonabelian, we have
T2(H) = {q} by Theorem 6.7 (a).

The remaining statements are proved as in [BG]. Q.E.D.

Corollary 9.9. Let z € M} and N € M(Cg(z)). Assume that
Cg(z) ¢ M and N ¢ Mz. Take r € n({z)) and X € &.({(z)). Then,
both M and N are w-groups. Furthermore, for a suitable choice of a
complement E of M, in M,

(a) M eMyg and N € My,,

(b) FE is cyclic and M is a Frobenius group with Frobenius kernel
M, and

(¢) ren(N), Ne(X)CTENN and |[ENN|=|N/N'|.

Proof. Take y € Cg(z) \ M. Then, M, MY € M,(z) and M #
M?¥. Hence, we are in the situation of Theorem 8.4 with [M,(z)| > 1.
Therefore,

Cn, (z) #1,M(Ca(z)) = {N},r € a(N) Naoo(M),

N is a w-group in Mg UMy, and M NN is a complement of N, in N.
By assumption, we have N € My, .

Let K7 be a Hall k(N )-subgroup of N. Since MNN is a complement
of N, in N, we can take K; C M N N. By Proposition 8.2 (g) and (a),
|K1| is a prime and there is an abelian complement U; of K7 in M NN
for which Cy, (K71) =1and Uy < M N N.

Let R € Syl,(M N N). Then, R CU; and R € Syf,.(N). Since

re TQ(N) g Uo(M),

R is not cyclic and, by Corollary 6.10 (d), Ng(R) C M. Corollary
8.12 (b) with N, K3, U, and M in place of M, K, U, and H yields that
M is a w-group in Mg with M N N = U; K;. This proves (a).

By Lemma 8.1, My, is nilpotent. Since RC U; C M and r € o(M),
we have R C M,. The group RK, is not nilpotent. Therefore, K; g M,.
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Since | K| is a prime, we have K; N M, = 1. We choose E to satisfy
K; C E. Theorem 9.8 with N and M in place of M and H implies
that if 75(M) is not empty, then (V) is empty. However, 5(N) is not
empty, so To(M) must be empty, i.e. Ez =1 for M. The element z is
contained in M, and Cg(z) € M. Since M, is nilpotent, F(M) is not
a TI-subset of G. By Theorem 9.7 (d), we have E3 = 1. It follows that
E = E; and it is cyclic. Since M € Mg, k(M) is empty. This implies
that E acts regularly on M, = M,,. Thus, M is a Frobenius group with
Frobenius kernel M, .

We have shown that r € 75(N). Since Cg(z) C Ng(X), we have
N¢g(X) C N. Therefore, Ng(X) C EN N. The choice of E implies

K, CENNCMANN =U,K,.

Since Cy, (K1) = 1, we have K1 = Cgnn(K1). This implies K1 = ENN
because E is cyclic. It follows from Theorem 8.7 (h) that |[E N N| =
|Ky| = | N/N|. QED.

§10. The Main Results

Theorem A. Let M € M. Then, the following conditions are
satisfied by M.

(1) M has a unique normal Hall oo(M)-subgroup M, which is also
a Hall oo(M)-subgroup of G.

(2) M has a cyclic Hall k(M)-subgroup K.

(3) KM,, has a K-invariant complement U in M, i.e.

UM,, <M =KUM,, and U< UK.

(4) Cy(k) =1 for every k € K*.

(5) K*=Cum, (K)#1 and if K # 1, then Ca(k) = K x K* for
every k € K*.

(6) 1#£Mp CM,, CM' CM and M'/Mp is nilpotent.

(1) M" C F(M) = Cp(Mp)Mp and if K # 1, then F(M) C M".

(8) If Mp # M,,, then U =1, F(M) is a TI-subgroup in G, and
K has prime order.

Proof. 'The group M,,, is defined as O, pr)(M). Hence, M,, < M.
Theorem 4.2 (f) yields (1); a normal Hall subgroup is unique. If k(M)
is empty, K = 1 and the conditions (2), (3), (4) and (5) are trivially
satisfied. If k(M) is not empty, M € Myp. Then, Proposition 8.2 (a)
implies the conditions (3) and (4), and Proposition 8.2 (¢) yields K* # 1;
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while Theorem 8.7 (d) yields (2) and the second part of the condition
(5).

Theorem 9.2 proves the first part of (6). If Mp = M,,, Theorem
4.2 (c) and (d) imply the second part of (6). If Mg # M,,, Theorem
9.2 (d) yields the result. The condition (7) has been proved in Corol-
lary 9.5 (b) and (d). Theorem 9.2 (a) and (b) yield the first and third
conditions of (8), respectively, while Theorem 9.7 (a) implies the second
condition. Q.E.D.

To state further results, we need the following notation:

M, ={a€ M| Cu,,(a) #1}.

Note that this definition is slightly different from that in [BG]. We
also define A(M) and Ag(M) as in [BG]; however, we use the set M,
defined above in the definition of the sets A(M) and Ao(M). Thus, the
sets A(M) and Ag(M) are different from the sets in [BG| even though

—

they are denoted by the same notation. In particular, M, consists of
w-elements.

If M € M is not a w-group, we can determine these sets from Lemma
G. The result is contained in the following table:

Type K U M,, M, A(M) Ag(M)
(1) 1 aZ-group M,, My, My, My,
(2) #1  eycic My, My, UCy(Z) M, M, UCy(Z)

Theorem B. Let M € M. The following conditions are satisfied
by M.

(1) Every Sylow subgroup of U is abelian of rank at most 2.

(2) (UNM,) is abelian.

(3) U has a subgroup Uy that has the same exponent as U and sat-
isfies Ug N ]/\/./\a =1.

(4) M(Ce(X)) ={M} for every nonidentity subgroup X of U such
that Cag,, (X) # 1.

(5) The set A(M)\ M,, is either empty or a TI-subset of G with
normalizer M.

Proof. It follows from the definition of the subgroup U (at the
beginning of Section 9) that n(U) = n(M) \ {k(M),00(M)}. Take
p € m(U) and S € Syl,(U). If p € (M) U 13(M), then S is cyclic
by the definition of the sets 7;(M). If p € 75(M), S is abelian of rank 2
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by Theorem 6.5 (b). Finally, if p € o(M)\ oo(M), S is cyclic by Lemma
F. This proves (1).

Lemma 9.1 (d), (e) and (c) imply the conditions (2), (3) and (4),
respectively. Suppose that the set B = A(M) \ M,, is not empty. The
table before Theorem B shows that M is a w-group. Since U is a Hall
subgroup of M, U, every element g of M,,U can be written uniquely
as a product of a oo(M)-element z and a 7(U)-element v such that
g = zv = vr. We say that v is the w(U)-component of the element g.
It is a power of g, and v is conjugate to an element of U in M by the
Schur-Zassenhaus Theorem.

Suppose that g € B. Then, g ¢ M,, so the m(U)-component v is
not the identity. Also, g € B implies Cp, (g9) # 1. It follows that
Chrmoo(v) # 1. If v is conjugate to an element u of U in M, we have
v = uY for some y € M and u # 1. Then, Theorem B (4) yields that
M(Cg(u)) = {M} because u # 1 and Cu, (u) # 1. Since v = w¥ with
y € M, we have M(Cg(v)) = {M}. Thus, g € B implies M(Cg(v)) =
{M} for the m(U)-component of g. Therefore, if g € B N B" for some
h € G, then

{M} =M(Cs(v)) = {M"}.
This implies M = M"* and h € M. This proves (5). Q.E.D.

Theorem C. Let M € Mg so K # 1. The following conditions
hold.

(1) U is abelian. If M is a w-group, No(U) € M. If o(M) #
oo(M), then Ng(U) C M.
(2) K* is cyclic, 1 # K* C Mp, but MF is not cyclic.
(3) M'=UM,, and K* C M".
(4) There exists a unique subgroup M* €My such that K =C-(K*)
and K* is a Hall k(M*)-subgroup of M*.
(5) . M(Cg(X)) = {M} and M(Cg(Y)) = {M*} for all subgroups
X CK* andY C K of prime order.
(6) MNM*=Z7Z=K x K* and Z is cyclic.
(7) M or M* is of type Po and every subgroup H € My is conjugate
to M or M* in G. R
(8) Z is a TI-subset of G with Ng(Z) = Z.
(9) €arr(Z) is equal to Ag(M)\ A(M) and is a Tl-subset of G with
normalizer M.
(10) IfU # 1, then K has prime order and F(M) is a TI-subset of
G that contains My, .
(11) IfU =1, then K* has prime order.
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Proof. Proposition 8.2 (a) shows that U is abelian. The second
statement of (1) follows from Corollary 8.12 (b), while the last one is
obvious from the definitions.

Proposition 8.2 (¢) implies the second condition of (2) and the first
one in (5). Corollary 9.6 proves the remaining conditions of (2) and the
last condition of (3). The most of the other conditions (3)—(9) follow
from Theorem 8.7. Thus, the first condition of (3) follows from the part
(h), (4) from the parts (b) and (c), the uniqueness of M* and the second
part of (5) from (a), the condition (6) from (d), the condition (7) from
(f) and (g), the conditions (8) and the second part of (9) from (e) and
the first part of (9) follows from the definitions.

Consider the conditions (10). The first one follows from Proposition
8.2 (g). Since U # 1, we have M € Myp,. Theorem 9.7 (a) now yields
that F(M) is a Tl-subset of G. Then, M,, = Mg so M,, C F(M) by
Theorem 9.2 (a).

The assumption U = 1 of (11) implies that M € Mgp,. By Theorem
8.7 (f), M* € My, and K* has prime order. Q.ED.

Theorem D. Let M € M. The following conditions are satisfied
by M.

(1) Whenever two elements of My, are conjugate in G, they are
conjugate in M.

(2) For every g € G\ M, the group M, N M9 = M, N (M,)? is
cyclic.

(3) For every x € (My,)t, Car(x) is a Hall subgroup of Cg(z) and
has a normal complement R(z) in Cg(z) that acts sharply tran-
sitively by conjugation on the set {M9 | g € G,z € M9}.

(4) Ifz € (Myy)* and Ca(z) € M, then M(Cg(z)) = {N} for some
w-group N = N(z) € M such that R(z) = Cy,(z), Ny, = NF,
x € A(N)\ Ngy, N € Mg UMy, and M N N is a complement
of No in N. If N € Myp,, then M is a w-group in Mg that is a
Frobenius group with cyclic Frobenius complement and Frobenius
kernel M, = M. Furthermore, Mg is not a TI-subset in G.

Proof. Corollary 9.3 (b) with H replaced by My, yields the condi-
tion (1), while Lemma 6.17 implies (2).

The assumptions of (3) and (4) imply that M, (z) is not empty.
Therefore, Theorem 8.4 yields (3) and the most parts of (4). In par-
ticular, N ¢ Msgp,. Then, Theorem 9.2 (a) applied to N proves that
Ny, = Np. We have w({z)) C 12(N). Since N ¢ My, , either N = N, ,U
or N,,U is a normal complement of K where U and K are defined as
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a Hall (0¢(N),k(N)) -subgroup and a Hall x(N)-subgroup of N, re-
spectively. Recall that if K £ 1, K is a Hall 71 (IV)-subgroup of N by
Theorem 8.7 (c¢). Thus, n({x)) € 72(N) implies that x € N, U. This
proves that z € A(N) \ Ny,.

If N € My,, Corollary 9.9 yields that M € Mg and M is a Frobenius
group with Frobenius kernel M,,. We have M,, = Mg by Theorem
9.2 (a). Since Cg(z) € M and = € M,, = Mp. Mp is not a TI-subset
of G. Q.ED.

Theorem E. For each x € (M,,)*, let R(x) be as in Theorem D.

Define
M = {zR(z) | ¢ € (My,)"}.

Then,

(1) [Ca(M)] = (IMq,| — 1)IG : M].
Let My,..., M, be a set of subgroups in M such that every subgroup of
M is conjugate in G to exactly one of the M;. Then,

(2) w is the disjoint union of the sets oo(M;).

(3) Let G be the union of the sets Ca(M;). Then, G is the disjoint

union of the sets Gg(AZ).

If My is empty, G is the set of the nonidentity w-elements of G. If My
s not empty and M € My, then the set of nonidentity w-elements of G
is the disjoint union of G and Cg(Z) where Z is as defined in Theorem
8.7.

Proof. If p € w, take P € Sylp(G) and M € M(N¢(P)). We have
p € ao(M). If H € M is not conjugate to M, o(H) is disjoint from
(M) by Theorem 7.9. Thus, @ is the disjoint union of the sets oo ().
The remaining assertions of this theorem follow from Lemma 8.5

and Corollary 8.9. Q.E.D.

We define the type of a subgroup as in [BG] pp.128-129 with the

following three changes.
We change (Iliv), (IIv) and (I1li4:) to read

(Iliv) V #1 and, if V is a w-group, Ng(V) € M.
(Ilv) Ng(A) C M for every nonidentity subgroup A of M’ such that
Cu(A) # 1.
(Illzi3) V is an abelian w-group and Ng(V) C M.

Proposition 10.1. Let M be an element of M.
(a) M € Mg if and only if M is of type L
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(b) M € Mg, if and only if M is of type II.

(¢) M eMyp, and Mg # M,, if and only if M is of type III or IV.
(d) M eMyp, and Mp = M,, if and only if M is of type V.

(e) M'= M,,U if and only if M is not of type I

(f) Mp = M,, if and only if M is of type I, II, or V.

Proof. (a) Suppose that M € Mg. This means that K = 1 and
U # 1 in the notation of this section. As in [BG], let H denote Mp.
Since U # 1, Theorem A (8) yields that M,, = Mp = H. Thus, U is a
complement of H in M. We have H # M because U # 1. By Theorem
A (6), H # 1 so we have the condition (I7). The conditions (Ii%), (Iii)
and (Izv) are Theorem B (2),(3) and (1), respectively. We need to prove
(Iv). Suppose that H is not a Tl-subset of G. Then, F(M) is not a
TI-subset of G. Since M € Mg, the case (3) of Theorem 9.7 (e) does
not occur. Suppose that neither (a) nor (b) hold in (Iv). Then, we
have the case (2) of Theorem 9.7 (e). Then, for every q € w(H), either
q € oo(M)\ B(M), or M has a cyclic Sylow g-subgroup. Thus, ¢q € 7*.
Furthermore, the exponent of M/H divides ¢ —1. Since O,/ (H) is cyclic
for one prime p € w(H), M satisfies the condition (Iv). Therefore, every
subgroup in My is of type L.

Conversely, suppose that M is of type I. Suppose that x(M) # 0.
Let K be a Hall k(M )-subgroup of M and K* = Cj, (K). Then, by
Theorem C (2), K* = Cy(K) # 1. We will prove that Cy(K) = 1
contrary to the above inequality.

Since K N H C K N My, = 1, there is a complement F of H in M
that contains K. Since K is a cyclic Hall subgroup of M by Theorem
A (2), (Iidd) implies that K acts regularly on H by conjugation. Thus,
Cy(K) = 1. This contradiction proves that every subgroup of type I
lies in Mg

(b) Suppose that M € My, i.e. K # 1. By Theorem C (3), M’ =
UM,,, so M' is a normal complement of K. Hence, M’ is a Hall x(M)'-
subgroup of M. It contains H because H C M,, C M’ by Theorem
A (6). Thus, M satisfies (T1).

Define W, = K, Wy = K*, and let V be a K-invariant complement
of H in M'. If M,, = H, then choose V = U. By Theorem A (6),
V (2 M'/H) is nilpotent. This proves the condition (T2) for M. The
group H is not cyclic by Theorem C (2). The remaining parts of (T3)
follow from Theorem A (7). Since K* C M,, C M’, we have

KK*NM' =(KNM)K* = K*.

This, together with Theorem A (5), implies (T4); while Theorem C (8)
yields (T5).
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Suppose that Ag and A; are subgroups of prime order in V such
that

(A0)? = A1, g€ G\ M, C(Ap) #1, and Cpgx(A;) #1.
If H = M,,, then V = U. Hence, by Theorem B (4), we have
{M} = M(Ce(A1)) = M(Cg(Ao))? = {M?}.

This would imply g € M by Lemma E. Therefore, we have H # M,,.
Theorem A (8) yields U =1 and

A, CVCM =UM,, = My,.

By Theorem D (1), Ap and A; are conjugate in M. This proves that M
satisfies (T6).

Assume that M € Myp,. Then, K # 1 and U # 1. Theorem A (8)
yields M,, = H so V = U. We will check the conditions in (T7) for
M € Myp,. By Theorem C (10), Wy = K has prime order and F(M) is
a Tl-subset in G. Since F(M) = Cp(H)H by Theorem A (7), we have
(T7)(iz). Theorem C (1), together with Theorem B (1), yields that U is
abelian of rank < 2. This is (II44).

Since M € Myp,, we have V = U # 1. Suppose that U is a w-group.
Then, M is a w-group and Theorem C (1) yields Ng(U) ¢ M. This
proves (ITiv).

To prove (IIv), let A be a nonidentity subgroup of M’ such that
Cpu(A) # 1. Since M’ = HU, we have A = XY where X = AN H is
a normal Hall subgroup of A and Y is a complement of X in A. Then,
Ng(A) C Ne(X). If X # 1, we have Ng(X) C M because F(M) is
a Tl-subset of G. In this case, Ng(A) C M. Suppose X = 1. Then
A=Y is a o9(M)"-group and it is conjugate to a subgroup of U in M.
‘We may assume, by replacing A by a conjugate in M if necessary, that
A CU. Since Cy(A) # 1, Theorem B (4) yields that M(Cg(A)) = {M}.
Therefore, Ng(A) C M. This proves (Ilv). Thus, a group in My, is of
type II.

Assume that M € My, , ie. K # 1 but U = 1. In this case, we
have V C M’ = M,,,. Therefore, V is a w-group. Suppose that V # 1.
Recall that V is defined as a complement of H in M’. Thus, in this case,
we have H # M,,. Hence, by Theorem A (8), conditions (i) and (#¢) of
(T7) hold. Since V is a Hall subgroup, V contains a Sylow p-subgroup
P of G. Since P CV C M,,, we have p € 0¢(M) and Ng(P) C M. By
(T2), V is nilpotent. Hence,

Ne(V) € Na(P) € M.
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Thus, M € My, with V' # 1 is of type III or IV according as V' is abelian
or not.

Finally, suppose that M € My, and V = 1. In this case, we have
H = M,, = M'. Suppose that H is not a TI-subset of G. Then, F(M)
is not a Tl-subset of G. Theorem 9.7 (e) implies that M satisfies one of
. the three conditions. Since M € My, the first condition does not hold.
Hence, M is of type V.

Suppose that M is a group of type II, II, IV, or V. Then, M’ is a
Hall subgroup of M with a cyclic complement W; by (T1) and (T2). The
group W is a cyclic Hall subgroup of M such that Cy(W1) = Wa # 1.
This implies 7(W1) C x(M). Thus, k(M) # 0 and M € Myp. The group
M has a series of characteristic subgroups H C M,, C M’. The type
of M is determined by the properties of this series. The type is V if
and only if H = M’. The type is IV if and only if the group M'/H is
nonabelian.

For the remaining types, M'/H is abelian. The type is III if and
only if M’/H is an abelian w-group and Ng(V) C M. Thus, the type
of a group in My is uniquely defined. Therefore, the statements (b),
(c), and (d) hold. The other parts of Proposition 10.1 are proved as in
[BG]. Q.E.D.

Theorem I. Let H be a nilpotent Hall subgroup of G. Suppose
that H is a w-group. Then, two elements of H are conjugate in G if
and only if they are conjugate in Ng(H).

Either every subgroup in M is of type I or all of the following con-
ditions are true.

(a) G contains a cyclic subgroup W = Wy x Wy with the prop-
erty that Ng(Wy) = W for every nonempty subset Wy of W'\
{W1,Wa}. Also, W; #£ 1 fori=1,2.

(b) There are two subgroups S and T in M not of type I such that

S=WS, T=WoT', SNW,=T'N"Wz=1and SNT =W.

(¢) M €M is either of type I or conjugate to S or T.
(d) S orT is of type IL.
(e) Both S and T are of type II, III, IV, or V.
(f) The group S is not conjugate to T in G.

Proof. Let H be a nilpotent Hall subgroup of G, and assume that
H is a w-group. In order to prove the first statement, we may assume
H # 1. By Corollary 9.4, there is a subgroup M € M such that H C
Mg,. We will show that Ng(H) C M. Take a prime p € n(H) and

P € Syl,(H). Since H is a Hall subgroup of G, we have P € Syl,(G).
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It follows from the definition of o¢(M) that Ng(P) C M. Since H is
nilpotent, Ng(H) C Ng(P) so Ng(H) C M as claimed.

Corollary 9.3 (b) implies that any two elements of H which are
conjugate in G are already conjugate in Np(H). Since Ng(H) C M,
we have Ny (H) = Ng(H) and the first statement is proved.

Suppose that there is a subgroup M € M not of type I. Then, M €
My by Proposition 10.1 (a). Let M =S, M* =T, K = Wy, and K* =
Ws. The group M satisfies the conditions (T1)—(T6) by Proposition
10.1 (a). These conditions imply that W and Wy are nonidentity cyclic
subgroups of relatively prime orders. Condition (T4) yields

W=W1W2 =Wi x Wz.

Hence, W is cyclic. Condition (T5) yields the first condition (a) of
Theorem 1. By Theorems C (4), C (6), and C (7), together with (T1)
and (T2), S and T satisfy the conditions (b), (¢) and (d). The last two
conditions follow from Proposition 10.1 and Theorem 8.7. Q.E.D.

We state here the definition of the sets A(M) and Ag(M) for each
M eM. Let H= Mp.
If M is of type I, then

AM) = A(M) = | Cul(=).
xEH!
If M is of type II,
AM) = | Cwm(@);
zeHt
while if M is of type III, IV, or V,
AM)=M".
If M is not of type I, then
Ao(M) = A(M) U Cpr (W).

Theorem II. For a subgroup M € M, let X = A(M) or X =
Ao(M), and let
D={zec X" | Cq(z) £ M}.

Then, D C M,,, |M(Ca(z))| = 1 for all x € D, and the following
conditions are satisfied.
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(Fi) Whenever elements of X are conjugate in G, they are conjugate
in M.

(Fii) If D is not empty, then there are w-subgroups M, ..., M, of
M of type I or II such that with H; = (M;)p,

(a) (|Hi|,|H;|) =1 fori# j,
(¢) (|H;|,|Crm(2)|) =1 for all z € X¥,
(d) Ao(M;)\ H; is a nonempty TI-subset of G with normalizer M;,

and

(e) ifz € D, then there is a conjugate y of x in D and an index ¢
such that Cq(y) = Cu,(y)Cm(y) € M;. If y € D with Ca(y) C
M;, then y € A(M;).

(Fuid) If some M; in (Fii) has type II, then M is a w-group and is
a Frobenius group with cyclic Frobenius complement, and Mr s not a
TI-subset in G.

Proof. For any M € M, Ag(M) is a disjoint union of the sets
Myo, A(M)\ M,,, and Ag(M)\ A(M).

The order of an element of M, involves only primes in og(M ), the order
of an element of A(M)\ M,, involves no prime of k(M) and some prime
in w(U) which is disjoint from co(M), and the order of an element of
Ao(M) \ A(M) involves a prime of k(M). Thus, an element of any of
these sets is not conjugate to an element of one of the other two sets.
By Theorems B (5) and C (9), the latter two sets are TI-subsets of G
with normalizer M if not empty. Therefore, we have D C M,,. Thus,
if z € D, then z is a w-element with M € M,(x). In fact, we have
|Ms ()| > 1 because Cq(x) € M. Theorem 8.4 yields [M(Cg(z))| = 1.

It follows from the definition of the set X that X \ M,, is either
empty or a Tl-subset of G with normalizer M as remarked earlier.
Therefore, Theorem D(1) implies (F3).

Assume that D is not empty. For each z € D, let N(z) be the
element of M(Cg(z)). By Theorem D (4), N(z) is a w-group of type
I or II. Let A be the collection of all such subgroups N(z) and let
{Mi,...,M,} be a subset of A such that each N € A is conjugate in
G to exactly one M;. The last condition (Fiiz) follows from Theorem
D (4).

We will prove (Fii). Take some M;. Theorem D (4) yields that
(M), = H; and M N M, is a complement of H; in M;. This proves (b).
By Theorem E (2), the sets o(M;) are pairwise disjoint which implies

(a).
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By Theorem D (4), x € A(M;)\ H;. Thus, A(M;)\ H; is a nonempty
TI-subset of G with normalizer M, (by Theorem B (5)). If Aq(M;) #
A(M), then Ag(M;)\ A(M) is also a TI-subset (by Theorem C (9)) and
does not fuse to A(M). This proves that Ag(M;) \ H; is a nonempty
TI-subset of G with normalizer M;.

To prove (e), let z € D. Then, the subgroup N(z) is conjugate to
M; for some i, so N(z)? = M, for some g € G. By Lemma 8.13 (b),
we may take g € M. Then, y = 29 € D and N(z) = M;. By Theorem
8.4 (b), we have

Co(y) = Cu,(y)Cum(y) € M;.

If M; is of type I, certainly y € A(M;). Suppose that M; is of type II.
Theorem 8.4 (c) yields 7({y)) C 72(M;). Since M; is of type II, Theorem
8.7 (h) and (c) yield y € (M;). Hence, y € A(M;) in this case, too.

It remains to prove (c). Suppose x € X* and (|H;], |Cps(z)|) # 1 for
some i. Then, 7(M) N oo(M;) is not empty. By Lemma 8.13 (a), M is
a Frobenius group with Frobenius kernel M,,. Hence,

Ao(M)=M,, =X and Cu(z)C M,,.

