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§1. Introduction 

Let (0, F, P) be a probability space and let {(B1 (t), ... , Bd(t); t E 
[0, oo)} bead-dimensional Brownian motion. Let B 0 (t) = t, t E [0, oo). 
Let Vo, V1, ... , Vd E Cb'(RN; RN). Here Cb'(RN; Rn) denotes the 
space of Rn-valued smooth functions defined in RN whose devivatives of 
any order are bounded. We regard elements in Cb'(RN; RN) as vector 
fields on R N. 

Now let X(t, x), t E [0, oo), x ERN, be the solution to the Stratono­
vich stochastic integral equation 

(1) 
d t 

X(t, x) = x + 2::1 Vi(X(s, x)) o dBi(s). 
i=O O 

Then there is a unique solution to this equation. Moreover we may 
assume that with probability one X(t, x) is continuous in t and smooth 
in x. 

In many fields, it is important to compute E[f(X(T, x))] numeri­
cally, where f is a function defined in RN. Let u(t,x) = E[f(X(t,x))], 
t > 0, x ERN. Then u satisfies the following PDE: 

{ 
~~(t,x) = Lu(t,x), 

u(O,x) = f(x). 

Here L = ~ 2:~1 Y;2 + V0 . So to compute E[f(X(T, x))] is the 
same to compute the solution u(T, x) to PDE. However, in mathematical 
finance, if we think of the problem of pricing of Europian options, there 
are sometimes following difficulties. 

(1) L can be degenerate. Moreover, L may not satisfy even the 
Hi:irmander condition. 
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(2) f may not be continuously differentiable. 

Bally and Talay [1] showed that under the Hormander condition, 
Euler-Maruyama approximation gives a good approximation, even if the 
function f is only bounded measurable. In this paper, we introduce a 
new method to compute E[f(X(T,x))] numerically. Our method works 
when the function f is Lipschitz continuous. Our main tools are Malli­
avin calculus and stochastic Taylor approximation based on Lie algebra. 
Such stochastic Taylor expansion was initiated by Ben Arous [2], and 
has been studied by many authors ([3], [8], [10], also see [9]). 

§2. Notation and Results 

Let A = {0} U U~=l {0, 1, ... , d}k and for a E A, let Ia I = 0 if 
a= 0, let lal =kif a= (al, ... ,ak) E {0,1, ... ,dy, and let llall = 
Ia I+ card{1 ~ i ~ lal ; ai = 0}. For a, f3 E A, we define a* f3 E A by 
a*f3= (al, ... ,ak,{31, ... ,f3c) if a= (al, ... ,ak) E {0,1, ... ,d}k and 
f3 = (/31, ... , /3£) E {0, 1, ... , d}c. Then A becomes a semigroup with 
respect the product * with the identity 0. 

Let Ao and A1 denote A\ {0} and A\ {0, (0)}, respectively. Also, for 
each m 2: 1, A(m), let Ao(m) and A1(m) denote {a E A; llall ~ m}, 
{a E Ao; llall ~ m} and {a E A1; llall ~ m} respectively. 

and 

Let Boa(t), t E [0, oo), a E A, be inductively defined by 

B 00 = 1, Bo(i) = Bi(t), i = 0, 1, ... , d 

We define a vector field V[a], a E A, inductive! by 

V[0] = 0, V[i] = Vi, i = 0, 1, ... 'd 

V[a*(i)J = [Vm 1/;], i = 0, 1, ... , d. 

Now we assume the following throughout the paper. 
(UFG) There is an integer £ such that for any a E A 1 , there are 

'Pa,(3 E Cb"(RN), a E A 1 , f3 E A 1 (£), satisfying the following. 

V[a] = L 'Pa,(3 V[(3] · 

(3EA1(£) 

Remark. 
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(1) Let us think of Cb"(RN)-module M = I.:aEAo Cb"(RN)V[a]· 
Then the assumption (UFG) is equivalent to the assumption that M is 
finitely generated as a Cb"(RN)-module. 

