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Fourier Functor and its Application to the Moduli
of Bundles on an Abelian Variety

Shigeru Mukai

At the symposium we talked on the vector bundles on a K3 surface
and applications to the geometry of a K3 surface. Most content of our
talk is contained in the paper “On the moduli space of bundles on K3 sur-
faces, I” to appear in the proceeding of the symposium on vector bundles
at Tata Institute in 1984. In this article we discuss the vector bundles on
an abelian variety instead.

In [12], we have defined the Fourier functor and shown its basic prop-
erties. This functor is a powerful tool for investigating the vector bundle
(or coherent sheaves, more generally) on an abelian variety as we have
shown for the Picard bundles in [12]. In this article, generalizing the results
in [12], we shall show that a sheaf and its Fourier transform have the same
local (in the Zariski topology) moduli space and apply this to the study of
the moduli space of vector bundles on an abelian variety X. In Section 1,
we shall show that the moduli space of the Picard bundles is non-reduced
in the case X is the Jacobian variety of a hyperelliptic curve of genus=3.
In the remaining sections, we shall mainly study the sheaves of U-type,
which were first studied in [20] over an abelian surface.

Definition 0.1. Let (X, ¢) be a principally polarized abelian variety,
i.e., £ is an algebraic equivalence class of ample line bundles with Euler
Poincaré characteristic 1. A sheaf E on X is of U-type if there exists a
homomorphism f: L~*—H from a line bundle L' in the class — ¢ to a
homogeneous vector bundle H such that Hom (f, P): Hom,, (H, P)—
Hom,, (L™, P) is injective for every P e Pic’ X and E is isomorphic to the
cokernel of f. (A vector bundle H is homogeneous if and only if there
exists a filtration 0=H,CH,CH,C---CH,=H such that H,/H; ;e
Pic’ X for every i=1, - - -, n, cf. Theorem 4.17 in [11] and Section 3 in [12].)

We shall show in Section 2 that a sheaf of U-type is simple and the
isomorphism classes of rank r sheaves of U-type form an open subset iso-
morphic to X XHilb"*! X in the moduli space of simple sheaves, where
Hilb"*! X is the Hilbert scheme of O-dimensional subschemes of length
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r+1 of X. So the moduli space of sheaves of U-type is connected by [5]
but reducible if dim X3 and r is sufficiently large by [7], though the
rank r sheaves of U-type have the same Chern classes and are stable if X
is the Jacobian variety of a curve.

In the case dim X=2, the moduli space of stable sheaves is smooth as
we have shown in [13] (we shall give another proof of this fact in Section
3) and seems to be irreducible if we fix the rank and the Chern classes.
Let M(r, n4, X) be the moduli space of stable (with respect to L) sheaves E
with rank r, ¢(E)snf and X(E)=X. Every connected component of
M(r,né, x) is a smooth 22--2 dimensional variety, where A=n*—rX. In
[12], we have shown that M(r, £, 0) is isomorphic to X X X when (X, ¢) is
not of product type. In [20], Umemura has shown that M(r, 4, —1) has
a component whose general member is of U-type and which is birationally
equivalent to the product XX .S7*'X of X and the (r+1)-st symmetric
product S7*'X. In Sections 4 and 5, we shall prove the following:

Theorem 0.2. For every principally polarized abelian surface (X, £), the
moduli space M(r, £, —1) is irreducible.

Theorem 0.3. Assume that a principally polarized abelian surface (X, £)
is not of product type. Then a sheaf belongs to M(r, £, —1) if and only if it
is of U-type. In particular, M(r, 4, —1) is isomorphic to X X Hilb"*' X.

Notation. All varieties are considered to be over an algebraically
closed field k. A sheaf E on X is a coherent @ y-module. r(E) is the rank
of E at the generic point of X. ¢,(E) is the i-th Chern class and X(E) is
the Euler-Poincaré characteristic of E, that is, X(E)=>_,(— 1)* dim H{X, E).
A subsheaf F of E is a subbundle if the quotient E/F is torsion free.

§1. Complement to [12]

In [12], we have defined the Fourier functor and shown that it gives
an equivalence between the derived categories of coherent sheaves on an
abelian variety and its dual. In this section we generalize this to an abelian
scheme and study the relation between the numerical invariants of a sheaf
and its Fourier transform.

Let A be an abelian scheme over a scheme 7 and A its dual abelian
scheme. Since A/7 has a section, there exists a Poincaré line bundle & on
AX y A. We assume that & is normalized, i.e., both Ploxa and &£, are
trivial. Let S be the left exact functor on O A-modules M into the category
of 0;-modules such that

S(M)= 71 (PQQuEM)
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where 7,: AX ; A—>A and ©;: AX , A—A are projections. Interchanging
the role of 4 and 4, we obtain the functor S of @;modules into the cate-
gory of 0,-modules. Let RS and RS be the derived functors of § and S,
respectively. RS is a functor on the derived category D(4) to the derived
category D(A). Then we have:

Theorem 1.1. Let @47 (resp. wz,r) be the relative canonical line bundle
of AT (resp. A|T). Then we have isomorphisms of functors

RS o RS=(—1,)* o (Qaz})[—¢]
and

RS o RS=(—13)* o (@uzi)[—8),
where g is the relative dimension of A|T.

We have proved this in the case T=Spec (k) in [12] Theorem 2.2. For
our purpose in this section, the case A/T is trivial (or product type) is
sufficient. In this case, the theorem says that RSo RS=(—1,)*—gl,
which is a corollary of the proof of Theorem 2.2 in [12]. The above
generalized form is due to Moret-Baily. For the proof we need the fol-
lowing proposition which was essentially proved in Section 13 [14].

Proposition 1.2. Let f: X— Y be a proper flat integral morphism. Let
F and G be vector bundles on X and Z the maximal subscheme of Y over
which F and G are isomorphic to each other (see Section 1 [11] and Section
10 [14] for the definition of Z). Assume that G is f-simple, i.e., the natural
homomorphism Oy — f, énd,, (G) is universally an isomorphism, that
HY(X,, #om,(G,, F,)) vanishes for all i and y e Y—Z and that depth,, £ ,
=n=dim X/Y. Then we have

o ’
* T Mex =6, (07, 09)Q,, L7 i=n

and Exts, (04, 0y)=0 for every is=n, where L is a line bundle on Z such that
GZ EFz®f§L and L™ Efz,* éfoma (Gz, FZ)'

Proof. By (7.7.6) EGA 111, there exists a coherent @,-module L and
an isomorphism of functors on quasi-coherent ¢,-modules M

Ji(Homey (G, F)R gy M)——>Hom,, (L, M).

By definition, Z is the subscheme defined by the annihilator ideal of L.
Since G is f~simple, L is an invertible ¢ ,-module (Lemma 1.6 [11]) and we
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have L'z f, . #om,(G ,F;) by putting M= (@, in the above isomorphism
of functors. In the case Y is affine, there exists a complex

K =[0—K, 2 >K~>- - - —K,—0]

of finitely generated projective @,-modules and an isomorphism of functors
on @y-modules M

Rify (Home (G, F)®oy M)=H (K ®,, M)

by the theorem in Section 5[14]. By our assumption, there is a regular
sequence x;, - - -, X,, in £, at any point z € Z and H%K)’s are annihilated
by a power of (x, - - -, x,). Hence so are the cohomologies H{KY)'s of
the dual complex KV of K. Therefore, by the same argument as in the
lemma in Section 13 [14], the following sequence is exact:

0—-K,—K,~ - - —>K,—>R" [, Hom,. (G, F)—0

and &xtt, (R*fy Homey (G, F), Oy) vanishes for every i+n. By the universal
property of the complex K, we have an isomorphism of coherent @-
modules M:

FlHomy, (G, FI®,, M)=Ker [K@MZZ5 kM)

=~Ker [%omgy (KS/, M)——)%om@l, (K}/, M)]
= Hom,, (Coke ay, M).
Therefore we have an isomorphism
Lz=Coke ay = Ext, (R"fy Hom,y (G, F), Oy).

Since these isomorphisms are canonical, they exist in the case Y is general,
too. Since KV gives a projective resolution of L, we have
=0 i#£n

&xti (L, 0
tor (L. Or) {gR“f*%”omax(G, F)  i=n. g.ed.

Proof of Theorem 1.1.  The composite RS o RS is the integral functor
defined by the kernel complex

RPIz,*(Pm,*y®st,*g”) € D(A ;<A)3

where p,,’s are the projections of AX  AX 1 A4 onto the (i, j)-th factors.
Since pEPRPEP ot (arsan =P lez1tar+an TOT €VETY (@), @) € AX r 4, we have
PEPRpEF =(m X 1)*PQ,, M for some line bundle M on T, where m.
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A X A—A is the group law of 4/T. Since the restrictions of p£P® pEP
and (mX1)*2 to 0X0X A are both trivial, the line bundle A is trivial
and we have

Rp, «(PEPRPEP) = Rpys, (M X 1)*P)
=m*Rr, . P.
Since A is the neutral component of the Picard scheme of A/T, the maximal
subscheme over which & is trivial is the O-section s(T') of 4/T. Hence, by
Proposition 1.2, we have Rz, #=0 for every i#g and Rérm, & is iso-
morphic to the determinant of the normal bundle N of the 0-section s(7)
in 4. Since s:7—A is a section and since 4/T is a group scheme, the
relative canonical line bundle w . is isomorphic to the pullback of s*N~'.
Hence we have
M*REm,y P = p0ir
and
RS o RSAZ(_ IA)* ° (®wZ/IT [_g]a
where

p=(1, —=1): A—>AXA, la)=(a, —a). q.e.d.
T

The Fourier functor commutes with base change in the derived
categories.

Proposition 1.3. Let f: T'—T be a morphism. Then the following
diagram is quasi-commutative, where L denotes the left derived functors:
D(A)TD(A)
Laxry* L{14XT%)
DAXT)—>D(AX T
T RS’ T
Proof. Put A'=AX,T, A =AX T, # =Py, 0., f1=1f X A:

A'—Adand f,=f X A: A'—A. Then RS () =Rz, (P ®xr%7), where ?
is an object or morphism in D(4). Hence we have

A A A =(AXADXT
V4 T T

|

Ae———4

T

«—

5%
,
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(RS o Lf%) () = R, (P’ @}, LfEY)
= Ry (P QL1 72)* )
=Ry . (*PQLr*(Lx%?))
=Rr, LeH(PQrt?)
= Lf}Rr, (PQn}Y),
=(Lfi¥-RS) (D,

where = f,,,2 and ? is an object or a morphism in D(A). Therefore we
have

RS o Lf§f=Lf%oRS. q.e.d.

