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Abstract 
The aim of this report is to determine the fundamental group of an 

arbitrary irreducible semisimple symmetric space GI H when G is a 
connected semisimple Lie group with trivial center. The fundamental 
group ir 1(G/H) is well-known if GIH is Riemannian. Therefore, we re­
strict our attention to the case where GI H is non-Riemannian so both G 
and H are not compact. The result is summarized in Table 4. 

§ 1. Preliminaries 

Let g be a semisimple Lie algebra and let a be its involution. Then 
we obtain a direct sum decomposition g=9+q for a. The pair (g, 9) is 
called a (semisimple) symmetric pair. Let 0 be a Cartan involution of g 
commuting with a and let g=f+l) be the corresponding Cartan decom­
pos1t10n. Since 0a is also an involution of g, we obtain a direct sum 
decomposition g=9a+qa for 0a. The pair (g, 9a) is the associated 
symmetric pair of (g, 9) (cf. [B, p. 102]). Let G be the adjoint group Int g. 
Then a is lifted to G. We denote its lifting by the same letter. Let 
K be the maximal compact subgroup of G corresponding to f. Put 
G"={g E G; a(g)=g} and G8"={g E G; 0a(g)=g}. Then G/G" and G/G0 • 

are (semisimple) symmetric spaces. By definition, 9 and 9a are the Lie 
algebra of G• and that of G0 •, respectively. 

The aim of this report is to answer the following problem. 

Problem. Determine the fundamental group of G/G·. 

A symmetric pair (g, 9) is irreducible if the representation of 9 on q 
via the adjoint representation is irreducible. Moreover, a symmetric 
space G/ His irreducible if the corresponding symmetric pair is irreducible. 
Then it is sufficient to treat irreducible symmetric spaces to answer 
Problem. At this stage, we recall the following lemma (cf. [B, Prop. 
53.2]). 
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Lemma 1. The symmetric space G/Gq is a vector bundle over K/Kq 
with fibres isomorphic to j) n q. 

Corollary. r:i(G/Gq)-::::::.11:i(G/G8q)-::::::.r:i(K/Kq). 

Proof By Lemma 1, we have r:i(G/Gq)-::::::.r:i(K/Kq). On the other 
hand, Kq=Kq 8 • This implies that 11:i(G/G8q)-::::::.11:i(K/Kq). 

We note some remarks on this subject. 
( i) If G/Gq is an irreducible compact symmetric space, r:i(G/Gq) is 

determined by E. Cartan. (For the sake of completeness, we contain this 
result in Tables 1, 2). 

(ii) If G/Gq is a Riemannian symmetric space of non-compact 
type, then 11:i(G/Gq)= 1. This follows from the Cartan decomposition 
G=Kexp(j:J). 

(iii) Consider the case where g is a complex simple Lie algebra and 
fj is its real form. Then t is a compact real form of g. So we know 
r:i(G/Gq)-::::::.r:i(K/Kq) from Corollary and (i). 

(iv) Let (g, fj) be a symmetric pair considered in (iii). In this case, 
fja is a complexification off n fj=f n fja. So r:i(G/G0q)-::::::.r:i(G/Gq) is also 
determined. Note that there is a real form g0 of g such that f n fj is its 
maximal compact subalgebra. So G/G0q is regarded as a "complexifica­
tion of a Riemannian symmetric space". 

(v) Consider the case where G/Gq is a group space. In this case, 
there is a simple Lie algebra g1 such that g=g 1 Xg 1 and a(x,y)=(y,x) 
for any x, y e g1• Let G1 be the adjoint group of gl' Then G= G1 X G1 

and the map of G to G1 defined by (g, h)>-+-gh-1 induces an isomorphism 
of G/Gq to GI' Then 11:i(G/Gq)=r:i(G1) is determined by E. Cartan. (For 
the sake of completeness, · we also summarize the fundamental groups of 
connected non-compact real simple Lie groups with trivial center in 
Table 3.) 

According to (i)-(v), it is sufficient to restrict our attention to the 
case where g is a non-compact real form of a complex simple Lie algebra 
and fj is not a maximal compact subalgebra of g. In the sequel, we 
always assume this condition. 