(2) The following condition (UH) (Uniform Hormander condition) 
implies the assumption (UFG). 

and 

(UH) There are an integer £ and a constant c > 0 such that 

L (1/[a],~? 2: cl(l 2, for all x,~ ERN 
aEA1 (£) 

Let Va, a E A, be differential operators given by 

Va = Identity, if a = 0, 

Let us define a semi-norm II · llv,n, n 2: 1, on C0 (RN; R) by 

n 

llfllv,n = L 
k=l a1, ... ,akEA1 

lla1 *"""*"'• ll=n 

Now let us define a semigroup of linear operators { Pt}tE[O,oo) by 

(Ptf)(x) = E[f(X(t, x))], t E [0, oo), f E Cb"(RN). 

Then we can prove the following by using a similar argument in 
Kusuoka-Stroock [7] (also see [5] for the details). 

Theorem 1. For any n, m 2: 0 and a1, ... , an+m E A1, there is 
a constant C > 0 such that 

c 
IIV[al] · · · V[an]Pt V["'n+l] · · · 1/[an+on]JIIoo ::::; tll"'l*"""*"'n+onll/211/lloo, 

f E Cb"(RN). 

Corollary 2. For any n 2: 0 and a1, ... , an E A1, there is a 
constant C > 0 such that 
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Definition 3. We say that a family of random variables { Za ; a E 

A0 } ism-moment similar, m 2: 1, if Zco) = 1, 

and if 

for any k = 1, 2, ... , m and a1 , ... , ak E Ao with llad +· · ·+ llakll :::; m. 

Let H : RN ---+ RN be given by H(x) = (xb x2, ... , XN ), x = 
(xl,x2, ... ,xN) ERN. 

Our main result is the following. 

Theorem 4. Let m be an integer and suppose that a family of 
random variables {Za ; a E Ao} ism-moment similar. Let Q(s) be a 

Markov operator in Cb(RN) 

2::= sCIIatiJ+ .. +IIakll)/2 
a:I, ... ,a:kEAo, 

lla,ll+·+llakll::::m 

x (P~, ... P~J(V[a,] ... V[akJH)(x))] 

Then for any n 2: 1 there is a constant C > 0 such that 

n(m+l) 
IIPsf- Q(s)f(x)lloo:::; c( 2::= sk12 llfllv,k + sCm+l)/2IIVflloo), 

k=m+l 
s E (0, 1], f E Cb'(RN; R). 

Let T > 0 and "( > 0. Let tk = t~n) = k"'~T /n"'~, n 2: 1, k = 
0, 1, ... , n, and let Sk = s~n) = tk - tk-1, k = 1, ... , n. Then we have 
the following. 
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Theorem 5. Let m ~ 1 and Q(s)' s > 0 be as in Theorem 4. 
Then we have the following. 

For 'Y E (0, m- 1), there is a constant C > 0 such that 

IIPT f- Q(sn)Q(sn-d ... Q(sl)!lloo :::; cn-"~12 IIV' !lloo, 
f E Cb'(RN), n ~ 1. 

For 'Y = m - 1, there is a constant C > 0 such that 

IIPT f- Q(sn)Q(sn-d ... Qcsl)!lloo :::; cn-(m-l)/2 log(n + 1)IIY' !lloo, 
f E Cb'(RN), n ~ 1. 

For 'Y > m - 1, there is a constant C > 0 such that 

IIPT f- Q(sn)Q(sn-d ... Q(sl)flloo :::; cn-(m-l)/2 IIV' !lloo, 
f E Cb'(RN), n ~ 1. 

. §3. Example of 5-momemt similar family 

Let 'T/i, i = 1, ... , d and 'T/ij, 1 :::; i < j :::; d, are independent random 
variables such that 

and 

Then we see that 

and 

1 
P(TJii = ±1) = -. 

2 

Now let us define random variables {Za ; a E Ao} as follows. 

(1) The case where llall = 1. 

zi = 'T/i, i = 1, ... , d. 
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(2) The case where llall = 2. 

Z0 = 1, 

~ ( 1Ji1Jj + 1Jij)' 

H1Ji1Jj -1]ji), 
1 
21Ji1Jj, 

(3) The case where llall = 3. 

1 
ZiO = Zoi = 27Ji, 

1 ~ i < j ~ d, 

1 ~ j < i ~ d, 

1 ~ i =j ~d. 

