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On a Backward Estimate for Solutions
of Parabolic Differential Equations
and its Application to Unique Continuation

Kazuhiro Kurata

Abstract.

We prove a new backward estimate and a new strong unique
continuation property for solutions v € C = C°((0,T); H*(R";
e~elel? dz)) NC*((0, T); L3 (R™; eelal? dz)) of parabolic differential

equations ‘2—;‘ = Au + V(z, t)u under certain conditions on V', where

a > 0is a fixed number.

§1. Main results
We consider the following parabolic differential equation:

(1.1) %% =Au+V(z,t)u in R"x(0,T),

where V is real-valued, T > 0, and n > 3. Let & > 0 be a fixed num-
ber and let w(z) = e~*/#". We denote by L?(R™;w(z)dz) the closure
of C°(R™) under the norm ||ullz2(w) = (fgn |u(@)Pw(z) dz)'/2. We
also denote by H2(R"; w(z)dz) the closure of C°(R™) under the norm
lullzzw) = (Cogiaise 1D ullfaq)", where D7 = of* -0, 8 =
a2y 1Bl = Xj_1 By for 8= (B1,-,Bn). Put C = C°((0,T); H*(R™;
w(z)dz)) N CY{((0,T); L*(R™; w(z) dz)). We say u € C is a solution of
(1.1) if u satisfies (1.1) in L?2(R™; w(z)dz) for each t € (0,T).

For a point z, = (Zo,%) € R" x (0,T) and 0 < R < 4/t,, we set
Sr(t,) = {z = (z,t) € R"x (0,T) | t = t,— R%}. By using the backward

|2
[2 = | ) which is defined

1
heat kernel G, (2) = rrrm—var 0~ a3
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for t < t,, we define the weighted L? norm H, (R;u) and the weighted
energy I, (R;u) over Sg(t,) as follows:

B (Rw)=3 [ wG.d,
SR(to)

L, (Ryu) = L g2 / (|Vul? = Vu?)G,, dz.
2 Sr(to)

Under certain assumptions on V' we shall study the behaviour of
H, (R;u) and I, (R;u) as R — 0 and prove a ‘monotonicity formula’
for the weighted energy I, (R;u) (Lemma 3.1) and a doubling property
for H, (R;u) (Theorem 1.3). _

To state our assumptions on V, we first recall the definitions of the
Fefferman-Phong class F; and the Kato class K,,. V € L] _(R") is said
to be of the Kato class K, if

. V)l
lim n%(r; V)Y =0, 7¥(r;V)= sup / |—dy,
r—0 (V) V) zeRn JB, (o) [T — y|" 72
where B.(z) = {y € R*||lt —y| < r} for r > 0. For1 <t < n/2,

V € L}, .(R™) is said to be of the Fefferman and Phong class F; if
1

Vg = sup ri(—s thyl/t<+oo.
Vil TER™,r>0 (IBr(ﬂ”)l B,(z) VI dy)
We note that F,/; = L"/2(R") CF, CF,forl<s<t<n/2and
weak-L"/2(R™) C F, for every t € [1,n/2); V € K,, implies V € Fy; but
L~/ 2(R™) and K, are incomparable for n > 3.

For 1 < t € n/2, we define the function space Q; by Q; = {V =
Vi+ Vo, Vi € K, Vo€ F;} and for V € @, set

1.2 Vo, = ||[V||B = inf K(Ry; V; V
(1.2) V. =IVIg: v:vfi‘v,egt{"( 1)+ 1Vellr }

for R, > 0. Throughout this paper we fix R, > 0.

Definition 1.1. For 1<t <n/2,p>1, we say V belongs to the
class Q:(0,T), if V satisfies
(1) for each ¢, € (0,T), there exist positive functions W,U > 0 and a
compact set K C R™ such that

(1.3) |V (z,to — s8)| < W(z,s)+ U(s), supp,W(,s)CK

for every s € (0,1,),
(2) |W(-,8)|P € Q for every s € (0,t,).

Now we state our assumptions for V.
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Assumption (A). V satisfies the following conditions for 1 < t <
n/2,p > 2.
(D) V €Q:p(0,T)and V = 2V +(z—1x,) -V, V+2(t—1,)8:V € Q:,,(0,T);
(ii) for the expression |V| < Wy + U; and |V| < Wy + Uy, put f;t")(s)
= g2=4/p f||Wj(sz)|P||gtp +5%U;(s?),j = 1,2. Then there exists s; > 0
such that

- f“" £5(s)

(1.4) (t)(5) > 0 (s — 0), ds < +oo

for every t, € (0,T).

