
Advanced Studies in Pure Mathematics 28, 2000 
Combinatorial Methods in Representation Theory 
pp. 373-389 

A Recursion Formula of the Weighted Parabolic 
Kazhdan-L usztig Polynomials 

Hiroyuki Tagawa 

Abstract. 

In this article, we give a recursion formula of the weighted par­
abolic Kazhdan-Lusztig polynomials and describe a relationship be­
tween those polynomials and weighted Kazhdan-Lusztig polynomials 
introduced by G.Lusztig ([4]). 

§1. Introduction 

Our aim in this article is to give a recursion formula of the weighted 
parabolic Kazhdan-Lusztig polynomials introduced by H. Tagawa [5] 
as an extension of the parabolic Kazhdan-Lusztig polynomials and the 
weighted Kazhdan-Lusztig polynomials. Also, we describe a relationship 
between those polynomials and weighted Kazhdan-Lusztig polynomials, 
which is an extension of Deodhar's result on the parabolic Kazhdan­
Lusztig polynomials and the Kazhdan-Lusztig polynomials (cf.[1]). 

Let us give a brief review of known results. In 1982, G. Lusztig 
introduced the weighted Kazhdan-Lusztig polynomials, the special case 
of which has a representation theoretic interpretation (cf.[4]). Also, in 
1987, V. Deodhar introduced two kinds of parabolic Kazhdan-Lusztig 
polynomials, one of which gives the dimensions of the intersection coho­
mology modules of Schubert varieties in G/ P, where G is a Kac-Moody 
group and Pis a "standard" parabolic subgroup of G (cf.(1]). Recently, 
H. Tagawa introduced the weighted parabolic Kazhdan-Lusztig polyno­
mials and he obtained combinatorial formulas which were extensions of 
Deodhar's results on the parabolic Kazhdan-Lusztig polynomials (cf.[2]). 
But, unfortunately, the coefficients of the weighted parabolic Kazhdan­
Lusztig polynomials are not always non-negative. 
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This paper is organized as follows: In the next section, we recall 
the definition of the weighted parabolic R-polynomials and the weighted 
parabolic Kazhdan-Lusztig polynomials. Moreover, we show some inter­
esting equalities used in the sequel. In Section 3, we give a recursion for­
mula of the weighted parabolic Kazhdan-Lusztig polynomials which is an 
extension of Lusztig's result on the weighted Kazhdan-Lusztig polyno­
mials (cf.[4]). In Section 4, we describe a relationship between weighted 
parabolic Kazhdan-Lusztig polynomials and weighted Kazhdan-Lusztig 
polynomials. 

§2. Preliminaries and Notations 

The purpose of this section is to define the weighted parabolic R­
polynomials and the weighted parabolic Kazhdan-Lusztig polynomials. 
Throughout this article, (W, S) is an arbitrary Coxeter system, e is the 
unit element of W. Let Z be the set of integers, N the set of non-negative 
integers, and P the set of natural numbers. 

First, we recall the definition of the Bruhat order. 

Definition 2.1. We put T := {wsw-1; s ES, w E W}. For y, z E W, 
we denote y <' z if and only if there exists an element t of T such 
that C(tz) < C(z) and y = tz, where £ is the length function. Then 
the Bruhat order denoted by :0::::: is defined as follows: For x, w E W, 
x :0::::: w if and only if there exists a sequence xo, x 1 , ... , Xr in W such 
that x = xo <' x1 <' • • · <' Xr = w. We also use the notation x<w if 
x < w and C(x) = £(w) - 1. 

The following is well known as the subword property. For w E W, 
let s1s2 ···Sm be a reduced expression of w, i.e. w = s1s2 · · · sm, Si E S 
for all i E {1,2, ... ,m} and £(w) = m. For x E W, x :0::::: w if and 
only if there exists a sequence of natural numbers i 1 , i 2 , ... , it such that 
1 :0::::: i1 < i2 < · · · < it :0::::: m and x = Si1 Si2 • • • si,. This expression of x 
is not reduced in general, i.e. it may happen that £(x) < t. However it 
is known that one can find a sequence of natural numbers j 1 ,h, ... ,jk 
such that 1 :0::::: }1 < }2 < · · · < ]k :0::::: m, x = s31 sh · · · sik and C(x) = k. 

