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Our concern in this paper is to define p-adic height pairings for an
abelian variety 4 over an algebraic number field £ on the niveau of a
Z extension k,, of k. We will show that there exists a map from the
A-torsion submodule 7,H'(0.,, Z/(p))* of the Pontrjagin dual of the
p-Selmer group to the adjoint « of the corresponding module for the
dual abelian variety 4’. Here A denotes the completed group ring of
Gal(k,./k) over Z, and p is a prime number where 4 has good reduction.
&/ denotes the Néron model defined over the ring of integers @, of k...
More generally, for i =0 there are canonical maps

T HY O, L (p))*——> T H* (0.0, L' (P)¥).

These maps are quasi-isomorphisms if 4 has ordinary good reduction at
p- In this case they can be regarded as non-degenerate pairings between
the A-torsion submodules of HY0.., o/(p))* and of H*-U (0., o' (p))*.
The pairing induced on a finite layer k,/k coincides with the pairing
defined by Schneider [8] (for i =1 and assuming that H(0.,, «/(p))* is
A-torsion and fulfills a certain semi-simplicity property).

Furthermore, we define an Iwasawa L-function in terms of charac-
teristic polynomials of T,H(0.., s/(p))*:

L4, 1, $)=1] FAR@r =1, seZ,
FA(t)= predet(t—(g—1); T,H'O... £(D)*RQ,)

where f is the character corresponding to k., ¢ is a generator of Gal(k../k)
and g, is the p-invariant of HY0., #(p))*. In the ordinary case the
pairing mentioned above leads to a functional equation for L, (4, &, 5)
with respect to s+—2—s. This generalizes a result of Schneider [8] and

Received July 1, 1987.



472 K. Wingberg

Mazur [4], since we do not assume H'(0,,, «/(p))* to be A-torsion.

In the supersingular case, i.e., if the p-rank of the reduction <7/, is
zero for every prime p above p, the adjoint of T,H(0.., /(p))* can be
identified with the dual of the kernel of the canonical map

Hl(0oo’ M(p)) —éplel.' Hl(koow A(p))

where 3 denotes the set of primes ramified in k_/k. This generalizes a
result for elliptic curves with complex multiplication obtained by Billot
[2].

At the end of the paper we study how the pairing for an abelian
variety A which is ordinary at p behaves on the two parts of the p-Selmer
group given by the p-part of the Tate-Safarevi¢ group I11..(4)(p) and the
“Mordell-Weil group” A(k.)®Q,/Z,. Assuming that the p-part of III
on each layer of k_/k is finite we obtain a quasi-isomorphism

T, 11, (4) (p)*—>a( T, 111, (4) (p)*)
and a quasi-exact sequence

0——T, 1L, (4)(p)*—> T (A(k.)RQ,/ Z,)*)
——> T (A" (k)RQ,/Z,)*—>a(T, 111.. (4)(p)*)—>0

where T,M and T;M of a compact A-module M of finite type are defined
by lim M7 and T,M=T,M|T,M, respectively. In particular, if the group

of I' -invariants of III_(4)(p) is infinite then A4 has a k,-rational point of
infinite order. As a corollary one obtains a non-degenerate pairing

Ak )X A'(k.)—>Q,,

if (A(k..)®Q,/Z,)* is A-torsion and III.,(4)(p)™ is finite for all n>>0.
Finally I would like to thank the M.S.R.I. for its hospitality and the
DFG (Heisenberg Programm) for support while this work was done.

§ 0. Notations

For an abelian group M let Tor M be the torsion subgroup and
My,.:=M|Tor M, let DivM be the maximal divisible subgroup and
My,.:=M/DivM. For me N let the groups , M and M, be the kernel
and cokernel of the multiplication by m, respectively, and put M(p)=
lim ,, M for a prime number p.

m

For a commutative group scheme G we use contrary to the conven-
tion above the usual notation G,, for the kernel of the m-multiplication.
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For a Z,-module M let M*=Hom(M, Q,/Z,) be the Pontrjagin dual of
M. For a G-module M, G a group, M¢% and M, denote the invariants
and coinvariants of G, respectively.

Throughout this paper the cohomology groups H(S, ) are taken
with respect to the big fppf-site on a scheme S.

§ 1. /-modules

Let I be a pro-p-group isomorphic to Z, and let A=2Z,[I"] be the
completed group ring of I". We also consider A as the ring of power
series Z,[T] over Z, via the homeomorphism 717, where 7 is a
generator of ™

Let M be a finitely generated compact 4-module, then

M and TM

denote the A-torsion submodule and the Z -forsion submodule of M,
respectively. We define

FM:=M|TM and T,M:=T,M|/T M.
Furthermore let ", be the subgroup of I" of index p™ and let
T M:=lim M™ and T,M:=T,M/T,M.