Example 1.2. (1) IfV € CY{(R" x (0,T)) and V, (1 + |z|)|VV],
|8;V| € L=(R™ x (0,T)) and have compact support for each ¢ € (0,T),
then V satisfies Assumption (A).

(2) Let V(z,t) = V(z) be independent of time variable. If |V|P and
|V|P, V = 2V+(z—2,)-V,V, belong to the class Q; for some 1 < t < n/2
and p > 2 and have compact support, then V satisfies Assumption (A).

We state our main results.

Theorem 1.3 (Backward Estimate).  Suppose Assumption (A).
Let u € C be a solution of (1.1). Then for z, = (z,,t,) € R™ x (0,T),
there exist constants R* and C, > 0 such that

(1.5) / u?G,, dx < Co/ u?QG,, dzx
SZR(to) SR(to)

for every 0 < R < R*(< +/%,). Here C, is a constant independent of R.
Theorem 1.3 implies

Theorem 1.4 (Unique Continuation).  Suppose Assumption (A).
Let u € C be a solution of (1.1) and let 0 < v < 1. If u satisfies, for
some z, = (Zo,t,) € R™ % (0,T) and for arbitraly N > 0,

(1.6) uw?G,, de = O(RN) as R — 0,

/S'R(to)ﬂ{|z—zo|<R’Y}

then'u(m,t) =0 on R™ x (t, — (R*)%,t,), where R* > 0 is the number
given in Theorem 1.3.

As a corollary of the proof of Theorem 1.3, we obtain backward
uniqueness, if we assume



250 K. Kurata

Assumption (A’). In addition to Assumption (A), V satisfies
that the compact set K (associated with the definition V € Q;,(0,T))

can be taken uniformly in ¢, € (0,T) and Fi(s) = sup;_¢(o,1) fl(t")(s) —
0 as s — 0, where fl(t")(s) is the function defined in Assumption (A)
(ii).

Corollary 1.5 (Backward Uniqueness). Suppose Assumption (A').

If the solution u € C of (1.1) satisfies u(-,t,) = 0 for some t, € (0,T),
then u(-,t) =0 for every t € (0,t,).

We note that if the assumption (A’) is satisfied, then we can take
R* = min(1/v/8a, v/%,, Rx), R, is independent of t,. By this observation
Corollary 1.5 follows easily (cf. [GL], [Ku]). As a direct consequence of
Theorem 1.4 we have

Corollary 1.6 (Weak UCP).  Suppose the Assumption (A). If the
solution u € C of (1.1) vanishes in some open set w C R™ x (0.T), then
u vanishes in the horizontal component of w in R™ x (0.T').

There are several results on backward uniqueness and unique con-
tinuation theorems (see e.g., [L], [M], [So], [SS], [LP]), but Theorem 1.3
is new even in the case V = 0, and Theorem 1.4 yields the different type
of strong unique continuation property for solutions of (1.1). Moreover,
the method of this paper is different from the previous works. This work
is a parabolic version of [Ku].

If @ ¢ R" is bounded, smooth, and convex, we can show the same
results for solutions u of
(1.7) %% =Au+V(z,t)u in Qx(0,T), u=0 on 8Qx(0,T).
Recently we also proved similar results for weak solutions. However, we
do not know whether the backward estimate of type (1.5) also holds or
not for u satisfying (1.7) locally (that is, without boundary condition).

§2. Preliminaries

In this section we show an inequality which controls singularities of
V in the proof of Theorems. Let z, = (z,,%,) € R™ x (0,T) and put

Izo (R; u)

1
o, ) = -R? 2 z z H = .
L(R;u) 2R /Sn(to) |Vul|*G,, dz, N, (R;u) .. (R; )

Then we have
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Lemma 2.1. Suppose V € Q;,(0,T) with 1 <t < n/2,p > 1.
Then there exists a constant C > 0 such that

(2.1) [V|u?G,, dz < U(R?)H,,(R;u)
Sr(to)
+ CR™?||W (R?)]P| 47 (®., (R;u) + H., (R; w))

for every /t, > R > 0 and u € C°((0,T); C3°(R™)), where U and W
are functions associated with V' by Definition 1.1.

As an easy consequence of Lemma 2.1 we have

Lemma 2.2. Suppose that V € Q; ,(0,T) with1 <t <n/2,p > 2
and that f)(s) = s2U(s?) + 32_4/”H|W(s2)|”||22/tp — 0 ass— 0. Then
there exist C > 0 and sufficiently small R, such that

(2.2) C1'®, (R:u)< I, (R:u) <C®, (R;u)
for every 0 < R < R, satisfying N, (R;u) > 1.

