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§1. Introduction 

In their fundamental paper [7] Kazhdan and Lusztig defined, for 
every Coxeter group W, a family of polynomials, indexed by pairs of 
elements of W, which have become known as the Kazhdan-Lusztig poly­
nomials of W (see, e.g., [6], Chap. 7). These polynomials are intimately 
related to the Bruhat order of W and to the geometry of Schubert vari­
eties, and have proven to be of fundamental importance in representation 
theory. In order to prove the existence of these polynomials Kazhdan 
and Lusztig used another family of polynomials (see [7], §2) which are 
intimately related to the multiplicative structure of the Hecke algebra 
associated to W. These polynomials are known as the R-polynomials 
of W (see, e.g., [6], §7.5) and their importance stems mainly from the 
fact that their knowledge is equivalent to that of the Kazhdan-Lusztig 
polynomials. 

The main idea of this work is to use the theory of P-kernels devel­
oped by Stanley in [10] to approximate the Kazhdan-Lusztig polynomi­
als with other "K LS-functions" (see §2 for definitions) that are easier 
to compute. In particular, we characterize the pairs u, v E W such that 
the Kazhdan-Lusztig polynomials of the subintervals of [u, v] satisfy cer­
tain vanishing properties or, more generally, coincide with some given 
function in the incidence algebra of W, up to a given order. Two of our 
results generalize and refine previous ones that have appeared in [7] and 
[3]. 

The theory of P-kernels also naturally leads to define and study 
certain polynomials, indexed by pairs of elements of W, that are "dual" 
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to the R-polynomials of W in a very precise sense. To the best of our 
knowledge, although their definition is quite natural, these polynomials 
have never been considered before in the literature. Similarly, we are 
led to the study of the "dual" of the zeta function of a locally Eulerian 
poset, which also seems to be a new object. 

The organization of the paper is as follows. In the next section we 
collect notation, definitions, and results, that are used in the sequel. In 
§3 we prove our main results (Theorems 3.1 and 3.2). These are purely 
combinatorial results that "compare" two K LS-functions in terms of 
their kernels. In section 4 we define a natural involution on kernels and 
K LS-functions and study in some detail the dual of the zeta function of 
a locally Eulerian poset, and of the R-polynomials of a Coxeter group. 
To the best of our knowledge, these objects have never been considered 
before. We also study how a local change in a K LS-function affects the 
corresponding kernel. In section 5 we apply the results obtained in the 
two previous ones to the Kazhdan-Lusztig polynomials. In particular, 
we characterize the intervals of W such that the Kazhdan-Lusztig poly­
nomials of its subintervals (respectively, lower subintervals) are equal to 
1 up to a given order. Finally, in section 6, we discuss some conjectures 
and open problems arising from the present work. 

§2. Notation, Definitions, and preliminaries 

In this section we collect some definitions, notation and results that 

will be used in the rest of this work. We let P ~f {1, 2, 3, ... } , N~fp 
U{O}, Z be the ring of integers, Q be the field of rational numbers, and 

R be the field of real numbers; for a EN we let [a] ~f {1,2, ... ,a} 

(where [OJ ~f 0). The cardinality of a set A will be denoted by IAI. We 
write A C B to mean that A ~ B and A =I- B. Given a polynomial 
P(q), and i E Z, we denote by [qi](P(q)) the coefficient of qi in P(q). 
For a E Q we let la J (respectively, I al) denote the largest integer :S a 
(respectively, smallest integer ?: a). Given A(q) E R[q] and d E P we 
say that A(q) is symmetric (respectively, antisymmetric) with respect to 

d if qd A ( ¼) = A(q) (respectively, qd A ( ¼) = -A(q)). 
For j E Q we define operators U1, D1 : R[q] - R[q] by letting 
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UJ ~f""' i - ~aiq. 
i=O 
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Note that Uj and Dj are linear and idempotent, and that Di = DuJ and 
Uj = Urn, for all j E Q. The following lemma will be used repeatedly 
in this paper and its simple verification is omitted. 

Lemma 2.1. Let A(q), B(q) E R[q], and k E Z. Then 

We follow [9], Chap. 3, for notation and terminology concerning 
partially ordered sets. In particular, given a partially ordered set (or, 

poset, for short) P we let Int(P) ~f {(x,y) E P 2 : x s; y}, and given 

u,v E P we let [u,v] ~f {x E P: u::::; x::::; v}, and define [u,v) and 
( u, v] similarly. We consider [u, v] as a poset with the partial ordering 
induced by P. We say that a poset P is locally finite if I [x, y] I < +oo for 
all (x, y) E Int(P), and in this case we denote by (p (respectively, µp, 
8 p) the zeta (respectively, Mobius, delta) function of P. We will usually 
omit the index P if there is no danger of confusion. 

· Given a finite graded poset P and S ~ N we let Ps ~f { x E P : 
l(x) E S}, where l : P - N is the rank function of P, and a(P; S) be 

the number of maximal chains of Ps. We also let Pi ~f P{i} if i E N. 

We call G(P) ~ Li>O IPilqi the rank generating function of P, d ~f 

deg(G(P)) the rank of P, and the collection of numbers {a(P; S)}s~[d] 
the flag !-vector of P. We say that a finite graded poset Pas above is 
rank symmetric if G(P) is symmetric with respect to d, and is Eulerian 
if P has a O and i and µ(x,y) = (-l)l(y)-l(x) for all x,y E P, x s; y. 
Following [10, §7, p. 835] (respectively, [11]) we say that a locally finite 
poset Pis locally Eulerian (respectively, locally rank symmetric) if [x, y] 
is Eulerian ( respectively, rank symmetric) for all ( x, y) E Int( P). 