If &, denotes the irreducible polynomial of the p’-th root of unity, then
there is a quasi-isomorphism
T.M =@ A/&, for some polynomials &,.

If
T,

Gi41

M:=T(T,,M) where T, M:=T;M

then there must be an i, with 7,

Sgg+1

M =T,, M and we define
T, M:=T,, M and T, M:=ker(T,M—T, M).

Obviously the characteristic polynomial of T, M is a product of polyno-
mials &, and 7T, M has no divisor &,, r>>0. For a A-module M let M
be the A-module given by M with a new action of I”

rTmi=7"'m forme M, vel.
If
a(M): =Exty(M, A).
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denotes the adjoint of a compact A-torsion module M of finite type then
according to [6] 1.2.2 or [2] Corollaire 1.2, Remarque 3.4

a(M)=1lim Hom, (M/q,M, Q,|Z )~M

where {q,} is a sequence of divisors disjoint from the annihillator of M
such that Nq,=1. If 0—M,—»M,—M,—0 is a quasi-exact sequence of
compact /-torsion modules of finite type, then applying the contravariant
functor « we obtain a quasi-exact sequence

00— a(M,)——>a(M)—>a(M)—>0.

If m denotes the maximal ideal of 4 we get for a compact A-module M of
finite type a quasi-isomorphism

B(M):=lim Hom (M/n‘M, Q,/Z,)~F,M.

Lemma 1.1. Let M be a compact A-module of finite type. Then
there are quasi-isomorphisms
(a) lim (,,mM *)r,,%cv(ﬂM)z’TzM

n,M

(b) 11_}%1 (M *Pm)rﬂ =T ,M)= TﬂM
©  lim (M)~ TM)=T,M
@ lim (M)~ a(TM)=T,M

©  lm M= pF,M)=F,M

n,m
) lim M=, =0,

Ny M
where the limit is taken with respect to the p-multiplication resp. canonical
surjection and the norm map resp. canonical surjection. Here and in the

Sollowing we use the notation T_(M)=T_(M).

Proof. All assertions are obtained easily from the general structure
theory of compact noectherian A-modules. So we will only indicate the
proof of (¢) and (d).

Since
lim (M7%),,,=lim (T,M),,,
it follows

g%l (M *pn)zliLmn Hom(T,M,,, Q,/Z,)=T,M.
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In order to prove (c) we decompose M
M~=M®T,M  with T,M=0.
First we see
I;i% (r.m )*‘"")pm=lin1_n Hom(liTr,n A(T,M)r,), Q,/Z,)
’ =Lin£1 Hom(T,M;,, Q,/Z,)~T,M

and secondly the exact sequence

m

0—> M 225 F—> i, —>0

leads to an exact sequence

OH(MF")pm_—)(MPm)Fn pm(M_I‘n) >0.

Hence we obtain a quasi-exact sequence

0 (T,M)* (TZM—)*_)I_IIQ ,,m(M—r,,)“—_>0

(recall that the projective limit is an exact functor in the category of pro-
finite groups). This proves (c).

§ 2. Duality theorems for abelian varieties

Let k be a number field and let 4 be an abelian variety defined over
k. Let o be its Néron model over the ring of integers @ of k and let .«/°
be the connected component of /. By 4’ and .’ we denote the dual
abelian variety and its Néron model, respectively. We say 4 has good
(ordinary) reduction at a prime number p, if 4 has good (ordinary) reduc-
tion at all primes of k& above p. Since 4 and A’ are k-isogenous A4’ has
in that case good (ordinary) reduction too.

Theorem 2.1. Let A be an abelian variety over k with good reduction

at p.

(i) (Artin/Mazur) The cup product induces a perfect duality of
finite groups

HYO, o, )X H* 0, o ,,)—>H*0, G,)——>Q|Z for all i>0.

The above pairing induces the following perfect pairings
(ii) HO, #°)P)pwe X H'(O, L") (P)ov—>Q/Z,
(iii) (Cassels/Tate)
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I (A) (P)ois X LT (A)(P)piv—>Q/ Z.