To prove Lemma 2.1, first we note that if V € K,

1
/ [V]u? < C(n)nK(r;V)(/ |Vul? dr + —2/ u? dz)
Rn Rn r Rn

for every r > 0 and v € C°(R"), and that if V € F; with 1 <t < n/2,

/ Ve < O, )V, / Vul? de
R" R

for every u € C3°(R™) (see e.g. [F], [Si]). Hence if V € Q; with 1 < ¢ <
n/2, we have

e3) [ Vi <CmtRIWVia([ [VulPdo+ [ ?do)
R» R" R”

for every u € C°(R™), where R, > 0 is a fixed constant.

Proof of Lemma 2.1. Let t, € (0,T). We use the notaion Sg =
Sr(to) and G = G, for the sake of simplicity. Since V' € Q4,(0,T), by
the definition there exist W, U > 0 and a compact set K C R"™ such that
|V (z,t, — R?)| < W(z, R?) + U(R?) with supp,W (-, R?) C K for every
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0 < R? <t,. Let n € C®(R™) satisfy n(x) =1 on K, 0 < n(z) < 1, and
|Vn(z)| < C. By Holder’s inequality, we have

/ W (2,R)|u2G dz
Sr
< (/ |W(x,R2)|”u2de)1/p(/ u2G dx)'/1
SR SR

— @H@E W) W (e, PG d)' 7,

Sr

where 1/p+ 1/q = 1. The inequality (2.3) yields

/ |W|PuG dx
Sk

(2.4) < /S |W|P(nu)?G dx

Sr

<COOIWPlo.([ VoG )P do+ [ 126 o)
Sr

Since |V (nuG/?)|? < C(n)(u?® + |Vu|?)G + C(n, K)g—iG, we obtain

/ |W[Pu2G dzx
Sr
(2.5) |
1
<Cnt KWl (1 + g E(R ) + [ [VuPGda).

Sr

Hence it follows that



Backward Estimate for Parabolic Equations 253

(2.6)

/ |V|u?G dzx
Sgr

S/ |W|u2de+U(R2)/ u?Gdzx
Sr s

R

< 2U(R*)H(R;u)

;U cu)\ P
+C(nat’p)lep“lQ/tpH(R’u)l/q (H(R7 ) q)(R, ))

R4 R?
< 2U(R*)H(R;u)
+C(n,t, p)R™/?||W|P|| Y7 (H(R; u) + B(R; u)).

Q.E.D.

Proof of Lemma 2.2. Note that I(R;u) = ®(R;u) — ¥(R;u) and
that N(R;u)>1 implies H(R;u) < I(R;u) by definition. By Lemma 2.1
we have, for R > 0 satisfying N(R;u) > 1,

(2.7) W (R; )| < CF0(R)B(R; ).

Hence, by the assumption f(t°)(s) — 0 as s — 0, there exists R, > 0
such that Cf()(R) < 1/2 for every 0 < R < R,. Hence we obtain the
desired estimate. Q.E.D.

§3. Proof of theorems

In this section we prove theorems. Suppose that V satisfies As-
sumption (A) and u € C is a solution of (1.1) throughout this section.
Without loss of generality, we may assume z, = (O,0) and consider
(1.1) for t < 0. We write Sg = Sgr(0) = {(z,t)|t = —R?}, G, = G(0,0),
H(R) = Ho,0)(R;u), I(R) = I0,0)(R;u) and N(R) = No0)(R;u),
and use the notation P(u) = z - Vu + 2t0;u. Let R* = min(1/v/8a, R.),
where R, is the number determined by Lemma 2.2 with respect to t, = 0.
Then we have

Lemma 3.1. For 0 < R < R*, I(R) is differentiable and satisfies

I'(R) = 5113‘ P(w)*G, do
(3.1) Sr

= | @V+z-VV+28,V)uiG,ds.
2 Js,
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If u(z,t) Z 0 on R™ x (—(R*)?2,0), then it follows that H(R) > 0 for
every 0 < R < R*. We note that this fact can be proved by the similar
argument as in [GL;p264] ( see also the proof of Theorem 1.5 in [Ku]).
Therefore we may assume that H(R) > 0 for every 0 < R < R*, and
hence N(R) is also differentiable on (0, R*). Let V = 2V +z-VV +2t8,V
have the expression |V| < W5 4 U, by the assumption V € Q; ,(0,7T).
Then by Lemma 3.1 we obtain the following differential inequality for
N(R).