Recall (see, e.g., [9], §3.6) that given a locally finite poset P and a 
commutative ring R the incidence algebra of P with coefficients in R, 
denoted I(P; R), is the set of all functions f: Int(P) - R with sum and 
product defined by 

(f + g)(x,y) ~f J(x,y) + g(x,y) 
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and 

(Jg)(x, y) ~f L l(x, z) g(z, y), 
x~z~y 

for all 1, g E I(P; R) and (x, y) E Int(P). It is well known (see, e.g., [9], 
§3.6, and Proposition 3.6.2) that I(P; R) is an associative algebra having 
8 as identity element, and that an element 1 E I(P; R) is invertible if 
and only if l(x, x) E R is invertible for all x E P. If 1 is invertible then 
we denote by 1-1 its (two-sided) inverse. Given 1 E I(P; R) we define 
f* E I(P*; R) (where P* denotes the order dual of P) by letting 

f*(v,u) ~f l(u,v) 

for all (v, u) E Int(P*). Note that (p• = (,j,, 8p. = 8j,, and µp• = µj,. 

We adopt the convention that l(u, v) ~f O if 1 E I(P; R) and u, v E P, 
U 1,_ V. 

Let P be a locally finite poset. We say that a function p: Int(P) -, 
N is a weak rank function for P if it has the following two properties: 

i): if u < v then p(u, v) > O; 
ii): if u :Sa :S v then p(u, v) = p(u, a)+ p(a, v). 

Note that a weak rank function always exists and that if p is a weak 
rank function for P then p* is a weak rank function for P*. The concept 
of a weak rank function enables us to extend the main definitions of §6 
of [10] from the locally graded case (i.e., posets P such that [x, y] is a 
finite graded poset for all (x,y) E Int(P)) to the locally finite case. 

Let P and p be as above and I(P) ~f I(P; R[q]). Following Stanley 
(see [10],p. 830, and Proposition 6.11, p. 835) we let 

- def I(P) = {f E J(P): deg(J(x,y)) :S p(x,y), for all (x,y) E Int(P)}, 

and 

d~ - 1 
{f E J(P) : deg(J(u, v)) ::; 2(p(u, v) - 1) for u < v, h(P) 

2 

and f(u,u) = 1 for all u E P}. 

Note that i(P) is a subalgebra of I(P) and that, if 1 E J(P) is invertible, 
then 1 E i(P) if and only if 1-1 E i(P). Given 1 E i(P) and k E Q we 
let 

- def ( ) ( 1) l(u, v) = qP u,v l(u, v) q , 
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and 

Dk(f)(u, v) ~f Dk(f(u, v)), 

for all u, v E P, u ::; v. Notice that i(P), h (P), and the involution -
2 

all depend also on p. However, throughout this work p will always be 
fixed, so no confusion should arise. Recall (see [10], Definition 6.2, p. 
830) that an element KE I(P) is called a P-kernel (or, more simply, a 
kerne0 if K is unitary (i.e., K ( u, u) = 1 for all u E P) and there exists 
an element f E I(P) such that: 

i): f is invertible in I(P); 
ii): JK=f. 

An element f E J(P) satisfying ii) above is called K-totally acceptable 
(see [10], Definition 6.2, p.830). The next result was first proved by 
Stanley in the locally graded case (see [10], Corollary 6.7), and by the 
author in the locally finite one (see [5, Theorem 6.2)). 

Theorem 2.2. Let P be a locally finite poset and K E J(P) a P­
kernel. Then there exists a unique K -totally acceptable element I E 

J½ (P). 

We call the element I whose existence and uniqueness is guaran­
teed by the preceding theorem the Kazhdan-Lusztig-Stanley function (or 
KLS-function, for short) of K. As noted in [10], §§6 and 7, the function 
1 specializes to many interesting objects depending on the particular 
choice of the poset P and kernel K. 

There is a simple way to decide if a given element K E J ( P) is a 
P-kernel or not. The following result was first proved by Stanley in [10] 
(see Theorem 6.5, p. 831) in the case that Pis locally graded. However, 
his proof carries over unchanged to the present more general setting. 

Theorem 2.3. Let P be a locally finite poset and K E I(P) be such 
that K(u, u) = 1 for all u E P. Then K is a P-kernel if and only if 
KK=o. 

Note that Theorem 2.2 defines a map from the set of P-kernels to 
h (P) and that, by Theorem 2.3, the map f ~ 1-17 is its inverse. Thus 

2 

the correspondence K ~ 1 of Theorem 2.2 is a bijection. We call this 
bijection the K LS-correspondence of P and the elements of h ( P) the 

2 

KLS-functions of P. 

(1) 

For a locally finite poset P define an element XP E I(P) by letting 

XP(u, v) ~f L µ(u, a)qp(a,v} 

aE[u,v] 
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for all ( u, v) E Int( P) (XP ( u, v) is often called the characteristic poly­
nomial of [u, v], see, e.g., [9, §3.10, p.128]). It is then clear from the 
definitions (see also [10, Example 6.8, p. 833]) that XP is a P-kernel, 
and that ( is its K LS-function. We call XP the characteristic kernel of 
P. Note that, in general, xj, =/- XP• even if P* is weakly graded by p*. 

We follow [6] for general Coxeter groups notation and terminology. 
Given a Coxeter system (W, S) and a E W we denote by l(a) the length 

of a in W, with respect to S, and we let D(a) ~f {s E S: l(sa) < 
l(a)}, and c<, ~f (-1)1(<7). We denote by e the identity of W, and 

we let T ~f {asa- 1 : a E W, s E S} be the set of reflections of W. 
We will always assume that W is partially ordered by (strong) Bruhat 
order. Recall (see, e.g., [6), §5.9) that this means that x ::; y if and 
only if there exist r E N and ti, ... , tr E T such that tr ... t1 x = y 
and l(ti ... t1 x) > l(ti-1 ... t1x) for i = 1, ... , r. It is well known (see, 
e.g., [6, §8.5), Proposition 1, iv)) that intervals of Ware finite Eulerian 

posets, and it is clear that p(x, y) ~f l(y) - l(x) for (x, y) E Int(W) is 
a weak rank function for W. The following two results are well known 
and we refer the reader to [6, §7.5] and to [6, §§7.9-11] for their proofs. 

Theorem 2.4. Let (W, S) be a Coxeter system. Then there is a unique 
family of polynomials { Ru,v(q) }u,vEW ~ Z[q] such that, for all u, v E W: 

i): Ru,v(q) = 0 if u iv; 
ii): Ru,u(q) = l; 
iii): if u < v ands E D(v) then 

Ru,v(q) = { Rsu,sv(q), if SE D(u), 
(q - l)Ru,sv(q) + qRsu,sv(q), if S (/. D(u). 