It follows that oo(M) N oo(M;) is not empty. By Theorem E (2), M is
conjugate to M; in G. However, this is a contradiction because (M) =
0 by Lemma 8.13 (a), while 2(M;) # 0 by Theorem 8.4 (¢). Q.E.D.

Chapter II. Application of Character Theory

We continue to study the structure and embedding of the subgroups
in M and use the notation introduced in Chapter I. We will follow most
of the terms and notation of [BG] and [FT]; however, I follow the practice
of denoting elements of groups by the lower case letters and subsets by
the capitals. For a group H, let

Irr(H)

denote the set of all irreducible characters of the group H over the field
C of complex numbers. If X is a subset of H,

I(X)

denotes the set of virtual characters which vanish outside X. The subset
of I(X) consisting of those virtual characters which take zero at the
identity will be important and denoted by

Io(X).
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Sometimes, the set of complex valued class functions which vanish out-
side X will be considered; it is denoted by C(X). The subset of those
class functions taking value zero at the identity is denoted Co(X).

When H is a subgroup of a group G, the induction ¢© and the
restriction Oy of class functions are defined as usual. If the groups
involved are clear from the context, the notation ¢* for the induction
may be used.

Our starting point is Theorems I and II of Section 10, Chapter I.
Theorem I asserts that every subgroup M € M is of type [, II, 111, IV,
or V. The definition of groups of each type is stated in [BG] but we
have made three changes in Section 10, Chapter I; we will be using the
modified definition in Chapter II. Theorem 1I concerns the embedding
of the subgroups of M. We say that a subset X of M is an F-set (or sat-
isfles Feit-Thompson-Sibley-Bender-Glauberman conditions) if M and
X satisfy the conditions (Fi), (Fii) and (Fiii) of Theorem II. Theorem
IT simply says that both X = A(M) and X = Ag(M) are F-sets of M.
In [BG], it is suggested to call A(M) and Ag(M) tamely imbedded sub-
sets. I choose a different term because there is another tamely imbedded
subset in [FT] and I have added two conditions to (Fii).

The set of subgroups {Hi, Hs,...,H,} in (Fii) is called the set of
supporting subgroups of the F-set X. Sometimes we abuse the term and
may call subgroups {Mi,..., M,} are also supporting subgroups.

If X is an F-set of M, we will use the following notation throughout
Chapter II. Let D be the set defined by

D={zecX"| Cq(z) ¢ M}.

If D is empty, X is a TI-subset of M. If X is either A(M) or Ao(M),
and if D is not empty, then Theorem II yields that D C M,,. Therefore,
the set D does not depend on whether X = A(M) or X = Ag(M). The
following notation is used.

Dy={re X |Cqg(z) C M}

and for ¢ > 0,
D, ={zeD|Cq(x) C M;}

where M; is one of the supporting subgroups of the set X. We have
abused the notation already. It is convenient to define

Ho={1},My=M, and D*= 7_0D1-.
As in [FT), we define for 2 > 0 and = € D;

A, = A(z) = {hx | hx = zh,h € H;}.
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Note that each A(x) consists of nonidentity elements. We call a subset
of the form A(z) for some z € D* an annez. For an F-set X of M, we
call the set of elements of G which are conjugate to an element of some
annex A(z) for z € D* the territory of X. Sometimes, we abuse the
term and call it the territory of M. A class function § on G is called
well-behaved if 0 takes a constant value on each annex. The well behaved
class functions will play an important role in the following discussion.

§11. Preparation from Character Theory

First we paraphrase the proof of Lemma 4.5 [FT] because it is basic
to our work. Afterwards, we define the basic character correspondence
7 and prove its properties. This part corresponds to Section 9 of [FT].

For convenience, we state Lemma 4.5 [FT]:

Lemma. Let H be a normal subgroup of the group X and let 0 be
an irreducible character of H. Suppose X contains a normal subgroup
Xy such that the inertia group 1(0) C Xo and such that Xo/H s abelian.
Then 0* is a sum of irreducible characters of X which have the same
degree and occur with the same multiplicity in 6*. This common degree
is a multiple of | X : I1(6)|. If furthermore H is a Hall subgroup of Xo,
then 0* is a sum of |I(0) : H| distinct irreducible characters of degree

| X : 1(6)]0(1).
We need a lemma.

Lemma. Let M be a group, H << M, 0 € Irr(H), and let I = I1(6)
be the inertia group of 8 in M. If 61 = Y a;)\; where a; are positive
integers and \; are distinct irreducible characters of the group I, then
MM are distinct irreducible characters of M and

By the reciprocity theorem, ()\;)y contains the character § with
exact multiplicity a;. Since H <1 I, (A\;)g is a sum of the conjugates of
9. It follows from the definition of the inertia group that € is the only
conjugate of 8 in I. Thus, we have

(/\i)H = a;0,

in particular, A;(1) = a;0(1).
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Let ¢ be an irreducible component of AM. Then, & involves \;.
Hence, £y contains a;0. Since H <1 M, £y contains all the |M : I|
conjugates of # with the same multiplicity. It follows that

£(1) > ai|M - I|6(1) = | M : I)X\:(1) = AM(1).

Since ¢ is an irreducible component of AM, we have AM = £ i.e. AM is
irreducible. The preceding proof yields that (AM)y involves 6 exactly
a; times. This implies that the character (AM); does not involve ); for
any j # i. Thus, \M # /\;-V[ for i # j. This proves the lemma. Q.E.D.

Hypotheses of Lemma 4.5 [FT] are H < X, 0 € Irr(H), I = I(6), the
inertia group of 6 in X, and I/H is abelian. By the preceding lemma,
we need only to prove the assertion for I.

Let A be an irreducible component of 87 and let {u;,..., .} be
the set of all irreducible characters of I/H. Since I/H is abelian, y; are
linear and {p1,...,tm} is a multiplicative group of order m = |I/H].
Suppose that we take notation Ap; = A if and only if 1 < ¢ < n. For
every j, (Apj)pi = (Ap;) for i =1,2,...,n.

We have (8')y = m# so Ay = af for some positive integer a. Then,

)\(1H)I = (/\H)I = a)\I.

Since (1g)! = 3" p;, the irreducible components of 67 are characters of
the form Ap;. This proves that all the irreducible components of 87 are
of the same degree. Also, the equality

A ny) = ab”

yields that ! contains each irreducible component Ap; with the same
multiplicity, say b. This proves the first assertion of Lemma 4.5 [FT].
We remark that n = ab.

The second part of the lemma asserts that if in addition H is a Hall
subgroup of the inertia group I, then 6% is a sum of exactly |I : H|
distinct irreducible characters of degree | X : I|6(1). By the lemma, it
suffices to prove the case X = 1.

We can take an abelian complement A of H in I because H is a
Hall subgroup of I and I/H is abelian. We will show by induction that
if HC K C I, 0¥ is a sum of exactly |K : H | distinct irreducible
characters of degree 6(1). The first part of Lemma yields that

0K =b(A 4 -+ X)
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where Ay,..., A are distinct irreducible characters of degree a8(1).
Suppose that |K : H| = p is a prime. By definition of the induced
character, we have
(6")u = po.

Then, the orthogonality relations yield
b?s = (6%,65%) = (6, (%)) = p(6,0) = p.

Since p is a prime, we have b=1 and s = p. Thus, n =nx = 1.

Suppose that H C K C L C T and |L: K| = q is a prime. Suppose
that ng = 1. Take an irreducible component A of 8% and let {1, ..., pus}
be the set of irreducible characters of the abelian group K/H. Since
ng = 1, the characters Ay; are distinct. Therefore,

0% =" M.

We claim that L C I(\). If z € L, (%)® = (6*)X = 0K because
z € L C I. Thus, A\? is an irreducible component of 8%, i.e. A\® = \y;
for some 7. We need to show that g, is the principal character of K/H.
We may assume that x € KNA. If u; is nonprincipal, there is an element
y € K N A such that p;(y) # 1 and the order of y is a power of some
prime r. Lemma 4.2 [FT] implies

Ay) = A1) (mod t)

where t is a prime ideal dividing r in the ring of integers of a number
field. Since ng = 1, we have A(1) = 6(1). Also, A\(1) divides the order
|H|. The group H is a Hall subgroup of I so r does not divide A(1).
It follows from the above congruence that A\(y) # 0. Since A is abelian
and z,y € A, we have

Ay) = A%(y) = My)wi(y)-

Therefore, u;(y) = 1 because A(y) # 0. This contradiction proves that
A =Xand L C I(N).

By the result proved earlier, the induced character AL is a sum of
|L : K| distinct irreducible characters. This holds for any irreducible
component of #%. Thus, 6L is a sum of exactly |L : H| distinct irre-
ducible characters of degree (1). In particular, ny, = 1. This completes
the proof of Lemma 4.5 [FT]. Q.E.D.

We need some lemmas about the fusion of elements.



128 M. Suzuki

Lemmal. LetM € M andlet X be an F-set of M. Every element
of X1 is conjugate to an element of D* in M.

Proof. Let x € X!. If x € Dy, the assertion is trivial. If x ¢ Dy,
we have © € D. By (Fii, e), there is a conjugate y of = such that y € D;.
Since z and y are two elements of X which are conjugate, (Fi) yields
that they are conjugate in M. Q.E.D.

Lemma J. (a) Every element g of M; is conjugate in M; to an
element of the form xh = hx where x € M N M; and h € H;.

(b) Suppose that g is an element of M; with Cy,(g) # 1. Assume
that g is conjugate in M; to an element of the form hx where x € M NM;
and h € Cg,(z), and at the same time g s conjugate to an element of
the annez A(y) withy € D;. Then, j =i and the element x is conjugate
toy in M;. In particular, z € D; and g € A(M;).

Proof. (a) Ifi=0, M; = M and (a) holds trivially. Assume ¢ > 0.
The subgroup H; is a normal Hall subgroup of M; with complement
M N M; by (Fii, b). Let ¢ = uv = vu be the decomposition of the
element g into the product of a m(H;)-element u and a 7(H;)-element
v. Since H; is nilpotent, we can apply the Schur-Zassenhaus Theorem
to the subgroup (H;, g). Then, (v) is conjugate in M; to a subgroup of
M N M;. It follows that g is conjugate in M; to an element of the form
hz where z € M N M; and h € Cy,(x).

(b) Suppose that C'y,(g) # 1 and that g is conjugate to an element
ky of A(y) with y € D; and k € Cp,(y). The first assumption implies
that 7 > 0. We will prove that j > 0. If j = 0, we have Cg(y) C M. It
follows that

Ca(ky) C Ca(y) C M.

Since Cp,(g) # 1 for some i > 0, (|Cg(g)|, |H;i|) # 1. We have |Ca(g)| =
|Ca(ky)| because g is conjugate to ky. Therefore,

(ICa(y)|, |Hil) # 1.

This contradicts (Fii,c) as |Ca(y)| = |Cr(y)|- Hence, we have j > 0.

It follows that Cq(y) € M; and Ce(y) = Ch,(y)Cm(y). Suppose
that j # i. Then, by (Fii) (a) and (c), |Ca(y)| is prime to |H;|. This is
a contradiction because

|Ca(9)l = [Ca(ky)l and  Cglky) < Cal(y).

Therefore, we have j = i. Since y € X*, the order of y is prime to | H;|
by (Fii,c). Hence, y is the w(H;)"-part of the element ky. Similarly, the
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element z is the ﬂ(Hi)'—part of hx. Since hx is conjugate to ky, the

element z is conjugate to y in G. By (Fiie), the element y is in A(M;).
Since hx is conjugate to g in M; and Cg,(g) # 1, we have Cy,(z) # 1.
If M; is of type I, then x € A(M;). If M, is of type 11, (M;)’ is a Hall
subgroup of M; by (T1), and y € A(M;) C (M;)’. Since z is conjugate
to y in G, we have
[)| = Kyl

Hence, z € (M;) and z € A(M;). Clearly, y # 1 so y ¢ H,. Since H;
is a Hall subgroup of M;, we have z ¢ H;. Thus, z and y are elements
of Ag(M;) \ H; that is a TI-subset in G with normalizer M;. Since z is
conjugate to y, they are conjugate in M;. It follows that

Celz) CM; and ze D,

By (Fii,e), hx € A(M;). Since g is conjugate to hz in M;, we have
g € A(M;). Q.E.D.

We will define the fundamental mapping 7.
Definition K. Let M € M and let X be an F-set of M. For
a€lp(X) and 1<i<m,

define
Q; = aMﬁMi .

Let «a;; be the virtual character of M;/H; that is the lift of a; and
let a2 be the virtual character of M; induced by «;. We define

T_ G ™ . \G
o =a” + Zi=1(a‘1 ai2)".
Thus, a7 is a virtual character of the group G that vanishes at the
identity.

Lemma L. (a) If g € G is not conjugate to any element of X* in
G, then a®(g) = 0. If g € X*, then

a%(g) = |Ca(g) : Cu(9)laly)-

(b) Let i be one of the integers between 1 andn. If g € G is not conjugate
to any element x of M; with Cg,(z) # 1, then (i1 — ay2)(g) = 0.

Proof. (a) The first statement is obvious from the definition of
induced characters. Suppose a € X*. By definition,

a®(g) =Y ao(z; gz:)
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where qq is the function that agrees with o on M but vanishes outside
M, and the sum is over a system {z;} of the representatives of the cosets
of M. We need to count the number of z; such that x; 1gaci c X" If
x7 gz € X, (Fi) yields

x_lgx = m_lgm

for some m € M. Hence, zm™* = ¢ € Cg(g). We choose ¢ as a

representative of the coset M. Then, ag(z; gz;) = a(g). This yields
the result.

(b) If z € M; is not conjugate to any element of M N M;, then it
follows from the definition of the induced character that a;2(x) = 0. We
may take the set H; as a set of representatives from the cosets of M N M.
Ifzre MNM; and h € H;,

h_lmh e MnM;

implies [z,h] = 27 *h~lzh € (M N M;) N H; = 1. Hence, if z € M N M;,
then

aiz(z) = |Cr,(2)| ().
Thus, (a1 — auz)(z) = 0 if © € M; satisfies C,(x) = 1. This, together
with Lemma J(a), proves (b). Q.E.D.

The following lemmas correspond to the lemmas in Section 9 of [FT].

Lemma 11.1. Let M € M and X an F-set of M. For o € Iy(X),
let o be defined as in Definition K. Then, a™(g) = 0 if g is not conjugate
to an element of A(x) for any x € D*. If g € A(x) for x € D*, then

a’(g) = o(z).

In the other words, if a € Io(X), the support of the function o™ is
contained in the territory of X, and the function " is well-behaved.

Proof. Suppose that a™(g) # 0. Then, clearly, g must be conjugate
to some element of M, My,..., or M,,. In order to have a®(g) # 0 or
af(g) # 0, the element g must be conjugate to an element of Xf. By
Lemma J, if g € M; for 4 > 0, g is conjugate to an element of the form
hz such that € M N M; and h € Cy, (). In order to have o (g) # 0,
g must be conjugate to an element ky such that y € X* and k is a
w(H;)-element commuting with y.

Every element of X" is conjugate to an element of D* by Lemma 1.
It follows that if g is not conjugate to an element of A(z) for any = € D*,
a7 (g) = 0. This proves the first part.
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Suppose that the element g € G is not conjugate to an element z
of M; with Cy,(x) # 1 for any ¢ > 0. Then, by Lemma L(b), > (a1 —
a;2)%(g) = 0. Hence, we have

a”(g) = a%(g).

If g is not conjugate to any element of X* then a%(g) = 0. Suppose that
g is conjugate to an element z € X*. If  is conjugate to an element y of
D, for some i > 0, then Ce(y) C M; and Cp,(y) # 1. This contradicts
the hypothesis. By Lemma I, g is conjugate to an element u of Dy.
Then,

a(g9) = a(u) = a(u)
by Lemma L (a). ,

Suppose that g € M; and Cy,(g9) # 1. By Lemma J (a), we may
assume g = hz with ¢ € M N M; and h € Cy,(z). We may also assume
that a”(g) # 0. By the first paragraph of the proof, g is conjugate to
an element of A(y) for some y € D; (j > 0). By Lemma J (b), j =1
and z € D;. Since z is a power of g,

Cal(g) € Co(x) € M.
The conditions (Fii)(e), (a) and (c) yield that for j # 4,
(ICe(=)l, |Hjl) = 1.

Since Ci(g) € Cq(z), g is not conjugate to any element u of M, with
Ch,(u) # 1 and j # i. It follows from Lemma L that

a’(g9) = a%(g) + (i1 — 2i2)%(g).

Suppose that A # 1 in g = hz. Then, 7({g)) N 7(H;) # 0. Hence,
by (Fii, c), g is not conjugate to any element of X*. Lemma L yields
a%(g) = 0. Also, no conjugate of g lies in M N M; because M N M; is a
7(H;)'-subgroup. Thus, a$(g) =0. If g = v~ 1gv, v € G, and g; € M;,
then Lemma J (b) yields g1 € A(M;). Therefore, by (Fii,d), we have
v € M;. This proves

a’(9) = afi(9) = aa(@).

Suppose that h =1 in g = hz. All conjugates of g are contained in

(041 — aiZ)G(g) = (Cm - ai2)($)'



132 M. Suzuki

Since © € M N M;, we have a;1(r) = az) and
aiz(z) = |Ch, (x)|o().

By (Fii, e), we have |Cg,{(z)| = |Ca(z) : Cp(z)]. Therefore, a™(g) =
a(z) by Lemma L. Q.ED.

Lemma 11.2. Let M € M and X an F-set of M. For a € I(X),
let ™ be defined as in Definition K. Then, for x € A(M;),

OzT (:E) = ;1 (ac) .

Furthermore, (o), s a linear combination of characters of M;/H;. If
M; is of type II, elements of (M N M;) \ (M;)" are not contained in X
and for y € M; \ (M;)

a’(y) = 0= au(y).

Proof. By Lemma J, an element x of M; is conjugate in M; to an
element of the form hu with v € M N M; and h € Cy,(u). Suppose
z € A(M;). Then Cg,(z) # 1. Suppose that z is conjugate to an
element of A(y) for some y € D; (j > 0). By Lemma J (b), u € D;.
Hence, by Lemma 11.1,

o’ (z) = alu) = a1 (hu) = a;(z)

because x is conjugate to hu in M;. On the other hand, if z is not
conjugate to any element of A(y) for y € D*, then u ¢ X% and " (x) =0
by Lemma 11.1. Thus,

o’ (z) = 0 = ay1 (hu) = a;(z)

because a;1(hu) = a;(u) = a(u) = 0.

Suppose that M; is of type II and " (y) # O for some y € M;\ (M;)'.
Since M; is of type I, x(M;) = {q} and ¢ € «({y)) for some prime ¢
and Cg,(y) # 1. The element y is conjugate to an element of the form
hu with w € M N M; and h € Cp,(u). By Lemma 11.1, the assumptions
of Lemma J (b) are satisfied. Thus, we have u € D, and y € A(M;) by
Lemma J. This is a contradiction because A(M;) C (M;)’ in the group
M; of type II. Therefore, o (y) = 0 for y € M; \ (M;)'.

Since M; is of type II, M N M; is a Frobenius group. Thus, if y is an
element of M NM; outside (M;)’, the order of y is ¢ and (|Ca(y)|, |H;|) #
1. Suppose that y € X*. Then, y must be conjugate to an element z €
D;. It follows that z € A(M;) by (Fii, e). Since M, is of type I, A(M;) C
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(M;)" and (M;)' is a Hall subgroup of M;. This is a contradiction because
both z and y have the same order. This proves

ai1(y) = aly) = 0.

It remains to prove that (a”)yy, is a linear combination of characters
of M;/H;. Let 6 be any irreducible character of M; which does not have
H; in its kernel. By Lemma 4.3 [FT], 6 vanishes on those elements z of
M; such that Cy,(z) = 1. Compute ((a")n;, 0).

Suppose that M; is of type I. Then, 0 vanishes off A(M;) and (a™ )y,
agrees with a;; on A(M;). Hence,

((aT)Mu 0) = (aily 6) =0.

This proves the assertion. If M; is of type II, then both (a”)as, and a1
vanish outside (M;)’. On (M;)’, 6 vanishes off A(M;) and (@™, = an
on A(M;). Therefore, we have

(") a5 0) = (2vi1,6) = 0.

Lemma 11.3. Let M € M and X an F-set of M. For a € Iy(X),
let o™ be defined as in Definition K. Then,

(@, 1g)e = (o, 1m)m
where 1g and 1py are the principal characters of G and M, respectively.

Lemma 11.4. Let M € M and X an F-set of M. Let @ be a
virtual character of G that is well-behaved. If o, B € In(X), then

(@",0)¢ = (a,0m)m, (o,87)a = (o, B)m-

Lemma 11.5. Let M € M and X an F-set of M. Let © be a
class function of G that is well-behaved. Let Gy be the territory of the
set X. Then, we have

1 1
@Zmecoe(x) - ﬁ/ﬂzzexﬂe(x)'

The proof of each of the above three lemmas is similar to the cor-
responding proof of Lemmas 9.3, 9.4, and 9.5 in [FT]. We mention here
that the assumption of © being well-behaved is essential in the proof.
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§12. Coherent Set of Characters

Let M € M and let X be an F-set of M. In the preceding section,
we defined a mapping from Ip(X) to the set of virtual characters of the
group G. We will denote this mapping 7 = 7as in the remainder of
this paper. Its main property is stated in Lemma 11.4: the mapping 7
is an isometry on Io(X). It is useful to extend the domain of 7 so as
to include some characters. For this purpose, the concept of coherent
subsets has emerged; its definition is in Section 10 of [FT]. For the
purpose of reference we state the definition.

If 8 is a set of virtual characters, we denote by Iy(8) the set of linear
combinations of elements of 8§ with integer coefficients which take the
value zero at the identity.

Definition. A set § of virtual characters of M is said to be co-
herent if and only if
(1) 1o(8S) # {0} and Io(8) C Iy(X), and
(2) Itispossible to extend 7 form Ip(8) to a linear isometry mapping
8 into the set of virtual characters of G.

When § is a coherent set, an extension of 7 to I(8) will be denoted
by the same letter 7. The following lemma which corresponds to Lemma
10.4 of [FT] illustrates the usefulness of the concept of coherency and
suggests a tight connection between A and A™ when A7 is defined.

Lemma 12.1. Let M € M and let X be an F-set of M. Let a be
the least common multiple of all the orders of elements in X. Suppose
that 8 is a coherent set of virtual characters of M such that § contains
at least two wrreducible characters. If X is an irreducible character in
8, then the values assumed by \™ are contained in the field Q, of the
primitive ath roots of unity.

Proof. Let n = |G| and ¢ € Gal(Q,/Q,). By assumption, § con-
tains another irreducible character y. Then,

mw(1)A = A(D)p € In(8)

and the values assumed by (u(1)A — A(1)u)” lie in Q, by Lemma 11.1.
Therefore, v ,

o(p)A” = AMD)p") = p(H)A” = A(D)p".
Since § is coherent, A™ and u” are either irreducible characters or the
negatives of irreducible characters of G. The same statement holds for
o(A7) and o(u"). It follows that o(A™) = AT for all o € Gal(Q,/Q,).
Thus, the values assumed by A" lie in Q. Q.E.D.
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It follows easily from the definition that a subset T of a coherent set
§ is coherent provided I5(T) # 0. It is more difficult to decide whether or
not the union of two or more coherent sets is coherent. One of the useful
necessary conditions is Theorem 10.1 [FT]. We will state the theorem
for the purpose of reference and refer the proof as well as the definition
of a subcoherent set to the original paper [FT]. The following set of
conditions and definitions is used.

Hypothesis 12.2. (i) Let M € M and let X be an F-set of M.

(iti) 8 = J8; consists of pairwise orthogonal characters.

(iv) For any ¢ (1 < i < k), 8; is coherent with isomrtry =;, §;
is partitioned into sets §;; such that each §;; either consists
of irreducible characters of the same degree and |8;;| > 2 or
(83, 7i;) is subcoherent in 8 where 7;; is the restriction of 7; on

(v) For1<i<k,1<s<mn,, there exist integers £;5 such that

1=ty <l <--- <l

Ais(l) = &3)\11(1), and Eil l Eis-

(vi) Aq1 is an irreducible character of M.
(vii) For any integer m with 1 < m <k,

iy 0,
Zi:l ZS=1 I Nis |2 > 2lm,.

Theorem 12.3. Suppose that Hypothesis 12.2 is satisfied. Then,
S is coherent.

The isometry on 8 is an extension of 7; and is essentially unique (cf.
Theorem 10.1 [FT]). The most important condition is the inequality
(vii); we refer it as “the inequality” of Hypothesis 12.2.

For applications in this paper it is convenient to have a specialized
set of conditions adapted to our case. To state the results we need
further definitions.

Let 8 be a set of pairwise orthogonal characters. Define an equiva-
lence relation on § by the condition that two characters in 8 are equiv-
alent if and only if they have the same degree and the same weight. For
any normal subgroup A, let §(A) be the subset of § consisting of those
characters which are equivalent to some character in § that has A in its
kernel.

Consider the following set of conditions.
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Hypothesis 12.4. (i) Let M € M and let X = A(M).
(ii) Let H be a nilpotent normal subgroup of M such that

Mr CHC X.

Define K = M if M is of type I; otherwise, let K = M’.

(iii) 8 is a set of characters of M which are induced by nonprincipal
irreducible characters of K, each of which vanishes outside X.
Assume that Ip(8) # 0 and 8 consists of pairwise orthogonal
characters.

(iv) There exista an integer d such that d|M : K| divides A\(1) for
every A € 8. Furthermore, § contains an irreducible character
of degree d|M : K|.

(v) Define an equivalence relation as before. Then, eqch equivalence
class of 8 is either subcoherent in 8, or consists of irreducible
characters and contains at least two characters.