Remark. A proof of (i) is given in an unpublished paper of Artin
and Mazur [1] and also by Milne [15] III. Corollary 3.2. The assertion
(ii) is proved by Schneider [7] § 6 Lemma 3 (observe that HY(@, oZ(p))pi, =
HY 0, £)(P)nir). The perfect duality for the Tate-Safarevi¢ groups was
announced by Tate in [10]. A proof can be found in [5] I. Theorem 6.13,
II. Theorem 5.6.

We will shortly indicate, how this also follows from the flat duality
theorem and a duality theorem of Grothendieck. The exact sequence

0 A > A —>F 0

defines a skyscraper sheaf #. The stalk
F=xa L) forxe @

is the group of connected components of o7, =.2Z X ,x(x). According to
[4], Appendix, the image of the middle map in the exact cohomology
sequence

HYO, F)—>H' (O, A)—>H (O, /) —>H O, F)
is I1I(4). Therefore we obtain a commutative and exact diagram

H ’(03\97 Wp)x HAO, F )(P)~—>€$r>H (#(x), Q/Z)
3 5

HY(O, o)(P)ose X H(O, 4 Posw—>HY(0: G,,)

LAY P LAY Py -

0 0

The vertical exact sequences are induced by the exact sequence above:
observe that

HYO, F)p)=DH (), m( L NP)= D H *(k(x), mZ.)(P))

is a finite group. The right vertical map 4 is defined by the exact divisor
sequence

0—>Gh/o—84Grp—> P (i) Z—>0
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(g: Spec k—Spec @ and i,: Spec x(x)—Spec @) under consideration of
H'(e(x), Q/1Z)=H*(x(x), Z)=H*0, (i,) Z).

The pairing at the top is defined as follows: By SGA 7 IX 11.3.1 we
have a perfect duality

7oA ) P) X A ) p)—>Q/Z

(observe p=£char x(x)). Now it is easy to check that the induced pairing
D H (), m( L) )X @ H'(6(x), 7o L)) —>D H'(e(x), Q/Z)

coincides with the pairing given by (ii) via §. Therefore we obtain a
perfect duality for the Tate-Safarevié group.

Now let k_, be a Z -extension of k£ and let k, be the n-th layer of
k./k. Let 0, and ¢, be the ring of integers of k, and k_, respectively.
We denote by X the finite set of primes of & which are ramified in &
(and which therefore lie above p).

Theorem 2.2. Let A be an abelian variety over k with good reduction
at p. Then the flat duality induces quasi-isomorphisms

(i) a(HO.., (p)*) = T,H0.., L' (p))*
(i) BELH (0., s£(p))*¥) = FHO.., ' (P))*DA*

and a quasi-exact sequence
O s FH 0oy (D) > BEH O s (D))

@ WEINR0,IZ)*
OO, AP IOATHN O P )OS (D)

where the third termislquasi-isomorphic to A%,

s= > (dim A—r))k,: Q,]

pelr
r,= p-rank of the reduction < [K(p),

and where N, denotes the group of “‘universal norms in A(k..,)”

Np =U N Nkmp/km(A(kmp))'

n man
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In particular, the above sequence induces a quasi-exact sequence

0—> A —> 1 ——> A DT, HY(O..., #'(p))*—>T,H 0, (p))*—>0.

Remark 2.3. (i) If k. is the cyclotomic Z -extension it is conjec-
tured that F,H*0.,, «/(p))*=0. This is proved for elliptic curves with
complex multiplication by an order in an imaginary quadratic field K
defined over an abelian extension of K with good ordinary reduction at p,
see [3] Proposition 15, and in the case that the reduction of the abelian
variety A/k is supersingular for every p/p and the Iwasawa-p-invariant of
k(A,) is zero, [9] Theorem 5, Remark 1.

(i) The canonical map

H(0.., & (p))*—>H0.., L°(p))*
is a quasi-isomorphism except for the y-part if i=1. Indeed, we have
H(0.., F(p)* =lm @ H "(k(x), (- )(P)*
=@ 6;) Z[p >[I

zeB

where B is the set of all bad primes x e @ splitting completely in k_/k and
the integers n,(x) for x e B are given by

HO R0, (ot YO = @ Z1p.

In order to prove Theorem 2.2 we need

Lemma 2.4. Let N be a discrete I'-module.
(i) There are isomorphisms

H'(I', Nyo) 2 (N® Q) Z,) [(N1or)™ ® @,/ Z,).
HY (I, N)= (N®Q,/Z,).