Definition 1.4. Let M be a coherent @,-module. The weak index
theorem (W. I. T. for short) holds for M and its index is equal to i, if
R'§(M)=0 for every i#i,. The 0z-module R*S(M) is called the Fourier
transform of M and denoted by M.

The proof of the following proposition is similar to the case T'=Spec k.

Proposition 1.5. Let M be as above. Then M is coherent, W.I. T.
holds for M and its index is g—1i,. Moreover, Mis isomorphic to (—1,)*M
®CDZ/1T-

Our next goal is to prove the following theorem.

Theorem 1.6. Let M be a T-flat coherent O ,-module. Assume that T
is noetherian.

(1) IfW.IT. holds for M®,,k(t,) and its index is i,, then there is an
open neighbourhood U of t, € T such that W. 1. T. holds for M@, k(t) and
its index is i, for every t € U. " In other words, “W.I. T. holds” is an open
condition.

@ If W.I.T. holds for all M@, k(t), t e T, and their indices are
equal to iy, then

a) W.LT. holds for M and its index is i,,

b) The Fourier transform M is flat over T,

c) For every T-scheme T', M®,,0. satisfies a) and b) and we have
(M®,,0:) = M®,,07..

Proposition 1.7. Let f: X— Y be a proper mofpihsm of T-schemes and
F a Y-flat coherent Og-module. Assume that Y is flat and of finite type over
T and that T is noetherian.
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(1) The following conditions are equivalent:
1) R0 dF®4,k(ty)) =0 for every i+i,
if) There is a neighbourhood of p~*(t,) over which R'f.F is zero for
every i+, and T-flat for i=1i,, where p: Y—T is the structure morphism.
(2) If the equivalent conditions i) and ii) are satisfied for every t, e T,
then Rfr, (F®0;,) is zero for every izi, and T'-flat for i=i, for every T-
scheme T'.

Proof. Since direct image is compatible with flat base change and
since flatness is an open condition, we may assume that 7 and Y are spectra
of local rings 4 and B, respectively. By virtue of EGA III (6.10.5) (or [8]
Section 5), there exist a complex K' of finite free B-modules and a
functorial isomorphism H(Y, F®z M)>HY (K ®,z M) for every i and
B-module M. Hence by the lemma below i) and ii) are equivalent and if
these equivalent conditions are satisfied, then H*(K") is 4-flat for every i.
Hence

HY(Y, FQC)—>H (K'QC)= H(KYQC«——HYY, F)QC
A 4 A4 A
for every A4 algebra C, which implies (2).

Lemma 1.8. Let K" be a complex of A-flat finite B-modules bounded
on both sides. Let i, be a fixed integer. Then H(K'® ,k)=0 for every
i1, if and only if HY(K") is zero for every i+i, and A-flat for i=i,.

Artin’s Lemma. Let A—B be a homomorphism- of noetherian local
rings and f: M—N a homomorphism of finite B-modules with N A-flat.
Then fQ .k is injective if and only if f is injective and the cokernel of fis A-
fat.

For the proof see Section 20 in [10] or EGA 0 III (10.2.4).

Sublemma. Assume that H/(K") is A-flat for every j>>i. Then
(1) HYK ®,k)=0 if and only if H(K")=0.
Q) H*"YK®,k)=0if and only if H*"'(K")=0 and H¥(K") is A-flat.

Proof. Let M (resp. N) be the kernel (resp. the image) of the homo-
morphism K*—K**'. Both M and N are A-flat finite B-modules and we
have the exact sequence K'"'—->M—HK"). Since N is A-flat, M@ k—
K*Q® ,k isinjective. Therefore HYK ' ® k)= Coke [K*"'Q k—MR k]=
HYK)YQ k. Since H¥(K") is a finite B-module, H¥K'®,k)=0 if and only
if H(K")=0 by Nakayama’s lemma, which shows (1). Let L be the
cokernel of K*"'—K*. We have the exact sequence
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0> Hi"\(K)—>L— > M —> HY(K")—>0.

Since M® ,k—K*® ,k is injective, the kernel of f&@,k is isomorphic to
HY(K'®,4k). Hence (2) follows from Artin’s lemma. g.e.d.

Proof of Lemma 1.8. Assume that H{(K'® ,k)=0 for every i=i,
Let i be an index such that H/(K") is A-flat for every j>i. Such an i exists
because K" is bounded. By the sublemma H*(K")=0 if i, and H*(K")
is A-flat. Hence H(K") is A-flat for every j >i—1. By descending in-
duction on i, HY(K") is A-flat for every i and zero for every i=i,.

Assume that H{K") is zero for every i+i, and A-flat for i=i,. Then,
by the sublemma, H%K'® ,k)=0 for every i-+i,. g.e.d.

Proof of Theorem 1.6. Apply Proposition 1.7 to f: AX ,A—>A and
F=2Q,M. Sincep: A—T is proper, as a neighbourhood in the condi-
tion ii), we can take one of the form p~'(U), U a neighbourhood of ¢,
Hence W.I.T. holds for M®,, k(t,) if and only if W.I.T. holds for M, and
(My)" is T-flat for some neighbourhood U of ¢,. (2.c) follows from (2) of
Proposition 1.7 and Proposition 1.2 The remaining part is straightforward.

' g.e.d.

Let X be an analytic space or a scheme over an algebraically closed
field and F a coherent @-module. Let C be the category of artinian local
rings (A, m) over k and define the functor 2, on C by

De(A)={(e, F)|F is an A-flat Oy ,-module and « is an isomorphism
between F and FQ  k}/ ~,

where k= A/m is the residue field and (o, F) ~(a’, F”) if and only if there
exists an isomorphism ¢: # S% such that &’ o (p® k) =«.

Proposition 1.9. The functor 9 has a pro-representable hull (R, &) in
the sense of [17] and the Zariski tangent space of R is canonically isomorphic
to Ext; (F, F).

Proof. Let A’—A and A”"— A be morphisms in C and consider the
map

(%) DA’ X A")—>D(A)) X Dp(A”).
A 25(4)
By Theorem 2.11 [17], it suffices to show that this map (%) is always a sur-

jection and a bijection when A=k. If (¢/, F') e DA(4), (", F') e
2:(A”) and (o', FNQuA=(a", F'")QuA=": (@, F) in D,(A4), then we
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obtain the 0,&Q (A4’ X ,4"”)-module F' X, %" and an isomorphism z:
(F' X F'NQkSF.

Claim. F#'x,%" isflat as an 4’ X , A”’-module.

Put A=A4’% 4 A" and let M be an A-module. Then the tensor product
M@g(ﬁ’ 9"”) is isomorphic to (M'®@F ") X (ugs(M"QF"), where M’
_M®_;A' M"=MQ;A"” and M=M®;zA. Since F' and F'' are flat,
FRHF' X . F) is injective for every injection f: M—N. This shows our
claim. ' ' ’

By the claim, the pair (@, F' X ,Z ") belongs to Dz(4’ X ,A"") and (x)
is a surjection. In the case 4=k, let (@, &) be an element of D(4’ X A"
which is sent to ((¢’, "), (@”, #'')) by (x). Then there exist isomorphisms
FRiA'SF and FQ; A" F", whichinduce ¢': F —>F ' and q”: F —
Z". By our definition of 9, the composite ¥ LF 7' " ASF s

equal to £ L g g ® A,,Af“—»F. Hence we have a homomorphism
F—F'X - F", which is an isomorphism since & is flat. g.e.d.

The pro-representable hulls (R, &)’s of 9, are unique up to (non-
canonical) isomorphisms. We call the formal scheme Spf R the formal
Kuranishi space. - In the case X is a compact complex analytic space, the
Kuranishi space exists for every coherent sheaf F on X ([18], [3], [4]). In
this case the formal Kuranishi space is nothing but its formal completion.
Returning to the general case, we assume that F is simple. Then 25(A) is
the set of isomorphism classes of A-flat coherent 0y,module & with
F Q@ k=F for every A e C. Moreover, by Lemma 6.1 [9] (the assumption
of torsion freeness in this lemma is superfluous), the natural homomorphism
A—»Endan(% ) is always an isomorphism. Hence, by the same argument
as (3.1) in [17] and the claim in the proof of the above proposition, we
have:

Proposition 1.10. If F is simple, then the functor Dy is pro-represent-
able by the formal Kuranishi space.

In the case F is simple, the Kuranishi space is unique up to canonical
isomorphism and called the local moduli space of F, too.

Now we study the relation between the moduli spaces of F and its
Fourier transform F. Assume that W.LT. holds for F and let (%, a) ¢
D(A). Then, by (2) of Theorem 1.6, W.L.T. holds for # and « induces
the isomorphism & between F and #®,k. Moreover, & is A-flat and
hence we have (£, &) € 95(4). Therefore, the Fourier transformation
gives an isomorphism between the two functors 2, and 25 on C. Hence
we have:
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Proposition 1.11. Assume that W.LT. holds for F. Then there is an
isomorphism between the formal Kuranishi spaces of F and F. If F is simple,
then the isomorphism is canonical.

Let &pl, be the moduli functor of simple coherent ¢y-modules. By
virtue of [1], its sheafification in the fppf topology is representable by an
algebraic space Spl, which may not be separated. For a simple coherent
0y-module E; we denote by M (E) the union of the irreducible components
of Spl, containg the point [E] correspondining to E.

Proposition 1.12. If E is a simple coherent Oy-module and if W.1.T.
holds for E, then M(E) is birationally equivalent to M(E). Precisely speak-
ing, there is an isomorphism from a Zariski neighbourhood of [E] onto that

of [E].

Proof. Letf: U—Spl, be a neighbourhood of [E] in the fppf topology
such that a universal family & exists on XX U. By Theorem 1.5, shrinking
U if necessary, W.I.T. holds for & and & is a deformation of E. Hence
we get a morphism g: U—Sply. Let p;: V=UX,,,U—U be the projec-
tions (i=1,2). Since fop,=fop, V has a covering {z;: ¥V;—V} in the
fppf topology such that (1x X 7,)*(1x Xp)*E = (1x X 7)*(12 XP)*EQ,,, L
for an invertible sheaf L; on V, for every i. Hence we have

(L2 X7 (Le X p)*E = (Le X m)*(1 X o)€@y L

which implies gop,on,=gop,on, for every i. Since [[z;: [[V,—>V is
faithfully flat, we have gop,=gop,. Let W be a Zariski open neighbour-
hood of [E] contained in f(U). Since f~'(W)—W is faithfully flat and
g0 Pilp-1ary =8 © Psls-1my, We get @ morpl}‘ismh:AWaSplg such that g{; .,
=ho(f|;-1m)- Replacing X and E by X and E, respectively, we obtdin a
morphism / from a Zariski open neighbourhood W of [£] into Sply. hoh
is defined and, by Proposition 1.5, equal to the involution (— 1 x)* of Spl,
on a Zariski neighbourhood. Since it is the same for hok, h is an
isomorphism on a Zariski neighbourhood of [E]. q.e.d.