1 
ziij = zjii = 4 1Ji, ziji = o, 1 ~ i =1- i ~ d, 

and Z01 = 0 in other cases. 
(4) The case where llall = 4. 

Z01 = E[B001 ], 

that is 

1 
ziijj = 8, 1 ~ i, i ~ d, 

1 
Zoii = Ziio = 4, 1 ~ i ~ d, 

1 
Zoo= 2' 

and Z 01 = 0 in the other case. 
(5) The case where llall 2: 5. 

Z01 = 0. 

Then the family of random variables {Z01 ; a E Ao} is 5-moment 
similar. 

§4. Preparation from Algebra 

We say that a polynomial p of X 01 , a E Ao, is m-homogeneous, 
m 2: 0, if 

p(ellallx01 , a E Ao) = emp(x01 , a E Ao), e > 0. 

Let U be the free algebra generated by { v0, v1 , ... , vd} over R. Then 
the algebra U can be extended to the algebra U of formal power series 
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in {vo,vl, ... ,vd}· We define v"' E U, a E A, by v0 = 1, and by v"' = 
v"'1 • • • v"'k, if a = (a\ ... , ak). Then U is the complete direct sum of 
the space Rv"', a EA. We define convergence in U by LaEA aa,nV"' -t 

LaEA aav"', n -t oo, if aa,n -t aa for any a E A. 
For x, y E U, let [xy] = xy- yx. For a E A, let v[<>] E U denote 0, 

if a= 0, Vi, if a= i E {0,1, ... ,d}, and [ .. ·[[Va1Va2]Va3] .. ·,Vak], if 

a = ( a 1 , ... , ak) and k ~ 2. Let U.c be the closure of LaEA Rv[<>] in U. 
Then U.c is closed under Lie product [ ] (see Jacobson [4, p.168]). 

We use the following two theorems (see Jacobson [J, pp.167-174]). 

Theorem 6 (Friedrichs). Let 8 be a continuous homomorphism 
from U into U ® U determined by 8 ( 1) = 1 ® 1 and 8 (Vi) = vi ® 1 + 1 ®vi, 

i = 0, 1, ... , d. Thenforx E U, x E U.c if and only if 8(x) = x®1+1®x. 

Theorem 7. Let a be a linear continuous operator from U into 

U.c given by a(v"') = jaj-1v["'l, a EA. Then the restriction of a on U.c 
is identity. 

Let f3u be a Borel algebra over U. Let (n, :F, P) be a complete 

probability space. One can define U-valued random variables and their 
expectaions etc. naturally. Let {:Ft}tE[O,oo) be a filtration satisfying 
a usual hypothesis, (B1 (t), ... , Bd(t)), t E [0, oo), be a d-dimensional 
{FthE[O,oo)-Brownian motion, and B 0 (t) = t, t E [O,oo). We say that 
X(t) is aU-valued continuous semimartingale, if there are continuous 
semimartingales Xa, a E A, such that X(t) = LaEAXa(t)v"'. For 

U-valued continuous semimartingale X(t), Y(t), we can define U-valued 

continuous semimartingales J~ X ( s) o dY ( s) and J~ odX ( s) Y ( s) by 

t X(s) o dY(s) = L ( t Xa(s) o dYf3(s) )v"'vf3, 
Jo a,f3EA Jo 

t odX(s)Y(s) = L ( {t Yf3(s) odXa(s))v"'vf3, 
Jo a,{3EA Jo 

where 
X(t) = L Xa(t)v"', Y(t) = LYf3(t)vf3. 

aEA {3EA 

Then we have 

X(t)Y(t) = X(O)Y(O) + 1t X(s) o dY(s) + 1t odX(s)Y(s). 
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Since R is regarded a vector subspace in U, we can define J~ X ( s) o 

dBi(s), i = 0, 1, ... , d, naturally. We can similarly think ofU ®U-valued 
semimartingales and stochastic calculus for them. 

Now let us consider SDE on U 
d t 

X(t) = 1 + ~ 1 X(s)vi o dBi(s), t 2:: 0. 