(i) Let (N®Q,/Z,)* be a A-module of finite type. Then there is a
quasi-exact sequence

0—>lim (Ngo)™* ® Z,—>B(F,(N® Q,/Z,Y*)—>lim ,, H'(I",, Nyo)—>0

n,m

Proof. Taking cohomology of the exact sequence

0> Ny >Ny @ Z [l] N®Q,/Z,—>0
P

leads to an exact sequence
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O— NI — >NI. @ Z [%] S (N®Q,Z,) —>H(T, Nyyy)—0

and an isomorphism
HZ(F: N):HZ(I"’ NTor) = Hl(Fa N® Qp/Zp) = (N®Qp/Zp)["

This proves (i). Taking I", instead of I" and applying the projective limit
to the exact sequence

0——>pm(N€gr® Qp/Zp)—'__)ﬁm(N® Qp/Zp)rn___%pmHl(FnD NTor)__)O
implies the result (ii).

Proof of Theorem 2.2. From the global flat duality theorem we
obtain a perfect pairing

lim H0,, o/ ,,) X H* 0., 2'(P)—>

nyMm

lim

im H0,, G,) = Q/Z

where the projective limits are taken with respect to the norm map and
the multiplication by p. In order to compute lim H%(0,, «,,) we con-

sider the descent diagram [8] p. 332, [7] Lemmas é.l, 6.3:
0

Hl((ﬁ", %pm)
O > H Dy ke N> HNO O 58 ) —5 HN 0.y st ) 7 —>0

D (L Alkry))

1€ .

HZ (@?’L 2 e%p’l‘ﬂ/)

Py m.
v
0'—>H1(0w2 '/Q{pm)['n_)Hz(@oc/Oni e/pr'm.)——“4)112(@m9 ﬂpm)rn—*)()‘

Here HY(0../0,, —) denotes the equivariant cohomology, [7] Appendix,
and I",, is the decomposition group of I", with respect to p. We calculate
the projective limit of the finite groups in the diagram:

lim H0,, #,,) = H* (0., #'(p))*,

n,m
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lim H'([",, H(0x, &) = im HY(I",, H(O., 1))

nym

The exact Kummer sequence, SGA 7 X 2.2.1

0>l > (P) "> (p)—0
implies an exact sequence
0——H (0. SUP))yn—>H Oy Ap)—> e HHO,,, L°(p))—>0
and therefore we obtain an exact sequence

0——>(H* (0w, () ) "—>H ..., )"
> o HY O, L (P)) " —>H 0., (D)), mr,
——>H YOy L) ry—>(uH (0., 22°(D))),—>0.

By Lemma 1.1 we obtain quasi-isomorphisms

lim H'(0.., o4},)"* =T H (0., (D) )BPEFHC..., (D)),

nym

lim HO.., #3n)r, =T, HO.., £(P))*)
inducing quasi-isomorphisms

lim H0../0,, },)~a(TH " (0.., L (p)*)DBEFH (0., (D))

~ Next, for p € ¥ we want to show
Claim 1. lim ,H'(T',, Ak.)=(4'(k.)/N;RQ,/Z,)*
i e Z, [ [ 4-rpley:0a]
Proof. According to [12], Theorem 2.2 the group
H () Ak ) = (AK)OQZ, )y,

(Lemma 2.4.i) is of finite order independent of n, n big enough. Therefore
we obtain a quasi-exact sequence:

O'_)Lim p'mHl((Fp)n: A(koop))—»li_n_l pmHI(kpn’ A)

—lim  H'(k..,, A»——lim H'(I),, 4(k..,),m-

Again by [12] Theorem 2.2 the modules
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lim ,H'(k,,, A=(im 4'(k,,),,)* =(4"(k..)Q,/Z,)*,

lim ,H'(k., A)"=pH k.., A*)=FH' k., A*
are quasi-free of rank (2 dim 4—r)k,: Q,] and rJlk,: Q,], respectively.
Since the fourth module in the sequence above is Z,[I',]-torsion we
prove Claim 1.

Now the proof of the theorem will be accomplished once we have
shown the quasi-surjectivity of the map

'\!le._an 1;!"n,m: liL.n HZ(@n’ &ipm)—>(1i1_’_.n Hz(aw/@n’ %pm)'

nyM

(Observe that F,HYO., o/(p))* can be divided out of the first exact
sequence in 2.2 (iii) in order to obtain the second, since a quasi-exact
sequence 0— M,—M,—M,—0 of compact 4-modules of finite type induces
a quasi-exact sequence

0—> M, ——ker(M,—>F,M)—>T,M,—0.)