Theorem 12.5. Suppose that Hypothesis 12.4 is satisfied. Let H;
be a normal subgroup of M such that H; C H and

|H : Hy| > 4d*|M : K|> + 1.

If 8(Hy) is coherent and contains an irreducible character of degree
d|M : K|, then § is coherent.

This is Theorem 11.1 [FT] of page 817 which is proved under more
complex conditions. Actually, we need to consider the case when the
group M/H is a Frobenius group with Frobenius kernel K/H and 8§ is
the set of all irreducible characters of M/H that do not contain K/H
in their kernel. In this case we will state the following result.

Lemma 12.6. Let M be of type III or IV and let Sy be the set
of all irreducible characters of M/H that do not contain K/H in their
kernel. Then, Sqg is coherent except possibly if K/H is a nonabelian
p-group for some prime p and

(K/H): (K/H)'| < 4|M : K|? +1.
In this case, we have (K/H) = ®(K/H).
This is Lemma 11.2 [FT].

Lemma 12.7. Let M e M, H< M, HH CH,e=|M: H|, and
h = |H : Hy|. Let 8 be the set of characters of M which are induced by
nonprincipal irreducible characters of H. Suppose that H is an F-set of
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M and § is coherent. Assume further that Hy < M, H/H; is abelian,
M/H; is a Frobenius group with Frobenius kernel H/Hy, and

|H:Hy|>(M:H|+1)|M: H|l +1.

Let ¢ = (1g)™ and let X be an irreducible character of M/ H, with degree
e. Then, {8,(} is coherent if we define

T==N"+A"
Proof. Since M/H; is a Frobenius group with Frobenius kernel
H/H;, there are irreducible characters of degree |M : H| = e. In fact,
there are n = (h — 1) /e such characters. Let A\; = X, Aa,..., A\, be those

characters. Then, A\; — \; € Io(H). Thus, {A\7} are defined; they are
virtual characters of G with weight one and satisfy

(A = A)7 = AT — AT
Since @ = { — A € Io(H), Lemma 11.4 yields [[a"||? = e + 1,
(@, (A= X;)7) =0
and (a™,(A—X)7) = —1if 2 < ¢, 5 < n. Write
o =A-\".
Then, if a; = (A, A7), then a; = a; for all ¢ and
A= 1G+Zai)\f+A1
where (Ay,1q) = (A1, A7) = 0. It follows that
1+ (a1 —1)*+ (n—1Da + A1 = |le> = e+ 1.

If a; # 0, then we have n — 1 < e. This contradicts the assumption.
Thus, A does not involve any A]. Hence, we have

Al = e = |IC]I*.

Let o be any character of §. We want to prove (A,07) = 0. By
definition, o = u™ for some nonprincipal irreducible character u of H.
Since H <« M, we have ({,0) = 0. Suppose that (A,067) # 0. Then,
o # ;. Choose Ay # A and consider

B = (1) —o.
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Then, 3 € Ip(H) and Lemma 11.4 yields (o™, 37) = (a, 3) = 0 because
A2 # A and ({,0) = 0. Since 8 is coherent,

B7 = u(1)Xj — 0"
and (A],0") = 0. Then,
0=(",8M)=(A-X,u)A] —0")=—(4,07) #0.

This contradiction proves (A, 07) = 0 for every o € 8. Since || A|2—||¢]|?,
the set {8,(} is coherent if we define (7 = A. .E.D.

§13. The Self Normalizing Cyclic Subgroup

Suppose that there is a subgroup in M that is not of type I. Then,
by Theorem I, there is a cyclic subgroup W = W; x W5 such that
W; # 1 for i = 1,2 and Ng(Wp) = W for any nonempty subset Wy of
W=w\ {W1,Ws}. Consequences of the existence of such a subgroup
are very important. They are discussed in Section 13 of [FT]. We will
briefly review them and introduce the notation.

Let wig and wp; be faithful irreducible characters of W/W, and
W /W1, respectively. Define

o,
Wij = WioWo1

for 0 < i< w; =|Wi|and 0 < j < wg = |Wa|. Thus, woo is the principal
character of W. The following lemma is the key to applications and
serves as introduction of the family of virtual characters {7;;} of G.

Lemma 13.1. The set W is a TI-subset with normalizer W in G
(in fact, in any subgroup that contains W). There exists an orthonormal
set {n;;} of virtual characters of G such that for 0 < i < w; and0 < j <
wa, the value assumed by 1;5, Mo, noj lie in Qy, Qu, , Qu,, respectively.

We have noo = 1, 1:;(x) = w;j(x) for z € /V[?, and
(woo — wio — woj + wij)G =1lg — Mo — Noj + Mij
forl < i< w andl < j < wy. In particular, the right side of the

above equality is a virtual character that vanishes outside Gg(/V[?). Fur-
thermore, every irreducible character of G distinct from {£mn;;} vanishes

onW.
The proof is in Lemma 13.1 [FT|. The set {n;;} is orthonormal.

Therefore, either 7;; or —n;; is an irreducible character of G and they
are distinct.



On the Prime Graph of a Finite Simple Group 139

Lemma 13.2. Suppose that a virtual character o = ) a;jw;; of

W wvanishes on W. T) hen, for all s and t, we have
apo — aso — aot + ast = 0.
If in addition a = By + B2 with ||B1||> = ||B2]|2 = 2, then o = 0.

Proof. The first part is proved as in the proof of Lemma 13.2 [FT].
The second half follows by case-by-case analysis. Q.E.D.

Theorem I yields that the subgroup W is contained in two subgroups
S and T of M such that neither S nor T is of type I,

SNT=W, SWi=S, TW,=T,

and S NW; = T'NnW; = 1. We can apply Lemma 13.1 to S and
T. Thus, each subgroup has a family of orthonormal virtual characters
corresponding to the family {w;;}. The following lemma serves to define
the notation.

+ Lemma 13.3. Let M =S and let H = Mp. Suppose that M is
not of type I. Then, Wo C H C M’ and W \ Wy is a TI-subset of M.
There is a complement V of H in M’ that is normalized by Wy. The
group VW7 is a Frobenius group with Frobenius kernel V.. The group V
is nilpotent; if M is of type II, V is abelian.

Proof. All the conditions follow from the conditions (T1)—(T7) in
the definition of groups not of type I in [BG], page 128. Thus, (T1)
yields H C M’, while (T4) yields Wy C H and Cp(z) = Wy for all
x € Wyt Tt follows that Cps(z) = W if z € W\ Wa. Therefore, W\ W,
is a TI-subset of M with normalizer W. The remaining conditions also
follow from (T1)—(T7). Q.E.D.

Lemma 13.4. Let M € M be not of type I. Use the notation
in Lemma 13.3. Then, M has a family of irreducible characters p;;
(0 <4< wi,0 < j < wsy) such that for some e; = 1

pij (z) = gjwij(x)

for all z € W. The family of virtual characters {e;p;;} is the one
corresponding to {w;;} in Lemma 18.1. For each k, (pix)m = (%) M
and py, defined by px, = (wik) a5 an srreducible character of M. Define
&k = D _;pik- Then

& = ()™ = Ziuik-
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Proof. By Lemma 13.1, there is a family of irreducible characters
{mi;} such that +pu,;(z) = w;j(x) for all x € W. Set ¢ = |W;|. Then,
M has exactly g linear characters because M/M' =2 W;. Let ¢ be the
linear character such that (w = wyo. Then, {¢*} (0 < i < wy) is the
set of linear characters of M and (¢*)w = wio. Let £; = £1 so that

po; (z) = €;wo;(x)
for z € W. Since (% is a linear character, (*po; is an irreducible character
of M. Consider the restriction of (*ug; on W. We have for z € W
("oj(z) = ¢ (@)poj (@) = ejwio(a)wo;(2) = €jwij(x).
Since the characters w;; are distinct on W, Lemma 13.1 yields
¢ iHOj = Hij-

Thus, pi;(z) = ejw;;(z) for x € W. This proves that {ejpi;} is the fam-
ily corresponding to {w;;} in M. Clearly, px = (uix)n is independent
of i. By the tensor product formula, we have

&k = (k)™ = pox ® (L) = Ziﬂik-
Since (£x)m = quk, the orthogonality relations yield

g = (&, &) = (> €k) = (1tk, qpii) mr = glll|”
Therefore, py is an irreducible character of M. Q.E.D.

The set W \ Wy is a TI-subset of M by Lemma 13.3. For each k
(0 < k < wa), the set {wir | 0 < ¢ < w;} is coherent and the characters
{w].} are {exui} (cf. Lemma 13.3 of [FT]).

Lemma 13.5. Let M € M be not of type I and use the notation
in Lemma 13.3. Then, an irreducible character of M' induces either an
irreducible character of M or one of the characters §; (0 < j < wa).

The proof of Lemma 13.7 of [FT] gives the result.

Lemma 13.6. Let M and {p;; | 0 < i < wi,0 < j < wa} be
as in Lemma 13.4. Suppose that for some i, 7, k with 0 < i < wy,
1 < j,k < wa, we have p;;(1) = px(1). Then, pij — pir € Io(Ao(M))
and

(ij — i)™ = £(nij — mix)
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where 1;;, Nk, are virtual characters of G defined in Lemma 13.1.

Proof. The factor group M/H is isomorphic to the group VW;
which is a Frobenius groupwith Frobenius kernelV. By 3.16 of [FT],
every nonprincipal irreducible character of M’/H induces an irreducible
character of M. Therefore, Lemma 13.5 yields that p;; with positive j
does not contain H in its kernel. By Lemma 4.3 [FT}], these p;; vanish on
M'\ A(M). Thus, if j,k > 0 and p;;(1) = pix(1), then for X = Ag(M),

pij — tik € To(X).

Since 7 is an isometry on Io(X), (pi; — pak)” is the difference of two
irreducible characters. .

We have W C X. If z € W, then Cg(z) = W C M. Thus, = is not
conjugate to any element in A(y) for y € D, with ¢ > 0. Hence, Lemma
11.1 yields that

(ts5 — par)" (x) = (pi; — par) ()

for z € W. Tt follows that (ps5 — par)™ is the difference of two characters
of the form +7,. Since 7;;(z) = w;;(z) for x € /V[7, Lemma 13.2 yields
that (ps; — pie)”™ = (5 — Mik)- Q.E.D.

Lemma 13.7. Let M, {u;;}, and&y be as in Lemma 13.4. Choose
kwithl <k<wy Let 8 ={&; |1 <j <wg,&(1) =&(1)}. Then, 8§

is coherent and
& =X

for some € = £1. Furthermore, if S is the set of characters of M which
are induced by the nonprincipal irreducible characters of M' that vanish
outside A(M), then (81,T) is subcoherent in §.

The proofs of Lemmas 13.9 and 13.10 in [FT] can be adapted to
a proof of the above lemma by changing the references suitably (and
correcting a misprint).

Lemma 13.8. Let M € M be of type II or III, H = Mp, and
q = |W1y|. For positive integers r and s with r > 1, let A(r,s) be the set
of nonprincipal irreducible characters « of H such that |I[(a) : H| = qr
and a(1) = s. Let B(r, s) be the set of characters of M induced from the
irreducible components of o™’ with a € A(r,s). Then, B(r,s) consists
of characters of the same degree and B(r,s) is coherent.

Proof. Since M is of type I or II1, the factor group M’/ H is abelian
and H is a Hall subgroup of M. We can apply Lemma 4.5 of [FT]. If
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a € A(r,s), then the inertia index of @ in M’ is r. So, by Lemma 4.5 of
[FT], oM " is a sum of exactly r distinct irreducible characters 61, ...,0,
of M’ of degree |M’ : H|s/r.

Lemma 13.5 yields that elements of B(r, s) are irreducible characters
or one of the characters £;. Let 8; be the set of irreducible characters in
B(r, s) and let 83 be the set of £; which are in B(r, s). The characters of
B(r, s) have the same degree. By Lemma 4.3 [FT], they vanish outside
A(M). If B € §; for i = 1,2, then the complex conjugate 8 € $;. Thus,
Ip(8;) # 0. It follows that each subset 8; is coherent. We want to
prove that the union 8§; U S, is coherent. Since 8 consists of irreducible
characters of the same degree and 85 is subcoherent (by Lemma 13.7),
Theorem 12.3 yields that §; U 83 is coherent provided the inequality of
Hypothesis 12.2 is satisfied. The condition becomes |81| > 2 in this
case. We need to examine the set of irreducible components {¢;} of
o™'. By assumption |I(a) : H| = gr with r > 1. We may assume that
Q = W, C I(e) because @ is a Hall subgroup of M (by (T1)). Then,
I{a)NVW; = RQ where R = VN I(a) is contained in the inertia group
I'ofain M’ and |R| =r.

From the proof of Lemma 4.5 [FT] at the beginning of Section 11 of
this paper, we have

o =+t

where ~y; are irreducible characters of I. Since « is @-invariant, () per-
mutes these characters {y;}. Since r = 1 (mod g), one of them, say
v1, is @-invariant. We can write v; = ~yu; where py,...,u, are the
set of linear characters of I/H and p, is the principal character. Since
I/H = R, Q acts on the set of nonprincipal characters {ua, . . ., i } With-
out fixed points. Thus, if the notation is such that v "= 0;, then 6, is
Q-invariant and all the other 6; for ¢ > 1 induce irreducible characters
of B(r,s). Therefore, each o € A(r,s) contributes one character of 8,
and (r —1)/q characters of 8;. Since r > 1 is odd, we have (r—1)/q > 2.
If « € A(r,s), then @ € A(r,s) and @ is not conjugate to o in M. It
follows that |S1| > 4. This proves that B(r,s) is coherent. Q.E.D.

§14. Further Properties of Coherent Sets

In this section, we use the following notation. Let M € M and let
X be an F-set of M. Let H be one of the supporting subgroups for the
set X with N = Ng(H) € M. Thus, H is Np, i.e. the largest normal
nilpotent Hall subgroup of N. Define Ny as follows. If N is of type I,
let Ng = N, while if N is not of type I, then Ny = N’. It follows from
the definition that A(N) C Np.
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The following two lemmas correspond to Lemmas 10.2 and 10.3 of
[FT].

Lemma 14.1. Let M, X, H, N and Ny be as above. For each
nonprincipal irreducible character o of H, let S(c) be the set of ir-
reducible characters of Ny which are involved in a™°, and let T(a)
be the set of the virtual characters of G of the form (6; — 62)¢ with
01, 05 € S(a). If © is a virtual character of G which is orthogonal to
the elements of T'(c) for all a # 1, then © is constant on the cosets of
H which lie in No \ H.

Proof. The subgroup H is a Hall subgroup of N by definition of
groups of type I or II. If N is of type I, then N satisfies the assumptions
of Lemma 4.5 [FT]. If N is of type II, then Ny = N’ and No/H is abelian
by (Iliii). Lemma 4.5 [FT] is applicable to Ny. In all cases, oV is a
sum of irreducible characters of the same degree with multiplicity one.

Fix a nonprincipal irreducible character o of H. If 61, 62 € A(a).

(@N0701 - 92) = (87 (01 - OZ)G) =0.

Thus, O, contains each 6 € S(«) with the same multiplicity. Since the
sum of all § € S(a) is Vo, we have

On, = 0y + o

where ©; is a virtual character of the group Ny/H and 3 is a virtual

character of H. Since 3o vanishes outside H, Oy, is constant on the
cosets of H lying in Ng \ H. Q.E.D.

Lemma 14.2. Suppose that M, X, H and Ny are as in Lemma
14.1. Let 8 be a coherent subset of I(X) that contains at least two
irreducible characters. For any X\ € §, A7 is constant on the cosets of H
that lie in No \ H.

Proof. Take any nonprincipal irreducible character a of H and let
S(a) be the set of irreducible characters of Ny defined in Lemma 14.1.
We will show that for 6y, 8> € S(a)

(()‘T)No’el - 02) =0.

Assume that this does not hold. Let Aj,Ay € 8 be distinct irreducible
characters. Then

B =M= A1)X; € Ip(X).
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By Lemma 11.2, (37)y is a linear combination of characters of N/H.
Hence,

((IBT)Nmol - 92) =0.

It follows that
(Ao, 61 — 62) #0.

Similarly, we have ((A])n,,01 — 02) # 0.

Suppose that N is of type I so Ny = N. By Lemma 4.3 of [FT],
0; € S(c) vanishes outside A(N). Since 6; and 02 are equal on H, 6, — 6
vanishes outside A(N) \ H. Since N is of type I, A(N) = Ag(N) and
(Fii,d) yields that Ao(N) \ H is a TI-subset of G with normalizer N.
Hence, (6, — 62)¢ = ©; — O3 where O; are irreducible characters of G.
We have

(A7, (61— 82)) = (A\))w, 61 — 62) # 0.

It follows that the irreducible character A7 is either ©; or ©,. We may
assume that A7 = €©; for e = 1 or —1. It is crucial that

A(L)A] = de(DA]

vanishes at the identity so both A7 and A} are irreducible characters or
both of them are not. Then, A;(1) = A2(1) and

AL — As € To(X).
By Lemma 11.2, ((A; — A2)7)n is orthogonal to 6; — #2. Thus,

0=((A] —=A3)n,01—02)
= (A] — A3, (61 — 62))
= (e(61 — 603),(O1 — B3) = 2.

This contradiction yields that A” is orthogonal to every element in T'(a)
for any o # 1y. By Lemma 14.1, A7 is constant on a coset of H that
lies in N \ H.

Assume that N is a group of type II. Suppose that

(()‘T)Noaal - 92) 7é 0

for some 61, 02 € S(a). Then, 8 and Y are distinct characters of N.
If they are irreducible, then the previous argument can be applied here.
In this case, ) and 02 vanish outside Ao(N)\ H, and Ag(N) \ H is
a TI-subset in G by (Fii,d). Hence, (f; — 62)¢ is a difference of two
irreducible characters. We obtain a contradiction as before.
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Suppose that 6 is not irreducible. In this case, we are in the
situation of Lemma 13.8. The set A(N) is an F-set of N. Let 0 = 7
be the isometry associated with N. Then, by Lemma 13.8, the set
S(«) U S(@) is coherent with respect to the isometry o and for some j.

We have
OY) = mj
i
where {n;;} is the family of characters defined in Lemma 13.1. Thus,

O) = (6)7 =e> nij — O3

where {6;} is the family of virtual characters {6}¥ | i > 1}.

Since N is of type II, Theorem II (Fiii) yields that M is a Frobenius
group and X = Mp. Let ¢ =|M : M’|. By Lemma 11.2, elements of N
of order g are not contained in X. Since X = My is a Hall subgroup of
M, no element of X has order q. Lemma 12.1 yields that A\] as well as
A% is g-rational.

The virtual character 6; — 02 vanishes outside A(N)\ H. If g €
A(N) \ H is conjugate to an element of the form hx where z € NN M
and h € Cy,(z), then Lemma J (b) yields that € D;. By Theorem II,
we have N = M(Cg(z)). Since g is conjugate in N to an element having
this property, Cg(g) € N. In other words, no suppoting subgroup
contributes any to (61 — 6))7(g). It follows that

(01 —02)C = () —0)" =e) mij — Oy

for some j. We have shown that A7 is not equal to 6. Since both A
and A} are not orthogonal to (8; —62), both AT and 63 are one of £n;;.
However, at most one of the characters £7;; is g-rational for a given j.
This contradiction proves that A7 is constant on the cosets of H that lie

in No \ H. Q.ED.

Lemma 14.3. Let M € M, X an F-set of M, and let 8§ be a
coherent subset of I(X). If§ contains at least two irreducible characters,
every A € 8 satisfies the property that \™ is constant on the set of the
form A(zx) for every xz € D*.

Proof. The sets A(z) and D* are defined at the beginning of Chap-
ter II. If z € Dy, then Cg(z) € M. In this case, A(z) = {z} and
the assertion is trivial. Suppose that z € D; for some ¢ > 0. Then,
Cg(z) C M; for some supporting subgroup M,. By (Fii, e), we have
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z € A(M;). It follows from the definition of the subgroup (M;)o at the
beginning of this section that A(M;) C (M;)o. Since A(x) is contained
in a coset of H; in (M;)o \ H;, Lemma 14.2 yields that A™ is constant on
the set A(x). Q.E.D.

For any virtual character A, the set of irreducible characters p such
that (A, p) # 0 is called the support of A.
The following lemma. corresponds Lemma 10.5 of [FT].

Lemma 14.4. Let X be an F-set of M € M. Let § be a coherent
set consisting of characters of I1(X) with disjoint supports and let © be
a virtual character of M that is well behaved. Suppose that there is a
virtual character 6 of M such that for every o € Iy(8),

(a™,0) = (o, ).

Then, there is a pair (v, 8) of a rational number r and a virtual character
B of M such that 3 is orthogonal to every element of S and

O(g) = 0(g) +rB(g) for ge X"

Suppose that ©1 is a well behaved virtual character of G that is
orthogonal to every element of 8T, then there is a pair (r1,01) of a
rational number ry and a virtual character B1 of M such that By is
orthogonal to every element of 8 and ©1(g) = r181(g) for g € X*.

Suppose that § contains at least two irreducible characters of M.
Then, for any XA € 8, there is a pair (s,7) of a rational number s and a
virtual character v of M, depending on X, such that v is orthogonal to
every element of S and

A(9) = Mg) +sv(g) for ge X"

Proof Since § is coherent, Io(8) # 0. Therefore, § contains at least
two characters. Let A, p € 8. Then, @ = A(1)x — p(1)\ is an element of
Iy(X). Since O is well behaved, Lemma 11.4 yields

(a",8) = (a,Bn).

By assumption, there exists a virtual character 6 such that (a, Oy —6) =
0. For each o € 8, let (o) be the portion of @ — 0 on the support of
o. Thus,
Ou—0=> 0(c)+ A
€S
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where A; is a linear combination of irreducible characters not involved
in any o € §. Since

0=(a,Om —0) = (AQ)p — u(1)A, Onm — 9),
the orthogonality relations yield
pDX,00) = A(1) (4, 0(n))-
Thus, for a rational number s,
(A, 0(X)) = sA(1) for every A € 8.

Let p(o) be the portion of the regular representation p on the sup-
port of 0 € 8. If 0 = ). a;§; is the decomposition of o into the sum of
irreducible characters &;, then p(o) = >_, &(1)&;. Hence,

(o,0(0)) = Zal& 1) = o(1).

Let p=3"_ p(c) + Az. Then, A, is a linear combination of irreducible
characters not involved in any o € 8. Set s = m/n with integers m, n
and define

r=1/n and B= Z(nO(U) —mp(0)) — mAg + nA;.
=

Then, for z € X*,
rB(z) = (Z() + A1) (z) — sp(x) = Opm(z) — ().

We compute (o, 3). Since the supports of elements of § are disjoint, we
have

(0, 8) = n(o,0(v)) — m(o, p(0)) = 0.

This proves the first part.

For the second part, #; = O satisfies the assumption of the first part
for ©; since (a”,0) = 0 for every a € Ip(X). For the third part, Lemma
11.4 yields with ©® = A7,

(aTae) = (aTv )‘T) = (a7 )‘)

for all @ € Ip(X). The first part applies. Q.E.D.
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§15. Characters of Subgroups of Type 1

Let M € M be a subgroup of type I. Let H = Mp, X = A(M), and
let 8 be the set of irreducible characters of M that do not have H in
their kernel. Let F be a complement of H in M. By (Iiii), E contains a
subgroup Ey of the same exponent as E such that HE, is a Frobenius
group with Frobenius kernel H. With the notation introduced here we
prove the following lemma.

Lemma 15.1. Let M € M be a subgroupof type 1. Then the set
8 defined above satisfies Hypothesis 12.4 with H = Mp, K = M and
d = |Ey|.

Proof. 1If A € 8§, Lemma 4.3 of [FT] yields that A vanishes outside
X. If X € 8, then the complex conjugate character X is different from
Xand X € 8. Thus, Iy(8) # 0 and § satisfies (4ii) of Hypothesis 12.4.
Since 8 consists of irreducible characters, 8 satisfies (v).

The definition of groups of type I implies that elements of A(M) N
E are 7y-elements in the notation of §6. Therefore, E = AB with
(|Al, |B]) = 1 such that A is abelian and B is a Z-group (cf. Hypothesis
28.1 [FT]). In fact, E = Ey ExE3, F, is abelian, and E; and Ej3 are cyclic
groups of relatively prime order by Lemmas 6.1 and 6.8, and Theorem
6.7. We may take A = F5 and B = E; F3. Since Egy has the same expo-
nent as E, the order of B divides |Eg|. Conjugacy of Hall subgroups in
a solvable group yields that we may assume B C Ey. Furthermore, we
may assume that A contains a Hall w(A)-subgroup of Ey.

Since H Fj is a Frobenius group with Frobenius kernel H, no element
of Fy stabilizes any nonprincipal irreducible character of H. Thus, for
any A € 8, the number of conjugate characters |M : I(A)| is divisible
by |Fo|. By (Iif), the normal closure of I(A)/H is abelian. Therfore,
Lemma 4.5 [FT] yields that A is a sum of irreducible characters of
degree |M : I{\)|\(1). Thus, d = |Ep| divides A(1) for every A € 8.

It remains to prove that 8 contains an irreducible character of degree
exactly d = |Ep|. This is proved as in Lemma 28.1 of [FT]. Let £ = AB
as above. Since H is nilpotent, H/®(H) is elementary abelian. Let
L be a maximal A-invariant subgroup such that ® C L C H, and let
Ay = C4(H/L). Then, A acts on H/L irreducibly and A/A; is cyclic.
Since Ejy has the same exponent as F and FgNA; = 1, |A/A;] is equal to
the exponent of A. This implies that FgA; = E. Let A be a nonprincipal
linear character of H/L. Then, HA; = I(A). Therefore, Lemma 4.5 [FT]
yields that AM is a sum of irreducible characters of degree exactly equal
to [Ep| = d. Q.E.D.
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Remark. At the final stage of proof, Lemma 4.5 [FT]| yields that
AM is a sum of exactly |A;| irreducible characters. We have

|A1| = IE . E0|
Thus, M has at least 2|E : Eg| irreducible characters of degree d.