Here we give examples of Proposition 1.12.

- Example 1.13. Let V be a finite dimensional vector space. The formal
Kuranishi space of the trivial vector bundle F=0,®,V on an abelian variety
X is isomorphic to the formal completion at the origin of the cone D=
Homy, _rse a1 (T*, gU(V)) in Hom, (T*, gl(V)), where T* is the dual of the
Lie algebra of X and regarded as an abelian Lie algebra. In the case X is a
complex torus, the germ of the cone at the origin is the usual Kuranishi space
of F.
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Proof. Since @ is isomorphic to the one dimensional skyscraper
sheaf k(0) supported by the origin 0 € X, the (formal) Kuranishi space of
F is isomorphic to that of F=k(0)®, V. Giving an @g-module structure
to V is equivalent, modulo the action of lattice, to giving a k-Lie algebra
homomorphism T*—gl(V), i.e., an ordered set of mutually commutative
endomorphisms of V. Hence there is a natural family of deformations of
F, (D, Z, 1), and for every small deformation (S, &, o) of F there is a
morphism f: S—D such that f(s)=0 and (S, &, p) is equivalent to
f¥(D, Z, 1), that is, the family (D, £, ) is complete. Since D contains
the cone {f € Hom,(T*, gl(V)); rank f<1}, the tangent space ¢, , is iso-

morphic to Hom, (T* gl((7)). - It is easily seen that the Kodaira Spencer
map TD anxtgz(F F)—tg R al(¥) is an 1somorph1sm Hence the family
(D, Z, 1) is effective. q.e.d.

Remark 1.14. Example 1.13 says that the cone {« ¢ H'(X, &nd,(F));
o U =0} in the vector space H'(X, &nd,(F)) is just the Kuranishi space
of the trivial bundle F. If g=dim X>2 and dim V=2, then Ds=Hom,
(T, gl(V)). Hence D is singular at 0. This fact was shown in the case
k=C and dim V=2 by Kodaira-Spencer [8] Section 16 as an example of a
complex manifold with the singular Kuranishi space. The fact that D is
exactly the Kuranishi space is also mentioned in [15].

Here is an example of a simple vector bundle whose local moduli
(=Kuranishi space) is not reduced even in characteristic zero.

Example 1.15. Let X be the Jacobian variety of a nonsingular curve C
of genus g=2 and E a Picard bundle on X. Then M(E). is isomorphic to
XX X. In the case C is hyperelliptic and g3, the dimension of the tangent
space of M(E) is 3g—2 and greater than 2g=dim XX X at every point.
Hence M(E) is not reduced.

Proof. For the proof of the latter part, see [5] Section 4. By the
definition of E, E is the Fourier transform of an invertible sheaf & on C
(regard & as an @y -module via the natural embedding C=—X). Soit
suffices to show that M (§),., is isomorphic to XX X. Let & be a small de-
formation of &. Then &’ is an invertible sheaf on a nonsingular curve in
X. By the Torelli theorem, the support of &’ is a translate of C. Hence
the morphism ¢: XX Pic® X—>M (&), (x, P)—[TF£®P], is a surjection near
the point []. Let f be a morphism from a nonsingular curve D into M (%)
such that ImfNIm == . Since f~* (Im ¢) contains a nonempty open set
and X X Pic’X is complete, f|,-1m,, i extended to a morphism f: D—X
X Pic’X. The translate g of £ by 7 (X X Pic’X acts on M (&) and hence the
set of D-valued points acts on that of M(£)) maps /' (Im ¢) to the point
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[£]. Hence g is a constant map which means that f(D) is contained in
Im ¢. Therefore ¢ is a surjection. ¢ is a closed immersion by [12], Section
4. Hence M (&), is isomorphic to X X Pic’X. g.e.d.

Next we consider the relation between numerical invariants of a co-
herent sheaf F and its Fourier transform. We first consider the case k=C.
Let X be a complex torus of dimension g. Since the tangent bundle of a
torus is trivial, the following diagram is commutative by the Grothendieck-
Riemann-Roch theorem: ’

, K(X)——>K(X)
(1.16) ch ch|
H' (X, Q)—> H'(X, Q)

where K(X) is the Grothendieck K-group of X and ch is the Chern char-
acter. The correspondence of the above first row is [F]— > ,(— 1))[R*S (F)]
for every coherent @y-module F and the second s(x)=m¢ (e’ Ur¥x) for
every x € H'(X, Q), where f ¢ HXX x X, Z) is the Chern class of a Poincaré
bundle on XX X and U is the cup product. Since H,(X, Z) is the lattice
of X, H(X, Z) and H(X, Z) are canonically dual to each other. Since
H'(X, Z) is isomorphic to the exterior algebra of H'(X, Z), H*(X, Z) and
H™(X, Z) are canonically dual to each other.

Proposition 1.17. If x e H?(X, Z), then s(x) = (—1)P@+O2+eqr (x),
where of : H*(X, Z)—H*¢ (X, ZY*=H*¢"?(X, Z) is the Poincaré duality.

Proof. Let e, -, e, be a basis of H'(X, Z) and ef, - - -, &% the
dual basis of H'(X, Z). Then f is equal to > 2%, e, Ae} ([14] Section 9).
Hence the n-fold wedge product is fA - -« Af=(—1)"""Y2p! 37, . i€
A= Neg  NeFN -+ - Ne*, thatis, ef =3 % (— )"~ D%, where §, €
H*(X, ZYQH"(X, Z) is the Kronecker’s delta. Hence e’ U nk(x)=

% (—1)"»=b25, Ar¥(x) and contained in @% ,H***(X, Z)QH"(X, Z).
Ty % 18 the composite of the natural projection H'(X X X, Z)»>®,H*(X, Z)
®H'(X, Z) and

A 1 A P
® H(X, 2)Q H'(X, 225 @ Z® H'(X, Z)=H'(¥),
where ¢ is the orientation of X. Hence
s(x)=mx w(e/ UnE(x))=(— 1) 02Dy (Brg-pn7H(X))

and is equal to (—1)?®*D/2*8y?(x) because if x=e;/\---Ae;, then

ﬂX,*(52g—p/\7r:1k’(x))
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=mx (€N - - Nei ) Ne /N - Negy JNEEN--- Nei, )
:5(ei1/\ e /\eip/\ejl/\ Ce /\ejzg_p)e;!‘l/\ AN

J2g—p

=a(x). g.e.d.

Corollary 1.18. If W.LT. holds for a coherent @y-module F and its
index is equal to i, then ch?(F)=(—1)**2¢*~%* (ch&~?(F)) in H**(X, Z).

The proof is immediate from (1.16) and the proposition. Now let us
consider the case X is an abelian variety over an algebraically closed field.
Let 4°(X) be the Chow ring modulo numerical equivalence of X and define
§ and s by §(x)=rz (¢’ n¥(x)) and s(y)=ny 4(e” 5 (p)) for every x e
A(X) and y e 4°(X), respectively, where f e 4'(X X X) is the Chern class of
a Poincaré bundle. Then, by the Grothendieck-Riemann-Roch theorem,
we have the commutative diagram:

K'X)—>K'(X)
(1.19)

AX)g—>4'(X),
where the above first row is the same as in (1.16). For x=> f_,x% x’ e
AY(X), we denote > 5_,(—1)’x? by xV. (x.y) is the intersection number of
x and y. Put {x,y>=(xV.»). {,> is a bilinear form on 4'(X) and sym-

metric (resp. skew-symmetric) if g is even (resp. odd). By the Riemann-
Roch theorem, we have

(1.20) > (—1)* dim Ext} (E, F)= <ch(E)-ch (F)>
for every pair of coherent ¢ -modules E and F.

Proposition 1.21. (1) 50 8(x)=(—D&(— 1x)*(x) for every x & A'(x).
Q)  §(xxx")=35(x)- §(x’), where x is the Pontrjagin product.
B) 3xV)=(—1DE(—=1)*3(x)Y for every x e A'(x).
@ G(x), $(x))={x, x'> for every x, x" € A'(X). )
5 (o s =), y) for every x € A(X) and y e 4(X).
Proof. Since ch: K(X)®Q—A'(X), is surjective, we may assume that
x, x’ and y are Chern characters of coherent modules. Hence (1), (2) and
(3) follow from (2.2), (3.7) and (3.8) in [1%], respectively. For example,
since there is a spectral sequence RIS(R'S(F))=(—1)*(F) (i+j=g),0
(i+j+g), we have
50 §(ch(F)=s((— 1) ch (R'S(F))
=>(— 1)+ ch (RIS(R'S(F)))
=(—1fch((—1*F).
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Let E and F be coherent ¢y-modules. By Theorem 2.2 in [12], we have
Exti, (E, F)=Extly, (E, F)=Exth, (RS(E), RS(F)). Since the i-th co-
homology of RS(E) is R'S(E), there is a spectral sequence Ext}, (RIS(E),
RS(F)=Exti s (RS(E), RS(F)). Hence (4) follows from (1.20):

{8(ch(E)), §(ch(F))y
=3 (—1)**{ch(R'S(E)), ch(R*S(F))}
=37 (—1)¢* & dim Ext! . (R'S(E), (R*S(F))
=3 (—1)* dim Ext}s,(RS(E), RS(F))
=3"(—1)*dim Ext, (E, F)
=(ch(E), ch(F)>.

(5) follows from (1), (3) and (4) because

(x, s =<xY, s
={8(xV), $s(y))
= (= DE(—12)*$(x)Y, (= DF(—12)*y)
={8(x)Y, »>
=(§(x), ») g.e.d.

Let £ (resp. p) be the composite of the natural projection from A4'(X)
onto Ay (X)= A%5(X) (resp. A%(X)) and deg: A,(X)=>Z (resp. the isomorph-
ism A°(X)> Z which maps 1=[X] to 1).

Proposition 1.22. (1) § maps AXX) onto A(X) and A(X) onto A°(X).
(2) £(8(x))=(—1)*u(x) and pu(3(x))=«(x) for every x ¢ A'(X).