Now, according to [8] Lemma 3 we have a commutative and exact
diagram
H' _I(Y'm LQ{pm)_—‘“—) Hé‘n(@m Mpm)—__') HZ(@ns &{pm) '_—>Hi(Yn7 Jypm)
On,m Yn,m
H* _I(Yny dpm)—_')HE'n(@w/@n’ &{pm)‘-’)Hi(mm/@m ﬂpm)_—)Hi( Yna %pm):
where Y, =0,\2,. If 4;  and Bi, denote the kernel and cokernel of

the map ¢, , and C}, , and D} . the kernel and cokernel of +, ,, respec-
tively, then we obtain exact sequences

0—> B, ,—>D; ,——> 45— Col—>0.

Claim 2. lim B2, =0.

nym

Proof. Because
Hi'n(@n’ dpm): GE? pmHl(kﬂp’ A))
bein
H3 (0100, A )= @ mH (K., Ao,
pPEIn
[4] 5.1, 5.2 and [8] Lemma 7, we have

B; .= @ coker(,, H'(k,, A)—> H'(k., A) ).

PEZ,
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Hence by the exact sequence in the proof of Claim 1:

lim B}, Slim H(T sy, 4G,

n,m

From Lemma 2.4 (i) we obtain a surjection

((A(keop)®Qp/Zp)F"p)pm"-—>)H1(Fmp’ A(koop)Tor)pm'
Because

1iI_‘I_] Hl(rnpa TOI(A(koop)))pmN

n,m

lim ((4(k,)®Q,/Z,) ) = (A, )®Q,/Z,)* =0

by Lemma 1.1 and [12] Theorem 2.2 we obtain
m Hl(F'np’ A(koop))pm""
proving Claim 2.

Claim 3. lim 45, and lim C3 ,, are finitely generated Z,-modules

n, nm

of the same rank.

Proof. We have the (quasi-) isomorphisms

hm HE,.(@M JZ{pm) (]_rn, (’B HO(@npn ‘d;m))* = @ A/(kooy)(p)*s

n,m pELy

hm H%.(0./0,, o,,)=lim @ (' (k. A))F = @ TlHl(kwp, A)*

nym pEZn

=@ T, AKk.Xp)*=D A’(kw.,)(p)*
pel peX
(by local flat duality, Lemma 1.1, [12] Theorem 2.2 and Theorem 3.4),
im H*(0,, o )= A'(k.)(p),

nym

hm H¥Y0,/0,, o ,)=lim H* 0., Mpm)pn~llm (nH (O, L°(P))r,

nym

~TH 0., Lp)* = A'(k. ) p)*

(by Lemma 1.1 and the assertion (i) of this theorem proven above).
Because 4} ,, =0 there is an isomorphism

lim B? ~11m Di .

nym = 2212
n,m

Together with the quasi-isomorphisms above this proves Claim 3.
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Now, from Claims 2 and 3 it follows

coker 4 =lim coker +, ,, =

M

lim

im D? ,=0.
This completes the proof of Theorem 2.2.

Corollary 2.5. Let A be an abelian variety over k with good super-
singular reduction at every prime above p. Assume H* (0., o/(p))* to be a
A-torsion module. Then the Pontrjagin dual of the kernel of the canonical
map

H'(0.., o/ (p))-—>pl;lz H'(k..,, A(p))

is quasi-isomorphic to T ,H(0.,, «'(p))*.

This result is also obtained by Billot [2] for elliptic curves which
have complex multiplication. The Corollary 2.5 follows easily from the
theorem, because the above map is dual to the projective limit of the
maps
@ H'kp ALp)——> D uH (K A)

pen

PEZn

« C—D pmHl(an3 A(koop))_—>H2(0n, &{pm).

pPEZn

Observe that the middle map is an isomorphism, i.e., the universal norms
NA(k,,) are zero in the supersingular case, [9] Theorem 1. 'We conclude
this section with some easy consequences of the assumption that III,=
I (A(k,))(p) is finite for all .

Proposition 2.6. Let 11, be finite for all n. Then
i) rank, H(0.., #(p))*<rank, (4(k.)RQ,/Z,)*,
i) rank,II*< 3 (dim 4—r)k,: Q,]=s.

pET

Corollary 2.7. Let 111, be finite for all n. If (A(k..)®Q,/Z,)* is a
A-torsion module, then rank, H*(0.,, &/(p))* =0 and rank, [11¥ =s.
Proof. Because of
I.a'nkA (A(koo)®Qp/Zp)* + rank/l U-Ii :S+ ra‘nk,/l Hz(@oo) ﬂ(p))*’

[8] Lemma 2.2, the second assertion follows from the first. Now, since
11 (A(k,))(p) is finite for all n, we obtain by the flat duality theorem and
[8] Lemma 1.4 an isomorphism
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lim #(0)Z,=lim H NOns A )= HXO..., ' (D).
Hence
rank, H*(0.., o/(p))* =rank, 11? LN0,)RZ,
=rank, 11_7rz_n Ak )RZ, (see Remark 2.3 ii)

<rank, F(Ak..)®Q,/Z,)*
by Lemma 2.4 (ii).