Theorem 15.2. Let M € M be a group of type I and let § be as in
Lemma 15.1. If H/®(H) is not a chief factor of M, then 8 is coherent.
The assumption on H is satisfied if Z(E) contains an element x such
that Cy(x) € H' and Cy(z) # H.

Proof. Let d = |Ep|. Since Ey acts regularly on H, each chief factor
of M in H has order at least 2d + 1 It follows that |H : H'| > 4d? + 1.
By Theorem 12.5, 8 is coherent if S(H') is coherent.

Let 81, ..., 8k be the equivalence classes of characters in §(H’). Each
8; is a set of irreducible characters of the same degree. If A € §;, then
X € 8;. Thus, |8;] > 2. Hence, by Lemma 10.1 [FT], each §; is coherent.
Let n; = |S;| and let d¢; be the common degree of the characters of §;.
‘We may choose the notation so that

b=1<l< <l

Lemma 4.5 [FT] yields that for any nonprincipal linear character o, the
irreducible component of o™ has degree |M : I{a)|. Since d = |Ep|, we
get £; < |E : Eq|-

If S(H’) is not coherent, Theorem 12.3 yields that the inequality of
Hypothesis 12.2 is violated, i.e. we have

m—1
> nif? < 2 <2|E : Ey
i=1

for some m.

We define H = H/®(H) and use the bar convention. By assumption,
we have a normal subgroup H; of H such that H; is a nontrivial proper
E-invariant subgroup. Since (|E|,|H|) = 1, there is a complementof H;
in H. Thus, there is an E- invariant subgroup Hy such that H1Hy = H
and Hy N Hy = ®(H). Then, H, is a normal subgroup of M. We
have remarked that there are at least 2|E : Ey| irreducible characters of
degree d having H; in their kernel and at least 2|E : Ep| irreducible ones
of degree d having Hj in their kernel. It follows that 4|E : Eg| < nj.
This contradicts the earlier inequality. Therefore, § is coherent.

Suppose that Z(E) contains an element z such that Cy(z) ¢ H'
and Cy(z) # H. Let C = Cg(z). Then, H = C x [H,z]. If C = H,
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then C(z)®(H) = H. This implies Cg(z) = H. Therefore, C # H.
If C = 1, then Cy(z)(z) C ®(H). This is impossible as Cy(z)H'
corresponds to a direct factor of H/H'. Since z € Z(E), C is M-
invariant. Hence, H = H/®(H) is not a chief factor of M and the first
part of Theorem 15.2 yields that § is coherent. Q.E.D.

§16. Characters of Subgroups of Type IIT and IV

The following notation is used as in §29 [FT]. Let S = S'Q* be
a subgroup of type II, III, or IV where ¢ = |Q*| is a prime and Q*
corresponds to the subgroup Wj in the definition of the groups of type
II, ITI, or IV. Let H = Sr and let V be a Q*-invariant complement of
H in S. We have a subgroup T not of type I paired with S in Theorem
L.

Let (H) = {p1,...,pt} and for 1 < i < ¢, let P; € Sylp, (H),
Ci = Cy(R), and C = (N, Ci. Let [H| = b, |V| = v, |Q*| = ¢,
[Cil=c¢ (1<i<t),and |C|=c

Let 8y be the set of characters of S which are induced by non-
principal irreducible characters of S’/H and § the set of characters of
S induced by irreducible characters of S’ that do not have H in their
kernel.

Theorem 16.1. (a) If S is of type III, then 8o U 8 is coherent
except possibly if H is abelian with |[H| = p? for some prime p, VQ*
acts irreducibly on H, and C = 1. (b) If S is of type IV, then 8o U8 is
coherent except possibly if H is abelian with |H| = p? for some prime p,
VQ* acts irreducibly on H, C = V', and 8y is not coherent.

This is Theorem 29.1 [FT]. We paraphrase a part of their proof.

Throughout this section we assume that S is of type III or IV. By
Theorem I, T is of type II. Therefore W is of prime order. Let p = |Ws|
and write p = p;, P = Py, and P* = W,. Since S is of type III or IV,
we have 8" C F(S) = HCs(H) = HC C S’ by (T3).

We will prove Theorem 16.1 in 6 steps.

Lemma 16.2. Hypothesis 12.4 is satisfied for S, F(S), and 8§oUS
in place of M, H, and 8, respectively, with d = 1.

Proof. By the definition of groups of type III or IV, H C F(S),
F(5)#S5’, and S/H is a Frobenius group with Frobenius kernel S’/ H.
Thus, 8¢ contains an irreducible character of degree g = |S:S’|. Every
character of 8g U § is induced by an irreducible character of S’. So,
the degree is a multiple of q. Thus, (iv) of Hypothesis 12.4 is satisfied.
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By Lemmas 13.5 and 13.7, each equivalence class of 8q U § is either
subcoherent or consists of irreducible characters. An equivalence class
contains A as well as A. Thus, the condition (v) is satisfied. Q.E.D.

Lemma 16.3. Let F = F(S) and let S(F") be the subset of §gUS§
consisting of those characters which are equivalent to some character in
8o U 8 that has F' in its kernel. If 8(F') is coherent, then Sg U § is
coherent.

Proof. Since Wy C P, V does not centralize P. Then, the Frobe-
nius group VQ* acts nontrivially on P/®(P). This implies |P: ®(P)| >
p?. Thus,

|F:F'| > |P: ®(P)| > p? > 4¢® + 1

by (5.9) of [FT]. Theorem 12.5 yields Lemma 16.3. Q.ED.
Lemma 16.4.. If 8(F’) is not coherent, then S"" = F.

Proof. By Corollary 9.6, W5 is a subgroup of S”. It follows that
S/S" is a Frobenius group with Frobenius kernel S’/S”. The proof of
Lemma 29.3 [FT] proves Lemma 16.4. Q.E.D.

Lemma 16.5. If 8(F’) is not coherent, then H = P, P! = ®(P),
|P:P| =p9, PNn®(P) =1, and C = V'. Furthermore, VQ* acts
irreducibly on P.

Proof. The proof is the same as that of Lemma 29.4 [FT]. Since
|P: ®(P)| = p? and V does not act trivially, VQ* acts irreducibly on
P/®(P). Q.E.D.

Lemma 16.6.  If S(F') is not coherent, then P is an elementary
abelian p-group of order p9.

Proof. See the proof of Lemma 29.5 [FT]. I will paraphrase the
part of the proof concerning the linear characters s; of V modulo p.

For u,v € V, we have s;(uwv) = s;(u)s;(v) (mod p). Thus, s; are
indeed linear characters modulo p. None of these characters is trivial
because Cp/p/(V) = 1. If we take the notation that a generator w of
Q* shifts the one-dimensional V-modules downwards ¢ — ¢ — 1, then
-1

siv1(v) = s;(wrow) forall veV.

If s;5; = 1 for some i < j = i+ k, then for & = wF, s;(v) = s;(z " vz)
so 1 = s;(v)s;(v) = si(vz~lvz) for all v. We claim that the mapping
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defined by 6 : v — vz~ lvxr induces an injection on the group V/V’.
Suppose that 8(v) = 0(u) (mod V’). Then,
e loulz=v lu=w o u] = (vu )T

modulo V’. Since the group V@Q*/V’ has odd order, this happens only
when vu~! =1 (mod V’). Thus, # induces an injection on a finite set.
Therefore, 6 induces a surjective map. Then, for every v € V, there are
elements v € V and z € V' such that v = 6(u)z. Since s;(z) = 1, we
have s;(v) = s;(6(u)) = 1. This contradicts the statement that s; is not
trivial. Thus, s;5; # 1 for any 4, j with 1 <4,j <gq.

The remaining proof is given in [FT]. Q.E.D.

Lemma 16.7. If §(F”) is not coherent and C # 1, then Sy is not
coherent.

Proof. This is a paraphrase of the proof of Lemma 29.6 [FT]. As-
sume that 8y is coherent. Note that S/H is a Frobenius group with
Frobenius kernel S’/H that is a nonabelian group of order v. Thus, 8¢
is the set of all irreducible characters of S/H that do not have S’ in their
kernel.

Let 8; = 8o and let 85, . . ., 8, be the equivalence classes of §(F”)—8¢
such that every character of 8,, has degree [,,q for m > 2 and [; <3 <

- < l. By assumption, S(F”) is not coherent. We check the validity
of Hypothesis 12.2. If A € §;, then A € §;. Now, Lemmas 13.5 and
13.7 yield the condition (iv). Since 8y contains an irreducible character
of degree d, all conditions of Hypothesis 12.2 except the inequality are
satisfied. Since S{F") is not coherent, the inequality must be violated. If
A €8, for m > 2, then ) is equivalent to a constituent u of a character
induced by a linear character of F' and A(1) = u(1). Since V' = C by
Lemma 6.5 and F = HC, the degree [,,q of u satisfies {,, < v/ec.

Consider the contribution to the left side of the inequality from
So. A character A1y of 8¢ is irreducible of degree I;.q. Since S/H is a
Frobenius groupwith Frobenius kernelS’/H, 8 is the set of irreducible
characters of S/H that do not have S in their kernel. There are exactly
q other characters of degree 1. Thus,

-1
l1s9)* + g = qv, S
D (lhaq)* + g = qu Z ”)\15”2 .

S

Thus, we obtain v — 1 < 21,9 < 2qu/e. Since 1 < c < wand c =1
(mod 2q), we get a contradiction. Q.E.D.
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Suppose that S is of type III or IV. If §US is not coherent, S$(F”) is
not coherent by Lemma 16.3. Then, by Lemmas 16.5 and 16.6, H = P
is elementary abelian of order p? and VQ* acts irreducibly on P. If §
is of type III, then V is abelian so C' = V' = 1 by Lemma 16.5. If S is
of type IV, then C' = V' and §; is not coherent by Lemma 16.7. This
proves Theorem 16.1. Q.E.D.

§17. Characters of Subgroups of Type II, III and IV

We will use the notation introduced at the beginning of §16. In
addition, we denote a = exp V/V’.
In the first part of this section, we assume that

(1) S is a subgroup of type II, IIL, or IV,
(2) 8 is not coherent if S is of type III or IV, and
(3) V/V’ has exponent a.

In this section, we denote by S(A) the set of characters in 8§ which
have A in their kernel. This usage is different from the one used in §16.
We follow the argument of §30 [FT)].

Lemma 17.1. The degree of every character in $ is divisible by
aq.

Proof. Every character in 8 is a constituent of a character of S
induced by a nonprincipal character 6 of H. Let V; = V N 1(0) and let
b=|V:Vi|. If Sis of type IT or III, V is abelian by (II4) or (I11#4).
By Lemma 4.5 [FT], it suffices to show that a divides b.

The group V; centralizes a section of H. Then, V3 C A(S) as shown
in the proof of Lemma 30.1 [FT]. Consider V* and suppose that V? # 1.
Then, V® C V; C A(S). If S is of type II, the modified (Ilv) yields
Ng(V?) C S. Since V® char V, we get Ng(V) C Ng(V®) C S in
contradiction to (ITiw). If S is of type III, V? # 1 is a normal subgroup
of the Frobenius group VQ*. Since § is not coherent, Theorem 16.1
yields that VQ* acts irreducibly on H. Then, the abelian group V?® # 1
acts semisimply and one component is trivial as V® C V;. It follows that
V' acts trivially on H. Therefore, V? C C, contradicting Theorem 16.1.

Suppose that S is of type IV. Then, Theorem 16.1 yields that 8¢ is
not coherent. By Lemma 12.6, V(& S’/H) is a nonabelian r-group for
some prime 7 and V' = ®(V). In this case V/V' is an elementary abelian
r-group, so a = r. Since VQ* acts irreducibly on H, we have Cgx (V) = 1.
It follows that V' does not stabilize any nonprincipal character of H.
Hence, the degree of a character in § is divisible by r. This proves
Lemma 17.1. Q.E.D.
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Lemma 17.2. For 1 < i < t, |P: ®(P)| = pi?, VQ* acts on
P, /®(P;) irreducibly, and V/C; has exponent a.

The proof of Lemma 30.2 [FT] applies.

Lemma 17.3. For 1 <i <t, eithera| (p; —1) ora| (p,?—1)
and (a,p; — 1) = 1. In the second case, V/C; is a cyclic group of order
a and acts irreducibly on P;/®(F;).

Cf. Lemma 30.3 [FT].
We prove two (known) properties of finite abelian p-groups for some
prime p.

Lemma O. (1) Let A be a finite abelian p-group such that ®(A)
15 a maximal characteristic subgroup of A. Then, A is a direct product
of cyclic groups of the same order.

(2) Suppose that an abelian group U acts on a finite abelian p-group
A. Assume that the exponent of U divides p— 1. Then, A is a direct
product of U-invariant cyclic subgroups.

Lemma 17.4. Suppose (a,p; —1) =1 for some i, 1 <i<t. Let
Hy = P11;%;P;. Then, |H:H.| = |P;: P/| = p?™: for some integer m;.
Furthermore, 8(Hy) contains at least

1 (pi™ - 1) s

P B A — e __ 1

(B )

irreducible characters of degree aq and at least p;** — 1 characters of
weight q and degree aq.

Proof. 1 will paraphrase the proof of Lemma 30.4 [FT]. Lemma
17.3 yields that V/C; is cyclic. Suppose that S is of type IV. Then, by
Theorem 16.1, §¢ is not coherent. We showed in the proof of Lemma
17.1 that V' = ®(V) = C = C;. Then, V/®(V) is cyclic. Hence, V
is cyclic. This is a contradiction because V is nonabelian for type IV.
Therefore, S is of type 11 or III, and V is abelian. Lemma 17.3 yields
that V acts irreducibly on P;/®(F;). It follows from Lemma M that
H/H,(= P;/P]) is a direct product of ¢ cyclic groups of order p*:. On
each chief factor in H/H;, Q* centralizes a subgroup of order p;. Since
Cu(Q*) is cyclic by Theorem C (2), we have |Cy, g/ (Q")| = pi™.

The group HC;/H; is the direct product of H/H; and H1C;/H;.
Both factors are abelian. Since V/C; acts regularly on H/Hy, every lin-
ear character o of HC;/H; that does not have H/H; in its kernel has
exactly a = |V : C;| conjugates. Hence, « induces an irreducible char-

acter of degree a. There are at least (p]"*? — 1)¢;/a distinct irreducible
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characters of degree a. Among them, precisely p;"* — 1 are Q*-invariant.
The assertions of Lemma 17.4 follow from Lemma 13.5. Q.E.D.

Lemma 17.5. Suppose that a | (p; — 1) for some i with 1 <14 < t.
Let Hy be as in Lemma 17.4. Then, |H:H,| = |P;: P}| = p;"? for some
integer m; and 8(Hy) contains at least

(" -1) v
a av’

irreducible characters of degree aq where |V'| = v'.

Proof. The Frattini factor group of H/ Hj is isomorphic to P;/®(F;).
By Lemma 17.2, VQ* acts irreducibly on P;/®(P;). Since a | (p; —
1), H/H; is a direct product of V-invariant cyclic groups of the same
order. There are V-invariant subgroups K; and Ky such that H/ K>
is a cyclic group of order p™¢, K1 Ko = H, and Ky N Ko = Hy;. Let
Vi = Cy(H/K3). Then, V/V; is a subgroup of Aut(H/K>). Hence,
V/V; is cyclic, so |[V: Vq| < a.

Consider the factor group L = HV;/K5V’. Since V; 2 V'’ and V;
centralizes H/ K3, L is abelian. Let L be the set of linear characters of L
which do not contain H in their kernel. If A € £, A induces an irreducible
character 6 of degree |V: V4| in 8. By Lemma 17.1, |V: V4| > a. Hence,
|V: V41| = a. Suppose that #° = A5 is not irreducible or for A\, u € L,
they induce the same irreducible character of 8. In the first case, A is
Q*-invariant, so H Nker X is Q*-invariant. In the second case, A and pu
are Q*-conjugate so H Nker A and H Nker y are Q*-conjugate. However,
Hnker A and H Nker u have the same index and both contain K5. Since
H/K, is a cyclic group of order p;*, there is a unique subgroup of each
index. It follows that H Nker A is @*- invariant. Since every subgroup
of H that contains K7 is V-invariant, H contains a subgroup of index
p; that is V@Q*-invariant. This contradicts Lemma 17.2.

We have |L| =1 = (p™ — 1)v/av’ and the characters of L produce
exactly [/a distinct irreducible characters of degree aq in S(Hy).

Q.E.D.

Lemma 17.6. IfS(H’) contains no irreducible character of degree
agq, thent =1, P =®(P),a=u=(p19-1)/(;p—1), andc=c;1 = 1.
Furthermore, 8(H') is coherent and S is not of type IV.

Proof. See the proof of Lemma 30.6 [FT]. We note that in the
following equation a = (p;4 — 1)/(p; — 1), p; is determined by a. This
remark yields t = 1. Since c =1, V' = C = 1, and S is not of type
IV. Since 8(H') contains all the characters of degree ag and weight ¢,



156 M. Suzuki

8(H') consists of characters £;, 0 < j < p. By Lemma 13.7, 8(H') is
coherent. Q.E.D.

In the remainder of this section we assume that
(2)" 8 is not coherent

in place of the condition (2). Note that S” C F(S) = HC C S’ by
Theorem A (7). Define F = F(S).

Lemma 17.7. If S(H') is not coherent, then H = P;, C; = 1,
a=(p-1)/2, p=p1, v+#a, and ®(P1) = P{. The degree of every
character in §(H') is either aq or vq/c, and S(H') contains exactly 2v/a
irreducible characters of degree aq. Furthermore, S is not of type IV.

Proof. The proof of Lemma 30.7 [FT| shows that if S(F’) is not
coherent, the degree of any character in 8§(F") is either ag or ug where
u = v/e, and the other conditions in Lemma 17.7 are satisfied. If S is
of type II or III, then V is abelian. Hence, F' = H' because F'= H x C
with C abelian. Thus, the result is proved if S is of type II or III.

It remains to show that if S(H') is not coherent, then S is not of type
IV. Suppose that S is of type IV. Since 8(H’) is not coherent, 8oUS is not
coherent. Theorem 16.1 (b) yields that H = P is elementary abelian,
VQ* acts irreducibly on P, and 8 is not coherent. Since S/H = VQ*
is a Frobenius group, Lemma 12.6 implies that V is an r-group for
some prime r and V' = ®&(V). It follows that V/V' is an elementary
abelian group of order r™. Thus, the exponent of V/V’ is r; we have
r = a. We claim that n < 2. Suppose that n > 2. Since H = P
is elementary abelian, so is F/C. Let 0; and 62 be linear characters
of F/C with exactly a conjugates in S’, so each induces an irreducible
character of degree a. Suppose that 6165 is not the principal character.
Then, 1(61602) 2 I(61) N I(62). Since both I{#1) and I(f2) have index r,
the index of I(6:182) in S’ is at most 72. Since the index of the inertia
group of a nonprincipal character is either 7 or r™, |S’: I(0;02)| = r.
Thus, the set of linear characters with at most r conjugates forms a
VQ*-invariant subgroup of the character group of F//C. Since VQ* acts
irreducibly on F/C, every nonprincipal character of F/C has exactly
r conjugates. It follows from the permutation lemma that the number
of orbits on the character group by the action of V is the same as the
number of orbits on P!. Since each orbit has at least r elements, every
element of P! has exactly r conjugates. Take an element z # 1 in
P*. Then, Cy(z) = X is a maximal subgroup of V. Since z is @*-
invariant, so is X. Hence, Cp(X) is VQ*-invariant. Since VQ* acts
on P irreducibly, we have Cp(X) = P. This contradicts Theorem 16.1
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because C = Cy(P) = V'. Therefore, we have n < 2. If n =1, V/®(V)
is cyclic. This implies that V is cyclic. This contradicts the definition
of a group of type IV (IViii). If n = 2, Lemma 11.3 [FT] yields that 8g
is coherent. This final contradiction shows that S is not of type IV if
8(H') is not coherent. Q.E.D.

Lemma 17.8. The family S(H') is coherent.

Proof. Suppose that §(H') is not coherent. Lemma 17.7 yields that
H=P,Ci=1,a=(p—-1)/2,p=p1,v# a, Pl =3(P1), and S is of
type II or III. The last condition implies that the subgroup V is abelian.
Let 8; be the set of irreducible characters in 8(H') of degree aq. By
Lemma 17.7, the degree of every character in §(H') is either aq or vg,
and |81 = 2v/a. We will prove some properties of characters of P = P;
having exactly a conjugates. Note that there is such a character because

81 # 0.

We prove a lemma. Let 0 be a nonprincipal character of P/P' with
exactly a conjugates. Then, Vi = V N I(#) contains no Q*-invariant
subgroup different from 1.

Proof. Suppose 1 # U C V; and U is Q*-invariant. Then, V;
centralizesP/ker§. Since V is a p’-group, Cp/p/(V) # 1. Hence,
Cp/pr(U) # 1, and it is a direct factor of P/P’ because U is a p'-
group. Since U is Q*-invariant and V is abelian, Cp,/p/(U) is VQ*-
invariant. By Lemma 17.2, VQ* acts irreducibly on P/®(P). It follows
that Cp/p/(U) = P/P’, and hence U C Cy(P) = C; = 1. This contra-
diction proves the lemma. Q.E.D.

We claim that there is a pair of characters 6, and 65 of P/P’ having
exactly a conjugates such that 610, has v conjugates. Suppose that this
does not hold. Then, the characters having at most a conjugates form a
subgroup of the character group of P/P’ that is VQ*-invariant. Then,
Lemma 17.2 yields that every character of P/P’ has at most a conju-
gates. This gives a contradiction as follows. There is a Q*-invariant
nonprincipal character 8 of P/P’. Then, I(6) NV is Q*-invariant, con-
tradicting the lemma.

Choose a pair of characters 6, and 6, each having exactly a conju-
gates such that 616 has v conjugates. Then, |S': I(6;)} = a for i = 1,2,
and I(6,) N I(#2) = P. Thus, v divides a?; in particular, v < a?. We
will prove that 7(V) < 2. Take an arbitrary prime r € n(V). We will
show that V has a Sylow r-subgroup generated by at most two elements.
Let z be an element of order a in V, and let w be a generator of Q*.
If (x) N {x)¥ is an r’-group, (z,z™) contains a Sylow r-subgroup of V'



158 M. Suzuki

that is generated by two elements. Suppose that (z) N (z)* contains a
subgroup R of order r. Then, R is the unique subgroup of order 7 in
(z) as well as in (z)*. Thus, R is Q*-invariant. By the lemma, I(6;)
does not contain R. Let V; = I(6;) N V. Then, V1 NV, = 1. Since
V;NR =1, V/V, has a cyclic Sylow r-subgroup. The Second Isomor-
phism Theorem yields that V; also has a cyclic Sylow r-subgroup. Thus,
a Sylow r-subgroup of V is generated by at most two elements. Since
V is abelian, we have r(V) < 2. If (V) = 1, V would be cyclic. Then,
a = v, contrary to a # v. Thus, r(V) = 2.

We prove that if # has exactly a conjugates, then V3 = I() NV is
cyclic and Vi N V¥ =1 for any w € Q*. If V; is not cyclic, V; contains
an elementary abelian group E of order r? for some 7 € 7(V). Since
r(V) =2, E is a characteristic subgroup of V. Thus, E is Q*-invariant,
contradicting the lemma. Therefore, V; is cyclic. If Vi N V1% # 1 for
some w # 1 in Q*, then take a subgroup R of prime order in V; N V4%
Since V; is cyclic, R is the unique subgroup of its order. The same holds
for V1. Then, R is a Q*-invariant subgroup of V;. The lemma yields
that this is not possible. Thus, V; N V;* = 1.

The proof of Lemma 30.8 [FT] can be carried over. The Q*-invariant
nonprincipal characters of P have exactly v conjugates as seen from
the third paragraph of the present proof. Thus, S(H’) contains p — 1
characters of weight ¢ and of degree guv.

Let A be an irreducible character of degree aq in 8;. Then Lemma 4.5
[FT] yields that X is induced by a linear character of some subgroup U of
index a in S’. Define a = 1% —\. Since UxS’ (as S’ /H 2V is abelian),
1p5" is the regular representation of the group S’ /U. Since U = I(6) for
some nonprincipal character 6 with exactly a conjugates, UNUY = H
for allw € Q*. If [U:H| = b, then U/H = V; = I(§) NV is cyclic.
Thus, UU"/H is the set Sp/H of elements of order dividing b. It follows
that S is Q*-invariant. If a linear character £ of S’ has U in its kernel,
ker{®” O U™. Thus, £ has U in the kernel if and only if ker£ D Sj.
Therefore, we can compute (1y)°. It is the sum of psys', irreducible
characters induced by nonprincipal characters of S’/S;, with multiplicity
g and (a — a/b) other irreducible characters with multiplicity 1. Thus, it
follows that ||a||? = g+4¢*((a/b)—1)/g+a—(a/b)+1 = a+1+(q—1)a/b.

The remaining portion of the proof is the same as that of Lemma
30.8 [FT]. Q.E.D.

Lemma 17.9. S is of type II.

Lemma 17.10.  If8 contains an irreducible character of degree aq,
then Hypothesis 12.4 is satisfied with M = S, X = A(S), H = Sp = P,
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and d = a.

Lemma 17.11. If § contains an irreducible character of degree
aq, then |H: H'| < 4a¢® + 1.