In general, K is not the adjoint group of f. But, if the Cartan 
involution 0 of g is an outer automorphism, then f is semisimple and K is 
its adjoint group. So the determination of r:i(K/Kq) is reduced to the 
compact case (i). Next consider the case where 0 is an inner automor­
phism. In this case, since K is not necessarily the adjoint group of f, in 
order to determine r:i(K/Kq), we need its concrete form (cf. Table 3). Let 
f. be the semisimple part of f. If f = f., that is, f is semisimple but not 
abelian, then r:i(K/Kq) is a finite group. On the other hand, if f*f., that 
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is, f is reductive but not semisimple, then rri(K/K") is not necessarily a 
finite group. In fact, the center of K is a one dimensional torus. In 
this case, we need some computation to determine the torsion part of 
;r;i(K/K6 ). For the reasons stated above, it is better to decompose into 
the following cases : 

Case (I) The Cartan involution (} is an outer automorphism of g. 
Case (Ila) The Cartan involution (} is an inner automorphism of g 

and K is simple but not abelian. 
Case (Ilb) The Cartan involution (} is an inner automorphism of g 

and K is semisimple but not simple. 
Case (Illa) rs=;d and fs is simple. 
Case (IIIb) fs =;t= f and fs is semisimple but not simple. 

We are going to explain how rri(G/G") is computed shortly. As 
explained before, the determination of rri(G/G") for Case (I) is easy. For 
the other cases, we compute rri(G/G") by case by case discussion using the 
concrete form of K. In almost all cases, it is sufficient to investigate the 
compact symmetric space K/K" instead of G/G" and it is not difficult to 
compute rri(K/K"). But in the case where g is one of the exceptional Lie 
algebras e7c_5J, escs), we cannot determine rri(G/G") if we only consider 
K/K". The reason is as follows. Consider the semispinor group Ss(4n) 
(n>2). Then there are two involutions r, r' with the following property: 
Put X=Ss(4n)/Ss(4n)<, X'=Ss(4n)/Ss(4n)''. Then Xis isomorphic to 
S0(4n)/U(2n) and therefore is simply connected and X--+X' is a double 
covering. On the other hand, if g is one of e7c_5), e8cs), the maximal 
compact subgroup K is related with semispinor groups. In fact, K = 
(Ss(12)X SU(2))/Z 2 if g=e 7c_5), and K =Ss(I6) if g=escs) (cf. Table 3). 
These two cases are discussed in [SJ. 

A classification of simple Lie groups are accomplished by Goto­
Kobayashi [GK]. Their classification is based on the detailed study on 
the fundamental groups of adjoint groups. For a similar reason, it is 
possible to classify the global irreducible semisimple symmetric spaces by 
using the results in Table 4. 

§ 2. The case of universal linear groups 

If G is a real form of a simply connected complex simple Lie group, 
the fundamental group of G/G" is computed in a simple way for any 
involution a of G. In this section, we shall discuss this subject. 

Retain the notation of § 1. Let g be a real semisimple Lie algebra 
and let gc be its complexification. Let Ge be a simply connected Lie 
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group with the Lie algebra gc. Then the real analytic subgroup of G0 

corresponding to g is called a universal linear group corresponding to g 
and is denoted by Gui· By definition, for a given Lie algebra, its universal 
linear group is unique up to isomorphism. Let Kui be a maximal com­
pact subgroup of Gui· Since Kui is semisimple or reductive, put L= 
[Kui, Kui] and T=the center of Kui· By definition,Kuz=LT. 

Proposition 2. Assume that gc is simple. 
( i) If Kui is semisimple, then G= Gui or G is a double covering of 

Gui, where G is the universal cover of G. 
(ii) If K is not semisimple, then L is simply connected. 

This result is well-known but the author does not find its proof in a 
literature. (One of its proofs is to check all the cases by using Table 3.) 

Let a be an involution of g and let (g, fj) be the corresponding sym­
metric pair. Constant use of the notation of § 1. Then t is a maximal 
compact subalgebra of g such that a(t) = t. By definition, a can be 
lifted to Gui and G. So we denote the liftings by the same letter. We 
may take Kui such that t is its Lie algebra. 

Proposition 3. Assume that gc is simple. Let a be an involution of g 
such that a(t) = t. 

( i) If t is semisimple, then Gu1/(Gu1)g is simply connected and 
#((Gu1)"/(Gu1)g)::;:2. Here (Gu1)g is the identity component of (Gu1)g. 