§ 3. Ordinary reduction

In this section we will consider abelian varieties which have ordinary
good reduction at p. As a direct consequence of Theorem 2.2 we obtain
the following result

Theorem 3.1. Let A be an abelian variety with ordinary good reduc-
tion at p. Then for i >0 there are quasi-isomorphisms induced by the global
flat duality

TH 0., ' (p)* = a(TH~(0ws (D)),
FHY O, ' (p))* = p(FH* (0., (D))
Remark 3.2. The quasi-isomorphism
TH .., L (p))* =T H* (0, L(p))¥)
can be understood as pairing
TH'(0.., ' (p)* X TH*"(0.., £ (P))*—>Z,

with finite kernels. Indeed, the quasi-isomorphism is obtained from the
discrete-compact pairing

HY0.,, '(p)) X Uim H*"%0,, o n)—>Q,/Z,

~
~

\/
(T H(O., Z'(p)))*  lim H* 40./0,, L )
' y quasi-injective
lim (7" (0., L(P))r,

~
=~

(THYO., £ (P alTH 0., L(P))¥)
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According to [11] Lemma 7.6 we obtain a pairing of compact A-modules.
Now let

k: G—ZF

be the continuous character of the absolute Galois group of k correspond-
ing to the Z -extension k_/k and let ¢ be a generator of I'=G(k,/k).
We define an Iwasawa L-function of 4 with respect to ¢ by

LA, g, s)=]] File(g)’ ' — D™ se Z,
i>0
where

F(t)=pridet(t—(¢—1); T,HO.., (P))*®Q,)

is the characteristic polynomial of the A-torsion module T,H*® and p;
denotes the y-invariant of H*(0.., «(p))* (see also [8]§2, where L, is
defined assuming that H(0.,, «/(p)) is a A-torsion module). Using a
polarization we obtain from Theorem 3.1 and [4] Lemma 7.1 a quasi-
isomorphism

]-;Hi(@ow ﬂ(p))*szHz—i(@w’ M(p))*, ZZO,
which implies the following result

Corollary 3.3. Let A be an abelian variety with good ordinary reduc-
tion at p. Then the Iwasawa L-function satisfies a functional equation with
respect to S+>2—§:

L4, k, $)=z-k(g) D=L (4, £, 2—5),
where
A,=rank, TH0.., #Z(p))*
e=(—1), r=ord,_, F(t).

Remark. The above corollary generalizes a result of Mazur and
Schneider [4] Corollary 7.8, [8] p. 342, where k_/k is an admissible Z -
extension, i.e., the bad primes split only finitely in k_/k and H*(@.., «/(p))*
are assumed to be A-torsion modules.

Proposition 3.4. If A has good ordinary reduction at p and 111, is
Sfinite for all n, then 111% is a A-torsion module.

This is a direct consequence of Proposition 2.6 (ii).
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Proposition 3.5. Let A be ordinary at p and let 11, be finite for all n.
Then

TB(A(koo)®Qp/Zp)* = 0:
ie.,

(A(k)®Q,/Z,)* = 4D B 4/¢:

for some polynomials &, and p,=rank, H*(0.., o (p))*.

Remark 3.6. This result should hold true without any conditions.
For trivial reasons one also obtains this assertion if (4(k..)®Q,/Z,)* is a
A-torsion module: Since A(k.) is a discrete I"-module, it is easy to see
that (4(k.)®Q,/Z,)* is fixed under the action of I',, n big enough.
Indeed, for m>n there are injections

(A(koc)Tor)rn@Qp/ZpL)(A(kw)C@ Qp/Zp)P"

(A(keo)Tor)rm®Qp/ZpL_)(A(koo)®Qp/Zp)Fm>

Lemma 2.4 (i). Since A(k.)qy,, is discrete, i.e., Ak o=, (Ak Dror)’™s
we obtain

(A(k)®Q,/Z,)* =lim (A(k)ro)"RQ,/Z,)*

where the limit is taken over the surjective norm maps. Since (A(k.)®
Q,/Z,)* is by assumption of finite Z -rank, the projective system will
become stationary. Hence

(Ak.)®Q,/Z,)* =(A(k.)DQ,/Z ) ™

for some n>>0. Now the general structure theory of compact /4-modules
of finite type proves the assertion above.