Theorem 2.5. Let (W, S) be a Coxeter system. Then there is a unique 
family of polynomials {Pu,v(q)}u,vEW ~ Z[q], such that, for all u, v E W: 

i): Pu,v(q) = 0 if U iv; 
ii): Pu,u(q) = l; 
iii): deg(Pu,v(q))::; l½ (l(v) - l(u) - l)J, if u < v; 
iv): 

q1(v)-l(u) Pu,v (i) = L Ru,z(q)Pz,v(q), 
u'.5z'.5v 

if u::::: v. 

The polynomials Ru,v(q) and Pu,v(q), whose existence is guaran­
teed by the two previous theorems, are called the R-polynomials and 
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Kazhdan-Lusztig polynomials of W. There is one more property of the 
polynomials Ru,v(q) that we will use, and that we recall here for the 
reader's convenience. A proof of it can be found in [6, §7.8]. 

Proposition 2.6. Let (W, S) be a Coxeter system. Then 

ql(v)-l(u) Ru,v ( t) = (-l)l(v)-l(u) Ru,v(q) 

for all u, v E W. 

We define two elements~, p E i(W) by letting 

(2) ~(u, v) ~ (-l/(v)-l(u) Ru,v(q), 

and 

(3) p(u, v) ~ Pu,v(q), 

for all u, v E W, u s; v. It then follows immediately from Proposition 
2.6 and Theorem 2.5 that lRp = g:i and that p E h (W). Therefore (lR)* 

2 

is a W* -kernel and p* is its K LS-function. 
Given u, v E W, u s; v, we define a polynomial Qu,v(q) E Z[q] by 

letting 

(4) Q ( ) ~f (-l)l(v)-l(u) -1( ) u,v q - p u,v. 

(note that p is invertible in I(W) by part ii) of Theorem 2.5). It then 
follows immediately from well known results (see, e.g., [8], p. 190) that 
Qu,v(q) is the inverse Kazhdan-Lusztig polynomial of u, v. 

The R-polynomials are much better understood than the Kazhdan­
Lusztig polynomials (see, e.g., [6, p. 159]). For example, it is well known 
(see, e.g., [6, §§7.4-5]) and easy to see, that Rx,y(q) is always a monic 
polynomial of degree l(y)-l(x), while neither the degree nor the leading 
term of Px,y(q) can be easily predicted. Therefore, some of the recent 
research on Kazhdan-Lusztig polynomials (see, e.g., [3]) has focused on 
using the R-polynomials to gain information on the Kazhdan-Lusztig 
polynomials. This is the case for the present work also. 

Throughout this paper, unless otherwise explicitly stated, (W, S) 
denotes a Coxeter system, Pa locally finite poset, and p: Int(P) - N 
a weak rank function for P. 
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§3. Comparison Results 

In this section we derive the main results on which our applications 
to Kazhdan-Lusztig polynomials are based. These are purely combi­
natorial results which "compare" two K LS-functions in terms of their 
kernels. They can also be seen as giving some fundamental properties 
of the K LS-correspondence of a locally finite poset. 

Theorem 3.1. Let k E Z, u,v E P, K1,K2 be P-kernels, and ')'1,')'2 

be their K LS-functions. Then the following are equivalent: 

i): Dk(')'1(x,y)) = Dk(''dx,y)) for all x,y E [u,v]; 
ii): Dk(K1(x,y)) = Dk(K2(x,y)) for all x,y E [u,v]. 

Proof. Assume that ii) holds. We proceed by induction on p(u, v). 
If p(u, v) = 0 then u = v and i) coincides with ii). So assume p(u, v) > 0, 
and let x, y E [u, v]. Then from ii) and our induction hypothesis we 
conclude that 

D,(1,(x,y)-1,(x,y)) D, CE, 1,(x,a)K,(a,y)) 

~ D, CE, D,(1,(x,a))D,(K,(a,y))) 

D, CE, D,(1,(x, a))D,( K,(a, y))) 

Dk ( L ')'2(x, a)K2(a, y)) 
x~a<y 

Dk(')'2(x, y) - ')'2(x, y)). 

Since ')'1,')'2 E Ii(P) this implies that Dkb1(x,y)) = Dkb2(x,y)) and 
2 

this proves i). 
Assume now that i) holds. We proceed again by induction on p(u, v), 

ii) being clearly true if p(u, v) = 0. So assume that p(u, v) > 0 and let 
x, y E [u, v], x < y. Then from i) and the induction hypothesis we 
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(5) 
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D, CE, 71 (x,a)K1 (a,y)) 

D, CE, D,(,1(x,a))D,(K1 (a,y))) 

D, CE, D,(,,(x,a))D,(K,(a,y))) 

D, CE, ,2(x,a)K,(a,y)) 

Dk('Y2(x, y) - K2(x, y)). 
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Now if k < r p(x,!)+1 l then since ,1, ,2 E J ½ (P) we have from (5) that 

Dk(Ki(x,y)) = Dk(K2(x,y)), 

as desired. If k 2'. p(x,!)+l then we conclude from our hypothesis i) that 

,1(x,y) = Dk(,1(x,y)) = Dk(,2(x,y)) = ,2(x,y). 

Hence 

Dk(Ki(x,y) - 11(x,y)) + Dk(,1(x,y)) 

Dk(K2(x,y) - 12(x,y)) + Dk(,2(x,y)) 
Dk(K2(x,y)) 

and ii) holds also in this case. 
Note that it is not true, in general, that if K is a P-kernel and k E N, 

then Dk(K) is also a P-kernel. For example, if Pis the Boolean algebra 
of rank 2 and K = XP (the characteristic kernel of P) then D1(K) is 
not a P-kernel since 

L D1(XP)(O,a)D1(XP)(a,i) = (q2 -2q)-2(q-1)2 + (1-2q) # 0, 
0:'.oa:'.oi 

which would contradict Theorem 2.3. Thus Theorem 3.1 is not a special 
case of Theorem 2.2. 