(ii) /ft is not semisimple and a(t)=t for all t ET, then Guzf(Gui)" 
is simply connected. 

(iii) Jf tis not semisimple and a(t)= t - 1 for all t E T, then rri(G/(Gu1)g) 
=Z. 

Proof First note that G/G" is simply connected (cf. [L, Chap. IV, 
Th. 3.5]). In particular G" is connected. 

( i ) If G is linear, we have nothing to prove. So assume that G 
is not linear. Then according to Proposition 2, (i), there is a central 
element z E G such that G/{l, z}=Guz· Since a induces involutions on 
both G and Guz, we find that a(z)=z. Put H ={g e G: g- 1a(g) E {1, z}}. 
By definition, G/H-:::::. Gu1/(Gu1)". Now suppose that there is an element 
g0 E G such that a(g 0) = zg0• Then H = G" U g0G". So we conclude that 
(Gui)" has at most two connected components. Moreover, since Guif(Gu1)g 
-:::::. G/G", we find that Guzf(GuiY is simply connected. Next consider the 
case where a(g)*zg for all g E G. Then H = G· and therefore Guzl(Gu1); 

is simply connected. 
(ii) From the assumption, we find that (TL)"= TL". Then 

Ku1/(Ku 1)"-:::::. L/U. It follows from Proposition 2, (ii) and a theorem of 
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E. Cartan on compact symmetric spaces that L/Lu is simply connected. 
Hence K,,1/(Kuil and therefore Guzf(G,,1)u is simply connected. 

(iii) By definition, Lu is a maximal compact subgroup of (G,,1) 0. 
Hence 11:i(G,,zf(G.,,1)o)-::=.11:i(TL/L"). By the assumption, Tis a one dimen­
sional torus. Therefore we identify T with {z e C; \z\= 1}. Define a 
map <fa of TXL/Lu to TL/U by <fi(t, mL)=tmL. This is a finite covering. 
Take an element x 0=Lu of L/Lu. Then there is an integer n>O such 
that <fi-1(x0)={A=(t~, xkLu); O<k<n}, where t0 =exp (211:i/n). Now 
take a path c(0)=(ci(0), c2(0)) (O<O<l) on TXL/L• such that c(j)=YJ 
(j =0, 1). We may take ci(O)=exp (211:iO/n). Then <fa o c defines a homotopy 
class [<fa o c] of 11:i(TL/L•, x 0). In virtue that 11:i(L/L")= 1, 11:i(T)=Z, we 
find that [<fa o c] is a generator of 11:i(TL/L•, x 0) and furthermore, Z[<fi o c] 
=Z. q.e.d. 

Remark. The statement of Proposition 3, (i) is useful in the defini­
tion of principal series for semisimple symmetric space ( cf. [O]). 

§ 3. Tables 

We use the notation of Helgason's book [H] without any comment. 
(0) As for the results of Tables 1-3, the readers consult [C], [GK], 

[SS], [TM] and their references. 
(1) Table 1. In this table, g means a compact simple Lie algebra 

and G=lntg. 
(2) Table 2. The meaning of g and G is the same as in the case (1). 

Take an involutive automorphism a of G and put K={g e G; a(g)=g}. 
(3) Table 3. In this table, g means a real simple Lie algebra, G= 

Int g and K means a maximal compact subgroup of G. By the Cartan 
decomposition, 11:i(G)=11:i(K). We refer to [TM] for the determination of 
Kin the case where g is one of C7c-sJ, CacaJ· 

(4) Table 4. In this table, (g, fj) means an irreducible symmetric 
pair. (A classification of irreducible symmetric pairs was accomplished 
by M. Berger [B].) 

Remark. In Tables 1 and 3, the notation E 6, E1, Ea, F4, G2 mean 
simply connected compact Lie groups with Lie algebras C6, C7, Ca, f4, g2, 

respectively. 
In Table 3, the notation (K1 xK 2)/Z 2 is used. For example, (S0(2p) 

XS0(2q))/Z 2, (SU(6)XSU(2))/Z 2, etc. Now explain its meaning. Take 
central elements zieKi (i=l,2) of order 2. Put Z={(l,l),(z 1,z 2)}. 