Proof. 'W.LT. holds for 0, @, =k(0), 0 is the origin of X and i(0y)
=g Example 2.6 [12]. Hence §(1)=3§(ch(0y))=(—1)¢(0). Therefore §
maps A°(X) bijectively onto 4,(X). The latter half of (1) follows from the
duality. (2) follows from (5) of Proposition 1.22, because £(§(x))=(1, s(x))
=(s(D)- x)=(— 1) p(x). g.e.d.

Corollary 1.22.  § maps @52 A(X), onto PeotAX )o-

Let D be a nondegenerate divisor on X, i.e., X(D)=(D?)/g!x0. By
the vanishing theorem ([14] Section 16), W.L.T. holds for L=0.(D) and
E=L is locally free. By [12] (3.1), we have EQP,=L®P,=(T*, L) =
LOP_sp) = Tf,,,,,mf: T%,,»E for every x e X. Hence (det E)QP,,
=T%*, ., det E, where r is the rank of E and equal to [%(D)]. Let D be
the codimension one part of §(D). Then this means that —¢s(d,(x))=
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(—1)*Prx. In the case X is an abelian surface, §(D)=D by Corollary 1.22.
Hence we have:

Proposition 1.23. If X is an abelian surface and D is a nondegenerate
divisor, then §(D) € A(X) and ¢ p, o pp="21(D)y and X(Dy=X($(D)). In par-
ticular, if D is a principal polarization, then we have §(D)=D.

Since A4*(X) is generated by ample divisors, we have:
Corollary 1.24.  § maps A\(X) onto AN(X) if X is an abelian surface.

Problem 1.25. Does § map A*(X) (resp. A(X),) onto A -¢(X) (resp.
A54(X),) for every i?

§ 2. Sheaves of U-type

We study some properties of the sheaves of U-type on an abelian
variety (Definition 0.1). Let (X, £) be a principally polarized abelian
variety, that is, £ is an algebraic equivalence class of an ample line bundle
L with X(L)=1. We identify the dual abelian variety X with X by the iso-
morphism ¢,({14]).

Proposition 2.1. Let f: L™'—H be a nonzero homomorphism from a
line bundle L™* in the class — £ to a homogeneous vector bundle H and E
the cokernel of f. Then the following conditions are equivalent:

(1) Eis simple.

(2) Eis of U-type, that is, Hom, (E, P)=0 for every line bundle P e
Pic’ X, '

(3) W.LT. holds for E (cf. Definition 1.4), and

(4) W.LT. holds for E, its index is equal to g—1 and E is isomorphic
to (— 1)*LQS for an ideal F of Oy of colength r(H).

Proof. We prove the proposition following the diagram
D=QQ=@=1) and Q)=0).

Suppose Hom,,(F, P)+0, for some P € Pic’X. Since H is homogeneous,
Hom (P, H)=0 by Proposition 4.18 in [11]. Since Hom (P, L~") =0, we

have Hom (P, E)=+0, by the exact sequence 0—>L“1>H—+E—+O. Hence if
r(E)=#1, then E is not simple. In the case r(E)==1, E is not simple, either
because E is not isomorphic to P. Hence (1) implies (2). Operating the
functor S to the above exact sequence, we have a long exact sequence.
Since R!S(L-*) is zero for iz=g and isomorphic to (— 1)*L for i=g ([12]
Proposition 3.11) and since R*S(H) is zero for i#g ([12] Proposition 3.2),
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we have the exact sequence

(2.2)  0—>Re1S(E)—>Re S(L-)— > ReS(H)—> R¥ S(E)—>0.
in
(=1)*L

By the duality, the condition (2) is equivalent to that go f is not zero for
every nonzero homomorphism §: RES(H)—k(x), that is, RES(L™HR@k(x)
— ReS(H)Rk(x) is surjective for every x € X. Hence (2) and (3) are equiv-
alent to each other by Nakayama’s lemma. By (2.2), if these equivalent
conditions are satisfied, then the index of E is equal to g—1 and
E®(—1,)*L"" is isomorphic to the ideal # =Ker (f®(—1;)*L""). Since
length (R€S(H)) is equal to r(H), colength(.#) is equal to r(H). Hence
(2) implies (4). Since End, (#)=k, (4) implies that E is simple and
hence E is simple ([12] Corollary 2.5). q.e.d.

Corollary 2.3. The following conditions are equivalent to each other
Jfor a homogeneous vector bundle H:

(1) There is a nonzero homomorphism f: L™'—H whose cokernel is
simple,

(2) dim Hom,(H, P)<1 for every P e Pic’X, and

3) H=04]7 for an ideal F of Oy.

Proof. By the proposition, (1) implies that there is a surjection
(L )"—H. Since (L ") is an invertible sheaf, we have (3). Conversely,
if (3) holds, then there is a surjection h: L—(—1)*H=04/(—15)* 7.
Let f be the Fourier transform of . Then fis a homomorphism from L-*
into H and f=(—1,)*h is a surjection. Hence we have (1). (2) is
equivalent to that dim Homax(ff, k(x))<1 for every x e X. Hence, by
Nakayama’s lemma, it is equivalent to (3). q.e.d.

By the proposition and the corollary, if Coke f is simple, then it is
isomorphic to (—1x)*((—1)*(L®F)"), where .# is the ideal defining
Spec H, and hence Coke fis independent of the choice of f.

Definition 2.4. For a homogeneous vector bundle H satisfying the
equivalent conditions of Corollary 2.3 and a line bundle L belonging to 4,
U(L, H) is the cokernel of a nonzero homomorphism f: L™'— H satisfying
the equivalent conditions of Proposition 2.2.

By definition, a coherent ¢y-module is of U-type if and only if it is
isomorphic to U(L, H) for some L and H.

Example 2.5 ([20]). Let P, - - -, P, € Pic’X and assume that they are
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mutually distinct. Let f;: L-'—P; be a nonzero homomorphism. Then
UL, ®; P)=Cokelf=(f, - - -, [,): L' —=®I_, P;] is simple and independ-
ent of the choice of {f:}.

Let us consider the moduli of sheaves of U-type.

Proposition 2.6. The property that a coherent sheaf E is of U-type is
an open condition. Precisely speaking, let E be an S-flat coherent O, 4=
module. Then if E|x,, is of U-type, then so is E|y., for every point s near
1o 5,.

Proof. By Theorem 1.5 and Proposition 2.1, it suffices to show that
the property “F is isomorphic to LQ.# for a line bundle L and an ideal .#
of finite colength™ is an open condition. Let &% be an S-flat coherent
Oy s-module such that F|;,,,=LQS. Let 0—8,—6, —- - - —E,—8E,
ZF —0 be a resolution of & by locally free sheaves and put det & =

m_,(det £,)¢°Y". Then det & is a line bundle on XX S and. there is a
natural homomorphism f: &#—det #. Since & |y,, is torsion free, fis
injective on X' Xs,. Hence f'is injective on X' X U for a neighbourhood U
of s,. Therefore & |y, is isomorphic to L'®@.#’ for every s € U, where
L' =(det F)|zy,. Since & is S-flat, the colength of .#” is finite and equal
to that of 7. q.e.d.

In the case g=2, the moduli of sheaves of the form L&.# is the pro-
duct of the moduli of L, which is isomorphic to Pic’X= X, and the moduli
of the ideal .#, which we denote by Hilb™X, where n is the colength of .#.
Hence, by Proposition 1.12, Proposition 2.1 and Proposition 2.6, we have:

Theorem 2.7. Assume that g=2. The moduli of sheaves of U-type of
rank r is an open set of Sply and isomorphic to X X Hilb"*'X.

Remark 2.8. A sheaf of U-type in Example 2.5 corresponds to a
point (¥, £) e X X Hilb"*'X such that Supp 0,/.7 is a set of r+ 1 mutually
distinct points.

Remark 2.9. In the case g=1, a simple sheaf E is of U-type if and
only if deg E=1. Hence U(L, H)=U(L’, H’) if and only if their ranks
and determinants are the same, respectively (cf. [2], [16]).

Next we study the stability of U(L, H).

Proposition 2.10. Let @ be the zero locus of a nonzero section of L.
If O is irreducible, then U(L, H) is torsion free.

Proof. By the definition of U(L, H), there is an exact sequence 0—
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L"—»H—SD)U(L, H)—0. Let T be the torsion part of U(L, H). Then
¢~!(T) is a subsheaf of H containing L~* and its rank is equal to 1." Since
Hlo~Y(T) is torsion free, ¢~'(T) is locally free by the lemma below. Let
g: H—P be a nonzero homomorphism from H into a line bundle P e

Pic’X. By Proposition 2.1, g|;-. is nonzero. Since g(L ) Sglp " (T)SP
and since P7'®@Coke (g|,-.) is isomorphic to the structure sheaf of a trans-
late of & by some x € X, we have by the irreducibility of H either ¢ (1) =
L™ or gl|,-yr is an isomorphism. Since ¢ }(T)=L"' implies that T=0,
it suffices to show the latter case never happens. In the latter case, H is the
direct sum of ¢ (T) and Kerg. Hence U(L, H) is isomorphic to
(o~ Y(T)/L )@ Ker g, which contradicts the simpleness of U(L, H). q.e.d.

Lemma 2.11. Let M be a subsheaf of a locally free sheaf H on a
smooth variety X. If r(M)=1 or dim X=2, then t~here is a locally free
subsheaf M of H such that MC M and codim Supp M/M=2.

Proof. By assumption, there is a locally free sheaf A containing M
such that codim Supp M/M>2: In the case r(M)=1, M is det M and in
the case dim X=2, M=MV"V. Put U=X—Supp M/M and let i: U=—>X
be the canonical inclusion. Since codim X—UZ=2, i, (H|,) is isomorphic
to H and i, (M |,)=i,(M|,) is isomorphic to M (EGA IV (5.10.5)). There-
fore the canonical inclusion &: M=—>H extends to an injection i (aly):
M—H. q.e.d.

To show the stability of U(L, H) we need an elementary fact on
homogeneous vector bundles.

Proposition 2.12. Let F be a nonzero quotient of a homogeneous
vector bundle H. Then ¢,(F)=0, i.e., det F is algebraically equivalent to an
effective divisor or a zero divisor. Moreover if ¢,(F)=0, i.e., det F is alge-
braically equivalent to zero and if F is torsion free, then F is a homogeneous
vector bundle.