Proof. We need only to check that the present S(H’) is the same
as 8(H') in Theorem 12.5. Suppose that A € §(H’) in the sense of
Theorem 12.5. Then, A has the same degree as the character p in 8§
that has H’ in the kernel. By the definition of §, X is induced by an
irreducible character A; of S’. Similarly, u is induced by an irreducible
character p; of S’. Since H' C ker u, the restriction of y; on H is a
direct sum of irreducible characters of degree 1. Since S’/H is abelian,
Lemma 4.5 [FT] yields that u,(1) is prime to |H|. Note that H is a Hall
subgroup of S. Since A;1(1) = pi(1), the degree of A\; is prime to |H]|.
Therefore, the irreducible constituents of the restriction of A\; to H are
linear. It follows that H' C ker \. Now, Theorem 12.5 yields Lemma
17.11 because § is not coherent. Q.E.D.

Lemma 17.12. For1 <i <t (a,p; —1) =1 and P,V/C; is a
Frobenius group.

Lemma 17.13. The group H is a nonabelian 3-group with H' =
®(H). There is an irreducible character of degree aq in 8 and a < 34/2,

Proof. By Lemma 17.8, H' # 1 so H is nonabelian. Choose the
notation that Py # 1. Let

P1:‘P11DPlzD"'Dpln:P,DP1n+1:PO

be a part of a chief series of S. Then, P, /P, is a nilpotent group of class
2. Lemma 17.9 yields that S is of type II. Hence, by (Ilv), Cg(V) = 1.
It follows from Theorem 3.10 [BG] that Q* centralizes some nonidentity
in each chief factor. Since Cg(Q*) is cyclic, P;/Py has exponent p".
The mapping y — yp"_1 induces a V-homomorphism of P;/®(P;) into
Pj/P,. Therefore, the minimal polynomial of the generator z of U/C}
on P, /®(P) is the same as that on P{/P,. By Lemma 6.2 [FT], we have
g >3anda < 392,

If § contains no irreducible character of degree aq, Lemma 17.6 yields
H =P and a = (p1? — 1)/(p1 — 1). Hence,

39 < p 9t < g < 392,

This contradiction proves that there is an irreducible character of degree
aq in 8.
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Let |P; : Pj| = py™%. Then, by Lemma 17.11,
p1™ M s1p? < |H: H'| < 40%¢* +1 < 4-39¢% + 1.

By (5.9) [FT], we have m = 1, ¢t = 1, and p;? < 4-39¢*> + 1. Thus, p;
is small. Eventually, we have p; = 3 (cf. page 960 [FT]). Hence, H is a
3-group because t = 1. Since m = 1, we have ®(H) = H'. Q.E.D.

Theorem 17.14. Let S be a subgroup of type II, III, or IV. Let
a be the exponent of the group V/V', and let T be the element of M
paired with S in Theorem I. Then, the family 8 of characters is coherent
except possibly if S is of type II, H is a nonabelian 3-group, HV/C is a
Frobenius group with Frobenius kernel HC/C, a < 3%/2, |H: H'| = 39,
and T is of type V.

§18. Characters of Subgroups of Type V

In this section let T' = T"W> be a subgroup of type V. Let S be the
subgroup in M which satisfies the conditions of Theorem I. By (d), S is
of type II. We use the notation introduced at the beginning of §16.

Let T be the set of all characters of T' which are induced by nonprin-
cipal irreducible characters of V. For 0 <i<¢g—1,0<j <ws —1, let
7:; be the generalized characters of G associated with w;; of W and let
v;; be the characters of T' defined in Lemma 13.4. By Lemma 13.5, T”
has exactly ¢ irreducible characters which induce characters of weight
wy. Denote them vy = 17v,11,...,v4_1. Then, §; = v;T has weight ws.
Since ¢ is a prime, the characters vy,...,v,_; are algebraically conju-
gate. Therefore, v;(1) =1v4(1) for 1 <i<g-— 1.

We prove a lemma.

Lemma P. If ) is an irreducible character of T, then \™ is deﬁned
and A" is not equal to £n, for any s and t.

Proof. If A € 7, then X is an irreducible character in T and X # .
Then, {A, A} is coherent and A" is (not uniquely) defined by (A — )" =
AT=X". Suppose that A\™ = £7n,. Then, for an element = € /VI?, we have

A (x) = £na(z) = Twse(z).
Since A vanishes on W, A" — X' = (A — X)7 vanishes on z. Thus, we
get that Xr(m) = 4wy (z) # 0. By Lemma 13.1, X' is one of +n;;; in

fact, wet(z) = wij(z) on z € w implies that N = +nse = A7. This
contradicts the inequality A # . Q.E.D.
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Lemma 18.1. The family S(H') contains an irreducible character
of S except possibly if we is a prime and S’ = HV is a Frobenius group
with Frobenius kernel H.

Proof. We can apply Lemma 17.6. If §(H’) contains no irreducible
character, then H = P, is a py-group, H' = ®(H), v = a = (p1? —
1)/(p1 — 1) and ¢1 = ¢ = 1. Suppose that H is nonabelian. Choose a
chief factor P{ /P, of S. Then, P|/Py C Z(P;/PF,) and it is an elementary
abelian. As in the proof of Lemma 17.13, Lemma 6.2 [FT] yields a <
39/2. Since a = (p1? —1)/(p1 — 1), we have a contradiction 39~! < 39/2,
Therefore, H is abelian. It follows from H’ = ®(H) that H is elementary
abelian. On each chief factor in H, @* has a nontrivial centralizer. Since
Cp(Q*) = Wy is cyclic, wy = |Wh| is a prime and V@Q* acts irreducibly
on H. Thus, HV is a Frobenius group with Frobenius kernel H.

Q.E.D.

Lemma 18.2. Let Qij = ((l/l(].)CO - (:Z')T,T]()j). Then Q5 7& 0 fO’f‘
1<i<q-1,0<j<wy— 1.

Proof. Let M € M be a supporting subgroup of T'and let N = M.
By (Fiii), M is a group of type I. Let E = M NT. Then (Fii)(b) yields
that F is a complement of N in M. We prove the following lemma.

The elements of A(M) are w(W3)' -elements.

Proof. Since T is of type V, we have A(T) = T’. Take an element
z # 1 of Cp/(W2) = Q*. Then, by (Fiz)(c), we have (|N|,|Cr(z)|) = 1.
It follows that (|N|,|Wa2|) = 1. Suppose that there is an element of
A(M) of order r for some prime r in 7w(W3). Since N is an r'-group,
there is a subgroup R of order r in E with Cy(R) # 1. By replacing
M by conjugate, we may assume R C W> because W5 is a cyclic Hall
subgroup of T'. By Theorem 8.7 (d), Ny (R) = Q@* x W, and it is cyclic.
By Lemma 6.1 (d) and Theorem 6.5 (b), F has abelian Sylow subgroups.
Tt follows that E has cyclic Sylow r-subgroups. Then, r € 71 (M )Urs(M).
Since M is a w-subgroup by (Fii), Cy(R) # 1 implies that r € x(M).
This contradicts Proposition 10.1 (a). Q.ED.

We claim that © = ng; satisfies the property that © is constant
on the cosets of N which lie in M — N. By Lemma 14.1, we need to
check that © is orthogonal to the elements of T'(«) for every nonprincipal
irreducible character o of N. Take 61,02 € S(a). Since M is of type
I, 6; are irreducible characters of M which vanish outside A(M) and
61 = 62 on N by Lemmas 4.3 and 4.5 [FT]. Thus, 6 — 6, vanishes outside
A(M) — N. Since M is of type I, A(M) = Ag(M) and A(M) - N is a
TI-set of G with normalizer M by (Fii)(d).



162 M. Suzuki*

Thus, (0; — 02)G is the difference of two irreducible characters of
G. Suppose that (O, (6; — 62)¢) # 0. Then, © = no; is involved in
U = (0, — 65)¢. The virtual character ¥ vanishes outside Cq(A(M)).
Since elements of A(M) are m(W2)'- elements by the lemma, there is
a Galois automorphism of Q|g| that leaves (6, — )¢ invariant but
moves 1jo; to nor with k # j. Then, nok is involved in ¥ with the
same multiplicity. This is a contradiction because ¥ is the difference of
two characters. Hence, 7o; is constant on the sets of the form A(z) for
z € D*.

Lemma 11.4 yields now

(11 (1) = G, (noj)r) = ((1(1)¢o — &)™, moj) = aij-
The rest of the proof is the same as that of Lemma 31.2 [FT]. Q.E.D.

From now on, the lemmas of this section will be proved under the
assumption that T is not coherent, and we will derive a contradiction
from this hypothesis.

By Corollary 9.6, we have @* C T". Then, T/T" is a Frobenius
group with Frobenius kernel T"/T". We check that Hypothesis 12.4 is
satisfied for S, S’, 7 in place of M, H, § with d = 1. Since T/T" is a
Frobenius group, there is an irreducible character of degree wy = |T:T"|.
The last condition of Hypothesis 12.4 holds by Lemmas 13.5 and 13.7. If
H, =T", then 8§(H;) in Theorem 12.5 is the set of irreducible characters
of T/T" which do not have T" /T" in their kernel. Since 7"/T" is abelian,
this family is coherent. Then, Theorem 12.5 yields that T is coherent if

|T: T"| > 4|T: T'|> + 1.
Since we are assuming that T is not coherent, we have
IT": T"| < 4w3 + 1.

This implies that Wy acts on T'/T" irreducibly. It follows that TV = Q
is a g-group for the prime ¢ = |@Q*|. Define

Q:Q|=¢ and |T:Q|=wy=e.

Lemma 18.3. Suppose that T is not coherent and |Q: Q'| = ¢®
with b = 2¢ an even number. Then, |T: Q| = e is not a power of any
prime.

Proof. This is Lemma 31.3 [FT]|. We will paraphrase a part of their
proof. Suppose that e = p" for some prime p. Since T is not coherent,
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Lemma 11.5 [FT] yields that ¢°+1 = 2p", ¢° is the degree of any nonlin-
ear irreducible characters of Q/[Q, Q'], and if Q; is a normal subgroup of
T such that @1 C Q' and Q; # @', then T/Q; is not a Frobenius group.
Note that Q'/[{Q, Q'] is contained in the center of Q/[Q, Q’]. Therefore,
Lemma 4.1 [FT] yields that the degree of any irreducible character of
Q/[Q, Q] is at most ¢°.

Since T is not coherent, () is nonabelian. So, Q' # 1. Let Q;
be a normal subgroup of T' such that @; C Q' and Q'/Q; is a chief
factor of T. Then, [Q,Q'] C Q. Since Q1 # @', the group T'/Q; is
not a Frobenius group. Then, some nonidentity element of W3 has a
nontrivial centralizer in ;. By Proposition 8.2, W5 acts in a prime
manner on (. Thus, we have Q* € Q;. Since [Q,Q'] C Q1, Q*Q:
is a normal subgroup of Q). Clearly, W5 normalizes Q*Q;. Therefore,
Q*Q1 is a normal subgroup of T'. Since Q’/Q; is a chief factor of T,
we have Q*Q; = Q'. Then, |Q': Q1] = |Q*| = ¢ Any nonlinear
irreducible representation of Q/Q; has degree ¢° because Q1 2 [Q, Q’],
and it represents the subgroup @'/Q; (in the center of Q/Q1) by scalar
matrices. Since each coset of @1 in Q' contains an element of Q*, any
nonlinear irreducible character of Q /@, is Wa-invariant. Thus, there are
g — 1 nonlinear irreducible characters v, ..., 41 that induce reducible
characters of T. Let {; = ;T for 1 <4 < g — 1. These characters are
algebraically conjugate.

Since |Q : Q'| = ¢* with b = 2¢, T contains (¢* — 1)/e = 2(¢° — 1)
irreducible characters of degree e. Let {);} be these irreducible char-
acters of degree e. Since @ = A(T'), {\;} is coherent. Thus, the set of
virtual characters {\;” } of weight one is defined by Lemma 10.1 [FT].
None of these A\;” is equal to %7;.

Define a = (5 — A1 and B = ¢°A\; — (1. Consider the decomposition
of @™ and 87 as in the proof of Lemma 31.3 [FT]. Then,

BT=g¢N"—zY N +A
for some integer = and (\;", A) = 0 for all 7. If we write
A= aymi; + Ao
where Ay does not involve any 7;;, Lemma 13.2 yields
aoo — Gip — aoj +ai; =0

because 37 vanishes on w. By Lemma 11.3, (37,1¢) = (8,17) =0 so
ago = 0.
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The set {(s}, 1 < s < g — 1, is coherent by Lemma 13.7 with
(" =€) ;ms;j- Then, by Lemma 11.4,

(4,67 -G =B, -G =BG —G)=e

It follows that aso — aj0 = 1 with the sign independent of s. With
a = ayg, we have
(18.1)

(a:|:1)2+(q—2)a2+z: a0j2+2{(ai1+aoj)2+(q—2)(a+a0j)2} < |Al>.

Let k be the contribution from the third term. Since each pair of complex
conjugate characters contributes an even integer to the sum, k is even.
The terms in the last sum and the first two terms contribute at least
one, SO

k+e<|A|>
By definition, (¢°¢o — (1)” = ¢°a” + 7. Lemma 18.2 implies that for
any valueof j (1 <j<e—1)

(@”,m05) #0 or (B7,m0;) # 0.
Since ||37||? = ¢*° + e by Lemma 11.4, we have
(¢°—2)*+2°(2¢° = 3) +k+e< g* +e, 2°(¢°~1)—2z¢" 0.

Therefore, 0 < z < ¢¢/(¢° — 1) < 2. Thus, z = 0 or z = 1. Suppose
that © # 0. Then, z = 1 and ||A||> = e + 2. It follows that k£ < 2. If
k = 0, we get a contradiction as in [F'T]. Assume that & = 2. Then,
aor = ags = £1 for exactly two r, s and the remaining ao; are zero. The
values taken by 87 are in the field Qg by Lemma 11.1, while the values
taken by ng; are in the field Q. by Lemma 13.1. Then, 7o, has at least
p — 1 algebraic conjugates ng; with ag; = ao,. It follows that p —1 = 2.
Thus, p = 3 and ¢q # 3.

Since ||A||? = e +2 = e + k, the contribution from each term of the
last sum in (18.1) is exactly one. Since ¢ —2 > 1, we have a + ag; = 0
for each j with 1 < j < e — 1. Since the first two terms of (18.1) also
contribute 1, we have a = 0. This contradicts ag, = ags = £1.

Therefore, £ = 0 and we have

BT =g\ +4

with ||A||?> = e. It follows that k = 0 and ag; = 0 for 1 < j <e— 1.
Then, (18.1) reads

e((a£1)2+ (¢—2)a?) <e.
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Hence,a=0orat1=0and ¢=3. Ifa =0, then a;; =0for all § > 2
and a1; = ajo = £1. Thus,

ﬂT — qC)\lT :|: gl'r.

Ifaxt1l=0and g =3, ajo = 0 and azy = £1. Hence, a;; = 0 and
ag; = ago = £1. Thus, 87 = ¢°M" £{3". Since ¢ = 3, we have only two
characters (; and (3. We see that the union of characters {\;} and {{;}
is coherent. This set is precisely T(Q1), the set of characters of 7 which
are induced by characters of @/Q1. Thus, 7(Q1) is coherent. The index
|Q : Q1] is g% and ¢?*T! > 4e? + 1 because e = (¢° +1)/2 > 2.

We check that Hypothesis 12.4 is satisfied with d = 1. We wish
to apply Theorem 12.5. The only point we need to worry about is
the definition of T(Q1). Thus, suppose that u is a character of T that
is equivalent to 7 € T that has @, in its kernel. Then, T is either an
irreducible character of degree e or a character of degree ¢° and of weight
e. Our set T(Q1) contains all the irreducible characters of degree e and
all the reducible ones of degree ¢e because there are only ¢ — 1 such
characters. Thus, u € T7(Q1). Theorem 12.5 yields that T is coherent,
contrary to the assumption. Q.E.D.

Lemma 18.4. The family S for the group S is coherent.

This follows from Theorem 17.14, Lemma 18.3, and Lemma 11.6
[FT] as shown in [FT]. Q.ED.

We use the following notation. Let
=g <gh<...
be the set of degrees of irreducible characters of @ and
v (1) = ¢’

Since Q* C Q' by Theorem C(3), the principal character of Q is the
only linear character of @ that is Wh-invariant. Thus, v1(1) > 1, ie.
n > 0. For 0 < i < mn -1, let A\; be an irreducible character of T" with
Xi(1) = eqgfi. Let §; be the set of irreducible characters of T' which
are induced by irreducible characters of Q with degree ¢fi. Define j,
inductively as follows. Let jo = 0. Define js to be the largest integer
not exceeding n + 1 such that

js_l

T= U 8

1=js—1
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is coherent. Let Qo be the normal closure of Q* in T'. Let
1:q90 <q91 <.‘.<qgm
be all the degrees of irreducible characters of Q/Qq. For any j with
0 < j < m, let 6; be an irreducible character of T/Qo of degree eq%.
Since T'/Qo is a Frobenius group, any nonprincipal irreducible character
of Q/Qq induces an irreducible character of T'/Qp. Define
a = Go — Ao,
Bi=q" " Fni—-N (1<i<n-1),
% =q""0,—0; (1<j<m)
Lemma 18.5. With the notation introduced above, we have
(Bi"smoe) =0 for 0<t<e—-1,1<i<n—1
(’YjTﬂIOt):O fOT OStSe_la]-S]STn“

Furthermore, if e is a prime, then one of the following possibilities
occurs:

e—1
a” =1g— A" + Zﬂon
t=1
e—1
o’ =1g +XOT+Zn0t and 2e+1=|Q:qQ,
t=1
q—1
o = 1G+Zns()+r
s=1

with (T,ng) =0 for0<s<qg—1,0<t<e—1.
Proof. Write
a” =Too + Ao, Bi" =Tio+ A, ;7 =To; + Ao
where A;; is a linear combination of the generalized characters 7, and

I';; is orthogonal to each of these 7. Since a”, 8;", and +;” vanish on
W, Lemma 13.2 yields that A;; = > asns: with ag (depending on 4
and j) satisfying

apo — @sp — @ot +ast =0
forall sand t. For 1 < s <q—1, ({;s — (;)" is orthogonal to a”, 87,
and 47. Since (" = €Zj 755 for s > 1, we have

aso =a1p for 1<s<q—1.
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Consider (3;. Suppose that \;_; € T, and write
BT =A+4,

where A; € I(T,") and A is orthogonal to I(Ts”). The Lemma at the
beginning of Section 18 yields {£n,:} N Ts” = 0. Thus, A, is a partial
sum of A. By Theorem 12.1 [FT],

l1A]? <e+1.

Since (8;, (A — Ai)7) # 0, ;" involves either \;™ or ;. If \; € Ts,
the coherence of T, yields that A = 0. If A\; ¢ T, then ;™ (or XiT) is
involved in A. Since ;" # =+, we have

[ Aill® <e.

We can prove ¢ = 0 as in Lemma 31.5 [FT]. Hence,

e—1 g—-1
Ajp = E aot E Mst-
t=1 s=0

By Lemma 11.1, the virtual characters of Ip(T)” take nonzero values
only at g-singular elements. On the other hand, the virtual characters of
Iy(8)™ vanish on g-singular elements by Lemma 11.1 and (Fi#)(c). Thus,
Io(T)7 is orthogonal to In(8)”. Since 8 is coherent by Lemma 18.4, we
have (£x(1)&" — & (1)&", Awo) = (&e(1)&" — & (1)&",8:") = 0. On the
other hand, (&7, Aj) = faokg. Hence,

& (aor = & (1)aok.

Suppose that ag; # 0 for some ¢t. Then, agr # O for all k. Hence,
| A:0l|2 > g(e — 1). This contradicts ||A;||> < e. Therefore, Ay = 0.
The case for ~; is similar.

The remainder of the proof is the same as the proof of Lemma 31.5
[FT). A Q.E.D.

We continue to use the notation introduced just before Lemma 18.5.

Lemma 18.6. With the notation of the preceding lemma, let A =
A1 and B = gfr=fr—1X — ;. Then (B7,m0;) =0 for0 <t <e—1.

Proof. Let T3 be the coherent set that contains S,_1. If ;7 € T3,
then 87 € I(Tp7) and (87,m0¢) = 0. If {3 ¢ Tp, we apply Theorem 12.1
[FT]. The proof is the same as that of Lemma 31.6 [FT]. Q.E.D.
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Theorem 18.7. The set T is coherent.

Proof. Suppose that T is not coherent and use the notation intro-
duced in Lemmas 18.5 and 18.6. In particular, o, 08, v;, Ai, and 6;
have the same meaning as in Lemmas 18.5 and 18.6. We may choose
the notation A\g = . We have

@G -G =dra”+> B

By Lemma 18.2, ((¢*¢o — (1), m0;) # 0. Since Lemmas 18.5 and 18.6
yield (8;",m0¢) = 0 for all ¢ with 1 < ¢ < n, we have (a”,7:) # 0 for 0 <
t < e—1. Thus, if (a",no;) = as, then a; # 0and Y a:? < [|a”||? = e+1.
Therefore, a; = 1 or —1, and a” involves exactly one more irreducible
character with multiplicity 1 or —1. Since

(@7, (Ao ~ X)7) = —1,

the extra character is either 4=\g” or ﬁ:XOT. In the latter case, we have
|Q : @'| = 2e+1 and there are exactly 2 irreducible characters of T' with
degree e. We may choose the notation that

(18.2) a"=1g— X"+ ame (a=1lor —1).

Lemma 18.5 yields (y,7,7m0¢) =0for 1 <s<m, 0 <t <e—1. Since

j
(q%60 — 0;)7 = > _ g% %,
s=1

we have

((¢%60 — 6;)7,a7) = ((¢% 60 — 6;)", —Xo")-
The left side is equal to (¢% 6o — 6;,0) = —¢% by Lemma 11.4 (and
the choice By = Xo). Since ||(¢% 8y — 6,)7||? = ¢2% + 1 and ((¢% 6y —
0;)7,(8; — 0;)7) = —1, we have

(18.3) (qgj00 it Hj)T = qgjao‘r — 0_7'7-.

If there are only two irreducible characters of degree eg97, there is an am-
biguity in the definition of 6;". But, we can take a consistent notation.
Let Qo be the normal closure of @* in T as defined before Lemma 18.5.
Let T(Qo) be the set of irreducible characters of I having the degrees
eq% with 0 < 5 < m. Then, (18.3) implies that T(Qg) is coherent.
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Consider (¢/~Xo — ¢1)7 = Y0, ¢/~ #6;. By (18.2) together with
Lemmas 18.5 and 18.6,

(g™ =€) @) = (@20 = 1), =)

Lemma 11.4 yields that the left side is equal to —g2/~. Since ||(g7" o —
Q)7 |1? = ¢*» + e, we have

(@XM =) =g N+ A

with ||A||? = e. The set {(,} of virtual characters ¢, is subcoherent
by Lemma 13.7. Hence, the definition of subcoherent set yields that
A = +({". In fact, A = —(;” except possibly when ¢ — 1 = 2. In the
exceptional case, there are exactly two virtual characters of weight e.
We can choose the notation

(18.4) (@XM —C)"=q¢" X" =",

Let @1 be a normal subgroup of T such that Q; C Qo and Qo/Q1
is a chief factor of T'. It follows from the definition of Qo that Q* € Q.
Then, Q*Q1 is a normal subgroup of T and @*Q1 = Qo (cf. the second
paragraph of the proof of Lemma 18.3). Thus, |Qo : Q1] = ¢.
Since T is not coherent and T(Qo) is coherent, Theorem 12.5 yields
that
|Q: Qo] < 4e* + 1.

Hence, @/Qo has no proper Wo-invariant subgroup. Since T/Qq is a
Frobenius group, this implies that ®(Q) C Qo. On the other hand,
@* C Q' by Theorem C (3). Therefore, Qp C Q'. Thus, ®(Q) = Qo =

Q’. The subgroup Q) satisfies |Qo: Q1| = q. Hence, Z(Q/Q1) = Qo/@1
and Q/Q; is an extraspecial g-group. Thus, |Q : Q'| = ¢?¢ for some
integer ¢. Define

T(@1)=T(Q)U{G|1<i<q-1}

Then, T(Q;) consists of all characters in T having the same weight and
degree as some character in 7 which has @; in its kernel. By (18.4),
T(Q1) is coherent. Since 7 is not coherent, Theorem 12.5 yields

Pt =1Q: Q1] <4 + 1.

By Theorem 2.5 [BG], e divides ¢°+ 1 or ¢° — 1. Since e is odd, we have
2e < ¢°+ 1. Then,

Pt <4 +1< (¢°+ 1) +1 < 2%

This contradiction proves Theorem 18.7. Q.E.D.
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Corollary 18.8. o =1g — X" + Zi;ll ot -

Proof. Let a; = (a,not). Since T is coherent by Theorem 18.7, we
have

(18.5) (1 (1) — )" =un(l)a” + (1 (1)ro — C1)”
= I/l(l)aT + I/l(l))\oT - Cl‘r.

By the Lemma at the beginning of this section, (Ao",70:) = 0. Also,
(¢17,m0¢) = 0. This follows from Lemma 13.1 if ¢ > 3 because (;" =
3 smy- lfg=3, ¢, is not uniquely determined; however, (;” is either
+>,mjor >, m25. Thus, we have (¢1",mot) = 0. Lemma 18.2 and
(18.5) yield

0 # (1 (1o — €1)7 5 m0t) = v1(1)ay.

Since |T| > 2, @™ involves —Ag". Since Ag” is not one of £7, we have
a" =1g— X" + Z a¢Mot-

It follows from ||a”||> = e + 1 that a; = 1 or —1 for each t. By Lemma

13.1, Ag” vanishes on W. The same holds for . By Lemmas 13.1 and
13.2, we have gy =1 for 0 <t <e—1. Q.E.D.