From now on, the order on Wis the Bruhat order. Next, we recall 
the definition of weights (cf.[4]). 

Definition 2.2. Let r be an abelian group or a Z-algebra of an abelian 
group with the unit element e. <p is called a weight of W into r if and 
only if <p is a map of W into r satisfying the following conditions: 

(i) <p(e)=e, 
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(ii) rp(s1s2 ... Sm)= rp(s1)rp(s2) ... rp(sm) for any reduced expression 
s1s2 ... Sm in W. 

(iii) rp(s) is an invertible element in r for any s E S. 

In particular, any weight <p satisfies the following. 

(ii)' Fors, t ES, if the order of st is odd, then rp(s) = rp(t). 

Conversely, a map cp of S into r satisfying (i), (ii)' and (iii) is uniquely 
extended to a weight of W into r. 

From now on, r is an abelian group, e is the unit element of r, rp is 
a weight of W into rand we put S = {s1, s2, ... , sn}. For w E W, we 

1 1 1 1 

denote rp( w) by QJ and ( Qiu Qi., ... , Qin) by q. Next, we recall the def-
inition of the weighted Hecke algebras and the weighted R-polynomials 
(cf.[4]). 

Definition 2.3. Let 1tcp(W) be the free Z[r]-module having the set 
{T~; w E W} as a basis and multiplication such that 

ifw < sw, 

if SW< W 

for w E W and s E S. We call 1tcp(W) the weighted Hecke algebra (of 
W with respect to <p). 

It is known that 1tcp(W) is an associative algebra (see [3] Chapter 
7 for more general theory). For s E S, we can easily see that (T;)-1 = 
( -1 )T' + -1r1 Qs - e e Qs s· 

Then, the weighted R-polynomial is defined as follows: 

Definition 2.4. There exists a unique family of polynomials {R~ w(q) 
E Z[r]; x, w E W} satisfying , 

T:V = Q;;/ L (-l)l(x)H(w)R~,w(q)T~ for WE W, 
xEW 

where we put T:V := T1-;;}-1 for w E W. We call these polynomials 
R~ w ( q) weighted R-polynomials of W. , 

Let J be a subset of S, WJ the subgroup of W generated by J and 
WJ := {y E W; f(yz) = f(y) + f(z) for any z E WJ }. Then, it is well 
known that, for w E W, there exist a unique element wJ in WJ and a 
unique element WJ in WJ such that w = wJWJ (cf.(3]). 

Now, we can define weighted parabolic Hecke modules. 
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l 
Definition 2.5. Let A( 'P) be the Z-algebra of Z[r] generated by { q;; s 

E S} and 1/; a weight of W into A('P) with 1/;(s) = -e or 1/;(s) = qs for 
each s E S. In the same way, for w E W, we denote 1/;(w) by Uw. After 
this, for convenience, we denote e by 1. Also, for s E S, we _eut Us := qs 
if Us = -1 and Us := -1 if Us = qs. Note that the map 1/; of W into 
A( 'P) defined as follows is also a weight. 

if w=e, 
if s 1s2 ... Sm is a reduced expression of w. 

Let M~,,p(W) be the free Z[r]-module with basis {mJ'; w E WJ}. For 

s ES, we define L'(s) E Homz[q(M~,,p(W)) as follows: 

and linear extension. 

if SW< W, 
ifw < sw E WJ, 

if w <SW¢ WJ, 

Then, we call M~,,p(W) the weighted parabolic Hecke module (of WJ 
with respect to 'P and 1/;). 

Let p~ be a map from 1-tcp(W) to M~,,p(W) defined by 

where xJ and XJ are unique elements satisfying x = xJXJ, xJ E WJ 
and XJ E WJ. Then, the following is known (see [5]). 

Lemma 2.6. ([5, Lemma 2.5]) 
(i) p~ is onto. 

(ii) Fors ES and x E W, L'(s)(p~(T;)) = p~(T;T;). 
(iii) Fors E S, L'(s)2 = q8 L 1(e) + (q8 - l)L'(s), where L'(e) is the 

identity map on M~,,p(W). 
(iv) For w E Wand x E WJ, we can define 

{
m'J i•w = e 

X :J ' 

T~ · m~J := (L'(s1)L'(s2) ... L'(sm))m/ 
if s1s2 ... Sm is a reduced expression of w. 