Proof. 'We prove the proposition by induction on r(H). In the case
r(H)=1 our assertion is clear because every nonzero quotient is a torsion
sheaf or H itself. Assume that r(H)>=2. There are an exact sequence
0—H’—H->H""—0 such that both H’ and H" are nonzero homogeneous

vector bundle and an exact sequence 0—F'—F—Y5F”_50 such that F’
and F”’ are quotients of H' and H"”, respectively. By induction hypothesis,
we have ¢,(F’)=0 and ¢,(F”)=0 and hence ¢,(F)=c¢,(F")4+c,(F")=0.
Assume that F is torsion free and that ¢,(F)=0. Let T be the torsion part
of F”. Since F”|T is a quotient of H, ¢,(F”/T)=0. Since 0=c,(F)=
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a(FY+e(T)+o,(F’|T), we have ¢,(F)=c(T)=c,(F"”/T)=0. Hence
both F’ and F”/T are homogeneous vector bundles by induction hypothesis
and codim Supp 7=2. The latter implies that the exact sequence 0—F”
—¢~Y(T)—T—0 splits since F’ is locally free. Since ¢~(T) is contained
in F and F is torsion free, ¢ '(T) is torsion free and hence T'=0. There-
fore F” is a homogeneous vector bundle. Since F is an extension of F”’
by a homogeneous vector bundle, F is also a homogeneous vector bundle.
(Recall that F is homogeneous if and only if it has a filtration whose suc-
cessive quotients are line bundles algebraically equivalent to zero.) q.e.d.

The following is the dual form and an immediate consequence of the
proposition.

Proposition 2.13. Let E be a subsheaf of a homogeneous vector bundle
H. Then ¢(E)X0 and z{ ¢(E)=0, then there exists a homogeneous sub-
bundle E of H such that EDE and codim Supp E/E>2.

Let @ be as in Proposition 2.10.

Theorem 2.14. Assume that (9-.D)=>(0%)=g! for every effective
divisor D. Then U(L, H) is p-stable (with respect to L, see Definition 3.9).
The assumption is satisfied if (X, ©) is the principally polarized Jacobian
variety of a nonsingular curve C and if © does not contain an abelian sub-
variety.

Proof. By assumption, it is easily checked that @ is irreducible.
Hence U=U(L, H) is torsion free by Proposition 2.10. Let F be a torsion
free quotient different from U itself. By Proposition 2.1, Hom, (F, P)=0
for every P e Pic’X, in particular, F is not homogeneous. Hence, by
Proposition 2.12, since F is also a quotient of a homogeneous vector bundle
H, c¢,(F) is algebraically equivalent to an effective divisor D. Therefore,
WF)=(D.0c)[r(F)<(0®)/r(U)(U), that is, U is y-stable. Let us prove
the second half of the proposition. Since ©¢' is numerically equivalent to
(g—1)! C, it suffices to show the inequality (D.C)=(6.C)=g for every ef-
fective divisor D. Let D, be the translate of D by x. - If D, 5C, D,.Cis
an effective divisor on C of degree n=(C. D). Define the rational map «:
X—Sym”C by a(x)=D,. C and the morphism f: Sym"C—Pic°C so that f(y)
for y e Sym*C is the divisor class of y— D|;. Then the following diagram
is commutative:

X———a———>Sym"C

bo| !
Pictx N picc
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Since ¢, is nonzero, f(Sym*C) contains an abelian subvariety. Since O is
a translate of f(Sym#~'C), we have n=g by our assumption. q.e.d.

We consider two variants of sheaves of U-type.

Let M be a line bundle on X whose index is 1 and Euler Poincaré
characteristic is —1, i.e., A(M)=0 (1) and A (M)=1. From M and a
homogeneous vector bundle H, we can constract a simple vector bundle
V(M, H) in a manner similar to U(L, H). Let E be an extension of M ™!
by H.

0—>H—>F M-1—>0

Proposition 2.15. In the above situation, the following are equivalent
to each other:

(1) Eis simple,

(2) Hom,(E, P)==0 for every P e Pic’X,

(3) W.LT. holds for E, and

(4) W.LT. holds for E, its index is equal to g—1 and E is isomorphic
to (—1)*MQ@.F7, where £ is an ideal of Oy of colength r(H) and X is
identified with X by the isomorphism ¢,.

Corollary 2.16. Let H be a homogeneous vector bundle on X. Then the
following are equivalent to each other:

(1) There is an extension of M ~* by H which is simple,

(2) dim Hom,,(H, P)<1 for every P e Pic’X, and

(3) H=04/F for an ideal F of 0.
Moreover, if these equivalent conditions are satisfied, then every extension of
M~' by H which is simple is isomorphic to (—1)*((—1x)*MQ.#)" and
hence isomorphic to each other. We denote it by V(M, H).

Theorem 2.17. Assume that X is an abelian variety and that g=2.
The moduli of vector bundles V(M, H) of rank r is an open set of Sply and
isomorphic to X X Hilb™ ' X.

The proofs are similar to the case of U(L, H).

Let X be a complex torus or an abelian variety and H be a homo-
geneous vector bundle on X. Let f: H—k(x) (x € X) be a nonzero homo-
morphism and E the kernel of f.

Proposition 2.18. In the above situation, the following are equivalent
to each other:

(1) Eis simple,

(2) Hom, (P, E)=0 for every P e Pic"X,



Bundles on an Abelian Variety 535

(3) 43(RS(E)) is a sheaf, i.e., its cohomology groups are zero except
in one place, where 43(7)=RHom,y(?, O3)[g], the dualizing functor of X,
and

@) 4dg(RS(E)=(—1)*(PRF)g+ 1] for some P e Pic"X, where &
is an ideal of O3 of colength r(H) and (HVY =0z/.7.

Proof. 1If Hom,, (P, E)+0, then Hom, (P, H)+#0. Since H is
homogeneous, Hom, (H, P)+#0. Hence Hom, (F, P)+0. Since E is not
isomorphic to P, E is not simple, which shows that (1) implies (2). Put
K'=44(RS(E)). K’ is a complex of 0z-modules. There is a spectral
sequence E}9=Exth, RIS(E)=>H?-"%(K"). By the exact sequence 0—

E—>Hi>k(x)->0, R‘1§(E) is zero if g=+1, g, isomorphic to P, if g=1 and
isomorphic to H if g=g. Hence EP*?s are zero except Ev'=P;!and
E2e=¢xit(H, 0f). Hence we have an exact sequence

2
0—>H 74K )——>Ey'—>E§*——>H 8(K')—>0

and HY(K")=0for everyiz —1—g, —g. Since H "'~#(K")isalways nonzero,
K’ is a sheaf if and only if H-¢(K")=0. Hence if K" is a sheaf, H '~ 4(K")
= P'®.7, where £ is an ideal of @z and @g/fzé"xtﬁg(ﬁ, 0%). Since
A3oRS=((—12)*oRSody)(g], Extsy(H, 0y) is isomorphic to (— 1) *(H V)"
Hence (3) implies (4). Since 4z o RS is an anti-equivalence between the
categories D(X) and D(X) and since K =(— 1,)*(P,®.#)[g+1] is simple,
E is simple. Hence (4) implies (1). Lastly we show that (2) implies (3).
Since E£¢ is an Og-module of finite length, H~4(K") is zero if and only if
Hom, ,(H 4(K"), k(£))=0 for every point £ e X. Since H{K") is zero
for every i> —g, Hom,s(H 4(K"), k(£)) is isomorphic to Homp, (K,
k(®[g]). Since k(H)[g]= Ak(H)—g]) = ARS(P_,)) and since 4 RS is an
anti-equivalence, Homp,(K", k(£)[g]) is isomorphic to Hompx(P_z, E)
=~Hom, (P_; E). Therefore (2) implies (3). q.e.d.

Corollary 2.19. The following are equivalent to each other for a homo-
geneous vector bundle H on X ;

(1) There is a nonzero homomorphism f: H—k(x) for a point x € X
whose kernel is simple,

(2) dim Hom, (P, H)<1 for every P ¢ Pic"X, and

() (HY) =0x/F for an ideal & of Oz.
Moreover, if these equivalent conditions are satisfied, then every kernel of a
nonzero homomorphism from H into k(x) which is simple is isomorphic to
RS(A3(P.RA) [1). In particular, Ker f is independent of f. We denote
it by W(x, H).
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It is easily verified that Theorem 1.6 and Proposition 1.12; etc. are also
true, if we replace RS by 4o RS and “W.LT. holds for E” by “4(RS(E))
is a sheaf”. Hence we have:

Theorem 2.20. Assume that X is an abelian variety and that g=2.
The moduli of W(x, HY's of rank r is an open set of Sply and isomorphic to

A

XX Hilb"X.
On the stability of W(x, H), we have:

Proposition 2.21. W(x, H) is stable with respect to an arbitrary ample
line bundle 0,(1).

Proof. Let E be a nonzero subsheaf of W= W(x, H) such that r(E)
<r(W). By Proposition 2.13, we have ¢,(F)<0. If —¢,(F) is algebraically
equivalent to an effective divisor D, then p(E)=(—D.05(1)¢"")/r(E)<0
=u(W). Hence X(Em))/r(E)<X(W(n))/r(W)for n>0. If ¢,(E)=0, then
there is a homogeneous subbundle £ containing E by Proposition 2.13. By
Proposition 2.18, Hom, (P, W)=0 and hence Hom, (P, £)}=0 for every
P e Pic’X. In particular, we have E+E. Therefore we have

WEM) _ 2Ee)—1_ #E@) _ 1 _xH@) _ 1 _ W)
rE —  rE) rE) B rH@ r@E) W)

for n>>0. _ q.e.d.

§ 3. Generalities on sheaves on an abelian surface

In this section we prove some basic facts on sheaves on X, an abelian
surface or a complex torus of dimension 2. Let E and F be sheaves on X.
By the Riemann-Roch theorem, we have

HE, F): = (—1)* dim Exti,(E, F)
=r(EYUF)—(c\(E).c.(F)+X(E)r(F).

By the Serre duality, we have

3.1

3.2) dim Ext} (E, F)=dim Ext7(F, E)
for every i.
Definition 3.3. A(E)=3(c(E)*)—r(E)X(E)

Putting E=Fin (3.1) and (3.2), we have
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(3.4) dim Ext} (E, E)=2A(E)+ 2 dim End, (E).

In particular, we have A(EQ L)=A(E) for every line bundle L. .
Let E be a simple sheaf on X, that is, End, (E)=k. There exists the
formal moduli of deformations of E.

Proposition 3.5. The formal moduli of deformations of a simple sheaf
E on X is smooth and of dimension 2A(E)+2 if either E is locally free or X
is an abelian surface.