The next result is also a "comparison result" except that it does 
not require any knowledge of the P-kernel corresponding to one of the 
KLS-functions involved. 
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Theorem 3.2. Let k E Z, u,v E P, f E h(P), K be a P-kernel, and 
2 

'Y be its KLS-function. Then the following are equivalent: 

i): Dk('Y(u, x)) = Dk(f(u, x)) for all x E [u, v]; 

ii): Dk (EaE[u,x) f(u,a)K(a,x)) = Dk(J(u,x) -f(u,x)) forallx E 

[u,v]. 

Proof. Assume that i) holds. Then we have from our hypotheses 
that 

Dk ( L f(u,a)K(a,x)) 
aE[u,x) 

for all x E [u, v], as desired. 

Dk ( L Dk(f(u,a))Dk(K(a,x))) 
aE[u,x) 

Dk ( L Dk('Y(u,a))Dk(K(a,x))) 
aE[u,x) 

Dk ( L 'Y(u,a)K(a,x)) 
aE[u,x) 

Dk('?(u,x) - 'Y(u,x)) 

Dk(J(u,x) - f(u,x)) 

Conversely, assume that ii) holds. We proceed by induction on 
p(u,v), i) being clear if u = v. So assume that p(u,v) 2: l. Then 
by our induction hypothesis we have that Dk('Y(u,x)) = Dk(f(u,x)) for 
all x E [u, v). Hence we have from our hypothesis ii) that 

Dk(J(u,v) - f(u,v)) = Dk ( L f(u,a)K(a,v)) 
aE[u,v) 

Dk ( L Dk(f(u, a))Dk(K(a, v))) 
aE[u,v) 

Dk ( L Dk('Y(u,a))Dk(K(a,v))) 
aE[u,v) 

Dk ( L 'Y(u,a)K(a,v)) 
aE[u,v) 

Dk('?(u, v) - 'Y(u, v)). 
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Since "f,f E h(P) this implies that Dk(f(u,v)) = Dk("/(u,v)), and i) 
2 

follows. 

§4. New kernels from old 

The applicability of the results obtained in the previous section de­
pends to some extent on the explicit knowledge of P-kernels and their 
corresponding K LS-functions. Although on almost all posets there are 
infinitely many P-kernels it is difficult to find pairs of a P-kernel and 
its K LS-function that can both be described explicitly. For example, it 
follows easily from Theorem 2.3 that if K is a P-kernel then K is also 
a P-kernel and K* is a P* -kernel. Thus, to each kernel K there are 
naturally associated three other kernels, namely K, K*, and K* (note 
that this process does not go on indefinitely, since (K)* = K* if P* is 
weakly graded by p*, as is usually the case). However, while it is known 
(see [10, Proposition 8.1]) that the KLS-function of K* is ('Y- 1)* if 'Y 
is the K LS-function of K, no simple expression is known for the K LS­
functions of K* or of K in terms of the K LS-function of K. Similarly, it 
is obvious that if "f Eh (P) then 1* Eh (P*), and 1-1 , Dk("/) Eh (P), 

2 2 2 
but no simple expression is known for the corresponding kernels in terms 
of the kernel of"(. 

In this section we examine in some detail two particularly interesting 
such pairs, and we introduce a process that, given a pair (K, 'Y) of a P­
kernel and its corresponding K LS-function, produces explicitly another 
such pair. The results in this section are applied in the next one to the 
study of Kazhdan-Lusztig polynomials. 

We begin by studying a process that could be called "deformation" 
of a KLS-function. For g E R[q] and x, y E P, x < y, we define an 
element gx,y E J(P) by letting 

( ) def { 0, if (u,v) =/- (x,y), 
gx,yu,v = g(q), if(u,v)=(x,y), 

for all (u,v) E Int(P). 

Proposition 4.1. Let f E J(P) be unitary, g E R[q], and x, y E P, 
x < y. Then 

(f + gx,y)- 1 (u,v) = f- 1(u,v) - g(q)J- 1(u,x)f- 1(y,v) 

for all (u,v) E Int(P). 

Proof. We proceed by induction on p( u, v), the result being clear 
if p( u, v) = 0. So let p( u, v) 2: 1. We may clearly assume that [x, y] s;;; 
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[u, v]. Then we have that, if u < x, 

- L f(u, a)(f- 1 (a, v) - g(q)r 1(a, x)f- 1(y, v)) 

as desired. On the other hand, if u = x then 

- L (f + 9x,y)(x, a)f- 1(a, v) 

- L f(x,a)f- 1(a,v) - g(q)r 1(y,v) 

and the result again follows. 
Suppose now that f E Ii ( P), K is the P-kernel of f, and g E 

2 

R[q], x, y E P, x < y, are such that deg(g) :::; ½(p(x, y) - 1). Then 
f + 9x,y E Ii(P), and we denote by Kx,y(g) the P-kernel corresponding 

2 

to f + 9x,y· The next result gives an explicit expression for Kx,y(g) in 
terms of K, g, f, and x, y. 

Theorem 4.2. Let f E Ji (P), g E R[q], and x, y E P, x < y, be such 
2 

that f + 9x,y E J 1. (P). Then 
2 

Kx,y(g)(u,v) = { K(u,v) + f-l(u,x) (qp(x,y)g (¼)-g(q))' 
K(u,v) - g(q)f- 1(u,x)K(y,v), 

for all (u, v) E Int(P). 

if y = v, 

otherwise, 

Proof. Since Kx,y(g) is the P-kernel corresponding to f + 9x,y and 
K is the P-kernel off there follows from the definitions that Kx,y(g) = 
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(f + 9x,y)- 1(f + 9x,y), and K = 1-17- We may clearly assume that 
[x, y] ~ [u, v]. Then we have from Proposition 4.1 that, ify < v, 