One can easily solve this SDE and obtain 

X(t) = 1 + L Boa(t)va. 
aEAo 

We also have the following. 

Proposition 8. Letp~, a E A 0 , be llali-homogeneous polynomials 
in Xf3, f3 E A 0, given by 

Then 

aEAo 

In other words, 

X(t) = 1 + L B 0 a(t)va = exp ( L p~(B0f3(t), f3 E Ao)v[a]). 
aEAo aEAo 

Proof. Note that 

d t 

8(X(t)) = 1 ® 1 + L 18(X(s))(vi ® 1 + 1 ®vi) o dBi(s), 
i=O 0 

and 

X(t) ® X(t) =1 ® 1 +fat od(X(s) ® 1)(1 ® X(s)) 

+fat (X(s) ® 1) o d(1 ® X(s)) 

d t 

=1 ® 1 + L 1 X(s) ® X(s)(vi ® 1 + 1 ®vi) o dBi(s). 
i=O O 
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Since one can easily see the uniqueness of such SDE on U 0 U, we have 

8(X(t)) = X(t) 0 X(t). 

For any u E U with of the form u = LaEAo a0 V 0 , we have 

exp(u) 0 exp(u) = exp(u 0 1 + 10 u), 

which implies 

log((1 + u) 0 (1 + u)) = log(1 + u) 01 + 10log(1 + u). 

So we have 

8(logX(t)) = log(8X(t)) = logX(t) 01 + 10logX(t). 

-.C 
So by Theorem 6 we see that logX(t) E U P-a.s. On the other hand, 

So acting the linear operator rJ in Theorem 7, we have our assertion. 
Q.E.D. 

Proposition 9. There are polynomials q~, a E A0, in Xf3, /3 E A0, 
such that 

log( exp(-xovo)exp( L XaV[a])) = L q~(Xf3, /3 E Ao)v[a] 
aEAo aEA1 

for any Xf3 E R, f3 E Ao. Moreover, qg = 0 and q~ is JJaJJ-homogeneous 
for each a E A1. 

Proof. Similarly to the proof of Proposition 8, we see that 

log ( exp( -xovo) exp(LaEAo X0 V[<>l)) E U.c. Since we have 

exp(-xovo)exp( L X0 V[a]) = 1+ L X0 V[a] 
aEAo aEA1 

+ ~ ~ _1_(-xo)ex ... x vev[<>l] ... v[<>k] 
L...t L...t .C!k! <>1 C>k 0 . 

f+k22 <>1 , ... ,akEAo 

Note that v6v[<>l] · · · v[<>k] E U~HII<>Iil···ll<>kll. So acting the linear operator 
rJ in Theorem 7 again, we have our assertion. Q.E.D. 
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§5. Basic Estimates 

For n ;::: 0 let i.{)n denote a map from U into the space of differential 
operators in R N of order n given by 

i.{)n ( 2: aavo:) = 2: ao: Va, ao: E R, a EA. 
o:EA o:EA~) 

Note that if u E U.c, then i.{)n ( u) is a vector field. 
First we observe the following. 

Proposition 10. For any U E Cg"(RN; RN), 

for any f E Cg"(RN) and n 2: 1. 

Proof. One can prove the following inductively. 

n tk rt (t s)n 
f(exp(tU)(x)) =I: k! (Uk f)(x) + Jo ~! (un+l f)(exp(sU)(x)) ds. 

k=O 

Then we have our assertion. Q.E.D. 

As corllaries of the above Proposition, we have the following. 

Proposition 11. For any u = :L:aeA1 aav[o:] E U.c, and n 2: 1 we 
have 

llf(exp(<pn(u))( · )) ~ (<pn(exp(u))f)( · )lloo 
n(n+l) 

:::; 2: max{laal 1/llo:ll ; a E A1(n)}kllfllv,k 
k=n+l 

Proposition 12. For any u = :L:aeAo aav[o:] E U.c, and n 2: 1 we 
have a constant C depending only on d and n such that 

llf(exp(<pn(u))( · )) - (<pn(exp(u))f)( · )lloo 
n(n+l) 

:::; C 2: max{laall/llo:ll ; a E Ao(n)}k 2: IIVo:flloo 
k=n+l o:EA, llo:ll=k 
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for any f E Cg"(RN). 