Then (K1 XK 2)/Z is written as (K1 xK 2)/Z 2• The meaning of (E6 XS0(2)) 
/ Z3 is similar. 

Full proofs will be published elsewhere. 
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Table 1. The fundamental group of a compact simple group 

g G ir1(G) 

5u(n) SU(n)/Zn Zn 

5o(2n+ 1) S0(2n+l) Z2 

5µ(n) Sp(n)/Z2 Z2 

5o(2n) (n>2) S0(2n)/Z 2 Z4 (n: odd) 
Z2XZ2 (n: even) 

ee Ee/Za Za 

er Er/Z2 Z2 

es Es 1 

f4 F4 1 

B2 G2 1 

Table 2. Fundamental groups of irreducible compact symmetric spaces 

(g, f) ir1(G/K) 

(5u(n), 5o(n)) Zn 

(5u(2n), 5p(n)) Zn 

(5u(p+q), 5u(p)+5u(q)+5o(2)) Zr1, (d=(p, q)) 

(5o(p+q), 5o{p)+5o(q)) Z2 (p'Fq) 
Z4 (p=q: odd) 
Z2XZ2 (p=q: even) 

(5p(n), u(n)) Z2 

(ijp(p+q), 5p(p)+5µ(q)) 1 (p*q) 
Z2 (p=q) 

(5o(2n), u(n)) 1 (n: odd) 
Z2 (n: even) 

(ee, 5µ(4)) Za 

(e6, 5u(6)+5u(2)) 1 

(ea, 5o(10)+5o(2)) 1 

(ea, f4) Za 

(er, 5u(8)) Z2 

(er, 5o(l2)+5u(2)) 1 

(er, ea+5o(2)) Z2 

(es, 5o(16)) 1 

(es, er+5u(2)) 1 

(14, 5µ(3)Hu(2)) 1 

(f4, 5o(9)) 1 

(g2, 5o(4)) 1 
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Table 3. Concrete forms of maximal compact subgroups and fundamental 
groups of non-compact real simple Lie groups 

g K ir1(G) 

iSl(2n, R) (n>l) SO(2n)/Z2 Z4 (n: odd) 
Z2XZ2 (n: even) 

!3((2n+ 1, R) SO(2n+l) Z2 

iSu*(2n) (n>2) Sp(n)/Z2 Z2 

iSu(p, 1) U(p)/Zp+1 z 
iSu(p, q) (p, q>l) S(U(p) X U(q))/ Zp+q ZXZa (d=(p, q)) 

i3o(2p, 1) (p>l) SO(2p) Z2 

i:Jo(2, 2q-1) (q>l) SO(2)XSO(2q-1) ZXZ2 

!3o(2p, 2q-1) (p, q>l) SO(2p)XSO(2q-1) Z2XZ2 

!3p(n, R) (n>2) U(n)/Z2 z (n: odd) 
ZXZ2 (n: even) 

iSp(p, q) (p, q>0) (Sp(p) X Sp(q))/ Z2 Z2 

iSo(2p-l, l) (p>2) SO(2p-l) Z2 

i:Jo(2p-1, 2q-l) (p, q> 1) SO(2p-l)XSO(2q-l) Z2XZ2 

!3o(2p, 2) (p> 1) (SO(2p) xSO(2))/ Z2 ZXZ2 

!3o(2p, 2q) (p, q> 1) (SO(2p) X SO(2q)/ Z2 Z2XZ4 (p or q: odd) 
Z2XZ2XZ2 (p, q: even) 

!3o*(2n) (n>3) U(n)/Z 2 z (n: odd) 
ZXZ2 (n: even) 

e6C6J Sp(4)/Z2 Z2 

e5c2J (SU(6)/Z 3 XSU(2))/ Z2 z6 

ea(-14) (Spin(l0) X SO(2))/ z4 z 

e6(-2aJ F4 1 

C7(7) SU(8)/Z4 Z4 

C7(-6) (Ss(12)XSU(2))/ Z2 Z2XZ2 

C7(-25) (EBXSO(2))/ Zs z 

Cs(BJ Ss(16) Z2 

Cs(-24) (E 7 X SU(2))/ Z 2 Z2 

\4(4) (Sp(3) xSU(2))/ Z2 Z2 

14-(20) Spin(9) 1 

g2(2) SO(4) Z2 
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Table 4. Fundamental groups of semisimple symmetric spaces 