Namely, M~,,p(W) has an 1-tcp(W)-module structure. 
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(v) For w E W, p'.J(T:V) = r:,, -m/. 

We define an operation - on M:/,,,;, (W) as follows: 

---;-y ·- T'-1 I J £ WJ mw .- w-1 · me 1or w E , 

L awm',;! := L awm',;! for L awm',;; E M:/,,,;,(W). 
wEWJ wEWJ wEWJ 

We can see that the operation - is an involution on M:/,,,;,(W) by 
the following. 

Lemma 2. 7. ([5, Lemma 2.6]) Let x E WJ and s E S. Then, we 
have 

---;-y - I (T' ) mx - PJ x , T' • m'J = T' · m'J mx'J = mx'J_ 
S X S X ' 

Here, we describe the following interesting formula. 

Proposition 2.8. For w E W, 

(1) q:;;;1 L (-l)f(x)+e(w)uxR~,w(q) = u;;;1. 

xEW 

Proof. By the definition of the weighted R-polynomials, we can easily 
find a recursion formula of those polynomials. So, by direct calculation 
and the recursion formula, we can show this proposition by induction 
on £(w). q.e.d 

As a corollary of Proposition 2.8, we see the following. 

Corollary 2.9. For X E 1i,p(W), 

p'.J(X) = p'.J(X). 

Proof. First, for w E WJ, by Proposition 2.8, we have 

P, (T') =q-1 '°' (-l)f(x)H(w)R' (q)u m'J =u-Im'J 
J w w L...t x,w x e w e · 

xEWJ 

Hence, for w E W, by Lemma 2.6 and Lemma 2.7, 

1 (T' ) - , J - - l (T' 1 J) - T' ( 1 (T' ) ) - 1 (T' ) PJ w - UwJmwJ - UWJ WJ. me - WJ. PJ WJ - PJ w ' 
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where wJ and WJ are unique elements satisfying w = WJWJ, wJ E WJ 
and WJ E WJ. Hence, by definitions of the operation and p'.J, Corollary 
2.9 holds. q.e.d 

From now on, we denote ( Us1, Us2, • • • , Usn) by U and (us1, Us2, • • • , 

u8n) by ii By using this operation, we can define the weighted parabolic 
R-polynomials as follows: 

Definition 2.10. There exists a unique family of polynomials 
{R;,w(q)u E Z(r];x,w E WJ} satisfying 

m'J = q-1 ~ (-l)l(x)H(w)R'J (q) m'J for w E WJ 
W W L..J X,W U X • 

xEWJ 

We call these polynomials R; w ( q)u weighted parabolic R-polynomials 

of WJ. For convenience, we p~t R~~w(q)u := 0 if x </. WJ or w </. WJ. 

For example, the following equalities are known. 

Proposition 2.11. ([5, Lemma 3.4, Proposition 3.9]) 
Letx,w E WJ. 

(i) (-l)l(x)+l(w)qwq; 1R;!,w(q)u = R;,w(q)ii-

(ii) L (-l)l(y)H(w)R;,y(q)uR~~w(q)ii = 8x,w, 
x::,y::,w 
where 8x,w is Kronecker delta. 

(iii) Let s E S with sw < w. 

if SX < X, 

if X < sx E WJ, 

if X < SX </. WJ. 

A relationship between the weighted parabolic R-polynomials and 
the weighted R-polynomials is the following. 

Proposition 2.12. ((5, Proposition 3.11, Lemma 3.12]) 

(i) R/w(q)u = R~,w(q) for x, w E W. 

(ii) R;,w(q)u = L (-1)l(Y)uyR~y,w(q) forx,w E wJ. 
yEWJ 

We define some more notations. 