Corollary 18.9. The group S’ is a Frobenius group and the num-
ber wq is prime.

Proof. Suppose that Corollary 18.9 is false. By Lemma 31.1, $(H’)
contains an irreducible character §. Consider the group S/H’. Let
E = Q*V be a complement of H in S. Since S is of type II, E is a
Frobenius group with Frobenius kernel V and Cy (V) =1 (cf. (Iliv) and
the modified (IIv)). By Theorem 3.10 [BG|, @™ centralizes a nonidentity
element of H/H’. Thus, S(H’) contains one of the reducible characters.
Hence, we can take & € 8(H’). Note that 8(H') is coherent. This
is clear if § is coherent. If § is not coherent, Lemma 17.8 yields that
S(H') is coherent. Hence, S8(H’) is coherent always. If we define 8 =
0(1)61 — £1(1)0, B € In(8(H')) and 57 = 6(1)&:7 — &:(1)67.

Let « be the element of Iy(T) defined in Corollary 18.8. We prove
that o” is orthogonal to 7. By Lemma 11.1, & vanishes on elements
not conjugate to an element of A(x) for any =z € T’ ' Suppose that
g=zy = yz € A(z) and a"(g) # 0. We claim that 37(g) = 0. Suppose
87(g) # 0. By Lemma 11.1 applied to S, g is conjugate to an element of
S or one of the supporting subgroups of S. Since T is of type V, T is not
conjugate to any supporting subgroup by (Fi). If M is a supporting
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subgroup of S, then o(M) No(T) = o(S) No(T) = O by Theorem 7.9.
Since g = zy is conjugate to an element of S or a supporting subgroup,
the element x is conjugate to an element of S. Since 87(g) # 0, z is
conjugate to an element of A(S) — H. It follows that (|Cg(z)|, |H|) # 1.
This implies that S is conjugate to a supporting subgroup of T'. Let
S* be a conjugate of S that contains Cg(x). Then, by (Fi), ShNT
is a complement of H" that contains Cr(z). Since z is conjugate to
an element of A(S), the order of z is prime to ¢q. On the other hand,
Q* C Cp(z) because T” is nilpotent. This contradicts the structure of
Sh N T being a Frobenius group with Frobenius complement of order
g. Thus, (o”,87) = 0. In fact, the above argument proves that any
element of I4(7) is orthogonal to every element of I(8). We compute
(a™, B7) using Corollary 18.8. We have

(@,87) = (la = X" + > _mos,0(1)éx" — &1 (1)67).

Note that A" # 7. This follows from ((Ag — Ag)7, (6 — 6)7) = 0. Since
&7 =ed ;i (or £, mi2), we have

(@, B7) = (D mor, 6(1) D mia) = eb(1).
This contradicts (a”,37) = 0. Q.E.D.

Theorem 18.10. No element of M is of type V.

Proof. We will paraphrase the proof of Theorem 32.1 [FT]. Suppose
that M contains a subgroup T of type V. For M = T, we use the notation
introduced at the beginning of Chapter II. Thus, D* and A(z) for z € D*
have the same meaning as defined there. We denote by S the subgroup
of type II defined in Theorem I. The subgroup H = S is a TI-set by
(T7). In addition, the following notation is used: T = T'W,, S = 5'Q*,
W =Q* x Wy, [Wa| =wy =e, |Q*| =¢ and |S’: H| = v. Let T be the
set of characters of T introduced at the beginning of this section. Then,
by Theorem 18.7, T is coherent. Let

T ={7,¢}.
Corollary 18.8 yields that T* is coherent if we define

e—1

" =1la+ an-
t=1
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The family T* consists of irreducible characters of T' and ¢ reducible
characters (o, (1, ...,{q—1 of weight e. There are irreducible characters
v;; of T such that

e—-1
5,' == Z l/,'j Wlth (Vij)T' = (V'iO)T’-
j=0

There is an irreducible character A of degree e in 7. Lemma 14.4 applied
with T" and T* in place of M and § yields

A" (z) = A(z) + sy(z) for z € T

where v is orthogonal to every element of 7*. Since the irreducible
characters of T are {v;;} and the characters in T, we have

Y= E QijVij.

Since (v,¢;) =0for 0 < i < g—1, we have Zjaij =0for0<i<qg—1.
It follows that

Vo = Zaij(Vij)T, = Z Zai]‘ (Vio)T, =0.
.5 j

i

This proves that A"(z) = A(z) for z € T"". By Lemma 14.3, A7 is
constant on the set of the form A(x) for x € D*. Hence, Lemma 11.5
yields

e

1 T 2 _ 1 2 __
(18.6) @ > A (@)l = 7 > M@ =1- Tk

z€G zeT’t

Let (73 be the set of elements of G which are conjugate to some element
of A(z) for z € D*. By Lemma 11.5 with © replaced by 1¢, we have

[Gi _1() 1
Gl e )

Define G4 = Gg(W). By Theorem 8.7 (e),

Gof _, 1 1 1

IG] 7 e ¢ eq
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Let GG3 be the set of elements of G which are conjugate to some elements
of H". Since H is a TI-set, we have

|Gs] 1

I Wﬂm - 1).

These sets Gy, G2, and G35 are disjoint. Let Go be the complement of
the union G; U G2 U G3. Then,

|£0_|_1_1(1__L)_(1_1_1+i)_i+ 1
G| e 77| e q e) qu qulH|

(18.7)

because e > 3 and v > 3. By (18.6), we have
A(@)P<1—(1- -

zeGo

By Corollary 18.9, e is a prime and S’ is a Frobenius group. Hence,
701, - - -, oe—1 are algebraically conjugate characters with values in Q..
Since S’ is a Frobenius group, every element whose order is divisible by
e lies in G2 U G3. Thus, 7y, take the same integral value on Ggy. Since
({o — A)" vanishes off Gy,

A(z) =14 (¢g— Unn(z) for ze€ Gy.
In particular, A"(z) is an odd integer so
IAT(z)]2 >1 for z € Go.

Thus,

Bz
< A" (2)
@ < P <
Therefore, |T’| < 3ge by (18.7). Theorem C (3) implies @Q* C T". Hence,
we get |T': T"| < 3e. Since T/T" is a Frobenius group, |T": T"| > 2e+1.
Thus,

IT"|(2e + 1) < |T'| < 3ge, q<|T"| <3eq/(2e+1) < 2q.

It follows that |7"| = q and W; acts irreducibly on T7"/T". This implies
that T” is an extraspecial g-group. If |T"/T"| = ¢*¢, then Theorem 2.5
[BG] yields that e divides ¢°+ 1 or ¢° — 1. Hence, e < (¢° +1)/2 and

2= |T: T"| < 3e < 3(¢° +1)/2 < 2¢°.
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This contradiction proves Theorem 18.10.

Corollary 18.11. Let S be a subgroup of type II, 111, or IV in M.
Then, the family S is coherent.

This follows from Theorems 17.14 and 18.10.

§19. Subgroups of Type 1

We remark that a subgroup M € M of type I is a Frobenius group
if and only if 75(M) is empty. This is easy to see. If 72(M) = 0, then
the complement E in (Iéi:) is a Z-group and the only subgroup of E
with the same exponent as E is E. Thus, Fy = E and by (I#i), M
is a Frobenius group. Suppose conversely that M is a Frobenius group.
Then, H = M is the nilpotent normal subgroup of maximal order in M.
Then, H is the Frobenius kernel of the Frobenius group M. It follows
from the property of a Frobenius complement that all Sylow subgroups
of M/H are cyclic. This implies 72(M) = 0 (cf. the notation of §6).

Theorem 19.1. Fvery subgroup of type I is a Frobenius group.

The proof is by contradiction. Suppose that M has a subgroup of
type I that is not a Frobenius group. The following notation will be
used. Let p be the set of primes defined as follows: p; € p if and only
if M has a subgroup M; of type I such that p; € 72(M;). By Lemma
H, the groups M; are w-groups; in particular, p; € w. (The set p is
denoted o in [FT]; I have chosen this notation because ¢ has a different
meaning in [BG| and we have been using o in the sense of [BG|.) The
smallest prime in p will be denoted p = p;. Let M = My, K = Mp,
Py € Syl,(M), P € Syl,{G) such that P, C P, A= Q1(F), and

Le M(Ng(A))

If L is of type I, let U = Ly and choose a complement F of U in L. If L
is not of type I, then L is of type II, III, or IV by Theorem 18.10. In this
case, let H = Lp, U a complement of H in L', and W; a complement
of L' in L with Wy C Np(U). The order |W;| is a prime by (T7). Note
the particular usage of the symbol U.

Let L be the set of characters of L defined as follows: If L is of type
I, L is the set of all irreducible characters of L which do not have U in
their kernel. If L is of type II, III, or IV, then L is the set of characters
of L each of which is induced by a nonprincipal irreducible character of
L’ that vanishes outside A(L). Thus, if L is of type I, £ is the set of
characters studied in §15. If L is of type III or IV, then L corresponds
to the set 8o U S in §16.
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Lemma 19.2. The subgroup L is not of type II, it is either a
Frobenius group with cyclic Frobenius complement or of type III or IV.
There is no subset of L that is a TI-set of G and contains A. The group
P is esther an abelian group of rank 2 or the center Z(P) is cyclic, and
we can take P C U. Furthermore, L is the unique subgroup of M that
contains Ng(A).

Proof. Since p € 12(M), A € E2(M) and Py is an abelian group
of rank 2 by Theorem 6.5 (b). We have Cg(A) C M by Proposition
6.4 (a). It follows that either P = Py or Z(P) is cyclic.

By Lemma, 6.2 applied with A and L in place of X and M*, we have
that p € o(L) Ume(L). If p € 2(L), Theorem 6.5 (b) applied with L in
place of M yields Ng(A) € L, contradicting the definition of L. Thus,
peo(L)and AC Le. In fact, p € 0o(L) as p € w.

We have A € E2(M) by Theorem 6.5 (b). Since A normalizes K,
some element a # 1 of A commutes with some element y # 1 of K by
Proposition 1.16 [BG]. But, K N L =1 by Theorem 6.5 (e). Thus, A is
not contained in any subset of L that is a TI-set in G.

Suppose that L is of type II. Then, by Theorem 9.7 (a) with L in
place of M, L, = H C F(L) and F(L) is a TI-set of G. Since A C L,
this contradicts what we proved in the preceding paragraph. Thus, L is
not of type IL.

If L is of type III or IV, F(L) is a TI-set in G by (T7). Therefore,
A¢ F(L)but AC L, = L'. Thus, p € n(U). Since U is a Hall subgroup
of L,, U contains a Sylow p-subgroup of G. We can choose P C U.

Suppose that L is of type I. Then, L,, = U. Since U is a Hall
subgroup of G, we have P C U. In fact, since U is nilpotent, P is
a normal subgroup of L. We will prove that L is a Frobenius group.
Suppose that L is not a Frobenius group. Then, m5(L) is not empty.
Let ¢ € 75(L) and take @ € €2(L). Then, ¢ € p. It follows that
p < gq. By Theorem 6.5 (d), we have Cy(Q) = 1. Thus, Q acts on
Q1 (Z(P)) nontrivially. Since r(Z(P)) < 2, we have g < p, contradicting
the minimal nature of p. This proves that L is a Frobenius group.

The subgroup E is a Frobenius complement of L. Hence, E acts
on Q;(Z(P)) faithfully. If Z(P) is cyclic, E is abelian. If P is abelian,
Q3 (P) = A. Theorem 2.6 [BG] yields that F is abelian. A Frobenius
complement is cyclic if it is abelian. Therefore, E is cyclic.

It remains to prove that M(Ng(A)) = {L}. Suppose that P is
nonabelian. Choose a subgroup P; such that Py C Py C P with |P;:
Py| = p. Since Cg(A) € M by Proposition 6.4 (a), P; is nonabelian.
We have P, C Ng(A) as A = Q(F). By Theorem 6.13, P, € U.
Hence, Ng(A) € U. Assume that P is abelian. Then, Py = P and
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Ng(P) C Ng(A). Suppose that Ly € M(Ng(A)). Then, p € o(Lo) N
o(L). Theorem 7.9 yields that Lo is conjugate to L: Lo = g~'Lg for
some g € G. Then, P,g~'Pg € Syly(Lo); hence, P = h™'g~!Pgh for
some h € Ly. Thus, Lo = 27! Lz with z = gh € Ng(P) C Ng(A) C L.
Therefore, Lo = L. This proves the uniqueness of L. Q.E.D.

Lemma 19.3. There exists an irreducible character A € L that
does not have P in its kernel such that A\(1) divides p—1 orp+1. The
group L/L' is a cyclic group of order e with e dividingp—1 orp+1.

Proof. Suppose that L is of type IIl or IV. Then, L/H is a Frobe-
nius group with Frobenius kernel isomorphic to U. Since P C U, L/H
has an irreducible character A of degree w; that does not have P in its
kernel. Since L/H is a Frobenius group, Wi acts faithfully on Q4 (Z(P)).
It follows that w; | p? —1. Since w; is a prime by (T7), A(1) = w; divides
p—lorp+1.

Suppose that L is of type I. Then, by Lemma 19.2, L is a Frobenius
group with Frobenius kernel U and Frobenius complement FE that is
cyclic. Thus, there is an irreducible character A of L of degree e = |E|
that does not have P in its kernel. We need to prove that e divides
either p — 1 or p+ 1. As before, E acts faithfully on Q1(Z(P)). Thus, if
Z(P) is cyclic, e divides p — 1. If P is abelian, e | p2 — 1. Suppose that
e has prime divisors ¢; and ¢, such that

¢1lp—1 and ¢2|p+1.

We will derive a contradiction. Let @; be a subgroup of F of order g;.
Then, )2 acts regularly on 8]1,(A), while @1 has at least two fixed points
on 811,(A). Since Q1Q)- is abelian, Q2 moves a @i-invariant subgroup
to a @Qi-invariant subgroup. Thus, there are at least 3 Q;-invariant
subgroups of order pin A. It follows that ()1 acts on A as a scalar, i.e. Q4
does not centralize A but every subgroup of order p in A is @;-invariant.
By Proposition 6.4 (b), there is Ay € €'(A) such that Ng(4y) C M.
This implies that @1 € M. Then, @1 C Np(A). By Corollary 6.6 (b),
C = Njps(A) is a complement of K in M. The structure of M as a group
of type I yields that there is a subgroup Cp of C with the same exponent
as C such that Cj is a Frobenius complement of the Frobenius group
KCy. We are in the situation that P = Py is abelian. Then, Lemma
6.8 (a) yields that ¢; ¢ 7o(M) so C has a cyclic Sylow ¢;-subgroup. We
may take Cp such that Q1 C Cy. Then, AQy N Cp has order pg; and it
is not cyclic. This contradicts the structure of a Frobenius complement.
Thus, we have e [ p—1ore|p+1. Q.E.D.
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Lemma 19.4. The family L is coherent. Let X be the character
defined in Lemma 19.3. Then, \"(x) = \(z) for z € A(L)*.

Proof. Let e =|L:L'|. We prove that the set L of characters is
coherent. Suppose that L is of type I. By Lemma 19.2, L is a Frobenius
group with Frobenius kernel U and L/U is a cyclic group of order e. By
(Iv) for the group of type I, L satisfies one of the three conditions (a),
(b), or (¢) (cf. [BG], p.128). Since P C U, U is not a TI-set of L. Thus,
the condition (a) does not nold. If L satisfies (b), U is abelian and L
is coherent. If L satisfies (c), then the exponent of L/U divides p — 1.
Hence, e divides p — 1 and

|U:U'| > p? > 4e® + 1.

Since L(U’) is coherent, Theorem 12.5 yields that L is coherent.

Suppose that L is of type IIT or IV. Then, L/H is a Frobenius group
with Frobenius kernel UH/H 22 U. If L(H) is not coherent, Lemma 12.6
yields that U is a nonabelian p-group with

|U:U'| < 4€® + 1.

Thus, P = U is nonabelian. By Lemma 19.2, the center of P is cyclic.
Then, Lemma 19.3 yields e | p — 1. This is a contradiction because

PP <|U:U|<(p-1)°+1<p.

It follows that L(H) is coherent. By Theorem 16.1 (b), £ is coherent if
L is of type IV.

Suppose that L is of type III and £ is not coherent. Then, L/H is a
Frobenius group with abelian Frobenius kernel which is isomorphic to U.
Let Ly be the set of characters of L which are induced by nonprincipal
irreducible characters of L'/H. Then, Lo is coherent and |Lo| = (u —
1)/e. If L; = L — Ly, then by Corollary 18.11, L; is coherent. Since
we assumed that L is not coherent, Theorem 16.1 (a) yields that H is
an elementary abelian group of order r¢ for some prime r, Cy(H) = 1,
and UW; acts irreducibly on H. Since A C SZ(U), some nonidentity
element of A lies in the inertia group of a nonprincipal linear character of
H. As we can see from the proof of Lemma 13.8, there is an irreducible
character p € L1 of degree de with d < (u/p) where u = |U|. Let A
be a character of Lg. Then, A is an irreducible character of degree e.
Consider

a=&—A and [=d\—pu,

where & = (11)F. If A\, Az € L are distinct from A,
(B",(A1—=X2)")=0 and (B",(A—X)")=d
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by Lemma 11.4. Therefore, we have

(19.1) BT =d\N —z Y v+ 4N
velg

where (A;,v") = 0 for every v € L. Lemma 11.4 yields
187117 = I8I1* = d* + 1.

Hence, we have (d — z)2 + z2(((u —1)/e) — 1)+ 1 < d*+ 1, or

(19.2) z?(u—1)/e < 2dz.

By Lemma 19.3, e divides p— 1 or p+ 1. If 2e 2 p+ 1, then 2e < p—1.
It follows from (19.2) that

0<z<2d/(u—1)<(p—1)d/(u—-1)<1

because pd < u and d > 1. The above inequality yields £ = 0 and L is
coherent. Therefore, we have 2e = p+ 1. Since 2ed/(u—1) < 2, we have
z=1.

Consider a” = (o — A\)". If we define o = 1g + A — A7, then
(A,v7) = 0 for every v € Lo, and ||A||2 = e —1 (cf. the proof of Lemma
12.7). We will show that

e—1
A= Z 740-
=1

There is a long detour. The set L; contains |W3| = r reducible
characters €1, . ..,&-_1. We will show that £, (1) = ue for k > 0. Let 0 be
an irreducible character of minimal degree in £; with (1) = dye. Then,
Oy contains a nonprincipal linear character n of H and I{(n) N U # 1.
Take a prime g € #(I() N U). Since U is abelian and A C U, we have
U C Cg(A) € M by Proposition 6.4 (a). In fact, U is contained in
the complement Npr(A) of K in M (Corollary 6.6 (b)). Suppose that
q # p. If ¢ € o(M), then q > p by the minimal choice of p in the set
p. If ¢ & 75(M), then U has a cyclic Sylow g-subgroup. Since W acts
regularly on U, we have ¢ = 1 (mod e). Since e = (p + 1)/2, we have
q2p+2. I =diA-0,

51T:d1)\7—$1ZVT—0T+A2

with z2(u — 1) < 2ed; ;. Since d; < u/q, the inequality z; # 0 yields
g(u—1) < (p+1)u. Since ¢ > p+ 2,

pt2 _ u
p+1 - u—-1
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This implies p +1 > u — 1 > p? — 1. This contradiction proves that
x1 =0 and L is coherent. Thus,

m(I(n)nU) = {p}.

If |[I(n) N U| > p, then we have an irreducible character of degree dae
with dy < u/p?. Then, a similar argument yields

plu—1) < (p+ 1u/p < 2u.

This is impossible. Thus, the degree of an irreducible character in £,
is either ue/p or ue. For a nonprincipal linear character n of H, the
index |I(n) : H| cannot be equal to pe because W; does not normalize
any subgroup of order p as [W;| = e = (p+ 1)/2. Hence, the degree
£k (1) of the reducible character & (k > 0) is ue.

As remarked before, H is an abelian r-group for some prime r. We
will show that » > 2e. We have seen that there is a subgroup B of order
p in A such that Cy(B) # 1. Let H; = Cy(B). Then, H = H; x Hy
with Ho = [H, B] by Proposition 1.6 [BG]|. Since U normalizes B, U
acts on H; and H,. If 57 is a nonprincipal linear character of H/Hj,
then I(n) NU = B as we have shown. It follows that the group U/B
acts regularly on H;. This implies that U/B is cyclic. Hence, U = BxC
with C being cyclic. We will show that C' can be chosen in such a way
that C acts regularly on H.

The group UW; acts on H irreducibly by Theorem 16.1 (a). Since
Ng(A) = Cg(A) is Wi-invariant, we have

NL(A)NH = Ny(A) = 1.

Note that Cy(H) = 1 by Theorem 16.1(a). It follows that Ng(A) =
Ni(A) = UW;. Since U C Cg(A) C M but Ng(A) ¢ M, we have
M N L = U. The elementary abelian group A acts on K. Therefore,
Ci(Ay) # 1 for some A; € €}(A). Since Cx(A;) € L, M is one of the
supporting subgroups of the F-set A(L) = L’. By (Fi), Ca(41) C M.
Since HNM = HNU =1, we have

CH(Al) = 1.

We can take C O A;. Then, for any subgroup C; of prime order in C,
Cy(C;1) = 1. Therefore, C acts regularly on H. It follows that r¢ =
(mod u/p). If |Hy| = r™, then m < e and v =1 (mod u/p). Since e
is a prime, we have 7 = 1 (mod u/p). The prime p divides u/p. This
implies

r—1>p or r>p+1=_2e.
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Lemma 13.4 yields that & = Y i where {u;;} is the set of irre-
ducible characters associated with the selfnormalizing cyclic subgroup
W = W; x Wy. By the definition of the characters u;x, there is a
sign ¢ that is independent of ¢ such that p(z) = ewi(z) for all z €
W — W,. We claim that e = 1. Consider the restriction (pox)w, - Then,
(tox)w, — €lw, vanishes on Wf, so it is a multiple of the regular repre-
sentation of Wj. Therefore, por(1) = € (mod e). Since por(1l) = u, we
have e = 1.

The group Wy is of order r. Since r is a prime, the characters
i1, hi2, - - - 5 hir—1 are r-conjugate; so are 1, ...,7;-—1. Recall the defi-
nition of A. It is defined

(Go= AT =1g+A— ).

The weight of Aise—1 and (1g,4) = (v", A) = 0 for every v € Ly.
We claim that A is r-rational and (A, n;) = 0 if k > 0. Let v be an
irreducible character of L different from A. Then, a” as well as (A —v)”
are r-rational by Lemma 11.1. The proof of Lemma 12.1 shows that A"
is r-rational. Therefore, A is r-rational. Suppose that (A, n;x) = a # 0
for some ¢ and k£ > 0. Since 7;,...,M,-1 are r-conjugate, we have
(A,mi) = ar # 0 for every t > 0. Thus, A involves ay Y, 7;; and

14]? >r—1.
Since r — 1 > 2e — 1, we have a contradiction that
e—1=A|>>2e—1.

Thus, (4,7;x) = 0 if k > 0.
Finally, we will prove that A = ). n,. For a fixed k > 0, consider

Vi = Hio — Hik + Xo

where Yo is the sum of irreducible characters of Lo. There are (u—1)/e
characters of degree e in Lg and for z € Wlu,

pie(T) = win(z) = wio(x) = pio(z).
Since pi(1) = u and pio(1) = 1, we have v; € Iy(Ag(L)). Since
(Yo — 7)™ = (1L — pok — Hio + pik)” = 1 — Mok — Mo + Nik,

we have ;™ = ;0 —m;x + " where I is independent of 7. We will compute
(7", a") using Lemma 11.4. Here, a = & — A\, s0 a” = 1lg+ A — \".
Since & = Y, pio, we have

(’YOT?aT) = (’7070‘) =0.
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Similarly, (v",a") = (v, @) = 0. Thus, if i > 0,
0=(v",a")=1+(,4)—(T,\")
= (’yiT7aT) = (771'0, A) + (Fa A) - (F7 )‘T)

Therefore, (n;0,4) = 1. We have used the lemma that A™ # +n,; for
any s and t. We have

e—1
(19.3) A= "mo.
=0

Clearly, A is a real-valued character. By the definition of 3, we have
B = d\ — . Then,

B-B=dA=X) - (n—R)
Since B — B, A — X, and pu — 7 € Iy(A(L)), we have
B=B) =dA =X —(u—m)" =d\" = X) - (W — 7).
On the other hand, we can compute (3 — 8)7 = 37 — BT using (19.1).

Since ) v7 is real, we have

<7

BT—B =d\"—X")— (T —F") + A — Ay

Therefore, A; = A; is a real-valued virtual character. It follows from
(19.3) that (A, Aq) is an even integer. We will contradict this by showing
(A, Ay) =—1.

Compute (a”,37) in two ways. Lemma 11.4 yields

(aTaﬁT) = (Oé,,B) = —d.
By (19.1), we have
(aTaﬂ‘r) = (A'ﬁAl) - (d_ 1) = (AvAl) —-d+1

Thus, (A, A;) = —1. This contradiction proves that £ is coherent in all
cases.

We can apply Lemma 12.7 for M, H, Hy, h and 8 replaced by L, L/,
L", p? and L. Since P C U and U is nilpotent, we have |L’ : L"| > p?.
By Lemma 19.3, e < (p + 1)/2. This implies p? — 1 > e(e + 1). If we
define A by (§o— A" =1g+ A — A" and

£OT:1+A7
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the set {L,&} is coherent by Lemma 12.7.
For z € A(L)¥, Lemma 14.4 yields that

AT(z) = Mz) + s7(2)

where s is a rational number and v is a virtual character that is or-
thogonal to every element of L* = {L,&}. If L is of type I, L consists
of all nonlinear irreducible characters of L. Thus, v = > a;\; where
A; are linear characters of L/L'. Since & = >_ Ai, (7,&) = 0 means
S a; = 0. Thus, for an element x of L', we have y(z) = 0. This proves
A7 (z) = A(z) in this case.