Case (I) 

(i8I(n, R), i8I(i, R)+i8I(n-i, R)+R) Z2 (2i <n) 
(i8I(n, R), i8o(i, n-i)) (O<i ~n/2, 2<n) Z4 (2n=n, i: odd) 

Z2XZ2 (2i=n, i: even) 

(i8I(2n, R), 61>(n, R)) 
(i8I(2n, R), i8I(n, C)+iilo(2)) (n>l) 

(iilu*(2n ), iilu*(2i )+ iilu*(2n-2i)+ R) 
(i8u*(2n), i81>(i, n-i)) (O<i~n/2, 2<n) 

(i8u*(2n), iilo*(2n)) 
(iilu*(2n), i8I(n, C)+i8o(2)) (2<n) 

1 
Z2 

1 

Z2 

Z2 

(iilo(2p-1, 2q-l), i8o(k)+iilo(2p-k-1, 2q-l)) Z 2 

(O<k<2p-l, O<q) 

(n: odd) 
(n: even) 

(2i<n) 
(2i=n) 

(i8o(2p-l, 2q-l), iilo(k, h)+iilo(2p-k-1, 2q-h-l) Z2XZ2 

(O<k<2p-l, O<h<2q-l) 

(i8o(2n+l, 2n+l), iilI(2n+l, R)+R) Z2 
(iilo(2n+ 1, 2n+ 1), i8o(2n+ 1, C)) (n>O) 

(eaca>, fmi) (eaC6>, i811*(6)+i8u(2)) 1 

(ea(6), iilo(5, 5)+R) (e5(6), ijjp(2, 2)) Z2 

(ea(6), iil1>(4, R)) (e6(6), iilI(6, R)+iil((2, R)) Z2 

(eac-2ai, iilu*(6)-J--jjju(2)) (e6c-2aJ, i81J(3, 1)) 1 

(e6C-26h i8o(9, l)+R) (eac-2ai, f,c-20>) 1 

Case (Ila) 

(jjjo(l, 2n), iilo(l, h)+i8o(2n-h)) (2<n, O<h<2n) Z2 

(em,, iilo*(12)+i8u(2)) (emi, eac2i +iilo(2)) 

(emi, iilo(6, 6)+iilI(2, R)) (emi, i8u(4, 4)) 

(emi, iilI(8, R)) 

(emi, i8u*(8)) (em>, ea(6)+R) 

1 

(escsi, 60(8, 8)) 

(es(B), iilo*(16)) (escs>, erm +iilI(2, R)) 

(f4c-20J, iilo(l, 8)) 

(f,c-20>, i81>(2, l)+iilu(2)) 
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Case (llb) 

(1ilo(2p, 2q-l), 1ilo(k)+1ilo(2p-k, 2q-l)) 

(l<p, q, O<k<2p) 

(1ilo(2p, 2q-l), 1ilo(k, h)+iilo(2p-k, 2q-h-l)) 

(l<p, q, O~k~2p, O<h<2q-1) 

(iilp(p, q), iilp(k, h)+iilp(p-k, q-h)) 
(O<p, q, O~k~p, O<h<q) 

(iilp(n, n), 1ilu*(2n)+R) (1ilp(n, n), 1ilp(n, C)) 

(1ilp(p, q), 1ilu(p, q)+iilo(2)) (O<p, q) 

(iilo(2p, 2q), iilo(k, h)+iilo(2p-k, 1q-h)) 
(l<p, q) 

(1ilo(2p, 2q), 1ilu(p, q)+1ilo(2)) (l<p, q) 

(1ilo(2n, 2n), 1ill(2n, R)+R) (n>l) 
(iilo(2n, 2n), iilo(2n, C) 

(e6C2l, 1ilo*(lO)+iilo(2)) 

(e6(2i, 1ilo(4, 6)+iilo(2)) (e6c2l, 1ilu(2, 4)+1ilu(2)) 

(e6(2), 1ilu(3, 3)+1ill(2, R)) 

(eoc2>, 1ilp(4, R)) 

(en-5l, 1ilo(4, 8)+1ilu(2)) 

(e1<-6h 1ilu( 4, 4)) 