Proof. When E is locally free, let « be the natural morphism from
the functor of deformations of E to Pic X which assigns det F to a vector
bundle F. Let § € H*(X, énd,,(E)) be an obstruction for the formal moduli
to be smooth. Then «(d) € H*(X, 0) is an obstruction for Pic X to be
smooth. Since Pic X is smooth, «(f) is zero. On the other hand, it is
easy to see that a(f) = H*(Tr)(0) for the trace homomorphism Tr: &nd,(E)
—04. Since E is simple, H°(i) is surjective for the natural homomorphism
i: Ox—énd, (E). Hence, by the Serre duality, H*(Tr) is injective. It follows
that @ is zero, which implies the local moduli is smooth.

When X is an abelian surface, take a sufficiently ample line bundle L
so that H'(X, EQLQP)=0 for every i>>0 and P € Pic’X. By the base
change theorem, S(EQ®L) is a vector bundle and R'S(EQL) is zero for
every i>0. By Proposition 1.12, the formal moduli of E® L is isomorphic
to that of its Fourier transform (EQ L) =S(E® L), which is smooth since
(E®L)" is locally free. Obviously the formal moduli of F is isomorphic
to that of EQ L and hence it is smooth.

The second half of the proposition follows from (3.4) and the well-
known fact that the tangent space of the local moduli of E is canonically
isomorphic to Ext} (E, E). q.e.d.

Let M, be the moduli space of stable (with respect to an ample line
bundle L on X) sheaves on an abelian surface X. Since the stability is an
open condition and stable sheaves are simple, the formal neighbourhood
of M, at [E] is isomorphic to the formal moduli of E for every stable sheaf
E. Hence by the proposition, we have:

Corollary 3.6. The moduli space M, of stable sheaves on an abelian
surface X is smooth and dim; M, =22(E)+2 for every stable sheaf E on X.

Proposition 3.7. Assume that both E and F satisfy W.I.T. and let i(E)
and i(F) be their indices (Definition 1.4). Then we have

1) X(E, F)=(—1)®+unyE, F).

2) NE)=AE). o

3)  (alE).c(F)=(=1)"® 4D (cy(E).ci(F)).
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Proof. By Corollary 2.5 [12], Exti (E, F) is isomorphic to Ext} -
(E, F) from which 1) follows immediately. By 1) and (3.1), we have the
equality

HEYUF) —(e(E).c(F))+ X(E)r(F)
=(— D@+ O (EYNE) —(e,(E).c(F) + UE)r (F)}.

Putting E=F in this equality, we have 2). By Corollary 2.8 [12], X(F) is
equal to (—1)!r(F) and r(E) is equal to (—1)“®Y(FE). Hence r(E)X(F)
is equal to (—1)i®+i®y(E)(F). Hence by the above equality we have
3). q.e.d.

By (3.4), (EQL)=2(E) for every line bundle L. 2(E)is a very im-
portant invariant of sheaves on X.

Proposition 3.8. Let E be a simple sheaf on X. Then we have

1) A(E)=0.

2) If A(E)=0 and E is torsion free, then E is a semi-homogeneous
yector bundle, i.e., for every x € X there is a P € Pic’X such that T*E=E

®P.

Proof. 1) Since E has the formal moduli of its deformations
(Proposition 1.10), we have A(E) = dim Ext'(E, E)—2=>0 by the same
argument as in Proposition 3.16 [11].

2) The formal moduli of deformations of E exists and has dimension
2. Hence the subscheme S={(x, P)|T*EQP=E} of XXPic’X has di-
mension =2 and the restriction S— X of the projection x» to S is surjective.
Hence for every x € X, there is a P € Pic’X such that T¥E= EQP. q.e.d.

Next we show 1) of the proposition for pg-semi-stable sheaves. Let
M be an ample line bundle on X or a Kihler form of X.

Definition 3.9. = E is y-stable (resp. y-semz-stable) w1th respect to M if
E is torsion free and

_ (a(F).M) (c(E).M) _
)= M < D _ ) (osp. )

for every nonzero proper subsheaf F of E.

Every p-stable sheaf is simple and if E is g-stable (resp. p-semi-stable)
then so are E~ and E® L where L is an arbitrary line bundle on X. When
we fix M, there is the following implication: p-stable=>stable=>semi-stable
=>p-semi-stable. If E is y-semi-stable, then E has a filtration 0=E,CE,
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C...CE,=E such that F, is p-stable and pu(F,)=p(E) for every i=1,
---,n,where F,=E,[E;, ,i=1, ---,n.

Lemma 3.10. Let E be a p-semi-stable sheaf and F;’s as above’. Then
AE)r(EY=2 2.1 A(F)/r(F;) and the equality holds if and only if ¢,(E)/r(E)
ma(F)[r(F) for every i=1, - - -, n.

Proof. It suffices to show the assertion in the case n=2. Since r(E)
=r(F)+r(F), c(E)=c,(F)+c((F,) and X(E)=X(F,)+X(F,), we have
Z(E)__ A(F) _ AFy) — (c(F)+ce(F)) _ CI(E)Z_ a(F)
r(E) r(F) r(F) r(F)+r(F) r(F)  rF)
. —(DY
 r(BrE(E)’

where D=r(Fy)c,(F,)—r(F)c,(F,). Since (D.M)=0, we have (D*)=0 and
(D? =0 if and only if D0, by the Hodge index theorem. q.e.d.

By Propositions 3.8 and 3.10 we have:

Proposition 3.11. If E is p-semi-stable, then A(E)<0. The equality
holds if and only if E has a filtration 0=E,C E,C ... CE,=E such that
E,|E,_, is semi-homogeneous and

¢(EJE; ) ~ c(E)
r(EJE,.)) ~ r(E)

for everyi=1, ... n.

Remark 3.12. By the result in Section 6 [11], £ has a filtration as in
the proposition if and only if E is semi-homogeneous in the case char.=0
or char.=p>0 and the p-rank of X is maximal.

For later use, we prove some properties of quotient sheaves of a
homogeneous vector bundle.

Proposition 3.13. Let E be a quotient sheaf of a homogeneous vector
bundle H on X. If (¢,(E)*)=0, then 2(E)=0.

Proof. H has a filtration 0=H,C H,C - - - C H,=H such that P;:=
H,/H,_, € Pic"X for every i=1, --.,n. Hence E has a filtration 0=E,C
E,C...CE,=E such that E,/E,_, is a quotient of P,. Since ¢,(P;)=0,
c(E;JE;_)) is algebraically equivalent to an effective divisor for every i=1,

-,n. If (¢(E))=0, then ¢,(E)=>7_,c(E,/E,;_,) is algebraically equi-
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valent to mC for some m>0 and a smooth elliptic curve C on X.
Therefore there are integers m,, - - -, m,; 20 such that ¢,(E,/E;_,) is alge-
braically equivalent to m,C for every i=1, ---,n and > 7 ,m,=m. Let
R, be the kernel of the natural homomorphism P,—E,/E;_,. Since
a(R)= —m,C and R, is subsheaf of det R, of finite colength, A(R,)<
X0z (—m;C))=0. Hence X(E)=2 7 X(E/E;,_)=27..(X(P)—X(R))=0.

, g.e.d.

The following is a standard technique for showing the stability.

Lemma 3.14. Let E be a torsion free sheaf on X.

1) E is p-stable (resp. p-semi-stable) if (*) p(F)Y> p(E) (resp. =) for
every p-stable proper quotient sheaf F of E.

2) Eis stable if (**) either W(F)> i(E) or p(F)=u(E) and A(F)[r(F)
>X(E)/r(E) for every stable quotient sheaf F of E.

Proof. 1) Put ygy=min {¢(G)|G is a nontorsion quotient sheaf of E}.
Let F’ be a nontorsion quotient sheaf of E with p(F’)=p, and minimizing
r(F’) among those sheaves. Then the quotient F of F’ by its torsion part
is p-stable and p(F)<u(E). Hence if (*) holds, then F=E (resp. p(E)=
MF)=p,). It follows that E is p-stable (resp. p-semi-stable).

2) Let py, be as'in 1). Put g =min {¥(G)/r(G)|G is a nontorsion
quotient sheaf of E with p(G)==y,}. Let F be a nontorsion quotient sheaf
of E with u(F)=p, and X(F)/r(F)=y, and minimizing r(F) among those
quotient sheaves. Then F is stable, y(F) < u(E) and if p(F)=pu(E), then
X(F)/r(F)XA(E)/r(F). Hence if (**) holds, then F=E. It follows that
E is stable. q.e.d.

§ 4. Characterisations of sheaves of U-type and WW-type

First we give a preliminary characterization of sheaves of U-type.

Proposition 4.1. Let E be a sheaf on a principally polarized abelian
surface (X, C) with ¢(E)=C and X(E)=—1. Then the following are
equivalent

1) Eis of U-type.

2) Hom,,(E, P)=0 for every P e Pic’X and the set ®={P ¢ Pic’X|
. Hom, (P, E)==0} is finite.

3) W.LT. holds for E, its index is equal to 1 and the Fourier transform
E is torsion free.

Proof. 1)=2) Let E be a sheaf of U-type. By Definition 0.1, E is
isomorphic to the cokernel of a homomorphism ¢: L™'—H such that
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Hom, (¢, P) is injective for every P e Pic’X. Hence Hom,,(E, P)=0 for
every P e Pic’X. Since Hom, (P, L™")=Ext; (P, L ")=0 for every P ¢
Pic’X, the set @ coincides with {P e Pic’X|Hom,, (P, H)-0}. Hence
the cardinality of @ is at most »(H) (Definition 0.1).

2)=>3) By the Serre duality, /*(E® P)=dim Hom, (E, P~")=0 for
every P e Pic’X. Hence by the base change theorem, R:S(E) =Rrs (n3E
®P)=0. The second half of 2) implies that S(E)=7l"{r’*(7f§éE®P) is sup-
ported by the finite subset @ of X. By Theorem 2.2 [12]; there is a spectral
sequence

R‘S(R’ﬁ(E))é{(—IX)*E, i+j=2
0 otherwise

and we have S(S(E))=0. Hence S(E) is zero. Therefore W.L.T. holds
for E and its index is equal to 1. Since X(E)= —1, I(EQP)=1 for all
P e Pic’X—®. Hence E=R'S(E) is an invertible sheaf outside a finite set
of points. In particular, the torsion part T of E is of finite length. S(7T)
is contained in S(¥) and its rank is equal to the length of 7. Since W.L.T.
holds for £ and its index is 1 (Corollary 2.4 [12]), S(E) is zero. Hence T=
0, that is, E is torsion free.