Lemma 3.2. There exists C > 0 such that

(3.2)
N'(R) RUy(R) + B2 [Wo(RPIGY (R
~r) = ¢ 7 ©)=-cio

for 0 < R < R* satisfying N(R) > 1.

Proof of Lemma 3.1. We follow the computation of Struwe [St].
Let ugr(z,t) = u(Rx, R?*). Then we have ®(R;u) = ®(1,ug). If u

is a solution of 5;—{ = Au + V(z,t)u, then ug is a solution of Tgtﬂ =

Aug + Vg(z,t)ur, where Vg(z,t) = R2V(Rz, R?t). By noting VG, =
—(z/2R?)G, on Sg, we obtain

duR

Vug - V( )G dz

S1

d
(3.3) (AurGo + Vug - VGo) £ “R
S1

P(u)

_ P(U)
- |. & W

+ R?Vu)G, dx

1
=— [ P(u)?G,dz+R / P(u)VuG, dz.
2R Sr Sr

On the other hand, since ¥(R;u) = 1 |, Sn VulG,dz =1 [ s, Vru% G, dz,
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we have
dv,
V' (R; u) / Ruga da +/ VRZR upG, dx
S1
(3.4) = 5 (2V + 2 - VV + 2t8,V)u’G, dz
Sr
+R P(u)VuG, dx.
Sr

Combining (3.3) with (3.4) we complete the proof. Q.E.D.

Proof of Lemma 3.2.  Since H(R;u) = H(1;ug), we have
1
14 — ! . — —
(35) H'(R)=H'(Ryju)= /S1 UR—H 2 G, dr = 7 Js, uP(u)G, dz.
On the other hand, multiplying uG, to (1.1) and integrating over Sg,

we obtain

/ uatuGodw=——/ |Vul2Godw—/ uVu-VG,dx+ VulG, dz.
Sk Sr Sr Sr

Since VG, = 3;G, on Sg, this implies
(3.6) R =1 Puua,ds.
4 Js,

Hence we obtain H'(R) = 4I(R). Therefore, for 0 < R < R*, (3.1) and
(3.7) yield

N'(R) _I'(R) H'(R)

N(R)  I(R) H(R)

37) _ fSR P(u)?2G,dx 4I(R)
' T 2RI(R)  RH(R)
R

- — 2V -V 2t 2@, de.
(R LR( +z-VV +2t0,V)u x

By Schwarz’s inequality,
fSR P(u)®Go,dz  4I(R)
2RI(R) RH(R)
(38) f P(u)?G,dz fs u)uG, dz
2 fs (w)uG, dz Rstu Godr —
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Thus we arrive at

N'(R) R .
> - : G,d
N@ 2 "I SR(2V+3: VV + 2t8,V)u2G, da

(3.9)

for 0 < R < R*. By Lemmas 2.1 and 2.2 we can conclude the desired
esimate. Q.E.D.

Proof of Theorem 1.3. Note that the set {0 < R < R*: N(R) > 1}
is open, because N(R) is continuous. Hence there exist countable open
disjoint intervals (R;, Rj41) such that {0 < R < R* : N(R) > 1} =
U221 (Rj, Rjt1). By Assumption (A) and Lemma 3.2, we have

or iz e [ £

for each j = 1,2, ... This implies
B fa(s)
(3.10) N(R) < max(1, N(R*)) eXp(—C’/ — ds)(= N,)
0

for 0 < R < R*. Since H'(R) = (4/R)I(R), we obtain

(3.11) H(2R) < H(R)exp(4N,log2), 0 < R < R*.

This complete the proof of Theorem 1.3. Q.E.D.
Proof of Theorem 1.4. It is well-known that when the doubling

estimate (1.5) in Theorem 1.3 holds, the condition that H(R) = O(R")

for every N > 0 as R — 0 implies H(R) = 0 for every R € (0, R*) (see

e.g.,[GL]). Hence it suffices to show H(R) = O(R") for every N > 0.
Let 0 <4< 1 and put

a®) = [ WG, do.
Sr{to)N{z;lz—zo | >RV}

Then it is easy to see that there exists a constant M such that

M 1
Q(R) < exp( SR21—) )

Actually we can take

M= sup / 2(z,t)e” 8(;*5 dz < 400,

t€[to—(R*)2,1,)
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since R* < 1/v/8a. Hence g(R) = O(RY) for every N > 0. By the
assumption f(R) = fSR(to)ﬁ{m;|w—zo|<R’7}u2GZ° dz = O(RV), we can
conclude that H(R) = O(RY) for every N > 0. Thus we complete the
proof. Q.E.D.
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