Notation 2.13. 
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(i) Let r be the number of the different elements in {q8 ; s ES}, i.e. 
r = H Qs; S E S}, and we put {qsp Qs2, ... , Qsr} = {qs; S E S}, 
where UA is the cardinality of a set A. Put 

r' 
r" 

~ ~ ~ 

:= {qs: Qs; · · · Qs; ; ni E Z for i E [r]}, 
:= r'2 (= b 2;, Er'}) 

where [r] := {1, 2, ... , r }. 
(ii) For µ, 1 E r", we denote µ <J 1 if and only if there exist integers 

h· and k· with h· < k· µ = qh1 qh2 • • • qhr and 'Y = qk1 qk2 · • • qkr. 
i i i - i, s1 s2 Sr I St s2 Sr 

In order to define the weighted parabolic Kazhdan-Lusztig polyno­
mials, we define a total order on r' called a strong order. 

Definition 2.14. We define a "strong order" on r' as a total order< 
which satisfies the following conditions: 

(i) For a, /3, 1 E r', if a ~ /3, then a, ~ /31 . 
1 

(ii) For any s ES, e < q;. 

Example 2.15. If a weight r.p of W into r satisfies that 

~ -"'-2. ~ 
Qs~ Qs; ... Qs; = e {cc} ki = 0 for all i E [r]. 

Then, the lexicographic order with respect to k1, k2, ... , kr is a strong 
order on r'. 

From now on, we assume that r.p has a strong order on r' and we fix 
a strong order on r'. Put r~ := b E r';e < ,}, f'.._ := b Er';,< 
e }( = (r~ )-1 ) and r~ : = b E r"; e <l 1 }. Then, we can define weighted 
parabolic Kazhdan-Lusztig polynomials as follows: 

Proposition 2.16. ([5, Proposition 4.4]) There exists a unique 
family of polynomials {P~~w(q)u E Z[f~]; x, w E WJ} satisfying the 
following conditions: 

(i) P/x(q)u = 1 for all x E wJ. 
(ii) P/w(q)u = 0 if X f:_ W. 

(iii) q~½ql P/w(q)u E Z[f'.._] if x < w. 
(iv) ' 

-1 p'J ( ) -QwQx x,w q u -



380 H. Tagawa 

We define the "uniquely" determined polynomials from Proposition 
2.16 as the weighted parabolic Kazhdan-Lusztig polynomials with re­
spect to the strong order<. Note that we can easily see that p~<l>w(q)u = 

' P:,w(q) for x,w E W, here P:,w(q) is the weighted Kazhdan-Lusztig 
polynomials defined in Section 4. From now on, for convenience, we put 
P/w(q)u := 0 if x f/. wJ or w f/. WJ. 

§3. A recursion formula 

In this section, we define an extension ofµ( x, w), which is the coeffi-
t<w>-t<x>-1 

cient of q 2 in the Kazhdan-Lusztig polynomial Px,w(q), and get 
a recursion formula of the weighted parabolic Kazhdan-Lusztig polyno­
mials. 

Definition-Proposition 3.1. Lets ES and we put 

( ) {. W J {sx < x or sx f/. WJ 
C s,u := XE ; 

sx <x 

Then, there exists a unique family of polynomials 

if Us = qs, }. 
if Us= -1 

{M;,~ E Z[r'];x,w E WJ,x < w < sw,x E c(s,u)} 

satisfying 

MJs - MJs x,w - x,w, 
x$;y<w,yEc(s,u) 

This is easily obtained by direct calculation and induction on f(w)­
f( x) and the proof is therefore omitted. Then, a recursion formula of the 
weighted parabolic Kazhdan-Lusztig polynomials is described as follows: 

Theorem 3.2. 
(i) Let x, w E WJ and s E S with sw < w. Then, we have 

'J ( Px,w q)u 



A Recursion Formula of the Weighted Parabolic K-L Polynomials 381 

(ii) Let x, w E WJ. If there exists s E S such that sw < w and 
sx E WJ, then we have 

Note that if sw < w, then x:::; w {:;} sx :::; w. 
(iii) Let x, w E W J. If there exists s E S such that sw < w, x < sx (/. 

W J and Us = qs, then we have 

'J px w(q)u = 0. , 

Before the proof of this theorem, we show some lemmas and propo­
sitions. 

Lemma 3.3. Let x, w E WJ ands E S with w < sw (/. WJ and 
sx E WJ. Then, we have 

R'J (q) = {u-;1R:~,w(q)u 
x,w u - R'J ( ) Us sx,w q u 

if SX < X, 

if X < SX. 