If L is not of type I, then L* consists of irreducible characters in-
duced by characters of L' and & for 0 < k < we—1. Thus, v =) astfist
with (v,&¢) = 0 for all k. Then, for each k, > asx = 0. Since
(tsk)rr = (pex)rr by Lemma 13.4, v(z) = 0 for z € L’. This proves
that A™(z) = \(z) for = € A(L)?. QED.

The next lemma is stated in [FT], p. 980, without proof.

Lemma P. Let ML €¢ M. If M and L are not conjugate, no
subgroup of M can serve as a supporting subgroup of A(M) and at the
same time of A(L).

Proof. Suppose that N € M is a supporting subgroup of A(M).
Then, there is an element z € A(M) such that Cg(z) € M and Cg(z) C
N. By Theorem II, z € M(,Olj and MNN is a complement of N, in N. By
Theorem 8.4, w({z)) C 72(N). Similarly, if N is a supporting subgroup
of A(L), there is an element y € L,," such that Ce(y) ¢ L, Ca(y) C N,
7({y)) € 72(N), and LN N is a complement of N, in N. Since N, is
a Hall normal subgroup of N, L N N is conjugate to M N N in N. Let
MNN=(LNN)Y for g€ N and let 2’ = y9. Then, z,2’ € M N N.

Take p € 75(N) and suppose that G has a nonabelian Sylow p-
subgroup. Then, by Theorem 6.7 (a), 72(N) = {p}. Therefore, both
x and y are p-elements and o(M) No(L) # 0. Since M is not conju-
gate to L, this contradicts Theorem 7.9. Hence, G has an abelian Sylow
subgroup for every prime in 7(N). By Lemma 6.8 (a), a Hall 75(N)-
subgroup Es of M N N is a normal abelian subgroup of M N N. Since
z,z’ € Ey, they commute. The element z’ is a 0g(L)-element. Hence,
z' is a o(M)'-element by Theorem 7.9. By Corollary 8.3, we have ei-
ther (1) 7({(z’)) € k(M) and Cg(z) C M, or (2) n({(z’)) C 12(M) and
M(Cea(z')) = {M}. Since Cg(z) € M and Cg(z') C N, neither case
holds. This contradiction proves Lemma P. Q.E.D.
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Lemma Q. For each M € M, let Go(M) be the territory of M.
Let L € M and assume that L is not conjugate to M. Then,

Go(M) N Go(L) =0

unless either M is conjugate to a supporting subgroup for A(L) or L is
conjugate to a supporting subgroup for A(M).

Proof. The elements of A(z) are of the form hz where h € Cy(z)
and the order of z is prime to the order of h. The subgroup H is a
supporting subgroup for A(M); thus, H = H; = (M;), = (M;)F for
some M; € M. Suppose that Go(M) N Go(L) # 0 and

g ' (hz)g = ky

where k is an element of a supporting subgroup K of A(L) and ky = yk
for some y € A(L).

Suppose that h # 1. Then, Cg(z) € M and Cg(z) C M;. By
Theorem II, this implies z € M(,On and y € N,*. Note that any sup-
porting subgroup is a w-group. If k # 1, we have y € Laou. Since

m((y)) € m((h)) Un((z)),
oL)No(M;)#0 or o(L)No(M)+#0.

By Theorem 7.9, L is conjugate to M; that is a supporting subgroup for
A(M). Suppose that £k = 1. If 7({y)) N o(L) # 0, then the preceding
argument shows that L is conjugate to M;. Assume that 7((y))No(L) =
0. Then, y is an o(L)"-element of A(L). Theorem II yields that Cg(y) C
L. Since g~ !(hz)g = y, we have

Ca(y) C Calg'zg) = g~ 'Ca(z)g C (M;)*.

By the definition of A(L), y commutes with an element z of L,*. Since
y is a w-element, we have z € Laon. Corollary 8.3 yields that either
7((y)) C k(L) or M(Cz(y)) = {L}. The definition of A(L) yields that
nonidentity elements of Hall x(L)-subgroups are excluded from A(L).
Thus, the first possibility does not occur.

Therefore, we have M(Cg(y)) = {L}. It follows from Cg(y) C (M;)?
that L = M,?.

If £ # 1, a similar proof shows that M is conjugate to a sup-
porting subgroup for A(L). Suppose that h = 1 = k. Suppose that
w({z)) C oo(M). Then, Ce(z) is contained in either M or a conjugate
of a supporting subgroup. Since L is not conjugate to M, Theorem 7.9
yields that 7({y)) No(L) = 0. The argument of the preceding paragraph
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proves that M(Cg(y)) = {L}. Since y is conjugate to z, we conclude
that L is conjugate to a supporting subgroup of A(M).

Suppose that m({(z)) € oo(M). Note that = centralizes some non-
identity element of M. Since M F is a w-group, z is a w-element. Since
n({z)) € oo(M), there is a Hall subgroup (z') of (z) such that 2’ is a
o(M)'-element and z’ commutes with an element u of M,,*. As before,
Corollary 8.3 yields that M(Cg(z')) = {M}. Since 29 =y, the element
(z')9 = ¢ is a power of y. Thus, y' € A(L). It follows that Cg(y') is
contained in either L or a conjugate of a supporting subgroup of A(L).

Since
M(Ce(y)) = M(Cg(a))? = {M?},
M is conjugate to a supporting subgroup for A(L). Q.E.D.

Lemma 19.5. Let A be the irreducible character in L defined in
Lemma 19.3. Then, X" is conformal relative to A(M) and

T 2 ()

zeKH

Proof. We will prove that A\” is conformal relative to M. Let N
be a supporting subgroup of A(M). Since M is of type I but not a
Frobenius group, Theorem II yields that N is of type I. Let @ = A7.

By Lemma 14.1, it suffices to check that © is orthogonal to every
virtual character of the form (8; — 65) with 6;,60; € S(a) for a # 1y,
a € Irr(H). For the notation, see Lemma 14.1. Since N is of type I,
6, and 0, are irreducible characters of N and #; — 6, vanishes outside
A(N)—H. By (Fii)(d), A(N)—H is a TI-set. This implies that (6; —602)¢
is a difference of two irreducible characters of G. Let

(6, — 62)¢ = O, — 6.

If \™ = O is not orthogonal to (§; — 65)C, then © must be either ©; or
3. The virtual character ©; — O, vanishes outside the territory Go(N)
of N. Lemma 19.2 yields that L is either a Frobenius group or of type III
or IV. Thus, by (Fiz)(d) or (Fii), L is not conjugate to any supporting
subgroup for A(N). Since N is not a Frobenius group by (Fii)(d), N is
not conjugate to L. By definition, N is a supporting subgroup for A(M).
Hence, by Lemma P, N is not conjugate to any supporting subgroup for
A(L). By Lemma Q, the territory of L is disjoint from that of N. Since
L is coherent by Lemma 19.4, © — © vanishes outside of Go(L). Then,
we have

(01— 6,)¢,06—-06)=0
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because Go(N) N Go(L) = 0. Thus, (§; — 62)° contains © and O with
the same multiplicity. Since @ # O, this is a contradiction and proves
that A7 is conformal relative to M.

We can apply Lemmas 12.5 and 12.6 to ©(z) = |\"(z)|?. Let G1(M)
be the proper territory of M. Then, G1(M) is the set of elements of G
which are conjugate to some element of A(z) with € K*. Since L is
not conjugate to M, o(L) No(M) = @ by Theorem 7.9. It follows that
G1(M) is disjoint from Go(L). Lemma 12.6 yields

n X M@= Y W@

TeK*H z€G1 (M)

Since G1(M) N Go(L) = @, the orthogonality relation yields

1 T 2 1 T 2
el S V@) <1—@ Yo @)

1G] z€G1 (M) z€Go (L)

Then, Lemmas 12.5 and 19.4 yield

|A17| 3 |Af<w)|2<1—ﬁ 3 @)

zeKH ze(L’)"

The right side is equal to A(1)2/|L| because A vanishes outside L’.
Q.E.D.

Lemma 19.6. Let F = M N L. Then, F is a complement of K
in M. There is an element z of AN Z(F)* such that Ck(z) € K'.

Proof. We have A C M N L and some nonidentity element of A
has a nontrivial centralizer in K. Thus, M is a supporting subgroup for
A(L). By (F#), MNL = F is a complement of K in M.

Since M is of type I, F' contains a subgroup Fy of the same exponent
as F that acts regularly on K. It follows that any subgroup of € (Fp) lies
in the center Z(Fp). Therefore, there is no Frobenius group that contains
A. Note that A is the set of elements of order p in F' by Corollary 6.6 (a)
and Theorem 6.5 (b).

If L is of type I, L is a Frobenius group by Lemma 19.2. Since
F is not a Frobenius group as shown in the preceding paragraph, we
have F C U. Therefore, F is nilpotent. By (Iiv) for M, every Sylow
subgroup of F' is abelian. Hence, F is abelian. The group A € Sg(F)

acts on K/K’. By Proposition 1.16 [BG], there is an element z € A*
such that Cg g/ (z) # 1. Proposition 1.5 [BG] shows that Cx(z) € K'.
This proves Lemma 19.6 if L is of type L
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Suppose that L is of type III or IV. We may assume P C U. If
F ¢ L', we may choose Wy C F. Then, (A, W) is a Frobenius group
in F'. This does not occur. Therefore, F' C L. Let F; = F N H. Then,
F} is a normal subgroup of F. We may assume that F' = F|(FNU) by
replacing U by a conjugate if necessary. Since U is nilpotent by (T2),
FNU is abelian. The subgroup A lies in FNU and A < F by Corollary
6.6 (a). Therefore, [F}, A] =1 and A C Z(F). Then, Lemma 19.6 holds
as before. Q.E.D.

Lemma 19.7. Let M be the set of all irreducible characters of M
which do not have K in their kernel. Let X be the character defined in
Lemma 19.3. If M is coherent, then X" is constant on K.

Proof. Let a be the least common multiple of the orders of all the
elements of A(L). By Lemma 19.2, we have A(L) = L' = L,. Since
M is not conjugate to L, Theorem 7.9 yields that o(L) N o(M) = 0.
Thus, (a,|K]|) = 1. Since L is coherent by Lemma 19.4, we can apply
Lemma 12.1 to conclude that the values taken by A" lie in the field Q,.
Lemma 19.5 yields that A7 is conformal relative to A(M). Assume that
M is coherent. We will show that A” is orthogonal to every element of
M7. Let a be a character of M. Then, ak is not rational as @x # ak.
Since (a, |K|) = 1, there is a Galois automorphism that sends ag to @x
and induces the identity on Q,. This yields that A™ # a”. Lemma 14.4
yields that there is a pair (7, 8) of a rational number r and a virtual
character 3 of M such that 8 is orthogonal to every element of M and
N (z) = rB(z) for £ € A(M)!. Then, § is a linear combination of
irreducible characters of M/K. Thus, A" (z) = rf3(z) for x € K* and A"

is constant on K1 Q.E.D.

Proof of Theorem 19.1. For some element 2 of A', Cx(z) # 1.
Take y € Ck(z)*. Since M is a supporting subgroup for A(L), Lemma
14.3 yields that A" is conformal relative to A(L). Thus, A" is constant
on the annex A(x). It follows that

AT (zy) = N7 (z) = AM=).

The last equality comes from Lemma 19.4. Let Qg be the field of prim-
itive |G|th roots of unity and let ‘P be the prime ideal dividing p in the
ring of integers in Qg. By Lemma 4.2 [FT], we have

AT(y) = A(zy) = Mz) = A(1)  (mod B).

The values taken by A" lie in Q, where a is the exponent of L’. Therefore,
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A7 (y) is a rational number, so we have
AT(y) =A(1)  (mod p).

By Lemma 19.3, A\(1) divides p + 1 or p — 1. This yields that A(1) <
(p+1)/2 and

(19.4) V()] 2 p— A1) = A1) - 1.

This inequality holds whenever y # 1 commutes with an element
x € Af. As before, let F be a complement of K in M. Lemma 19.6
yields that there is an element z € A" N Z(F) such that Cx(z) € K'. If
Ck(z) = K, then (19.4) holds for every y € K*. If Cx(z) # K, then
Theorem 15.2 yields that M is coherent. By Lemma 19.7, A™ is constant
on K" Since (19.4) holds for at least one element of K*, it holds for
every y € K* because A\ is constant on KU

Let e = A(1). Then, Lemma 19.5 yields that

1 2

1 - €
M(|K| —1)(e—1)* < Wg‘;‘, AT (2)]? < 7

Since |M| = |K||M N L}, we have

(K|-1) fe—1 2<|MﬂL|<
|K]| e L~

1
3
Since (e — 1)/e > 2/3, |K| < 4 and |K| = 3. The subgroup K is a

Hall subgroup of G with |[Ng(K)| odd. Then, G is not simple. This
contradicts the assumption. Thus, Theorem 19.1 holds. Q.E.D.

Theorem 19.8. If there is no subgroup of type II, then G contains
a nilpotent Hall w-subgroup that is isolated.

Proof. By Theorem I, all M € M are of type I. By Theorem 19.1,
they are Frobenius groups. It follows from (F4i)(d) that no supporting
subgroup of type I is a Frobenius group. Thus, if M € M, there is no
supporting subgroup for A(M). Therefore, if H = Mp, then H = M,,
and, for every x € H*, Cg(z) C M. Since M is a Frobenius group, we
have Cg(z) C H.

Take a prime p € w, P € Syl,(G), and M € M(Ng(P)). Then, M
is of type I. Therefore, M is a Frobenius group with Frobenius kernel
H=M,, = Mg and P C H. Thus, H is a nilpotent w-subgroup having
the property that Cq(z) C H for every x € H*. We will show that H is
a Hall w-subgroup of G that is isolated.
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Take a prime g in o and suppose that pq is an edge of the prime
graph of G. Then, there is a pair (z,y) of elements z and y such that
z € P% and y is an element of Cg(x)! of order q. Let Q € Syf,(G) such
that y € Q and let z € Z(Q)*. Then, starting from = € P! we have
in succession y € H, z € H, and Q C H. Repeating this argument,
we conclude that if 7 € w, then H contains a Sylow r-subgroup of G.
Therefore, H is a Hall w-subgroup of G. It is nilpotent and isolated.

Q.E.D.

§20. The Pair of Subgroups S and T

In this section, we will assume that there is a subgroup in M that is
not of type I. Theorem I yields that there is a pair of subgroups S and T’
which satisfy the conditions (a)—(e) of Theorem I. By Theorem 18.10,
each of them is of type II, III, or IV. Throughout this section, we follow
the notation of Section 34 of [FT]. Thus, p and ¢ are distinct primes in
w such that

W =P*Q*, §=8Q*, T=T'P*, |P*|=p, and |Q*|=q.

Let P € Sylp(S) and Q € Syl,(T). By Theorem C(2), P* C Sf.
Therefore, P C Sgr and P is a normal subgroup of S. It follows that
P* C P. Similarly, Q* CQ < T.

Let U be a Q*-invariant complement of P in S’. Then, UQ* is a
complement of P in S. Let

C = Cu(P).

Then, C < U. Since P* C P, we have P*NU = 1. Proposition 8.2 (b)
yields that Q* acts regularly on U. Thus, the group UQ* is a Frobenius
group with Frobenius kernel U. Then, the prime ¢ does not divide the
order of U. Thus,
Q" € Syly(S).
Also, U is nilpotent. Since C C U, C is nilpotent; so is PC = P x C. It
follows that PC C F(S). Clearly, we have F(S) = Px(F(S)nU) C PC.
Therefore,
F(S)=PxC = PC.

By (T3), 8" C F(S) C S'. It follows that S’/PC = U/C is abelian.

Similarly, let V' be a P*-invariant complement of @ in S’. Then,
V P* is a complement of @ in T and V P* is a Frobenius group with
Frobenius kernel V. Also, P* € Syl,(T). Let

D =Cv(Q).
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Then, D <V, QD = F(T) and T’/QD = V/D is abelian. Note that
A(S) is a TI-set of G with normalizer S. This is proved as follows. If
A(S) is not a TI-set, there is an element z € A(S)" such that Cg(z) € S.
Then, Cg(x) is contained in a conjugate of a supporting subgroup M;
by (Fi)(e). Since S is not of type I, M; is of type I by (F44). Then,
by Theorem 19.1, M; is a Frobenius group. But, none of the supporting
subgroups can be a Frobenius group by (Fii)(d). Thus, A(S) is a TI-set
of G.

Similarly, A(T) is a TI-set.

Let S be the set of characters of S which are induced by irreducible
characters of S’ not having P in their kernel. Since P C Sp, this set §
is a part of the set of characters considered in §16 for subgroups of type
I1, II1, or IV. Hence, Corollary 18.11 yields that the set 8§ defined here
is coherent. Let T be the set of characters of T' induced by irreducible
characters of 7" which do not have @ in their kernel. Then, T is also
coherent,.

Let 7;; be the virtual characters of weight 1 associated with the
self-normalizing cyclic group W = P*Q*. We use the notation of §13
and

i (x) = wij{x) for =z € w.

Let p;; be the set of irreducible characters of S defined in Lemma 13.4.
Then, p;;(x) = ejw;;(z) for z € W with gj =1lor —1. Let

g—1
& =) tik-
=0

Similarly, let v;; be the set of irreducible characters of T defined
in Lemma 13.4. Thus, v;j(z) = dw;j(z) for € W, where the sign is
independent of j. Let

p—1
G=>Y v
j=0

By Lemma 13.5, characters of 8§ (or T) are either irreducible or one of
the characters §; (0<j <p—1) (or {; (0<i<qg—1)).
‘We use the following notation:

ICl=e¢, |ID|=d, [U:Cl=w, |V:D|=v, and |G| =g.

For the following lemmas in this section, we maintain the symmetry
between S and T. So, the results proved for S hold for T as well.
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Lemma 20.1. There is a normal subgroup Py of S such that Py C
P, P/Py is an elementary abelian group of order p?, and the group UQ*
acts irreducibly on P/Py. Either U/C is a cyclic group with u dividing
(p? — 1)/(p — 1) that acts irreducibly and regularly on P/Py, or U/C
is a product of at most ¢ — 1 cyclic groups with u dividing (p — 1)97 1.
For1 < j < p-—1, & is induced by a linear character of PC and
&(1) = uq. FEither PU is a Frobenius group with Frobenius kernel P
such that |P| = p? andu = (p?—1)/(p—1), or § contains an irreducible
character of degree uq that is induced by a linear character of PC.

This is Lemma 34.1 [FT]. Some additional remarks included in
Lemma 20.1 are really proved there. Q.E.D.

Lemma 20.2. Fither PU is a Frobenius group with Frobenius ker-
nel P with |P| = p? and v = (p? — 1)/(p — 1), or QV is a Frobenius
group with Frobenius kernel Q with |Q| = ¢? and v= (¢ —1)/(¢ —1).

Proof. This is Lemma 34.2 [FT]. We paraphrase their proof. Sup-
pose that the result is false. Then, Lemma 20.1 yields that 8 contains an
irreducible character X of degree uq that is induced by a linear character
of PC and T contains an irreducible character 6 of degree vp that is
induced by a linear character of @D. Define

a=XA—¢& and B=0-(.

Then, o™ takes nonzero values only on conjugates of (PC)F. Since PC =
F(S), a” is nonzero only at o(S)-elements. Similarly, 87 is nonzero only
at o(T')-elements. Since S is not conjugate to T', Theorem 7.9 yields that
o(S)No(T) = 0; hence, (a™,37) = 0. Similarly,

(A=X7,(B-B))=0.

This implies A\™ # 07 since X # .
By Lemma 13.7, £] = 123;(} 11 and ¢ = :I:Zj ;. By Lemma
O, we have \™ # £n, # 07. Thus,

(@7, 87) = (N —€L,07 = (7)) = (£ > _ma, £ Y _my) ==L
i J
This contradicts (a”,37) = 0. Q.E.D.

Lemma 20.3. For1<j<p-1,

Y Inoj(@)? > uclP| —u?.
ze(PC)H!
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Proof. We paraphrase the proof of Lemma 34.3 [FT]. The set of
irreducible characters of S consists of {¢1;;},0<i<¢—1,0<j<p-—1,
the set Irr 8 of irreducible characters in 8, and the set Irr (S/P). By
Lemma 13.7, & = &4y, mi. Write the restriction (7o;)s as a linear
combination of irreducible characters of S as follows:

(20.1) (Mot)s = epor + Z Cstibst + Z aA+ A
5,6>0 A€lrr §

where € = £; and A is a character of S/P. Since § is coherent, Lemmas
M and 11.4 yield

(20.2) (@™, m05) = (@, (105)s)
for every o € In(8). Take j and k with 1 < j,k < p—1 and let a = &;—&k.

Note that £;(1) = ug = &(1), so a € Iy(8). Then, (20.1) and (20.2)
yield

qg—1 q—1
§ Csj = _S_ Csk
5=0 s=0

including k = t. For each k, (ui)s’ is independent of ¢ by Lemma 13.4
and (pix)s = vk is an irreducible character of degree u of S’. Then, we

have )
p—
< Z Cst,“st) = GZ wk(1)¢k
S’ k=1

s8,t>0

with atp(1) = au = Zg;é csi. Thus, a is a rational number such that
au is an integer. If Irr§ is not empty, take A € IrrS. Then, A(1) is
divisible by q because X is induced by an irreducible character 6 of S”.
Let a = 6(1)&, — u. Since & (1) = ug, we have a € I(8). Then, (20.1)
and (20.2), together with Lemma N, yield

q—1
6(1) chk =uay or ay=ab(l).
s=0
Therefore,
(Zm) QY 00) 04+ 8)
A S’ A
where 61, ...,0, are components of Ag:. It follows that

( Z Cstlhst + Z a)\)\) =api
SI

5,t>0 A
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where p; is the portion of the regular representation of S’ on the set
of irreducible characters which do not have P in their kernel. Let p be
the regular representation of S’ and write p = p; + ps. Then, p; is the
regular representation of S'/P. If z is a nonidentity element of S’, then

0 = p(z) = p1(z) + p2(2).

Let 8 = —aps + Ag,. Then, § is a linear combination of irreducible
characters of S’/ P with rational coefficients. It follows that for z € (S")!,

not(z) = evpr(x) + B(x).
Since p2(1) = |S'/P| = cu, B(1) = —acu + Ags(1) is an integer because

Ag: is a character and au is an integer. The remainder of the proof is
the same as the proof of Lemma 34.3 [FT]. We have

Y Inoe(@)? =D (ethu(@) + B()) (¥ (z) + B(x))

ze(PC)!
= Z |9:(2)]? + ¢ Z(“ﬁt(@ﬁ(@
+ () B(z)) +Z|IB

Since 1, is an irreducible character that vanishes outside PC, the first
term is uc|P| — u?. Since 3 is a sum of irreducible characters of S’/P,
the second sum is equal to —2euB(1). The values of 3 are constant on
each coset of P. Thus, the third sum is

1P| > 18()1* — B(1)?

zeU

Lemma 20.1 yields that u divides either (p? —1)/(p — 1) or (p — 1)971
and {P| > p?. Hence, we have

|P| > 2u+1

and |P|B(1)2 — 8(1)% — 2euB(1) > 2u(B(1)? — eB(1)) > 0 because 5(1)
is an integer. This proves Lemma 20.3. Q.ED.

Lemma 20.4. Forl1<i<gqg-—1,

Y @) > (1P| - 1e.

T€PC-C
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Proof. We use the same method as in the proof of Lemma 20.3.
Since 7;0 is orthogonal to every character of 87, we have

(mi0)s' = ap1 +7

where au is an integer, p; is the portion of the regular representation p
with p — p; the regular representation of S’/P, and + is a character of
S’/P. Then, p; vanishes outside P, p; takes the value —uc on P—1, and
p1(1) = (JP] = 1uc. Let § = (n;0)y and y € P*!. Since + is a character
of §'/P, (n;0)s takes a constant value on each coset of P except at the
identity. Thus,

(20.3)

Y Imo@P =(PI-1) | > 6@ + o)l

zePC-C zeUt
= (|P| = )(cll8ll* ~ [6(1)1* + Imo(¥)[*)-

Clearly, ||6]|? is a nonzero integer. Let z € Q*, and let £ be a prime
ideal dividing ¢ in the ring of algebraic integers of Qpq. Then, n,0(y) =
Ni0(yz) = wio(yz) = wio(y) =1 (mod Q). Thus, the left side of (20.3) is
positive. It suffices to show that |6(1)|? — |ni0(y)|? is an integral multiple
of c. We have

mio(y) = ap1(y) +v(y) = —auc+ (1),
6(1) = ap1(1) +v(1) = a(JP] — D)uc+ ~v(1).
Hence,
18I = Imio()I* = (a(| Pl — 2)uc + 2y(1))al Pluc.
Since au is an integer, this is an integral multiple of c. Q.E.D.

Lemma 20.5. Suppose that 8§ contains an irreducible character X
of degree uq which is induced by a character of PC. Then,

> N (@) > ugelP| - (ug)? - 2ug’.
z€(PC)t

Proof. We have

(A = Asr +ap1 +a
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where au is an integer, p; is the portion of the regular representation p
of §’, p = p1 + p> with p, the regular representation of S'/P, and « is
a character of S’/P. Let

B =—ap2 + a.