3)=>1) By Corollary 2.8 [12] and Proposition 1.23, we have rE)=
—XE)=1, X(E)=—r(E) and e(E)=C. Since E is torsion free, it is iso-
morphic to LQ, where L is a line bundle algebraically equivalent to
04(C) and . is an ideal of @y of colength r(E)+1. We have the exact
sequence 0—E—L—03/F—0. H=S(0z/.#) is a homogeneous vector
bundle because 03/ FQRQP=03/# for every P e Pic’X. By Proposition
3.11 [12], R*S(L)=0 and S(L) is isomorphic to L™* by the natural identi-
fication between X and X. By the duality (Theorem 2.2 [12]), S(E)=0
and R'S(E)=E=(—1,)*E. Hence we have the exact sequence

0——>L ' sH 5(—1,)*E—>0.

On the other hand, since R:S(E)=0, H*(X, EQP) is zero for every P e
Pic’X. Hence Hom, (E, P) is zero and Hom,,(p, P) is injective for every
P e Pic’X. Therefore E=Coke (—14)*¢ is a sheaf of U-type. g.e.d.

Let X be an arbitrary abelian variety or complex torus.

Definition 4.2. A sheaf E on X is of W-type if it is isomorphic to the
kernel of a homomorphism ¢: H—k(x) from a homogeneous vector bundle
H onto the one dimensional skyscraper sheaf k(x) supported by x e X
such that Hom, (P, ¢): Hom, (P, H)—Hom, (P, k(x)) is injective for
every P e Pic’X.
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A sheaf E of W-type is torsion free but not locally free and satisfies
¢,(E)=0 and X(E)= —1.

Theorem 4.3. Let E be a sheaf on X, an abelian surface or a complex
torus of dimension 2, with ¢ (E)=0 and X(E)= —1. Then the following are
equivalent: .

1) There is an exact sequence

0—>H'—>E—>H"— 5k(x)—>0

Jfor homogeneous vector bundles H' and H" and a point x € X.

2) Hom,/(P, E)=Hom,,(E, P)=0 for all but a finite number of
P ¢ Pic’X.

Let L be an arbitrary ample line bundle on X or a Kdihler form of X.
Then the following is also equivalent to 1) and 2):

3) Eis p-semi-stable with respect to L.

Proof. Since every complex torus is Kéahler, it suffices to prove
2)—>1) 3) 2).

2)=1) By assumption, H*(EQP)=hr(EQP)=0 for all but a finite
number of P e Pic’X. Since X(EQP)=X(E)=—1 for every P e Pic’X,
H(E®P)=1 for all but a finite number of P e Pic’X. Hence S(E) and
R:S(E) are of finite length and R'S(E) is an invertible sheaf on X outside
a finite set of points. By the spectral sequence RS(R'S(E))=>(—1,)*E,
i+j=2 and 0, otherwise, we have S(S(E))=0, S(R'S(E))=0 and the
exact sequence

0——>R'S(R'S(E))—>(— 1 )* E—>S(R:S(E))—> R:S(R'S(E))—>0.

Since S(E) is of finite length and S(S(E))=0, S(E) is zero. Since the
torsion part of R'S(E) is of finite length and S(R'S(E))=0, R'S(E) is
torsion free. Hence R'S(E) is isomorphic to Q®.#, where Q is a line
bundle and .# is an ideal of @4 of finite colength. By Proposition 1.17,
¢(Q) is algebraically equivalent to 0, i.e., Q € Pic’X. Hence we have S(Q)
=R'S(Q)=0 and R®:S(Q)=k(g), where ¢ is the point of X =X corre-
sponding to Q. From the exact sequence 0—R'S(E)—Q—03/F —0, we
have two isomorphisms S(03/#)>R'S(R'S(E)) and R:S(R'S(E)S
R:S(Q)=k(q). Therefore, we have the exact sequence

00— H' ——>(—1)*E——>H"——k(g)—>0,

where H' = S(03/.#) and H” = S(R:S(E)) are homogeneous vector bundles.
1)=>3) Since H’ and the kernel K of the homomorphism H’'—k(x)
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are p-semi-stable and p(H’)=u(K), so is the extension E of K by H'.
3)=2) Let P be a line bundle algebraically equivalent to ¢,. Since
E is y-semi-stable and u(E)=u(P)=0, the cokernel E’ of a nonzero homo-
morphism f: P—E is p-semi-stable and ¢,(E’)=0. Hence, by induction
on r(E), Hom, (P, E)+0 for at most r(E) P e Pic°X. By a similar argu-
ment, we have Hom, (E, P)+0 for at most r(E) P e Pic’X. q.e.d.

Corollary 4.4. In the same situation as in the theorem, the following
are equivalent

1) Eis of W-type.

2) Hom,, (P, E)=0 for every P ¢ Pic’X and Hom,(E, P)=0 for all
but a finite number of P € Pic°X.

Let L be an arbitrary ample line bundle on X or a Kdihler form of X.
Then the following is also equivalent to 1) and 2).

3) E is stable with respect to L.

Proof. We have shown 1)=>3) in Proposition 2.22. 3)=>2) Since E
is p-semi-stable, Hom,, (E, P)=0 for all but a finite number of P € Pic’X
by the above theorem. Since w(E)=p(P) and X(E)/r(E)<X(P)/r(P),
Hom,, (P, E)=0 for every P & Pic’X by the definition of stability.

2)=1) By the above theorem, E has an exact sequence

0—>H'—>E—>H"—% 5 k(x)—>0.

Since Hom,, (P, E)=0, we have H'=0 and Hom, (P, ¢) is injective for
every P e Pic°’X. Hence E is of W-type. q.e.d.

By the above corollary and Theorem 2.21, we have:

Corollary 4.5. Let X be an abelian surface or a complex torus of di-
mension 2 and L an ample line bundle or a Kdhler form of X. Then the
moduli space M. (r,0, —1) of sheaves E on X with r(E)=r, ¢,(E)=0,
X(E):A—l and which are stable with respect to L is isomorphic to XX
Hilb" X.

§5. M, 4, —1) in the case C is irreducible

In this section we prove Theorem 0.3. Let (X, C) be a principally
polarized abelian surface such that C is irreducible. C is a smooth curve
of genus 2 and X is the Jacobian variety of C. We denote the algebraic
equivalence class of C by 4.

Lemma 5.1. Let a and b be two points of X (b may be an ihﬁnitely
near point of a). Then the cardinality of the set {x € X|the translation C, of
C by x passes through a and b} is at most two.
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Proof. When a and b are ordinary points, C, passes through a and
b if and only if a—x and b—x are contained in C. In other words, x is
contained in the intresection (a— C)N(b—C). Since C is irreducible and
a#b, a— C and b— C have no common components. Hence the number
of points in the intersection is at most the intersection number (¢—C,
b—C)=(C*»=2. When b is infinitely near to a, C, passes through «
and b if and only if x e a—C and the tangent direction of C, at a is b.
The Gauss map ¢: C— P(Ty, ,) for which ¢(y)="the tangent direction
of C,_, at a” is just the canonical map of C. Since the genus of C is
equal to 2, ¢ is finite and its degree is 2. Hence the cardinality of the

set {x e X|C, passes through a and b}={a—y|p(y)=>~} is at most two.
g.e.d.

Lemma 5.2. Let E be a torsion free sheaf on X with r(E)=r, ¢(E)=C
and X(E)<0. Then there are at most r+1 P e Pic’X such that Hom, (P, E)
+0 if E satisfies the following condition:

(*) For every homogeneous vector bundle H contained in E and with
r(H)<r, the quotient E/H is torsion free.

Proof. We prove the lemma by induction on r. In the case r=1,
E is isomorphic to 0,-(C,)®.# for a point y € X and an ideal .# of 0, of
colength =2. For every P e Pic’X, there is a unique x € X such that
Ox(CHRP'=0,(C,,,). Hence the set {P e Pic’X|Hom, (P, E)+0} is
isomorphic to {x € X|C,,, passes through Spec @,/.#}. Hence its cardi-
nality is at most two by Lemma 5.1. Assume that r>2. We may assume
that there is a nonzero homomorphism f: P—FE for some P e Pic’X. By
the condition (¥), E’=Coke f is torsion free and also satisfies (*) (cf.
Definition 0.1). By induction hypothesis, there are at most r Q e Pic’X
such that Hom,, (Q, E)#0. If Q e Pic’X and Hom,,(Q, F)+#0, then
either Q=P or Hom,,(Q, E’)#0. Hence there are at most r+1 such
Q’s for E. q.e.d.

Proof of Theorem 0.3. Every sheaf of U-type is stable by Theorem
2.15. Let E be a stable sheaf with ¢,(F)=C and X(E)=—1. We show
that E satisfies 2) of Proposition 4.1. Since E is stable and y(E)=
(c(E).C)/r(E)>0=(P), Hom,, (E, P)=0 for every P € Pic’X. Let H be
a homogeneous vector bundle contained in E and with r(H)<r(E) and
H the inverse image of the torsion part T of E/H by the natural
homomorphism E—>E/H. Since E is stable, w(E)=2/r(E)=u(H)=
(e(H) + c(1).C)/r(H) = (c(T).C)/r(H). Since r(H)<r(E), we have
(c(T).C)<2. Since ¢(T) is effective and C is irreducible, we have ¢,(T)
=0 (Lemma 3.5[19]). Hence H/H is of finite length. Since H is locally
free, H is equal to H, that is, T=0. Hence E satisfies the condition (¥)
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of Lemma 5.2. By Lemma 5.2, there are at most finite P e Pic’X such
that Hom, (P, E)#0. Therefore E is of U-type by Proposition 4.1.
qg.e.d.

Remark 5.3. Actually we have proved above that E is of U-type if
E is p-semi-stable.

A general sheaf of U-type is locally free but special ones are not.
Sheaves of U-type which are not locally free form a subvariety of M(r, ¢,
—1) of codimension r—1. In fact, we have:

Proposition 5.4. Let E be a sheaf of U-type which is not locally free
and r=r(E)=2. Then E is isomorphic to the kernel of a nonzero homo-
morphism f: T¥F.QP—k(y) for x,y e X and P e Pic’X, where F, is the
Picard bundle of rank r on X (¢f. § 4 [12]).

Proof. Let E be the double dual EVV of E. E contains E canonically
and E/E is of finite length. Since E is p-stable, so is E. By Proposition
3.8, AE)=(c(EW)2—r(E)x(E)=0. Since r(E)=2 and X(E)=UE)+
length E/E>0, we have X(E)=0 and length E/E=1. Hence E is iso-
morphic to the kernel of a nonzero homomorphism from £ to k(y) for
some y € X. On the other hand E is isomorphic to T*F,@P for some
x € X and P e Pic’X by Theorem 5.4 [12]. q.e.d.