Also, we have the following. 

Proposition 13. For any u(i) = l:aEAo a~)v[<>] E Uc, i = 1, 2, 
and n ;::: 1, we have a constant C depending only on d and n such that 

llf(exp(cpn(u(l)))(exp(cpn(u(2)))( ·)))- (cpn(exp(u(2)) exp(u(l)))f)( · )lloo 

2n(n+l) 
:::; C L max{la~)ll/11<>11; a E .Ao(2n), i = 1,2}k L IIVaflloo 

k=n+l aEA, ll<>ll=k 

Proof. Note that 

f( exp( 'Pn( u(l)) )( exp( 'Pn( u(2) ))(x))) - ( 'Pn( exp( u(2)) exp( u(l)) )f)(x) 

= f( exp( 'Pn( u(l)))( exp( 'Pn( u(2)) )(x))) 

- ( 'Pn( exp( u(l)) )f)( exp( 'Pn( u(2) ))(x))) 

+ ( 'Pn( exp( u(l)) )f)( exp( 'Pn( u(2) ))(x))) 

- 'Pn( exp( u(2)) )( 'Pn( exp( u(l)))f)(x)) 

+ 'Pn( exp( u(2)) )( 'Pn( exp( u(l)) )f)(x)) 

- (cpn(exp(u(2)) exp(u(l)))f)(x). 

Then we have our assertion from previous two propositions. 

§6. Moment Equivalent Families 

Let (0, F, P) be a probability space. 

Q.E.D. 

Definition 14. We say that families of random variables { Za ; 
a E .Ao} and {Z~ ; a E .Ao} are m-moment equivalent, m;::: 1, if 

and 
E[Za1 • • • Zak] = E[Z~1 • • • Z~k] 

for any k = 1, 2, ... ,m and a~, ... ,ak E .Ao with lla1ll +· · ·+ llakll:::; m. 

The main result in this section is the following. 
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Theorem 15. Let m 2: 1. Let {zill ; a E Ao} and {Zi2) ; a E 
Ao} are m-moment equivalent families of random variables such that 

Z~~j = Z~~j = 1. Let zCil(e), e > 0, be a U.c -valued random variable 

given by z(i)(e)-'""' ell<>llz(i)v[<>] - L..,aEAo 0 • 

Then for any n 2: 1, there is a constant C > 0 depending only on n 

and moments of zii), i = 1, 2, a E Ao(n), such that 

sup IE[f(exp(<pn(z(l)(e)))(x))]- E[f(exp(<pn(Z(2)(e)))(x))JI 
xERN 

n(rn+l) :s;c( L ekllfllv,k+en+liiVflloo), eE(0,1],fECb(RN;R). 
k=rn+l 

To prove this theorem we need some preparations. 

First we have the following combining Propositions 12 and 13. 

Proposition 16. Let {Za ; a E A 0 } is a family of random vari­

ables such that Z0 = 1. Let Z(e) = EaEAo ellallzii)v[<>l. Then for any 

n 2: 1 and p E [1, oo), there is a constant C > 0 depending only on n, p, 
and moments of Z0 , a E Ao(n), such that 

sup E [ lf(exp(<pn(Z(e)))(exp( -e2 Vo)(x))) 
xERN 

-f(exp(<pn( L ell<>llq~(Z,a,,BEAo)v[<>]))(x))lpr/P 
aEAo 

:::::; C L eii<>IIIIVaflloo, e E (0, 1], f E Cb(RN; R). 
aEAo 

n+l~ll<>ll9n(n+l) 

Here polynomials q~, a E A1 , are as in Proposition 9. 

As a corollary we have the following. 