Then for z € (S’)%, A(z) = A(z) + B(z). The value of 3(z) is constant
on each coset of P except at the identity. The proof of Lemma 34.5 [F'T]
may be applied. We have

(20.4)
> W@ =) (A=) + 8) A=) + B(z))

ze(PC)t
=Y D@ +Y_(M@)B@) + B@)X@) + ) 8(2)]*.

Since A € Irr S with A\(1) = ug, the first sum is ugc|P| — (ug)?. None of
the irreducible components of Ag: has P in its kernel. Hence, the second
sum is —2A(1)5(1). Since 8 is constant on each coset of P,

Y 18@)1P =1PI Y B@)* — 1B

zelU

Suppose |3(1)| < g. Then, 2X(1)|3(1)| < 2ug®. The result follows from
(20.4). On the other hand, if |3(1)| > g, then 2X(1)|8(1)] < 2u|B(1)]? <
(|P| — 1)|3(1)|2. The result follows from (20.4) again. Q.E.D.

Lemma 20.6. Let Gq be the set of elements of G which are not
conjugate to any element of PC, Q, or W. Suppose that 8§ contains an

irreducible character X of degree uq. Define
Ay ={z € Go | \"(z) # 0},
Az ={z € Go | mo(z) # 0}, and
Az = {z € Go | no1(z) # 0 and no1(z) =0 (mod (g — 1))}

Then, GQ = A1 U A2 @] A3.

Lemma 20.7. The following statements hold.

(i) Ifq>5, then P is an elementary abelian group of order p? and
u/c > 9p?71/20q.
(i) Ifp,q>>5, thenc=1 and u > (13/20)p?~1/q.
(#5i) Ifp=3 and c#1, thenu =121, ¢ =5, and c = 11.
(tv) Ifq=3, thenc=1 orc="7. Furthermore u > (p?>+p+1)/13.



On the Prime Graph of a Finite Simple Group 195

(v) If g =3, then P is an elementary abelian p-group and |P| = p?
orp="T,c=1, and |P|=T%
(vi) Ifg=3andc="7, thenu> (p>+p+1)/2.

Lemma 20.8. Ifq> 5, then PU/C is a Frobenius group and we
also have that u divides (p? —1)/(p — 1).

Lemma 20.9. Ifp,q > 5, then c =1, |P| = p?, and either u =
(p?—1)/(p—1) orp=1 (mod q) and ug = (p? — 1)/(p — 1).

These lemmas are proved as in [FT], §34. In the proof the references
to Lemma 34.n [FT] should be to Lemma 20.n of this paper.

§21. Four Propositions

We continue to use the notation introduced at the beginning of §20.
Thus, S and T are subgroups in M, and p and g are distinct primes such
that |W| = pq. The purpose of this section is to prove that c =d =1,
|P| = p%, |Q| = ¢F, PU is a Frobenius group, and QV is a Frobenius
group.

Suppose that both p and g are greater than 3. Then, Lemma 20.7 (1)
and (%) yield that P is an elementary abelian group of order p? and
¢ = 1. By symmetry, () is an elementary abelian group of order g”
and d = 1. By Lemma 20.8, PU is a Frobenius group and u divides
(p? —1)/(p —1). By symmetry, QV is a Frobenius group. Thus, the
result holds if p,q > 5. We may assume that ¢ = 3 from now on. We
prove four propositions.

Proposition 21.1. Ifq=3, thenc=1.

Proof. Suppose that ¢ = 3 and ¢ # 1. By Lemma 20.7 (iv) and
(vi), we have ¢ =7 and

u> (p> +p+1)/2.

By Lemma 20.1, u divides either p?> +p + 1 or (p — 1)2. It follows from
the inequality that u = p* + p + 1. Lemma 20.7 (v) yields that P is an
elementary abelian group of order p®. Then, by Lemma 20.1, U/C is a
cyclic group that acts irreducibly and regularly on P. Hence, the group
S’/C is a Frobenius group with Frobenius kernel PC/C. The group PC
is nilpotent; so is U. Since U/C is cyclic, U is abelian. Since p € w, we
have 7 € w and U is a w-group. Therefore, S is a w-group of type II or
I11.
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Suppose that S is of type II. Then, S, = Sp (Proposition 10.1);
it is either P or PC. Suppose that S, = PC. Then, (u,7) = 1. Let
U = C x R with a 7-group R and let M € M(Ng(R)). Then, by (Iliv),
Ng(R) ¢ S. Hence, M is not conjugate to S. Since UQ* C M, M is
not g-closed. Hence, M is not conjugate to 1" either. By Theorem I,
M is of type I. Then, by Theorem 19.1, M is a Frobenius group with
Frobenius kernel M,. It follows that U C M, NS,. This contradicts
Theorem 7.9. Therefore, we have S, = P.

Let M € M(Ng(U)). As before, M is a Frobenius group with
Frobenius kernel M,. Let H = M,. Then, M = Ng(H) and Q* C M.
It follows from the structure of a Frobenius complement that |[M: H| = 3
or 3p. By (Ilv), Ng(C) € S. Then, Ce(C) is of rank at most 2.
Therefore, H contains a characteristic subgroup of order 7 or 72. Thus,
if |M : H| = 3p, then p divides 7—1 or (7?2 —1)(72—7). This is impossible
as p # 3,7. Hence, we have [M:H| = 3.

Let M be the set of irreducible characters of M that do not have H
in their kernel. Since M is a Frobenius group with H as the Frobenius
kernel, M is the set of nonlinear irreducible characters of M. If M is not
coherent, then H is a nonabelian group of prime power order (a power
of 7) such that |H : H'| < 4|M : H|? +1 = 37. This implies that H is
cyclic and H C Ng(C) C S. This is not the case. Hence, M is coherent.
Let € be the character of M induced by the principal character of H.
Then, by Lemma 12.7, M* = MU {8} is coherent. We can determine §”
as follows. Take an irreducible character A of M with A(1) = 3. Then,
(6 — \)™ vanishes outside the territory Go(M). We check that S and
some of its conjugates are the only supporting subgroups for A(M). We
remarked that no group of type I can be a supporting subgroup because
it is a Frobenius group. A similar reasoning applies to the group T
because QV is a Frobenius group by Lemma 20.2. Thus, the territory
Go(M) consists of elements conjugate to some element of H or PC — P.

In particular, (6 — )™ vanishes on w. Therefore, by Lemma 13.1, we
have

(07 — A", mo0 — Mo — Moj + Mi5) = 0.

It follows that 67 is a virtual character of weight 3 that involves 199 and
one of 79, noj, or 7. Clearly, 67 is rational. Since no; or 7;; (§ # 0)
has p — 1 algebraic conjugates, §7 does not involve 79; or 7;;. Hence,
0" =1+ n10 + n20.

Let A € M be the irreducible character of degree 3 as above. We
claim that A\"(z) = A(z) for z € H'. Note that A7 is well-behaved
relative to A(M) by Lemma 14.3. Then, by Lemma 14.4, there is a
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virtual character v of M such that ~ is orthogonal to every p € M* and
AT (x) = AMz) + ry(x) (z € HY)

with some rational number r. If y is a nonlinear irreducible character of
M, then p € M*. Hence, (v, u) = 0 by the property of v. Thus, v does
not involve p. Hence, 7 is a sum of linear characters. Then, (y,0) =0
implies that  vanishes on H*. Hence, A" (z) = \(x) for x € H*.

Let Go = Go(M). Then, Lemma 11.5 applied to |A\"(z)|? and 1¢g
yield (with h = |H|)

T' 7' 2 3

:ceG rcHY zeHY
1
1=
Gol
g IMI 2
zcH!

Let G1 be the set of elements of G — Gy which are not conjugate to

any element of W, Pt or Q. On Gy, (§ — \)7 vanishes. The virtual
characters 719 and 720 are 3-conjugate. Therefore, they take the same
value on G;. Thus,

1+ 2n10(z) — A"(z) =0

for x € Gy. This implies that A"(z) # 0 on G;. Hence,

3 1 . 1
2o S IV@IF> ElGll
z€G,
h—1 1 1 1, [P|-1 Q-1
>l — — —(1—-—=42)— - )
3h P q pq) S| ||

8,1 1 2 1 1 32
3h  3cu pv " 3p |S| |T| 3p
We have u = p? +p+1 > 3p, v= (3P —1)/2 > 63, and h > cu. Hence,
the left side of the above inequality is at most (84+1+1)/63p = 10/63p <
1/6p. This is a contradiction.
Suppose that S is of type III. Then, S’ = S, = A(S). Since there is
no supporting subgroup for A(S), S, is a TI-set of G with normalizer S.
Let 8§ = 8¢ U8 in the notation of §16. Then, 8, is the set of characters
of S which are induced by nonprincipal irreducible characters of S’. Let
&o be the character of S induced by the principal character of S’. By
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Theorem 16.1 (a), 8; is coherent. As before, 82 = 8; U {£o} is coherent
and
§o” =1+ mo + m20-

Let \ be an irreducible character of degree 3 lying in §¢. By Lemma 13.5,
the characters of S, are either irreducible or one of {; for 0 < j <p—1.
Then, any virtual character of S that is orthogonal to all 1 € 8, vanishes

n (S). It follows from Lemma 14.4 that A" (z) = \(z) for z € (S')".
Let Gy be the set of elements of G which are conjugate to some element
of (S’)ﬁ. Since S’ is a TI-set in G, we have

3

- AT (z)|* = ATz Az
z;' 2 MO 2P =1 g
and |Gol/g = (|S’| — 1)/|S|. Let G1 be the set of elements of G — Gy

which are not conjugate to any element of W or Q". Since (& — \)7
vanishes on G; and 719 = 120 on Gy, we see that A™ does not vanish on
G1. Thus,

1 11 1, |§-1 |T'|—-1
A (@) > Z|Gy| > 1—(1—=—=+—)— - .
!S’I_ ;' gl : A T
z 1
Hence,
3 n 1 S 2 n 1 n 1 S 2
I/ = plVI = 3p IS| T 3p
This is a contradiction. Q.E.D.

Proposition 21.2. Suppose that g =3. Thend =1.

Proof. Suppose that ¢ = 3 and d # 1. Then, by Lemma 20.7 (ii7)
with g, ¢, and S replaced by p, d, and T, we have p = 5, d = 11, and
v =121 = (11)2. Since v = (3% —1)/2, V/D is cyclic by Lemma 20.1. It
follows that V is abelian. Thus, T is of type II or IIL

Suppose that T is of type III. Let V be the set of characters of
T which are induced by nonprincipal irreducible characters of T’. By
Theorem 16.1, V is coherent. Let (p be the character induced by the
principal character of T7/. By Lemma 12.7, V* = V U {{o} is coherent.
We will see what (p” is. Let A € V be a character of degree p and let

OéZCO—/\

We use the same method as in the proof of Lemma 19.4. The characters
v;; associated to the cyclic subgroup W satisfy v;;(1) = v for ¢ > 0
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(Lemma 20.1). Since v =1 (mod p), all signs attached to v;; are 1. For
a fixed 7 # 0, let

Vi =voj —vi+6 (057 <4)

where 6 is a sum of characters of degree p in V such that §(1) = v — 1.
For example, let § be the sum of distinct characters of degree 5 which
have @D in their kernel. (There are exactly (v — 1)/5 such characters.)
We have v; € Io(Ao(T)). Thus, v;7 are defined. Since

(Yo = %)™ = 100 — Mo — Moj + Mij)

we have ;7 = no; — m; + A with A independent of j. For each j with
0<j <4 (77,¢") = (7,¢) = 1. We have

5= 2(7703', G")+ (Z Mij>Go") +5(4,407).
J J
Since ¢;7 =+ m; and (7, 60") = 0, we get

5=1+ Z(noj,COT) +5(4,6")-

j>o

Therefore, (n9;,{o") # 0 for some j > 0. The characters no1,. .., 704
are p-conjugate, while {¢” is p-rational. Hence, (194, (o") is independent
of j. Since (" is of weight 5, we have (0" = 1g & > ; (7m0 Since
(’Yj‘ra COT) - 17
G =1lc+ Y m;-
§>0

Since V* consists of all the characters of T" which are induced by

irreducible characters of T', Lemma 14.4 yields that

M (z) = Az) for z e (T)".

Since there is no supporting subgroup, A(T) =T is a TI-set of G. Let
Gy be the set of elements of G which are conjugate to some element of
(T")*. Then,

1 T 2 _ 1 T 2
EZI/\ ()] =TT Y. (@)

z€Go ze(T")t

_ 1 2_1_ 5

ze(T))t
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because \ vanishes on T'— T". We have |Go|/g = (|T'| —1)/|T|. Let G1
be the set of elements of G — Gg which are not conjugate to any element

of W or P!. Then if y € Gy, then o7 (y) = 0 and oy (y) = no;(y) for all
j > 0. It follows that

1+ 4no1(y) — A" (y) =0.

This implies A7 (y) # 0. Then,

5 1 1
== > N (@) > =Gy
T~ 9 43, g
|Go 1 1 1, |P-1
>1-2%0 gy .
- g ( P q pq) S|

Thus,
5 1 4 1 1 4

Tttt n
This is not the case. Therefore, T' is not of type III.

Suppose that T is of type II. In this case, 11 € w so T is a w-group.
Take M € M(N¢(V)). Since M contains V P* which is not p-closed, M
is not conjugate to P. The prime 11 lies in o(T")'. In fact, D centralizes
Q; hence, Ng(D) C T by (IIv). Since Ng(V) € T by (Iliv), V is not
cyclic. Thus, 11 € »(T)No (M) by Lemma 6.11. It follows that M is not
conjugate to S. By Theorem I, M is of type 1. Hence, by Theorem 19.1,
M is a Frobenius group with Frobenius kernel M,,. Let H = M,. Then,
M = Ng(H). Since Ng(D) C T, we have Ny(D) =TNH =V. It
follows that | H| is a power of the prime 11 and Z(H) is cyclic. Therefore,
|M/H| = e divides 11 — 1 = 10. Since P* is contained in Ng(V), we
have e = 5.

Let V be the set of irreducible characters of M which do not have
H in their kernel. If V is not coherent, then |H: H’| < 4e? + 1 = 101.
This implies that H is cyclic. Therefore, V is coherent. Let (3 be the
character of M induced by the principal character of H. As before,
V* = VU {(} is coherent. Let A be an irreducible character of M of
degree 5, and let

a = Co - A

Then, o € Io(A(M)) and o vanishes on the conjugates of W. (The
group T is a supporting subgroup of A(M). But, the territory of A(M)

does not intersect with W) It follows that

(@™, 100 — M0 — Moj + Mij) = 0.
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Since A™ # +n4 for any s, t by Lemma N, we have
(€0 m00 — Mio — Moj + Mij) = 0.

Since o” = (3" — A" involves the principal character of G, ((o",700) =
1. We will show that ({o",70;) # 0. Suppose that (¢o",70;) = 0. If

(¢o",miz) # 0, then
G =1lg +0«Z77ij

ji>0

because 7;; for 1 < j < 4 are p-conjugate. Then,
5= [IGo7 |12 = 1+ 4a2.

On the other hand, we have (", ") = (¢o,¢) = 0 for ¢ > 0. Since
G" = £ m5, (¢",¢") = *4a. This is a contradiction. Hence,

(¢o"smij) = 0 for 4,5 > 0. Then, ((o",¢") = 0 implies (¢o”,mi0) = 0.
This contradiction finally proves (¢o”,7n0;) # 0. Then,

T = 1+ Z T[()j.
>0
Lemma 14.4 yields that

X (z) = Mz) for ze HE.

By Lemma 14.3, A" is well-behaved relative to A(M). Hence, we
can apply Lemma 11.5. Let Go be the territory of A(M). Then,

p Z (@) = IMI > @)= IMI > @) = 1=

:I:GG zcHY ze Mt

And

Yool =1 S 1= gp X 1=

rL‘GGo zeHHY

Let G1 be the set of elements of G — Gy which are not conjugate to any

element of W, Pt or Q. Then, o (z) = 0 for x € G;. Also, we have
no1(z) = no;(z) for j > 0 and = € Gy. It follows that

1+4noi(z) — A (2) =0 for z€Gj.
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This implies that A7 (z) # 0 on G;. Therefore, we have

e 1 1
= 2>= " |oz)]* > -G
IH| ngGl 9

H| -1 1 1 1 P|—-1 -1
RN LS WP U W S T Y
|M]| P a4 pg || |T|
e " 1 n 1 S 4 " 1 n 1 N 1 S 4
|H|  3u  5-113 =15 |M| |S] |T]~ 15
Since u = 31 and |H| > 113, this is a contradiction. Q.E.D.

Proposition 21.3. Suppose that g = 3. Then, P is an elementary
abelian group of order p°.

Proof. Suppose that Proposition 21.3 fails. Then, by Lemma 20.7
(v), we have p = 7 and |P| = p*. The group P is elementary abelian.
The group U is abelian and its order u divides either (p® —1)/(p—1) or
(p —1)97L. Since p = 7 and (u,6) = 1, Lemma 20.1 yields that U is a
cyclic group of order dividing p? + p+ 1 = 57 = 3-19. Since (u,3) = 1,
we must have u = 19.

Lemma 20.1 yields a normal subgroup Py such that UQ* acts ir-
reducibly on P/P;. Then, |Py| = 7 and U centralizes Py. There is a
subgroup Py of order p? such that UQ* acts irreducibly on P;. Then,

P:P()XPl

and Py = Cp(U). Since Cp(U) # 1, S is not of type II. Therefore, S is
of type III. Since there is no supporting subgroup, S’ = A(S) is a TI-set.

Let U be the set of characters of S which are induced by nonprincipal
irreducible characters of S’. By Theorem 16.1 (a), U is coherent. Let
& be the character of § that is induced by the principal character of
S’. Then, by Lemma 12.7, U* = U U {&} is coherent. Let A be an
irreducible character of degree 3 lying in U, and let

a=%& — A
Then, o™ vanishes on any conjugate of W. It follows that
(@71 — o — moj + ;) =0 for 4,5 > 0.
By Lemma N, A" is orthogonal to every 7. Hence,

(&, 1 — mio — moj +mij) = 0.
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The virtual characters no; (1 < j < 6) are p-conjugate, while & is
p-rational. Since ||&"||* = 3, & does not involve 7p;. By the same
reasoning, " does not involve 7;;. It follows that

&" = 1 + Mo + n20-
We can argue as in the previous propositions. We have
N (z) = Mz) for z € (S

Let Gg be the set of elements of G which are conjugate to some element
of (S’)!. Since S is a TI-set,

1 T 2 _ 1 T 2
;ZI/\ (=) =75 Y V@)

z€Go ze(s)t

1 y 3
e -1 —- —

z€(S’)E
because A vanishes on S — §’. Similarly,
Gol/g = (IS = 1)/1S].

Let G be the set of elements of G — Gy which are not conjugate to any

element of W or Q". Then, o vanishes on Gy, and 110(y) = n20(y) for
y € G;. Thus,

14 2mo(y) =X (y) =0 for yeGj.

This implies A" (y) # 0 for y € G;. Then,

3 1 1
=== V(@) > =Gy
12
15"l " 9 =2, g
Sl —1 1 1 1 —1
zl—lls —(1————+—)—|Q|T :
15| P q pg IT|
Then,
3 .01 1 1. 1 12
IS " 7-v T p pg- |S| T 21

Since |S’| = 74 - 19 and v = 1093, this is a contradiction. Q.E.D.
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Proposition 21.4. Suppose that g = 3. Then, U is a cyclic group
of order dividing p*> +p+1 that acts on P irreducibly and regularly. The
group PU is a Frobenius group. The group Q is also an elementary
abelian group of order 3° and QV is a Frobenius group with Frobenius
kernel Q. The group V is a cyclic group of order dividing (37 —1)/2.

Proof. Since ¢ = 3, we have p > 5. By Lemma 20.7 (¢) with ¢ and
P replaced by p and @, @ is an elementary abelian group of order 37.
By Proposition 21.2, we have d = 1 and D = 1. Lemma 20.8 with ¢
and P replaced by p and Q yields that QV is a Frobenius group with
Frobenius kernel @ and v = |V| divides (3” — 1)/2. By Lemma 20.1 for
T, V is a cyclic group.

Suppose that Proposition 21.4 fails. Then, by Lemma 20.1, the
group U is a product of at most 2 cyclic groups and v divides [(p—1)/2]2.
Since U is abelian, S is either of type II or type III.

Suppose that S is of type III. Let U be the set of characters of S
which are induced by nonprincipal irreducible characters of S’. If U is
coherent, we can apply the same argument as the one in the proof of
Proposition 21.3. At the end, we get

QS
|5’| = 3p

Since |S’| = p3u > 15p and |T| = v|Q| with
v=(3?-1)/2 > 5p,

we have a contradiction

1,002
|5’l T 3p
We will prove that U is coherent. Since U = S'/P is abelian, U
contains (u — 1)/3 irreducible characters of degree 3. By assumption,
U is an abelian group of exponent dividing (p — 1)/2. Therefore, there
is a U-invariant subgroup P; of P with index |P : P;| = p. Then,
U/Cy(P/Py) is cyclic. Since Cy(P/P;) is contained in the inertia group
of any linear character of P/Py, there is a linear character # of P such
that |S": I(0)| < expU < (p—1)/2. It follows that there is an irreducible
character y of U having the degree 3d with 1 < d < (p —1)/2 (cf. §11,
the proof of Lemma 4.5 [FT]). Let X be an irreducible character of degree
3 lying in U. Let

a=€¢(—-X and B=d\—pu
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where £ is the character of S induced by the principal character of S’.
Then, o, 8 € IH(A(S)) and o™, 37 are defined. Since S is of type III,
we have A(S) = S’. Then, for characters v, v/ of degree 3 in U,

(B7,(v—2)")=0
if v#£X#vV; while (87,(v — A)7) = —d. It follows that
BT =d\ —zY v -+ A

for some integer x where the sum is over all irreducible characters v
of degree 3. If x = 0, U is coherent. Suppose that = # 0. We have
1B71? = d? + 1. Tt follows from this

(21.1) x?(u—1)/3 < 2dz.

Note that U contains exactly (v — 1)/3 irreducible characters of degree
3. The above inequality implies z > 0. Lemma 20.7(iv) yields u >
(p® +p+1)/13. Since d < (p — 1)/2, (21.1) yields p < 37. By Lemma
20.1, u divides (p — 1)?/4. Thus,

2 2

PP+p+1 (p-1)

- < .
13 S¥=77

If p — 1 is divisible by 4 or 3, we can replace (p — 1)2/4 by (p — 1)%/16
to get a contradiction. Thus, p = —1 (mod 12) and p = 11 or 23. If
p = 23, u divides 112. If u = 11, then u # 1 (mod 3). This contradicts
the fact that UQ* is a Frobenius group. Thus, u = 121 and (21.1) yields
z < 1. Therefore, we have p = 11, u = 25, d = 5, and (21.1) yields
0 <z < 2. Hence, z =1 and

ﬂ7=d)\T—ZVT—,uT+A.

As before, A is a real-valued virtual character such that (1g,4) =
(v™,A) = 0 for every v € U with v(1) = 3. We check that

o =1lg+no+7120 —A".

Since 7z = M0, (@7, A) is an even integer. But, (a™,37) = (o, 8) = —d
by Lemma 11.4. Thus, we have

(@,87) =—(d-1)+(a",4)

which implies (o™, A) = —1. This contradiction proves that U is coher-
ent. Thus, Proposition 21.4 is proved if S is of type III.
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Suppose that S is of type II. Let M € M(Ng(U)). Then, M is
not conjugate to S or T. Therefore, by Theorem I, M is of type 1. By
Theorem 19.1, M is a Frobenius group with Frobenius kernel M,. We
have

UCM,.

The group Q* is contained in M. Hence, |M: M,| = 3 or 3p.
By Lemma 20.1, u divides (p—1)?/4. As before, p—1 is not divisible
by 4 or 3. Hence, if u # (p — 1)?/4, then

2 2

P+p+1 (p-1)

- - < < = 7
13 “=""90

which is a contradiction. It follows that u = (p — 1)?/4 and U is the
direct product of two cyclic groups of order (p — 1)/2. Thus, all Sylow
subgroups of U are abelian of rank 2. Hence, we have 7(U) = m(S5).
Take r € m(U) and let A € €2(U). Then, for some B € £'(A), Cp(B) #
1 by Proposition 1.16 [BG]|. For B, Cg(B) C S by (IIv). This implies
that

Z(M,) C SN M, =U.

Since M, is nilpotent, n(Z(M,)) = n(M,). Thus,
n(U) C n(M,) = n(Z(My)) C 7(U).

Therefore, 7(U) = n(M,). Suppose that |7(U)| > 1 or some Sylow
subgroup of U is a Sylow subgroup of G. Then, by Theorem 6.7, G has
abelian Sylow r-subgroups for each r € n(U). By Lemma 6.8(b), U is a
Hall 7(S)-subgroup of G. It follows that U = M,. Since Ng(U) € S,
we have |M : M, | = 3p. Since M is a Frobenius group,

|Al=1 (mod 3p)

for each A € €2(U). Since u = |U| = (p — 1)?/4, we have U = A and
u=1 (mod 3p). (If AU, |U| > (3p+1)? which is impossible.) Thus,

(p—1)> —4=12kp

for some integer k. Hence, p divides 3. This contradicts the assumption
p > q = 3. Therefore, 7(U) = {r} for a single prime r and G has a
nonabelian Sylow r-subgroup. It follows from the structure of S that
P = S,. Then, Theorem 6.7 yields that C = C4(P) has order p. This
contradicts Proposition 21.2. Q.E.D.
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Theorem. Let G be a finite simple group and let w be a connected
component of the prime graph I'(G) such that 2 ¢ w. Then, we have one
of the two cases:

(1) G contains a nilpotent Hall wo-subgroup H that is isolated in G,

or
(2) @ = {p,q} and there is a self-normalizing cyclic group W of
order pq.
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