Kx,y(g)(u,v) = L (f +gx,y)-1(u,a)(f+gx,y)(a,v) 

u::;a::;v 

L u-1(u, a) - g(q)f- 1 (u, x)r 1(y, a))J(a, v) 
u::;a::;v 

K(u, v) - g(q)f- 1(u, x) L f- 1(y, a)J(a, v) 
y::oa::ov 

K(u,v) - g(q)f- 1(u,x)K(y,v), 

as desired. On the other hand, if y = v then 

Kx,y(g)(u,y) = L (f + 9x,y)- 1(u,a)(f + 9x,y)(a,y) 
u::oa::oy 

L u-1(u, a) - g(q)f- 1(u, x)r 1(y, a))(f + 9x,y)(a, y) 
u::oa::oy 

L f- 1(u, a)(f + 9x,y)(a, y) - g(q)f- 1(u, x) 
u::oa::oy 

L f- 1(u,a)J(a,y) + f- 1(u,x)qP(x,y)g (i)- g(q)f- 1(u,x; 
u::oa::oy 

K(u,y) + f- 1(u,x) (qp(x,y)g (i)- g(q)), 

and the result again follows. 
As noted at the beginning of this section, given a P-kernel Kand its 

K LS-function 'Y, no simple formula is known for the K LS-function of K 
nor for the P-kernel of-y- 1 . We believe that these objects are interesting 
and worthy of investigation. For this reason, and for convenience, we 
introduce here a notation for them. Namely, given 'YE h (P) we let -y' 

2 

be the K LS-function of K (where K is the P-kernel of -y). Similarly, 
given a P-kernel K we let K' be the P-kernel of -y- 1 (where 'Y is the 
K LS-function of K). Note that these definitions don't overlap since no 
element of h(P) \ {8} can be a P-kernel, by Theorem 2.3. Also, note 

2 

that ('Y')' = 'Y and (K')' = K for any 'Y Eh (P) and P-kernel K. In the 
2 

rest of this section we look in some detail at two particularly interesting 
cases of this operation. Namely, we look at (' and ~'-



68 F. Brenti 

Let x E I(P) be the characteristic kernel of P. Then from (1) we 
have that 

(6) x(u, v) = I: µ(u, a)qP<u,a), 
aE[u,v] 

for all ( u, v) E Int( P). Since the K LS-function of x is the zeta function 
of P, we expect(' to be a fundamental enumerative invariant of P. For 
simplicity, and because of the applications that we are interested in, we 
limit ourselves to the case that P is locally Eulerian. As a weak rank 
function for P we take, for (x, y) E Int(P), p(x, y) to be the common 
length of all the maximal chains in [x, y] (see also [10, p. 829]). Note 
that in this case we have from (6) that 

(7) x(u, v) = I: (-qy<u,a) 
aE[u,v] 

for all (u, v) E Int(P). 
We begin by showing that there is one case in which (' is extremely 

easy to compute. 

Proposition 4.3. Let P be a locally Eulerian poset and u, v E P, 
u < v. Then [u,v] is locally rank symmetric if and only if ('(x,y) = 
(-l)P(x,y) for all (x,y) E Int([u,v]). 

Proof. It is clear from our definition (1) and (7) that [u, v] is locally 
rank symmetric if and only if:X(x,y) = (-l)P(x,y)x(x,y) for all (x,y) E 

Int([u,v]). But it is easy to see that (-l)P(x,y)x(x,y) is a P-kernel and 
(-l)P(x,y) is its K LS-function, so the result follows from Theorem 3.1. 

If Proposition 4.3 does not apply, however, things are considerably 
more subtle. Given three integers s, k, d with O :=; k :s; d and O :s; s we let 
Ss,k(d) be the set of all sequences (a1, ... , a28+1) E [d]2s+l such that: 

i): a1 :=; a2 :=; ... :=; a2s+1; 
ii): L~=1(-l)i+ia2j-l > ½a2i for i = 1, ... ,s; 
•••)• ,_..s+l( l)s+l-j _ d k 111 • L..j=l - a2j-l - - . 

We then let 

Sk(d) = U Ss,k(d). 
s~O 

For example, So,k(d) = {(d - k)}, S1,1(d) = {(1, 1,d)}, S1,2(d) = 
{ (1, 1, d - 1), (2, 2, d), (2, 3, d)}, S2,2(d) = { (1, 1, 3, 3, d)}, and S2,3(6) = 
{(1, 1, 3, 3, 5), (1, 1, 4, 4, 6), (1, 1, 4, 5, 6), (2, 2, 5, 5, 6), (2, 3, 5, 5, 6)}. 
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Notice that if (a1, ... , a2s+1) E Ss,k(d), with s 2.: 1, then from ii) 
(for i = s) and iii) we conclude that a2s+1 - d + k > a~s. In particular, 
this shows that if (a1, ... ,a2s+1) E Sk(d) \ So,k(d) and k < ~ then 
a2s :S d - l. 

It is not apparent from our definitions that Ss,k(d) = 0 for s > k, 
but this is indeed the case. 

Lemma 4.4. Let s,k,d EN, k :S d, and (a1, ... ,a2s+1) E Ss,k(d). 
Then 

(8) a1 < a3 - a1 < a5 - a3 + a1 < ... < a2s-1 - a2s-3 + ... 

In particular, s :s; k. 

Proof. From part ii) of the definition of Ss,k(d) we deduce that 

which can be written as 

i-1 i 
:~::)-1)Hi-la2j-l < ~)-1)Hia2j-l 
j=l j=l 

for i = 1, ... , s, and this proves (8). In particular, (8) implies that 
a2s-1 - a2s-3 + ... 2.: s. Therefore, using iii), 

s+l s 

d 2.: a2s+1 = I)-1)s+l-ja2j-l + 1)-1)8-ja2j-l 2.: d - k + s, 
j=l j=l 

and the second statement also follows. 
We are now ready to state and prove the second main result of this 

section. This gives an explicit formula for (' in terms of the flag !-
vector of the intervals of P. For a sequence A ~ ( a1, . . . , ar) E Nr with 

a1 :S ... :Sar and u,v E P we let a([u,v]; (a1, ... ,ar)) ~ a([u,v]; {x E 

N : x = ai for some i E [r]} ), and LaEA a ~f a1 + ... + ar. So, for 
example, a([u, v]; (1, 1, 3, 3, 5)) = a([u, v]; {l, 3, 5} ). 

Theorem 4.5. Let P be a locally Eulerian poset, u, v E P, u < v, and 
k :S ½(p(u, v) - 1). Then 

[l](('(u, v)) = L (-l)Z:aEA a a([u, v]; A), 
AESk(d) 
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where d ~f p(u, v). 