Corollary 17. Let us assume the same as the previous proposi­
tion. Then for any n 2: 1 and p E [1, oo ), there is a constant C > 0 
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depending only on n, p and moments of Za, o: E Ao(n), such that 

sup E [I exp(r.pn(Z(s)))(exp( -s2 V0 )(x)) 
xERN 

- exp('Pn ( L slla11q~(z13 , f3 E Ao)v[a]) (x)) IP] l/p 
aEAo 

:::; csn+l L IIVaHIIoo, E E (0, 1]. 
aEAo 

n+l:'OIIall9n(n+l) 

159 

Proof. Let 'ljJ E Cb"(R; R) such that 'lj;(t) = t, ltl < 1, and 0 :::; 
'lj;'(t):::; 1, t E R. Let hiE Cb'(RN;R), I!~ 1, j = 1, ... ,N, be given 
by hi(x) = l!'lj;(l!- 1xi)· Then we see that 

sup IIV hi lloo < oo, 
£::0:1, i=l, ... ,N 

and 

. max IIVk hi lloo ----> 0, I!----> oo, k ~ 2. 
J=l, ... ,N 

So we see that 

sup IIVahi lloo < oo, 0: E Ao. 
R::O:l,i=l, ... ,N 

Therefore applying the previous proposition for hi and letting I! i oo, 
we have our assetion. Q.E.D. 

Similarly by using Proposition 12, we have the following. 

Proposition 18. Let us assume the same as the previous propo­
sition. Then for any n ~ 1 and p E [1, oo), there is a constant C > 0 
depending only on n, p and moments of Za, o: E Ao(n), such that 

sup E[l exp(r.pn(Z(s))(x))- ('Pn(exp(Z(s)))H)(x)IP] 1/P 
xERN 

aEAo 
n+l:'O llall9n(n+l) 
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Now let us prove Theorem 15. Note that 

sup IE[f(exp(~n(zCll(c:)))(x))]- E[f(exp(~n(zC2l(c:)))(x))JI 
xERN 

= sup IE[f(exp(~n(z(ll(c:)))(exp( -c:2 V0 )(x)))] 
xERN 

On the other hand, by Corollary 17, we have 

sup E [If( exp( ~n(z(i) (c:)) ( exp( -c:2V0 ) (x))) 
xERN 

-1( exp(~n( L c;ll<>llq~(zhil, (J E Ao)v[<>l)(x)) )I] 
aEAo 

aEAo 
n+l:'OIIall9n(n+ll 

IIVaHIIoo) IIY'flloo, 

c: E (0, 1], f E Cb'(RN; R). 

Also, since q(o) = 0, by Proposition 11 we have 

sup E[l!(exp(~n( L c;ll<>llq~(zhil, (J E Ao)v[al)(x))) 
xERN aEAo 

- E [ (~n ( exp( L c;ll<>llq~(zhi), (J E A0 )v[a])) f) (x) I] 
aEAo 

n(n+l) 

~ Cc:n+l ( L llfllv,k), c: E (0, 1], f E Cb'(RN; R). 
k=n+l 

Note that {q~(zhi)' (J E A0 ); a E Ao}, i = 1,2, are m-moment equiva­
lent to each other, we see that 

E[(~m(exp( L c;ll<>llq~(zhll,(JEAo)v[a]))!)(x)] 
aEAo 

= E[ (~m( exp( L c;l1<>11q~(Zh2l, (J E Ao)v[a]) )1 )(x)J. 
aEAo 

Therefore we have our theorem. 
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§7. SDE 

Let X ( t, x) be the solution of SDE ( 1). Also, let X ( t) be the solution 
to SDE (2) in U. Then we have the following. 

Proposition 19. For any n 2:: 1, there is a constant C depending 
only on d and n such that 

sup E[ if(X(t,x))- (cpn(X(t))f)(x)n 112 

xERN 

:::; Ct(n+l)/2 L IIVaflloo, t E (0, 1], J E Cb'(RN; R). 
aEA 

ll<>ll=n+l,n+2 

Proof. Note that 

d t 
f(X(t, x)) = f(x) + L Jn (Vd)(X(t, x)) o dBi(t). 

i=O O 

So we have 

f(X(t, x)) = L (V,f)(x)B00 (t) + R(t, x). 
aEA(n) 

Here 

R(t,x) =I:' 1t odB,k(sk) 1sk odB,k- 1 
... 