Proof of Proposition 3.5. We have to show that

THAKk)BQ,/Z,* =lim (Ak.)RQ,/Z) ™), = lim HI s Ak o),

n,m

is finite. (Here we used Lemma 1.1 and 2.41).
From the spectral sequence

HXT,, H(O.., s)=—>H'"(0..0,, &),

[7]1 Appendix, we obtain exact sequences
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O BT, Ak ) H (0.0, LY P)——> (O, SN P

¥
HXT,, A(k..))
(*) O«—H(0.., L) p)'*«—H0..[0,, ) (p) Fi(n)< 0
H\I',, H(O.., &)

0

where F,(n) denotes the first filtration step of H*0../0,, «/). Since
HY(0,, &) is a torsion group, we have

Hz(rn’ Hl(@oo’ J%))—_"'09
HY0..[0,, s£(p))=H*0..]0,, ) p),
H*0,, #(p))=HX0,, L) p),

hence
F(m=H'.., Z(P)r,-

From the second spectral sequence
HYO,, Rizp, 3 l)==>H"*(0.]0,, o),
see [7] Appendix, we obtain the exact sequence
0—>H(0,,, L) p)—>H 0./ 0, /) D)—> DH (L Alky)
——>H0,, /) p)—>H*0./0,, &) p)—>0
using [8] Proposition 1.2. Therefore
HY0,, £)p)=H'(0./0,, &) p), =0,

where the defect is independent of n, n big enough, [8] Proposition 1.1 (iii).
By the perfect duality 2.1 (iii) and the finiteness of H(0,, o/)(p) we obtain
a quasi-exact sequence

0—>lim H'(I',, A(k.)—>H'(0.., /") p)*—>lim H'(0.., /) (p)"™

where the next term

lim HXI',, A(k)=(T(A(k..)RQ,/Z,y*)*
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(Lemma 2.4i) is Z -torsion. Now H'(0,, o/)(p)* is a A-torsion module
(3.4), hence

HYO.., &) pY* =T, H'O.., L) py*®T,H0.,, &) p)*
and therefore

lim (0., L) p) =T, H'(O.., LY pY*AT.HNO.., X 0)*®R7,Q,).
Hence the quasi-exact sequence above shows

lim HY(I",, A(k..))®Q,=0,
ie., lim HY(I',, A(k..)) is Z -torsion, and therefore
lim H'(I",, Ak..)),m

can only have a y-part. But this is impossible, since T;(4(k..)RQ,/Z,)*
has zero py-invariant.

Theorem 3.6. Let A be an abelian variety over k with ordinary good
reduction at p and let I1I(A(k,))(p) be finite for all n. Then the global flat
duality induces quasi-isomorphisms

(i) T,HY0.., 'Y p)* = T,H(0.., L) P)*),
T; 11, (4)(p)* = a(T; LLL. (4)(p)*)

and a quasi-exact sequence

(i) 0T, UL (ANp)*——> T (Ak.IDQ,/Z,)*)
——> T (A" (kDRQ,/Z, ) —>a(T, (A} p)*)—>0

Corollary 3.7. Let the assumptions of 3.4 be fulfilled, then the follow-
ing is true.

(i) Any divisor of the form &, of Ul.(A)p)* is also a divisor of
(Ak)RQ,/Z,)*. In particular, if 11 (A)p)™ is infinite then A has a
k-rational point of infinite order.

(ii) The following assertions are equivalent:

(@) The A-torsion submodule of HY(O.., o/(p))* is semi-simple by
Epn—1for all n>>0, i.e.,

T.HO.., (p))* = D Alg,.
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(b) The I ,-invariants 111, (A)(p)™ of 111,(4)(p) are finite groups
Jfor all n>0.
(c) There is a quasi-isomorphism

a( TA(A(koo)®Qp/Zp)*) = TA(A /(koe)® Q;{)/Zp)#<
induced by the global flat duality.

Corollary 3.8. Let A be an abelian variety with ordinary good
reduction at p. Let U _(A)p)™™ be finite for all n and assume that
(Ak.)RQ,/Z)* is a A-torsion module. Then there is a non-degenerate

pairing
Ak )X A'(k.)—>Q,
In particular, there are non degenerate pairings
A(k,)x A'(k,)—>Q,
Sfor all n.