Proof. We proceed by induction on p(u, v), the result being clear if 
p( u, v) = 1. From the definition of(', (7), and the fact that k ::; ½ ( d - l) 
we conclude that 

[l-k](('(u,v) - x(u, v)) [qd-kl ( L ('(u, a)x(a, v)) 
u<a::C:v 

L p(u,;)-1 J 
L L [l](('(u, a))[qd-k-i](x(a, v)) 

u<a<v i=O 

L p(u,;)-1 J 

= Z: Z: 
u<a<v i=O AES;(p(u,a)) 

d-1 L j2l J 
= L L L (-l)ExEAx+d-k-i L a([u,a];A)l[a,v]d-k-il 

j=l i=O AES;(j) aE[u,v]; 

(9) 

d-1 Lj2 1 J 
= L L L (-l)ExEAx+d-k-ia([u,v];A,j,j+d-k-i). 

j=l i=max(O,j-k) AES;(j) 

Now notice that if A E Si(j), 0 ::; i ::; l ~ J and j E [d - 1] 
(with i 2:: j - k) then (A,j,j + d - k - i) E Sk(d) \ So,k(d). Con­
versely, if B = (b1, ... , b2s+3) E Sk(d) \ So,k(d) then (b1, ... , b2s+1) E 

sb2s+2+d-k-b2s+3 (b2s+2), 0 ::; b2s+2 + d - k - b2s+3 < h~r, (by Lemma 
4.4), b2s+2 E [d - 1], by the remarks preceding Lemma 4.4, and b2s+2 + 
d - k - b2s+3 2:: b2s+2 - k. Therefore we conclude from (9) that 

[qd-k](('(u, v) - x(u, v)) = 

and the result follows since 

[l-k](x(u,v)) = (-l)d-kl[u,v]d-kl = (-l)d-ka([u,v];d- k) 

and So,k(d) = {(d - k)}. This concludes the induction step and hence 
the proof. 
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Using the Bayer-Billera relations for flag !-vectors of Eulerian posets 
(see [1, Theorem 2.1]) it is possible to simplify somewhat the expression 
given in Theorem 4.5, especially for small values of k. 

Corollary 4.6. Let P be a locally Eulerian poset, and u, v E P, u < v. 
Then 

[qo](('(u, v)) = (-l)P(u,v)' 

[q](('(u,v)) = (-l)P(u,v)(l[u,v]il - l[u,vJil), 

[q2]((' ( u, v )) = (-l)p(u,v) (l[u, vhl - a([u, v]; {1, p(u, v) - 1}) + l[u, v]m. 

Proof. The first two formulas follow immediately from Theorem 4.5 
and the definition of Sk(d), keeping in mind that Ss,k(d) = 0 ifs > k 
by Lemma 4.4. For k = 2 we obtain in the same way that 

[q2](('(u, v)) (-l)P(u,v) (l[u, v];I - a([u, v]; {1, p(u, v) - 1}) + l[u, vhl 

-a([u, v]; {2, 3}) + a([u, v]; {1, 3})). 

But since [u, v] is Eulerian we have that 

2a([u, v]; {2, 3}) = a([u, v]; {1, 2, 3}) = 2a([u, v]; {1, 3} ), 

and the result follows. 
We conclude this section by looking at the W-kernel ~'- Recall from 

section 2 that~* is a W* -kernel and p* is its K LS-function. It therefore 
follows from Proposition 8.1 of [10] that ~ is a W-kernel and p- 1 is its 
KLS-function. Therefore, by our definition, ~, is the W-kernel of p. 
Note that, from this point of view, ~, is an even more natural object to 
consider than ~ itself. We let 

Sx,y(q) ~f ~'(x, y) 

for all (x, y) E Int(W). 
Our aim is to obtain some information about the polynomials Sx,y( q). 

Despite the naturality of their definition these polynomials seem to have 
never been considered before. As the following results show, they have 
properties that are very similar to those of the R-polynomials. 

Proposition 4.7. Let x,y E W, x:::; y. Then 

(10) Sx,y(q) = L ExEaQx;a(q) q1(y)-l(a) Pa,y ( t) • 
x-S:a:'S:y 
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In particular, Sx,y(q) is a monic polynomial of degree l(y) - l(x), and 
Sx,y(O) = €x€y. 

Proof. The first assertion is essentially just a restatement of our 
definitions. In fact, it follows from them that p~' = p in I(W) and 
hence that ~, = p- 1g5, which, by (3) and (4), implies (10). The second 
statement follows from the first one and the facts that p, p- 1 E h (W) 

2 

and Qx,y(O) = Px,y(O) = 1 for (x, y) E Int(W). 
Note the similarity of (10) with the formula for the R-polynomials 

(11) R ( ) _ ~ p ( ) l(y)-l(a)Q (1) x,y q - L...., €x€a x,a q q a,y -
x<::,_a<::,_y q 

for all (x,y) E Int(W). Because of (10) and (11), many other formulas 
for the R-polynomials have analogues for the polynomials Sx,y(q). We 
give below two as an example (cf. Corollaries 5.3 and 7.7 in [3]). 

Corollary 4.8. Let x, y E W, x ::::; y. Then 

[q](Sx,y) = Excy([q](Qx,y) - J[x,y]i/) 

and 

[ql(y)-l(x)-l](Sx,y) = [q](Px,y) - J[x,y]iJ. 

It is of course possible to obtain from (10) similar formulas for all 
the coefficients of Sx,y(q), but we see no reason to do this explicitly here. 

Proposition 4.9. Let (W, S) be a finite Coxeter system, and x, y E 

W, x::::; y. Then 

l(y)-l(x)3 (1) S ( ) q x,y q = €x€y w0 y,w0 x q , 

where wo denotes the longest element of W. 