(e7<-5i, 1ilu(2, 6)) (e7C-5l, eoc2l +1ilo(2)) 

(e7c-5l, 1ilo*(l2)+1ill(2, R)) 

(esc-24i, 1ilo*(l6)) 

(esc-24i, 1ilo(4, 12) (esc-24), e1Hl +1ilu(2)) 

Umi. 1ilp(3, R)+1ill(2, R)) 

(fmi. 1ilo(4, 5)) (f4C4l, iilp(l, 2)+1ilu(2)) 

(02c2l, 1ill(2, R)+1ill(2, R)) 

Z2 (k=O or 2p) 
Z2XZ2 (O<k<2p) 

1 (2k=t-p or 2h=t-q) 
Z2 (2k=p and 1h=q) 

527 

Z2 (k=O, 1p or h=O, 1q) 

z2xz 2 (0<k<2p, O<h<2q) 
k=t-p or h=t-q 

Z2XZ4 (k=p, h=q) 
porqodd 

z xz xz (k=p, h=q ) 
2 2 2 p and q even 

1 (p: odd or q: odd) 
Z2 (p, q even) 

Z4 (n: odd) 
Z2XZ2 (n: even) 

Za 

Za 
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Case (Illa) 

(181(2, R), 180(1, 1)) 

(18u(l, n), 18u(l, h)+18u(n-h)+18o(2)) (O<h<n) 

(i3o(2, 2n-1), 18o(k, h)+18o(2-k, 2n-h-1)) 

(l<n, 0:<;;h:<;;2n-1) 

(i3+1(n, R.), i3+1(i, R)+i8+1(n-i, R)) 
(i3+1(n, R), i3u(i, n-i)+18o(2)) (0< i :<;; n/2, 2< n) 

(i3+1(n, R), i3I(n, R)+R) (n>2) 

(!8+1(2n, R), 18l-J(n, C)) (n>l) 

(?Jo(2, 2n), i3o(k, h)+i3o(2-k, 2n-h)) 
(l<n, 0:<;;h:<;;2n) 

(180(2, 2n), 18u(l, n)+i3o(2)) (2<n) 

(i3o*(2n), 18o*(2i)+i3o*(2n-2i)) 

(i3o*(2n), i3u(i, n -i)+ !80(2)) (3 < n) 

(i3o*(2n), !8o(n, C)) (3<n) 

(i3o*(4n), !8u*(2n)+R) (2<n) 

(e6c-14J, f4c-20J) 

(e6c-14J, i3o(2, 8)+180(2)) 

(e6H4J, i'lu(2, 4)+18u(2)) 

(e6C-14J, i'll-1(2, 2)) 

(e6c-i4J, i3u(l, 5)+i3I(2, R)) (e6c-i4J, '8o*(lO)+ilo(2)) 

(e7C_25J, 18u*(8)) 

(e1c-25J, i3o(2, 10)+i3l(2, R)) (e1c-25J, e6c-w+i3o(2)) 

(e1c-25J, i3u(2, 6)) (e7c_25J, i3o*(12)+i3u(2)) 

(e1c-25J, e6c-26J + R) 

Case (Illb) 

(?.lu(p, q), i3u(k, h)+i3u(p-k, q-h)+i3o(2)) 

(p, q>l) 

(i3u(p, q), ?Jo(p, q)) 

(i3u(2p, 2q), ill-J(p, q)) 

(ilu(n, nJ, i3o*(2n)) (i3u(n, n), i'.ll-J(n, R)) (l<n) 

(ilu(n, n), i3l(n, C)+ R) 

z 

Z2 (k=O, 2) 

ZXZ 2 (k=l) 

1 (2i<n) 
Z2 (2i=n) 

Z (n: odd) 
ZXZ2 (n: even) 

z (n: odd) 

ZXZ2 (n: even) 

Z2 (k=O, 2) 

ZXZ2 (k=l) 

1 

1 (2i<n) 
Z 2 (2i=n) 

Z (n: odd) 
ZXZ2 (n: even) 

z (n: odd) 

ZXZ2 (n: even) 

z 
1 

1 

z 
1 

z 
1 

1 

z 

(2ki=p or 2hi=q) 
Z2 (2k=p and 2h=q) 

ZXZa (d=(p, q)) 

ZXZa (d=(P, q)) 

ZXZn 
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