Proof. First, by Lemma 2.6 and Lemma 2.7, we can easily see that 

(2) 
1 1 --

q-; 2 (L'(s) + L'(e))m',l = q-; 2 (L'(s) + L'(e))m',l. 

Hence, by (2) and our assumption that w < sw (/. WJ, 

u-1m'J + m'J = q- 1L'(s)m'J + q-1m'J s w w s w s w· 

Hence, we have 

L'(s)m',l = L q;;;1(-ll(w)+l(x)usR/w(q)um/. 
xEWJ 

On the other hand, by the definition of R/w(q)u, we can see 

L'(s)m',l 

L q;;;1(-l)l(w)H(y)((qs - l)R/w(q)u - R:l,w(q)u)m/ 
sy<yEWJ 

L q;;/(-l)l(w)+l(Y)qsR:l,w(q)um/ 
y<syEWJ 

+ L q;;;1(-l)l(w)H(Y)usR/w(q)um/ 
y<syg'WJ 
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Thus, we have 

{ 

'J 'J (qs - l)Rx,w(q)u - Rsx,w(q)u 
'J - 'J UsRx,w(q)u - -qsRsx,w(q)u 

'J UsRx,w(q)u 

By using this equality, we can obtain this lemma. 

if sx < x, 

if X < sx E WJ, 

if X < SX (/_ W J. 

q.e.d. 

Lemma 3.4. Let x, y, w E WJ ands ES. If sx < x<w < sw (/. WJ, 
sx < y < w and x -I- y, then y (/. W J. 

We can easily obtain this lemma by the subword property and the 
proof is therefore omitted. 

Then, we can show the following. 

Proposition 3.5. Let x,w E WJ, s Es, w <SW(/. wJ, SX E wJ 
and Us = -1. Then, we have 

(3) 'J 'J 
Px,w(q)u = psx,w(q)u. 

Note that the above equality does not always hold in case Us = qs. 

Proof. We may assume that sx < x. Case 1. x 1, w. In this case, 
we can easily see that sx 1, w. So, both sides of (3) are equal to 0. 
Case 2. x ~ w. In this case, we show this theorem by induction on 
£(w) - £(x). In case £(w) - £(x) = 1. Note that we may not consider 
the case that £(w) - £(x) = 0 by our assumption in this proposition. 
Let qwq; 1 = qt (t ES) and y E W - {x} with sx<y<w. Then, by 
Lemma 3.4, y (/. W J. So, by the fact that R~J w ( q)u = qs - l if x<w and 

qwq; 1 = qs, P/w(q)u = l if x<.w, we have ' 

Hence, 

(4) 

Then, the left hand side of (4) is an element in Z[r+J and the right hand 
side of (4) is an element in Z[r~]. So, by the fact that Z[r+J n Z[r~] = 
{O}, we have 

'J psx w(q)u = l. 
' 

On the other hand, since £(w) - £(x) = 1, 
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We suppose that (3) holds when C(w) - C(x) < k (k 2". 2) and we will 
show this one in case C(w) - l(x) = k. For y E WJ with sy < y, by 
Proposition 2.11-(iii), we have 

Hence, by our inductive hypothesis, we have 

So, we have 

sy<yEWJ or y<syEWJ 
- 'J 'J - Px,w(q)u - Psx,w(q)u-

On the other hand, by Lemma 3.3, 

yE W J ,y<sy\lW J 

Thus, by the above equalities, 

Hence, by Proposition 2.16-(iv), we have 

So, we can see 
_l. *J *J Qs 2 Px,w(q)u - Psx,w(q)u = 0. 

This completes the proof of Proposition 3.5. q.e.d 

By Proposition 2.11, we can easily obtain the following. 

Definition-Proposition 3.6. For w E WJ, we put 

c'J 
w 

D'J 
w 
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Then, we have 
C 'J = c'J D'J = n'J 

w w' w w. 

Then, as a corollary of Proposition 3.5, we can see the following. 

Corollary 3.7. Let w E WJ, s E s, w < SW (/. wJ and Us = Qs• 
Then, we have 

The following lemma is easily obtained by direct calculation. 