Proof. It is well known (see, e.g., [6, Proposition 7.13]) that if W 
is finite then Qx,y(q) = Pw0 y,w0 x(q) for all (x,y) E Int(W). Hence we 
conclude from (10) that 

q1(y)-l(x) Sx,y ( t) ~ l(a)-l(x)p ( 1) P. ( ) L...., €x€aQ woa,wox - a,y q 
x<::,_a<::,_y q 

~ l(w0 x)-l(b)R (l)Q () L...., €x€wobQ b,wox q woy,b q 
woy<::,.b<::,_wox 

€x€ySw0 y,wox( q ), 
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as desired. 
Proposition 4.9 also holds for the R-polynomials (see, e.g., [6, Propo­

sitions 7.6 and 7.8]). After seeing all these similarities it is natural to 
suspect that the polynomials Sx,y(q) might just be the R-polynomials 
in disguise. This, however, is not true even for finite Weyl groups. For 
example, if W = 84 then one can compute that 

81234,3412(q) = q4 - 2q3 + 4q2 - 4q + 1, 

and this is not an R-polynomial by Proposition 2.6. 

§5. Applications to Kazhdan-Lusztig polynomials 

In this section we apply the results obtained in the two previous 
ones to Kazhdan-Lusztig polynomials. In particular, we characterize 
the intervals [u, v] in W such that the Kazhdan-Lusztig polynomials of 
its subintervals coincide with(,(', or p- 1 up to a given order, and we 
obtain refinements of two results that originally appeared in [3] and [7]. 

We begin by comparing a deformation of the characteristic kernel 
of W* with the kernel (1R)*, where ~ is defined by (2). For brevity, 
throughout this section, we write x instead of Xw•. Note first that, 
since W* is locally Eulerian, we obtain from (1) that 

(12) 
l(y)-l(x) 

x(y,x)=cxcy L l[x,y]il(-q)i 
i=O 

for all (y,x) E Int(W*). 

Theorem 5.1. Let u, v E W, u < v, k EN, and f E R[q], deg(!) ::; 
½ (l ( v) - l ( u) - 1). Then the following are equivalent: 

i): Dk(Py,x) = 1 for all [y,x] C [u,v], and Dk(Pu,v) = Dk(l + f); 
ii): Dk(Ry,x) = Dk(x(x,y)) for all [y,x] C [u,v], and 

Dk (f(q) - ql(v)-l(u) f ( t)) = Dk(X(v, u) - Ru,v)-

Proof. Let Xv,uU) be the W*-kernel of ( + fv,u E Ii(W*). Then 
2 

we have from Theorem 4.2 that, if [y, x] ~ [u, v] 

Xv,u(f)(x, Y) = x(x, y) + C 1(x, v) ( i<v)-l(u) f ( t) - f(q)) 

if u = y, while Xv,uU)(x, y) = x(x, y) otherwise. 
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On the other hand, we know that (°lR)* is a W* -kernel and p* is its 
KLS function. Furthermore, it follows from our definitions that 

by Proposition 2.6, and 

[qi](p*(x,y)) = [qi](p(y,x)) = [qi](Py,x) 

for all (x, y) E Int(W*), so the result follows from Theorem 3.1. 
If Py,x(q) = 1 for all [y,x] C [u,v] then much more precise informa­

tion can be obtained, as the next result shows. Note that if one uses 
Theorem 2.5 as a recursion for computing Kazhdan-Lusztig polynomials 
these are the first "non-trivial" (i.e., =/- 1) Kazhdan-Lusztig polynomials 
that one generates. 

Proposition 5.2. Let u, v E W, u < v, and d ~f l(v) - l(u). Suppose 
that Py,x = 1 for all [y, x] C [u, v]. Then: 

i): Pu,v = 1 + Dd-1 (x(v, u) - Ru,v); 
2 

ii): Ru,v = x(v, u) + 1 - Pu,v(q) - qd + qdPu,v (½); 
iii): (1 + Cucv)Ru,v(q) = x( v, u)(q) + qdx(v, u) (½); 
iv): Pu,v(q) = 1 + ½ I:}~f J(-q)i(l[u,v]il- l[u,v]d-il) if dis even; 
v): [u, v] is rank-symmetric if d is odd. 

Proof. Taking k = l(v) - l(u), and f(q) ~f Pu,v(q) -1 in Theorem 
5.1 yields ii), from which i) follows immediately. From ii) we conclude 
that 

qd ( (t) d Pu,v(q) - Pu,v (t)-Ru,v (t) 
Pu,v(q) - qdPu,v (t)- cucvRu,v(q) 

1 - l + x(v, u)(q) - (1 + Eucv)Ru,v(q), 

where we have used ii) again and Proposition 2.6 and iii) follows. 
Now if EuEv = 1 we conclude from iii) and i) that 

Pu,v(q) = 1 + ~Dd21 ( x(v,u)(q)-lx(v,u) (t)), 
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and iv) follows from (12). If cucv = -1 it follows from iii) that 

x(v, u)(q) = -lx(v, u) ({), 

and v) follows from (12). 

75 

It should be noted that the preceding result is yet another piece 
of evidence in favor of the "feeling" mentioned in [3, p. 384], that 
the Kazhdan-Lusztig polynomials somehow "measure" the difference be­
tween the R-polynomials and the rank generating functions. 

We note the following interesting reformulation of part v) of Propo­
sition 5.2. 

Corollary 5.3. Let u, v E W, u < v, be such that [u, v] is not rank­
symmetric and has odd rank. Then there exists [x, y] C [u, v] such that 
Px,y(q)-# 1. 

The following result characterizes the intervals of W for which the 
zeta function is a "good approximation" of the Kazhdan-Lusztig poly­
nomials. 

Proposition 5.4. Let u, v E W, u < v, and k EN. Then the follow­
ing are equivalent: 

i): Dk(Px,y) = 1 for all [x,y] ~ [u,v]; 
ii): cxcy[qi](Rx,y) = (-l)il[x, y]jl for all x, y E [u, v] and j E [k]. 

Proof. This follows immediately from (12) and Theorem 5.1. 
Note that, when k = l(v) - l(u), Proposition 5.4 reduces to Propo­

sition 5.6 of [3]. 
Most of the results that we have derived so far in this section have 

analogues that are obtained by considering the W* -kernel x instead of x. 
We state here one of them as an example. It is a "dual" of Proposition 
5.4, and characterizes the intervals of W having the property that the 
Kazhdan-Lusztig polynomials of its subintervals coincide, up to a given 
order, with the function (' studied in section 4. Note that we write (' 
for ((w• )'. 