. . ·181 odBi(so)(l;iV,f)(X(so,x)) 

and "E.' is the summation with respect to a = ( a 1 , ... , ak) E A( n) and 
i = 0, 1, ... , d, with ll(i) *all 2:: n + 1. Since 

1t (l;iV,f)(X(s, x)) o dBi(s) 

= 1t (l;iV,f)(X(s, x)) dBi(s) + (1- 8o,i)~ 1t (V?V,f)(X(s, x)) ds. 

we see that there is a constant C( d, n) depending only on d and n such 
that 

sup E[IR(t,xWFI2 

xERN 

:::; C(d, n)t(n+l)/2 max{IIV,flloo ; a E A, II all = n + 1, n + 2}. 
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Since X(t, ·) : RN ---+ RN is a diffeomorphism, we can think of the 
push-forward X(t)*. Then we have 

d t 

X(t)* =Identity+ L { X(s)*Vi o dBi(s) 
i=O Jo 

as linear operators in C 00 (RN). So we have 

L B 00 (t)Va = <pn(X(t)). 
aEA(n) 

This proves our assrtion. Q.E.D. 

Combining the previous proposition with Propositions 8 and 12, and 
applying the argument in Corollary 17, we have the following. 

Proposition 20. For any n ~ 1, there is a constant C > 0 de­
pending only on n and d such that 

sup E [ jt(X(s, x)) 
xERN 

-t( exp(<pn( L sll<>ll/2p~(B0!3(1), {3 E Ao)v[a]) )(x)) 1
2r12 

aEAo 

~c( 
aEA 

n+1:5llall:5n(n+2) 

s E (0, 1], f E Cb"(RN; R). 

In particular for any n ~ 1, there is a constant C' > 0 depending only 
on n and d such that 

sup E[jx(s,x) 
xERN 

-exp(<pn( L sll<>ll/2p~(B013 (1), {3 E A 0 )v0 )(x)I2J112 

aEAo 

<_ C's(n+l)/2 "" JJV. HJJ (0 1] ~ a 00 , S E , . 
aEAo 

n+1:5llall:::;2n(n+l) 

Here p~ are polynomials in Proposition 8. 
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§8. Proof of Theorems 

By Theorem 15 and Proposition 20, we have the following. 

Theorem 21. Let m :;::: 1. Let {Za ; a E A 0 } be m-moment 
similar family of random variables. Then for any n :;::: 1, there is a 
constant C > 0 depending only on n and moments of Za, a E Ao such 
that 

sup IE[f(X(s,x))] 
xERN 

- E[f( exp(<pn( L sllall/ 2p~(Z(3, (3 E A 0 )v[a]) )(x))] I 
aEAo 

( 
n(m+l) 

:S C k=~+l sk12 iifilv,k 

+ S(n+l)/2 ( a~o IIVaHIIoo) I IV' flloo)' 
n+l:=;llall9n(n+l)) 

forE E (0, 1], f E Cb"(RN; R). 

Now Theorem 4 is an easy consequence of Theorems 15, 21 and 
Proposition 18. 

Now let us prove Theorem 5. By Theorem 4, Corollary 2 and the 
argument in [6], we have the following. 

Proposition 22. For any a :;::: 1, there is a constant C > 0 such 
that 

C s<=+l)/2 
IIPt+sf- Q(s)Ptflloo :S t=/2 IIY'flloo 

for any s, t E (0, a] and f E Cb"(RN; R) with s :Sat. 

By this proposition, under the assumption in Theorem 5, we have 

n 

:S L IIQ(sn) · · · Q(sk+l) (Psk - Q(sk))Ptk_Jiloo 
k=l 

n 

:S L IIPtk-1+sJ- Q(sk)Ptk_Jiloo + IIPsJ- Q(sl)flloo· 
k=2 
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It is easy to see that there is a constant C > 0 such that 

and 

for any s E (0, 1] and f E Cb'(RN; R). So we see that there is a constant 
C > 0 such that 

IIPr J- Q(sn)Q(sn-d · · · Q(sl)JIIoo 

( 
n-1 k(m+1)('y-1)/2) 

~ cn-'Y/2 1 + L km"f/2 IIV' Jlloo 
k=1 

= cn-"~12 ( 1 + ~ kb-m- 1)12) I IV' Jlloo· 

This implies our theorem. 
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