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§1. Introduction 

The purpose of this paper is to give a sufficient condition for non­
uniqueness of non-negative solutions of the Cauchy problem 

(1) 

(2) 

(8t - ~ + V(x))u(x, t) = 0 

u(x,0) = 0 

in 

on 

where V is a real-valued function in Lp,Ioc(R"), p > n/2 for n ~ 2 and 
p = 1 for n = 1. We mean by a solution of (1)-(2) a function which 
belongs to 

and satisfies (1) and (2) in the weak sense and continuously, respectively 
(cf. [Al). We assume that 

(3) IV(x) - W(lxl)I::; C 

for some constant C ~ 0 and a measurable function W on (0, oo) with 
infr~o W(r) > 0. Our main result is the following 

Theorem. Suppose that 
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Then there exists a solution u of (1)-(2) such that 

(5) u(x, t) > 0 in Rn X (0, oo). 

The proof of this theorem is given in Section 2. 
In [Ml], among other things, we have shown that: 

Under some additional conditions on W, nonnegative solutions of 
(1)-(2) are not unique if and only if (4) holds. 

The aim of this paper is to establish a half of this result without the 
additional conditions on W. 

§2. Proof 

In this section we prove the Theorem. A main idea of the proof 
is to exploit a relative version (see Lemmas 3 ~ 6 below) of methods 
developed in connection with non-conservation of probability (cf. [D] 
and [Kh]). The proof is divided into several lemmas. 

(6) 

(7) 

First, without loss of generality, we may and will assume that W ~ 1. 
Consider the initial value problem 

-g" - [(n - 1)/r]g' + W(r)g = 0 

g(r) = 1 + o(r°') 

in (0,oo), 

as r-+ 0, 

where a= 1 for n = I and a= 0 for n > 1. A solution of (6)-(7) means 
a function gin C0 ([0,oo)) n C1 ((0,oo)) such that its derivative g' 
is absolutely continuous on any compact subinterval of (0, oo), and g 
satisfies (6) and (7). Let us see that (6)-(7) has a unique solution when 
n > 2. (When n = 2, it can be shown similarly; and it is clear if n = 1.) 
Since WE Lp,loc(Rn), p > n/2, we have by Holder's inequality 

for any r > 0, where C is a positive constant independent of r. Thus a 
solution g of (6)-(7) satisfies 

(9) 

(10} 

lim rg'(r) = 0, 
r--+0 

g'(r) = for (s/rt- 1W(s)g(s)ds, r > 0. 
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Putting 

(11) K(r, s) = [(s2-n - r2-n)/(n - 2))W(s)sn-l, 

we have 

{12) 

for any r > 0, where C is a positive constant independent of r. Thus g 
satisfies the integral equation 

(13) g(r) = 1 + 1r K(r, s)g(s)ds 

on [0, oo). Conversely, a solution of (13) in C0 ([0, oo)) is also a solution 
of the initial value problem (6)-(7). Now, in view of (12), the iteration 
method shows that (13) has a unique solution on [0, 6) for a sufficiently 
small positive number 6. The obtained solution is also a unique solution 
of (6)-(7) with (0,oo) replaced by (0,6). By extending it, we get a 
unique solution g of (6)-(7). Furthermore, we see that g > 0 and g' > 0 
in (0, oo). 

With f(r) = r<n-l)f2g(r) and w(r) = W(r) + (n - l)(n - 3)/4r2 , 

we have 

(14) 

{15) 

f" = w(r)f 

f(r) = r(n-l)/2[1 + o(r°')) 

in (0,oo), 

as r--+ 0. 

The following Lemmas 1 and 2 play a technically main part in removing 
the additional conditions on W mentioned in the Introduction. 

Lemma 1. f, f' > 0 in (0, oo), infr>l f'(r)/ f(r) > 0, and 

(16) 100 
(f / J')dr < oo. 

Proof We have only to show the second and third assertions. With 
F = f' / f, we have from (14) 

(17) F'+F2 =w 
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Let a(r) be the solution of the initial value problem 

a"= (l/4)a in (1,oo), 

With A= a' /a, 

a(l) = f(l), a'(l) = f'(l). 

(F - A)'+ (F + A)(F - A) = w - l/4 ~ 0 

(F - A)(l) = 0. 

in (1, oo), 

Thus F ~ A, and so infr>l F(r) > 0. We next show (16) simplifying 
an argument in [KN, 4.2 and 4.3]. We claim that 

(18) 1/F+ (1/2)(1/F2 )'::; 2/w112 

in (1, oo). By (17), 

(l/w)(F' / F 2 ) + l/w = 1/ F 2 . 

If F' ~ 0, then F ::; w 112 ; and so 

1/ F = F[l/w + (l/w )(F' / F 2 )] ::; 1/w112 + F' / F 3 • 

If F' < O, then 1/ F ::; l/w112 and 

(1/2)(1/ F 2 )' = -F' / F 3 = i/ F - w / F 3 < l/w112 . 