Proposition 5.5. Let u, v E W, u < v, and k E N. Then the follow­
ing are equivalent: 

i): Dk(Px,y) = cxcyDk(('(y,x)) for all x,y E [u,v]; 
ii): cxcy[qi](Rx,y) = (-l)il[x,y];I for all x,y E [u,v] and j E [k]. 

The last two propositions have the following curious consequence. 
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Corollary 5.6. Let u, v E W, u < v. Then the following are equiva­
lent: 

i): Px,y = 1 for all u :S x :Sy :S v; 
ii): Px,y = Excy('(y,x) for all u :S x :Sy :S v. 

Proof. This follows immediately from Propositions 5.4, 5.5 and 
2.6. 

As another application of Theorem 3.1 we obtain the following re­
sult which characterizes the intervals [u, v] of W for which the Kazhdan­
Lusztig and inverse Kazhdan-Lusztig polynomials coincide on the subin­
tervals of [u, v], up to a given order. 

Proposition 5. 7. Let u, v E W, and k E N. Then the following are 
equivalent: 

i): Dk(Px,y) = Dk(Qx,y) for all x, y E [u, v]; 
ii): Dk(Rx,y) = Dk(Sx,y) for all x,y E [u,v]. 

Proof. We know that ~ and ~' are W-kernels and that g::i- 1 and 
p are their respective K LS-functions. This easily implies that (x, y) 1-, 

Rx,y(q) is a W-kernel and that (x,y) 1-, Qx,y(q) is its KLS-function, so 
the result follows from Theorem 3.1. 

We conclude this section with an application of Theorem 3.2, which 
gives a refinement of Lemma 2.6 (ii) of [7] (the case k = l(v) - l(u)). 

Corollary 5.8. Let k EN, and u, v E W, u:::; v. Then the following 
are equivalent: 

i): Dk(Px,v) = 1 for all X E [u, v]; 
ii): Dk (LaE[x,v] Rx,a) = Dk(ql(v)-l(x)) for all XE [u, v]. 

Proof. This follows immediately from Theorem 3.2 by taking P = 
W*, K = lR*,, = p*, and f = (w•. 

A dual result can be obtained by taking P = W, K = ~', 1 = p, 
and f = (, we leave its statement to the interested reader. 

§6. Conjectures and open problems 

In this section we discuss some conjectures and open problems aris­
ing from the present work. 

The first one is naturally suggested by Corollary 5.6. 

Conjecture 6.1. Let u, v E W, u < v, and k EN. Then the following 
are equivalent: 

i): Dk(Px,y) = 1 for all u :S x :Sy :S v; 
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ii): Dk(Px,y) = €x€yDk(('(y,x)) for all u '.S x '.Sy '.S v. 

By Propositions 5.4 and 5.5 Conjecture 6.1 is equivalent to the fol­
lowing one. 

Conjecture 6.2. Let u, v E W, u < v, and k E N. Then the following 
are equivalent: 

i): €x€y[q1](Rx,y) = (-1)1l[x,y]11 for all x,y E [u,v] and j E [k]; 
ii): €x€y[q1](Rx,y) = (-1)1l[x, y];I for all x, y E [u, v] and j E [k]. 

A consequence of Conjecture 6.2 is the following one. 

Conjecture 6.3. Let u, v E W, u < v, and k E N. Suppose that 
Dk(Px,y) = 1 for all (x,y) E lnt([u,v]). Then l[x,y]1 1 = l[x,yJ;I for all 
x, y E [u, v] and j E [k]. 

Note that this conjecture holds for k = 1 by Proposition 5.4 and 
Corollary 5.3 of [3]. We now show that it also holds fork= 2. 

Proposition 6.4. Let u, v E W, u < v, be such that [q](Px,y) = 
[q2 ](Px,y) = 0 for all x,y E [u,v]. Then l[x,y]il = l[x,y];I for all 
x, y E [u, v], i = 1, 2. 

Proof. We already know that l[x,y]il = l[x,y]il for all x, y E [u,v]. 
Also, we know from [3, Corollary 5.4] that 

aE[x,y]i 

(13) +a([x,y]*;{l,3})- L [q](Ra,y), 
aE[x,y]:; 

On the other hand, from Proposition 5.4 and our hypotheses we deduce 
that 

€x€y[q](Rx,y) = -l[x, Yhl = -l[x, YJrl 

for all x, y E [u, v]. Hence from (13) and our hypotheses we conclude 
that 

aE[x,y]i 

+a([x,y]*;{l,3})- L l[a,y]il 
aE[x,y]3 

= €x€y[q2](Rx,y) - a([x, y]*; {1, 2}) + l[x, Y]2I 
+a([x, y]*; {1, 3}) - a([x, y]*; {1, 3}) 

(14) €x€y[q2](Rx,y) - l[x,y]:il, 
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for all x, y E [u, v]. On the other hand, from Proposition 5.4 we have 
that 

(15) 

for all x, y E [u, v], and the result follows from (14) and (15). 
It is a well known conjecture (see, [6, p. 159]) that the coefficients of 

Kazhdan-Lusztig polynomials are always nonnegative. Using Theorem 
5.1 we can derive from it the following (much weaker) conjecture, that 
should be more tractable. 

Conjecture 6.5. Let k E P and u, v E W, u < v, be such that 
Dk(Px,y) = 1 for all [x,y] C [u,v]. Then 

cucv(-l)il[u, v]il ~ [l](Ru,v) 

for i = 0, ... , min(k, l~J), and 

(-l)il[u, v];I ::; €u€v[l](Ru,v), 

for i = d - k, ... , l ~ J . 

There is another related conjecture which we wish to mention. It 
was observed in [3, p. 384] (see also [4], Problem 5.1), that the poly­
nomial Eucv(x(v, u)(-q) - Ru,v(-q)) seems to have always nonnegative 
coefficients. If this is true, and the nonnegativity conjecture holds, then 
part ii) of Proposition 5.2, shows that the following must also hold. 

Conjecture 6.6. Let u,v E W, u < v, be such that Px,y = 1 for all 
[x, y] C [u, v]. Then: 

i): Pu,v(q) = 1 if €u€v = 1; 
ii): [q2i](Pu,v) = 0 if €u€v = -1, and i ~ 1. 
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