Proof of Theorem 3.6. From the descent diagram we derive the
commutative and quasi-exact diagram

0 0

lim H'(0, "), —>lim H(0./0,, ),

n,m n,m

O—_>1i_r_n HZ(@n’ &{pm) ~—>Lil_n HZ(@W/QH’ ,prm)———)O

n,m n,m

lim ,, HY0,, 5#£°)—>lim ,, H¥0./0,, o£°).

n,m n,m

D D
0 0
We will compute the projective limits. First, from the lower exact
sequence in the diagram (*) of the proof of 3.5 with .«/° instead of .o we
obtain a quasi-exact sequence

0—_>1i_l_n pm(Hl(@ew t'Q{o(p))l"n)'——_'%liL.n pmH2(0w/@n, "Q{o)

—lim ,H 0., L) '-——>0

hence
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lim  HY0./0,, #°)=a(T,H (0, L(p)*)OBEFHO.., L(P))¥).

Because of
lim H¥O../0,, A )= TH 0., L(p)Y)BBEFH (0., (P))*)
(see proof of 2.2) we obtain

lim H'(0../0,, #°) = T,H (0o, L(D))¥).

Now, since [11,, is finite for all » we have by Theorem 2.1 (ii) an isomor-
phism

lim H(0.., &°),, = H"0,, X p)*.

Furthermore
lim H*O,, #,,)=H'(0.., #'(p))*

hence

Li[_.n pmH2(@"’ MO)E(A,(koc)®Qp/Zp)*
Therefore, the diagram above induces the commutative and quasi exact
diagram
0 0
A
H'(0.., &) py=—>aT,HO.., L°(p))¥)

(4)  HY 0., L (P> T HO,., £ p)BBEHHO.., £(p))¥)

(A(k.)RQ,/Z ) —»a(TH .., £ (p))*)DREH(O... (P)¥).

0 0
Since H*(0,, «2)(p)* is A-torsion (3.4) we have a quasi-isomorphism
FAA(k.)®Q,/Z,)* = (F,H0.., /(p))*)

and a quasi-exact and commutative diagram
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0—>H'(On, ) p)*—>T,H'(O.., L' YD) —> T (A" (k.)RQ,/Z,)*—>0
4
I~ R
0= a(H(O.s AN pY)—al T H'(O.o £ (P))¥)—l T Ak IRQ,Z,)*) <0

where the map « is induced by the quasi-isomorphism in the middle
(Theorem 3.1).

Therefore the characteristic polynomial of T(A(k.)®Q,/Z,)* =T (A(k.)
®Q,/Z,)* (3.5) devides the characteristic polynomial of T,H'(0.., Z(p))*.
This shows that all horizontal maps in the diagram (4) are quasi-
isomorphisms:

(A(k)RQ,/Z ) =T H'(O.., (P))*)DBF HY O, 4(P))*),

(3.9)
H'(0.., 'Y p)* = T,HO.., £(p))¥).

Thus we obtain from the diagram above the quasi-exact sequence

0—> T, LIL. (4)(p)* —> T AU IRQ, Z,)*)— > T (4 k)R, Z,)¥).

Obviously the cokernel of v is quasi-isomorphic to a(T) LI, (4)(p)*).
Furthermore, the diagram above implies a quasi-injection

T,H'(0.., &) py*=—>T,H'(0.., £')(p)*.

Hence, taking the adjoint and combining it with the quasi-isomorphism
(3.9) we obtain a quasi-surjection

H'(On, )P = T,H (0., ' (D))*)—2»a(T:H' (0., 5 )(P)¥).
This proves Theotem 3.6.
Proof of Corollary 3.7. Since
T(Ak)®Q,Z)* and TH'(O., S(p)*

have the same characteristic polynomials the following assertions are
equivalent:

H'(0.., «(p))* is semi-simple by £ ,—1 for all >0,

TH' (0., A(p)y* =T .H' (0., L(p))*,

TH'(0., ) (p)* =0,

LI, (4)(p)*T~ is finite for all n>>0.

Because 111, (4)(p)* is A-torsion the last assertion is equivalent to
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II.. (A)(p)~= is finite for all n>>0.

The equivalence to (c) and the first assertion follow immediately from 3.6
(ii).

Proof of Corollary 3.8. This is a consequence of 3.7 (ii), observing
that the maps

(A(k)SQ) "—>(Ak)®Q)r,,  n=0,
induced by the identity are isomorphisms because

(A(k.)QQ,/Z ) =T (Ak)RQ,/Z,)*.
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