By Lemma 4.10 [12], T#F,QP=T;F,QQ if and only if x=y and
P=Q. On the other hand P(F,) is isomorphic to the (r-1)-st symmetric
product S7*'C of C. Hence we have:

Corollary 5.5. The subset of M(r, £, —1) consisting of the points
corresponding to non-locally-free sheaves is isomorphic to X X X X S"*'C and
a closed subvariety of codimension r—1.

Next we consider the moduli space M(r, — ¢, —1). If a sheaf E of
U-type is locally free, then the dual vector bundle EV belongs to M(r, ¢,
—1) because E is p-stable and hence so is EV (Theorem 2.14). But EV does
not belong to M(r, 4, —1) if E is not locally free,

Proposition 5.6. Let E be a member of M(r, — ¢, —1),r=2. Then E
is isomorphic to the dual of a vector bundle of U-type or to the kernel of a
nonzero homomorphism f: TXFY® P—k(y) for x, y e X and P e Pic’X,
where F, is the Picard bundle of rank r.

Proof. Let E be a member of M(r, — ¢, —1). If E is locally free,
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then EV is of U-type by Theorem 0.3 and Remark 5.3 because E is y-semi-
stable and hence so is EV. In the case E is not locally free, we have by
Proposition 3.11 and the same argument as in the proof of Proposition 5.4
that F is isomorphic to the kernel of a nonzero homomorphism from a
vector bundle £ to k(y) for some y ¢ X. Since EV is p-semi-stable, EV is
isomorphic to T}F,QP~! for some x € X and P ¢ Pic’X by Theorem 5.4
[12] q.e.d.

Corollary 5.7. The moduli space M(r, — ¢, —1) is irreducible and
birationally equivalent to X X Hilb"*'X,

Proof. In the case r=1 or 2, the map E—~E® 0,(—(2/r)C) gives an
isomorphism between M(r, 4, —1) and M(r, — ¢, —1). Hence the assertion
is clear in this case. By Proposition 5.6, in the case r>>3 the subset of
M(r, — £, —1) consisting of the points corresponding to non-locally-free
sheaves is isomorphic to X' X X X P(F,) whose dimension is equal to r-+5
<2r+4. Hence the rational map E—EY from M(r, {, —1)= X X Hilb"*'X
to M(r, — £, —1) (Proposition 5.4 and Corollary 5.5) is birational by
Proposition 3.6. q.e.d.

§6. My, 4, —1) in the case C is reducible

In this section we prove Theorem 0.2 in the case C is reducible. In
this case, C=C,+C, for two elliptic curves C, and C, which intersect
transversally at one point and X is isomorphic to C, X C,.

By Corollary 3.6, every component of M(r, 4, —1) is smooth and has
dimension 2r+4. On the other hand, a general sheaf of U-type is stable
([20] Lemma 9) and Hilb"*'X is irreducible. Hence for the proof of
Theorem 0.2 it suffices to show the following:

Theorem 6.1. The p-semi-stable sheaves E on X with r(E)=r, c¢(F)
=C and XE)=—1 and which are not of U-type are parametrized by a
union of algebraic varieties of dimension <2r-4.

Lemma 6.2. Let N be a line bundle aigebraically equivalent to 0 x(Cy)
and F an ideal of Oy of finite colength, where k=1 or 2. Then we have:

1) W.ILT. holds for NQ.# and its index is equal to 1, that is, §(N X.7)
=RS(N®.#)=0.

2) N is a line bundle on a translate C}_, of C,_.

3) (N®SF)" is torsion free if F=+0y.

Proof. 1) By the Serre duality, #(X, N®.#®P)=dim Hom, (N®
F, P~1)=0 for every P e Pic’X. Hence by the base change theorem,



Bundles on an Abelian Variety 547

RS(N®F)=0. Since N®. is torsion free, so is S(N®S) =1z (PQ
¥ (N®)). On the other hand there is a P ¢ Pic’X such that H'(X, N®
JFQP)=0. Hence by the base change theorem Supp S(E)=X. Therefore
we have S(E)=0.

2) Itis easy to check that ¢,(N) is algebraically equivalent to C,_,
by the identification ¢,: X3X. On the other hand, Hom”(k(x), N)=0
for every £ e X since S(N)=0. Hence we have 2).

3) Since £+ 0y, there are at most finitely many P e Pic®X such that
HYX, NQFQP)+0. Hence we have 3) in a way similar to the proof of
2)=>3) in Proposition 4.1, g.e.d.

Proposition 6.3. Let E be a torsion free sheaf with c(E)~C and
X(E)Y=—1. Assume that E has infinitely many P e Pic’X such that
Hom,, (P, E)+0 and that (¢,(F).C)<1 for every proper subbundle F of E.
Then S(E)=0 and the torsion part of R'S(E) is zero or a line bundle on a
translate of C, or C,.

Proof. We prove the lemma by induction of r(E). In the case
r(E)=1, E is isomorphic to det EQ.#, where £ is an ideal of @, of
colength 2. Since det E is algebraically equivalent to @(C,+C,) and
since Hom,, (P, E)+0 for infinitely many P € Pic°X, Spec 0,/ is a sub-
scheme of a translate C; of C,, where k=1 or 2. Hence E contains a line
bundle M algebraically equivalent to @,(C,_,) and E/M is isomorphic to
a line bundle on C] of degree —1. By the base change theorem, S(E/M)
=0 and R'S(E/M) is a line bundle on X. Since S and R'S are semi-exact
functors, S(E)=0 and the torsion part of R'S(E) is a line bundle on a
translate of C,_, by Lemma 6.2. Assume that r(F)=2. Let f: P—E be
a nonzero homomorphism from P e Pic’X to E.

When Coke f'is torsion free, put E’=Coke f. Then E’ has infinitely
many P e Pic’X such that Hom, (P, E")=0 and (¢,(F").C)<1 for every
proper subbundle F’ of E/. Hence by induction hypothesis, S(E’)=0
‘and the torsion part of R'S(E’) is zero or a line bundle on a translate of
C, or C,. On the other hand, operating the Fourier functor to the exact
sequence 0—P—>E—E’—0, we have S(E)SS(E’)=0 and the injection
0—R'S(E)—R'S(E"), since S(P)=R'S(P)=0. Hence the torsion part of
R:S(E) is zero or a line bundle on a translate of C, or C,.

When Coke fis not torsion free, let E’ be the quotient of Coke f by
its torsion part. - Let E” be the kernel of the composite E—Coke f—E’.
Since r(E")y=1, E”" is isomorphic to det E”’"®.# for an ideal .# of 0, of
finite colength. Since det E contains P and det E”’~P, ¢,(E”’) is algebra-
ically equivalent to a nonzero effective divisor. - Since (¢(E”).C)<1 by
assumption, ¢,(E”) is algebraically equivalent to C, or C,. On the other
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hand, (¢,(F’).C)<0 for every proper subbundle F” of E’ by our assumption.
Hence F'/H is torsion free for every homogeneous vector bundle H with
r(H)<r(F’) and contained in F’. Since E has infinitely many P e Pic’X
such that Hom, (P, E)+0, E’ or E” has this property. If E’ has this pro-
perty then there is a homogeneous vector bundle H such that HCE’,
r(H)=r(E")—1 and E’/H is torsion free. Hence E’/H is isomorphic to
det (E’/H)® # for an ideal # of finite colength. Since ¢,(F’/H)=~c¢,(E")
is algebraically equivalent to C, or C, and since E’/H has infinitely many
P e Pic’X such that Hom,, (P, E’/H)=0, we have by Lemma 6.2 that
F =0y, S(E'/H)=0 and R'S(E’/H) is a line bundle on a translate of C, or
C,. Hence S(E’)=0 and R'S(E’) is a line bundle on a translate of C, or
C,. Since colength(.#)+-colength( #)=—X(E)=1, £+#04. Hence by
Lemma 6.2, S(E”’)=0 and R'S(E”) is torsion free. Since $ and R'S are
semi-exact, S(E)=0 and the torsion part of R'S(E) is zero or a line
bundle on a translate of C, or C,. If there are at most finite P ¢ Pic’X
such that Hom, (P, E’)=0, then we have in a way similar to the proof
2)=>3) in Proposition 4.1 that S(E”)=0 and R'S(E’) is torsion free. Since
S(E’")=0 and the torsion part of R'S(E”) is zero or a line bundle on a
translate of C, or C, by Lemma 6.2, S(E)=0 and the torsion part of
R'S(E) is zero or a line bundle on a translate of C, or C,. q.e.d.

Proof of Theorein 6.1. Let E be a py-semi-stable sheaf with r(E)=r,
¢(E)=C and X(E)= -1 and which is not of U-type. By Proposition 4.1,
there are infinitely many P e Pic’X such that Hom,, (P, E)#0. By Pro-
position 6.3, S(E)=0 and the torsion part of R'S(E) is zero or a line
bundle on a translate of C, or C,. Since A E@P)=dim Hom, (E, P™")
=0 for every P e Pic’X, R:S(E) is zero. Hence W.LT. holds for E. By
Proposition 4.1, the Fourier transform £ is not torsion free. Let T be the
torsion part of £ and put M=E/T. By Proposition 1.23, we have ¢,(E)
~C. Since index(E)=1, we have r(£)=—x(E)=1 and X(E)= —r(E)
by Corollary 2.8 [12]. Since M is torsion free and c¢,(M)=c,(£)—c(T)
~C, or C,, S(M)=0 by Lemma 4.2. Hence R'S(T) is a subsheaf of
R'S(E)=E =(—1,)*E. On the other hand, S(T")=0 because it is a sub-
sheaf of S(£)=0. Since dim Supp T'=1, H¥X, TQ P)=0 for every P ¢
Pic’X. Hence R:S(T)=0. It follows that W.LT. holds for T. Since the
rank of T=R'S(T) is positive, X(T)= —r(T) is negative. Since Ex
(—1,)*E, it suffices to show that the simple sheaves E such that r(£)=1,
¢,(E)=C, x(E)= —r and the torsion part T of £ is a negative line bundle
on a translate of C, or C, are parametrized by an algebraic variety of di-
mension 2r4-4. The number of moduli of deformations of T as a sheaf
on X is equal to 2. Since M=det M®.F for an ideal .# of colength
—X(M), the number of moduli of deformations of M is equal to 2+
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dim Hilb-*n X =2—2x(M). Since E is simple, Hom,, (M, T)=0. Since
M is torsion free, Hom, (7, M)=0. Hence dim Ext; (M, T) = —X(M, T)
= —X(T)+1 by (3.1) and (3.2). Hence E’s are parametrized by an alge-
braic variety of dimension 24 {2 —2X(M)}+{—X(T)}=2r+4+ 1)<
2r+4. : q.e.d.
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