Lemma 3.8. Let w E WJ ands E S. 
(i) If w < sw, we put 

q;½ (L'(s) + L'(e))C'j - c:~ -
-J 1 / 

where m'x := q; 2 m; for x E WJ. Then, we have 

fx = 
if SX < X 

if x < sx E WJ 

ifx < 8$ (/. wJ 

x:$y<w,yEc(s,u) 

{ii) If sw < w, we put 

(q;½ L'(s) - q} L'(e))C'j = L 9xm':. 

Then, we have 

{
P;l,w(q)u - q;½ P;;!,(q)u 

9x = P{{w(q)u - q}*~;,~(q)u 
Qs (us - Qs)Px,w(q)u 

Then, we have the following. 

xEWJ 

if sx < x, 

if X < sx E WJ, 

if X < sx (/. WJ. 

Proposition 3.9. For w E WJ ands ES, we have 

q;½L'(s)C'j 

{ 
-½ 'J 'J ~ Js 'J -qs Cw + Csw + L.t My,wCy 

= y<w,yEc(s,u) 
1 
2c'J Qs w if SW< W. 
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Proof. We show this proposition by induction on £(w). We can easily 
see that Proposition 3.9 holds in case £(w) = 0. So, we suppose that 
Proposition 3.9 holds when £(w) < k (k ~ 1) and we will show this one 
in case £(w) = k. Case 1. w < sw E WJ. We put 

q-;½ (L'(s) + L'(e))C',;/ - c~~ - L M;J,5.»c/ = L fxm':. 
y<w,yEc(s,u) xEWJ 

Note that fx = 0 if £(x) > £(sw). First, by Lemma 3.8, Definition­
Proposition 3.1 and Corollary 3.7, we can see that fx E Z[r~]- Next, we 
show that fx = 0 for all x E WJ. By Proposition 3.6 and the equality 
that MJs = MJs we can obtain y,w y,w, 

1 1 

q-, L'(s)C'J + q- 2 C'J - C'J -
8 W S W SW 

y<w,yEc(s,u) 

= q-;½ (L'(s) + L'(e))C',;/ - c:~ - L 
MJs C'J y,w Y 

M Js c'J y,w y . 
y<w,yEc(s,u) 

So, we have 

(5) L fxq;;½ qj (-ll(x)H(y) R/x(q)um':. 
x,yEWJ,y'.5cx 

We suppose that there exists x E WJ satisfying fx -/- 0. Let x0 be an 
element in WJ such that fxo -/- 0 and fx = 0 for any x E WJ with 

-J 
£(x) > £(xo). Then, we see that the coefficient of m' xo in the right hand 
side of (5) is fxo· Hence, we have fxo = fxo -/- 0. This contradicts that 
fxo E Z[r -l• So, we have 

fx = 0 for Vx E WJ 

and we obtain 

_l I 'J _! 'J 'J 
Qs 2£ (s)Cw = -qs 2cw +csw + M Js c'J y,w y. 

y<w,yEc(s,u) 

Case 2. sw < w. By our inductive hypothesis, we can use 

C',;j = q:;½ (L'(s) + L'(e))C~~ -
y<sw,yEc(s,u) 

M Js c'J 
y,sw y · 

So, by Proposition 3. 7, Lemma 2.6 and our inductive hypothesis, we can 
see that 

_l 1 'J l 'J 
Q8 2 L (s)Cw = qff Cw• 
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Therefore, this completes the proof of Proposition 3.9 q.e.d 

At last, we can prove our main theorem. 

Proof of Theorem 3.2. By Proposition 3.9 and Lemma 3.8-(i), we 
can easily see (i). Also, (ii) and (iii) are easily obtained by Proposition 
3.9 and Lemma 3.8-(ii). q.e.d 

§4. A relationship with weighted K-L polynomials 

The purpose of this section is to show a relationship between 
weighted parabolic Kazhdan-Lusztig polynomials and weighted Kazhdan­
Lusztig polynomials, which is an extension of Deodhar's result on a rela­
tionship between parabolic Kazhdan-Lusztig polynomials and Kazhdan­
Lusztig polynomials ([1]). First, we recall the definition of the weighted 
Kazhdan-Lusztig polynomials. 