Thus we get (18). Hence 

This together with (4) implies (16). Q.E.D. 

Let Ji be the solution of (14)-(15) with w replaced by w + l. Then 
we have 

Lemma 2. The function f i/ f is increasing and O < lim (Ji/ f) ( r) 

< 00. 

Proof. With v = Ji/ f, we have 

(19) 

(20) 

1-2 (f2vl)I = V 

v(r) = 1 + o(r°') 

in (0,oo), 

as r --t 0. 

r-+oo 
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From (19)-(20) we get along the line in deriving (13) the equation 

(21) v(r) = 1 + 1r [lr (f(s)/ f(t))2dt]v(s)ds. 

This implies that v is strictly increasing. Next, let us show the second 
assertion along the line given in [KN, 2.5]. With u = log(fi/ f) and 
F = f'/f, we have 

(22) u" + (2F)u' + ( u')2 = 1. 

This implies that 2u'::::; 1/ F - u" / F. Thus, for any R > 1, 

2 fiR u'dr :s; 1R (1/ F)dr 

- u'(R)/F(R) + u'(l)/ F(l) + 1R (-F' /F2 )u'dr. 

Since -F' /F2 = 1- w/F2 < 1 and u' > 0, we then have 

2 fiR u'dr :s; 1R(l/F)dr + u'(l)/F(l) + 1R u'dr. 

Hence 

u(R) :s; 1R (1/ F)dr + u' (1)/ F(l) + u(l). 

This together with (16) implies that limr--00 fi(r)/ f(r) < oo. 

(23) 

(24) 

Now put 

H(x) = h(Jxl) = (Ji/ f)(Jxl)[ lim (Ji/ f)(s)]- 1 , 
8----+00 

n 

L = -g(Jxl)-2 ~)8/8xj)(g(JxJ)28/8xj), 
j=l 

Q.E.D. 

where g is the solution of (6)-(7). Then we can easily obtain the following 
lemma. 

Lemma 3. H is a solution of the equation 

(25) (L+ l)H = 0 
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such that O < H < l and limlxl-+oo H(x) = l. 

Let G ( x, y) be the minimal Green function for ( L + l, Rn) ( cf. [M3]). 
Then we have 

Lemma 4. 0 < JRn G(x,y)dy :S: 1- H(x) on Rn. 

Proof. Recall that G = limR-+oo GR, where GR is the Green func-
tion for (L + l,BR) with BR= {x E Rn; lxl < R). Put UR(x) = 
fiyt<RGR(x,y)dy. Then 

On the other hand, 

(L + 1)(1 - H) = 1 1 - H > 0 on 8BR. 

Thus the maximum principle shows that UR< l - H in BR. But 

lim UR(x) = f G(x, y)dy. 
R-+oo }Rn 

This proves the lemma. Q.E.D. 

Since Lemma 4 implies that [(L + 1)-11](x) < 1, we can now apply 
a criterion for non-conservation of probability (cf. [D, Lemma 2.1]), 
which goes back to Khas'minskii [Kh]. Let K(x, y, t) be the smallest 
fundamental solution for (8t + L, Rn x (0, oo)) (cf. [Ml, M2]), and put 

(26) v(x, t) = f K(x, y, t)dy. 
}Rn 

Then we have 

Lemma 5. v(x, 0) = 1, and 

(27) ( Ot + L )v = 0 and O < v < l in Rn X (0, oo). 

Proof. For self-containedness, we briefly show that O < v < l. The 
maximum principle for a parabolic equation on a cylinder together with 
the semigroup property of the smallest fundamental solution implies that 
either v = l or O < v < l in Rn x (0, oo ). On the other hand, by Lemma 
4, 

f 00 
e-tv(x, t)dt = f G(x, y)dy < l la }Rn 

Hence O < v < l. Q.E.D. 
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The final step of the proof is the following 

Lemma 6. There exists a solution u having the desired properties 
of the Theorem. 

Proof. With v being the function given by (26), put 

(28) w(x, t) = g(x)(l - v(x, t)). 

Then we see that w(x, 0) = 0, and 

(29) (8t - A+ W)w = 0 and O < w(x, t) < g(x) 
in Rn x (0, oo). 

For R > 0, let UR be the solution of the mixed problem 

(8t - A+ V)uR = 0 in BR x (0, oo), UR= w on. 8(BR x (0, oo)) 

(cf. [Al). Since W - C::; V::; W + C by (3), the comparison theorem 
shows that 

in BR x (0,oo). 

We see that for some sequence Ri --+ oo, UR- converges uniformly on , ' 
each compact subset of Rn x [0, oo) to a solution u of (1) satisfying 

(30) e-Ct ::; u(x, t)/w(x, t) ::; ect in Rn X (0, oo). 

This proves the lemma. Q.E.D. 

Remark. We can also prove the Theorem by using Theorem 5.5 of 
[Ml] after establishing Lemma 2; because Lemma 2 and (21) imply that 

But the proof given in this paper is more direct than the one based on 
Theorem 5.5 of [Ml]. 
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