Definition-Proposition 4.1. ([4]) There exists a unique family of 
polynomials {P;,w(q) E Z[riJ;x,w E W} satisfying the following con­
ditions: 

(i) P; x(q) = 1 for all x E W. 
(ii) p;:w(q) = 0 if Xi W. 

1 1 

(iii) q; 2 ql P;,w(q) E Z[r'.._) if X < w. 
(iv) 

qwq;; 1 P;,w(q) = L R~,y(q)P;,w(q). 
xsysw 

As the beginning of this section, we show the following. 

Lemma 4.2. Let w E W. We put 

D~ = L (-l)l(x)+l(w)q!q;;l P;,w(q)T;. 
x~w 

(i) D'w = D'w. 

1 

(ii) P1(D'w) = L (-1)f(x)H(w)qJ,q;;l( L u;l P;y,w(q))m;. 
xEWJ yEWJ 

Proof. We can easily obtain this lemma by the direct calculation and 
the definition of the weighted Kazhdan-Lusztig polynomials. Note that 
(-1)f(x)q;; 1uy = u;1. q.e.d 

Then, we have the following. 



A Recursion Formula of the Weighted Parabolic K-L Polynomials 387 

Theorem 4.3. Let x,w E W 1 . 
_! 

(i) If uyqy 2 E Z[r'._] for ally E W1 satisfying xy s; w, 

In particular, if Us = Qs for 'vs E S, 

P/w(q)u = L (-l)l(y) P~y,w(q). 
yEWJ 

(ii) If Us = -1 for alls ES and UW1 < +oo, 

P/w(q)u = p~zo,wzo(q), 

where zo is the longest element in W J. 

Proof. (i) For x,w E W 1 , we put 

Gx,w := L UyP~y,w(q) E Z[r~]-
yEWJ 

Then, we will show that a family of polynomials {Gx,wiX,w E W 1 } 

satisfies conditions (i), (ii), (iii) and (iv) in Proposition 2.16. Let x, w E 

W 1 . By the fact that u;- 1 = 1 and P~,x(q) = 1, we have Gx,x = 1. So, 
(i) holds. If x i. w, for y E W1, we can easily see that xy i. w by the 
subword property. Hence, (ii) holds. If x < w, by our assumption that 

1 

uyq:;; 2 E Z[r'._] for ally E W1 satisfying xy s; w, we have 

1 1 1 1 1 

q~ 2 q]Gx,w = L Uyq:;; 2 q~ 2 q]yP~y,w(q) E Z[r'_]. 
yEWJ 

Hence, (iii) holds. By Lemma 4.2-(ii), we can see 

p'.J(D'w) = L (-ll(y)H(w)q~½ ( L R/x(q)uGx,w)m/ 
yEWJ xEWJ 

On the other hand, by Corollary 2.9 and Lemma 4.2-(i), we have 

p1(D'w) = P1(D'w)-

Hence, we have 

L ( -1 l(x)H(w)qlq;icx,wm~J 
xEWJ 

= L (-ll(x)H(w)q~½ ( L R/y(q)uGy,w)m~1 . 

xEWJ yEWJ 



388 H. Tagawa 

Thus, we obtain 

and (iv) holds. Therefore, by the uniqueness of the weighted parabolic 
Kazhdan-Lusztig polynomials, we have 

P/w(q)u = Gx,w = L UyP~y,w(q). 
yEWJ 

(ii) First, we can easily see that P;,w(q) = P~-1,w-1(q) for x,w E W. 
Moreover, it is shown by Lusztig [4] that P~,w(q) = P;x,w(q) for x, w E 
Wands ES satisfying x s; w, sx < x, sw < w. So, we have 

Hence, by Lemma 4.2-(ii), we have 

P~(D'wzo) 

= (-l)l(zo)q½ """':;-;,-1 """'(-l)l(x)+e(w)q½q-lp1 (q)m'J 
zo L...t y L...t w x xzo,wzo x · 

yEWJ xEWJ 

Hence, by almost the same method to (i), we can obtain (ii). Note that 

½ """' - 1 ½ """' -1 Qzo ~ Qy = Qzo ~ Qy · 

yEWJ yEWJ 
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